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Abstract. In this paper we describe a systematic procedure to analyze the convergence of de-
generate preconditioned proximal point algorithms. We establish weak convergence results under
mild assumptions that can be easily employed in the context of splitting methods for monotone
inclusion and convex minimization problems. Moreover, we show that the degeneracy of the pre-
conditioner allows for a reduction of the variables involved in the iteration updates. We show the
strength of the proposed framework in the context of splitting algorithms, providing new simplified
proofs of convergence and highlighting the link between existing schemes, such as Chambolle-Pock,
Forward Douglas-Rachford and Peaceman-Rachford, that we study from a preconditioned proximal
point perspective. The proposed framework allows to devise new flexible schemes and provides new
ways to generalize existing splitting schemes to the case of the sum of many terms. As an exam-
ple, we present a new sequential generalization of Forward Douglas-Rachford along with numerical
experiments that demonstrate its interest in the context of nonsmooth convex optimization.
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1. Introduction. In this paper we study preconditioned proximal point meth-
ods where we allow the preconditioner to be degenerate, i.e., only positive semi-definite
with a possibly large kernel. Our main motivation to do so is to apply the results
to various splitting methods for optimization problems and monotone inclusions. We
will show that these preconditioners still lead to convergent methods under mild as-
sumptions and, moreover, that this allows to reduce the number of iteration variables
in the context of splitting methods. The inclusion problem we consider is

(1.1) find u ∈H such that: 0 ∈ Au

where H is a real Hilbert space and A is a (in general multivalued) operator from
H into itself [2]. The set of solutions to (1.1) is referred as zeros of A and denoted
by zerA. By the Minty surjectivity theorem [26], the resolvent JA := (I + A)−1

is a well-defined function from H into itself as soon as A is maximal monotone;
moreover it is firmly non-expansive and its fixed points correspond exactly to solutions
of (1.1) (cf. [2, Section 23]). Hence, by the Krasnoselskii-Mann convergence theorem,
the proximal point iteration uk+1 = JAu

k weakly converges to a solution of (1.1).
However, the evaluation of the resolvent is, in general, not much simpler that solving
the inclusion problem itself. This changes, if one considers a preconditioner, i.e., a
linear, bounded, self-adjoint and positive semi-definite operator M : H → H. We
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have the equivalence of (1.1) to

(1.2) find u ∈H such that: u ∈ (M+A)
−1Mu.

Assuming that the operator T := (M+A)
−1M has full domain and is single-valued,

one can turn the fixed-point inclusion into the preconditioned proximal point (PPP)
iteration

(1.3) u0 ∈H, uk+1 = T uk = (M+A)
−1Muk,

and proper choices of M will allow for efficient evaluation of T .
In general, T is an instance of the so-called warped resolvents, whereM is replaced

by a general non-linear operator [9]. Other particular instances of warped resolvents
can be found under the name of F -resolvents [3], or D-resolvents [17, 1]. In our
framework, M will be always referred as preconditioner. In case of M = I, we
retrieve the usual proximal point iteration [25, 33], and if M defines an equivalent
metric (i.e., M is strongly positive definite) then we simply get a proximal point
iteration with respect to the operator M−1A in the Hilbert space endowed with the
metric induced byM. In this case, the convergence analysis of (1.3) is essentially the
same as for the case M = I.

In this work we consider the case where the preconditioner M is only posi-
tive semi-definite, and hence, M is associated with a semi inner-product 〈u, v〉M :=
〈Mu, v〉 (defined for all u and v in H), as well as a continuous seminorm ‖u‖M :=√
〈u, u〉M. Such preconditioner is typically involved in the context of splitting meth-

ods, that is, for inclusions of the form

(1.4) find x ∈ H such that : 0 ∈ (A0 + · · ·+AN )x,

that we aim to solve using only the resolvents of each maximal monotone operator
Ai combined with simple algebraic operations. If N = 1, one of the most popular
splitting algorithm to tackle (1.4) is the celebrated Douglas-Rachford splitting (DRS)
method [16, 18], which, as already remarked in [6], admits a genuinely degenerate
PPP representation with respect to the operators

(1.5) A :=

[
σA I

−I (σB)
−1

]
, M :=

[
I −I
−I I

]
,

with σ > 0, A = A0, B = A1. Let u := (x, y) ∈H := H2, the inclusion problem 0 ∈
Au in the larger space H is indeed equivalent to 0 ∈ (A+B)x, in fact 0 ∈ (A+B)x if
and only if there exists y ∈ H such that 0 ∈ σAx+y and y ∈ σBx. The preconditioner
has been chosen to be positive semi-definite and such that the PPP iterations can be
computed explicitly. Indeed, A +M has a lower triangular structure and we easily
get

(1.6)

{
xk+1 = JσA(xk − yk),

yk+1 = J(σB)−1

(
2xk+1 − (xk − yk)

)
.

We can already notice that we only need the information contained in xk − yk, which
leads to the substitution wk := xk − yk resulting exactly in the DRS iteration

(1.7) wk+1 = wk + JσB(2JσAw
k − wk)− JσAwk.
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The sequence {wk}k can be shown to converge weakly to a point w∗ such that
JσA(w∗) is a solution of 0 ∈ (A + B)x, provided such a point exists [18]. Notice,
moreover, that passing from (1.6) to (1.7) we reduced the variables from two to one.
We show in this paper that this is not accidental.

The convergence of the sequence uk = (xk, yk) is more subtle because in this case
we are really dealing with a strongly degenerate preconditioner (as the preconditioner
M has a large kernel), and convergence can not be deduced from the convergence of
the proximal point method [6]. Instead, an ad hoc proof of convergence that exploits
the particular structure of the problem is given for instance in [36].

1.1. Motivation. Preconditioned proximal point iterations are attracting an
increasing interest due to their fruitful applications in splitting algorithms for convex
minimization and monotone inclusion problems, but the present lack of a general
and sufficiently simple procedure to tackle the convergence and stability analysis in
the degenerate case typically leads to involved and long proofs. Indeed, no definitive
treatments can be found in the literature.

This motivates the development of a unifying theory that can give a new perspec-
tive on existing splitting schemes, simplifying the analysis of convergence, and paving
the way for new algorithms that can also allow tackling objective functions composed
by many terms.

1.2. Related work. The proximal point algorithm has an old history that dates
back to the seminal works of Martinet and Rockafellar [33, 25]. Soon after, the work
of Cohen [11] introduces a closely related algorithmic approach referred as auxiliary
problem principle, which shows the seminal idea to replace the usual norm with gen-
eralized, even non-linear, variants. More recently, in the context of PPP as defined in
(1.3) we mention the work of He and Yuan [21], where the authors firstly propose the
analysis of the Primal-Dual Hybrid Gradient method, also known as Chambolle-Pock
(CP) algorithm [10], from a PPP standpoint, but a non-degenerate preconditioner is
considered. A more general instance can be found in [20] for solving the three-operator
problem (problem (1.4) with N = 2), but the analysis relies on non-degenerate pre-
conditioners. Other instances of non-degenerate, but even non-linear, preconditioners
lead to the notion of D-resolvent [17, 3], where the square distance in the usual defi-
nition of proximal point is replaced by a Bregman divergence generated by a strictly
convex function resulting in a PPP-like iteration whereM is replaced by the gradient
of the generating function. More general resolvents can be found under the name of
warped resolvents [9], where the preconditioner is replaced by a non-linear operator.

For the degenerate case we mention the general treatment proposed by Valkonen
in [37] where the analysis of convergence includes PPP iterations, but do not go be-
yond the weak convergence of PPP in theM seminorm. Similar results can be found
in the recent work by Bredies and Sun on the preconditioned variants of DRS and the
alternating directions method of multipliers (ADMM), where authors also recover the
convergence in the original norm, but with ad hoc proofs of convergence [6, 7]. Also,
the so-called asymmetric forward–backward–adjoint splitting proposed in [23] can be
thought as a PPP instance with an additional forward term, but the degenerate-case
analysis (with no forward term) is performed, with an arguably involved proof, only in
finite dimensions. In [13, Section 5], the authors propose a generalized CP algorithm
presenting the scheme directly as a PPP method. The convergence is established in
Theorem 5.1 in the non-degenerate case relying on the non-degenerate PPP formula-
tion, and in a separate result (Theorem 5.2) for the degenerate case, after noticing
that it is an instance of DRS on a modified space, which allows relying on existing
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proofs of convergence for DRS. Currently, particular cases of PPP are dealt with on
a case-by-case basis. To the best of the authors’ knowledge, a unified treatment does
not exist in the literature.

1.3. Contribution. The paper is organized as follows. In section 2 we present
the analysis of the degenerate case of the preconditioned proximal point method pro-
viding a systematic scheme to establish convergence (with and without rates) that only
involves mild assumptions. Moreover, we also show how the degeneracy of the pre-
conditioner allows for a reduction of the number of variables involved in the iteration
updates. In section 3 we focus on the application to splitting algorithms. In this con-
text, the main contribution that the proposed analysis provides is two-fold. First, it
allows to simplify, in a unifying fashion, the convergence analysis for a variety of split-
ting methods, such as Chambolle-Pock in the limiting case, forward DRS (also called
Davis-Yin method), and Peaceman-Rachford, that we study from a PPP perspective.
Second, it allows to derive new splitting algorithms for the (N + 1)-operator problem
(1.4) that do not rely on the so-called product space trick (cf. subsection 3.1.1) such
as a sequential generalization of forward DRS. In subsection 3.2 we present numerical
experiments.

2. Abstract degenerate preconditioned proximal point. Let H be a real
Hilbert space, A : H→ 2H be a (multivalued) operator (that through the rest of this
paper we often identify with its graph in H ×H) and let M : H → H be a linear
bounded operator. Recall from (1.2) that (1.1) could be formulated as a fixed point

equation u ∈ T u, with T := (M+A)
−1M. Let us fix the class of preconditioners

that we consider in this paper.

Definition 2.1 (Admissible preconditioner). An admissible preconditioner for
the operator A : H→ 2H is a linear, bounded, self-adjoint and positive semi-definite
operator M : H→H such that

(2.1) T is single-valued and has full domain.

Remark 2.2. Contrarily to the non-degenerate case, assuming for instance that A
is maximal monotone does not necessarily lead to (2.1). As a non-trivial counterex-
ample consider

H = R2, A = ∂f, where f(x, y) = max{ey − x, 0} and M(x, y) = (x, 0),

It is easy to check that T is neither everywhere defined (T 0 = ∅) nor single-valued. For
this reason, instead of imposing the maximal monotonicity of A, we directly require
(2.1), which, in the context of splitting methods, is a reasonable assumption.

Based on classical results of functional operator theory we can characterize an ad-
missible preconditioner with the following fundamental decomposition. The proof is
postponed to the appendix.

Proposition 2.3. Let H be a real Hilbert space, and M : H → H be a linear,
bounded, self-adjoint and positive semi-definite operator. Then there exists a bounded
and injective operator C : D →H, for some real Hilbert space D, such thatM = CC∗.
Moreover, if M has closed range, then C∗ is onto.

Now we state the algorithm we aim to analyze:
Degenerate preconditioned proximal point method. Let A : H → 2H be an oper-

ator, M : H → H be an admissible preconditioner, and T = (M + A)−1M. Let



DEGENERATE PRECONDITIONED PROXIMAL POINT ALGORITHMS 5

{λk}k be a sequence in [0, 2] such that
∑
k∈N λk(2− λk) = +∞. Let

(2.2) u0 ∈H, uk+1 = uk + λk(T uk − uk).

In the degenerate case one may still considerM−1 as a multivalued operator and give
a precise meaning to the composition M−1A as

M−1Au =
⋃
y∈Au

M−1y =
{
z ∈H | z ∈M−1y, y ∈ Au

}
for all u ∈H.

With this notation we have for all (x, y) ∈H2 that

(M+A) y 3Mx ⇐⇒ M(x− y) ∈ Ay ⇐⇒ x− y ∈M−1Ay

⇐⇒ x ∈
(
I +M−1A

)
y ⇐⇒ y ∈

(
I +M−1A

)−1
x.

Therefore, the operator T coincides with the resolvent of M−1A, i.e.,

(2.3) T = (M+A)−1M =
(
I +M−1A

)−1
,

which is single-valued and with full domain by the admissibility of the preconditioner.
Notice that ifM is singular, say not surjective, the behaviour ofA outside the image of
M is somehow neglected byM−1A. Indeed, we have the following list of equivalences

(2.4)
(x, y) ∈M−1A ⇐⇒ (x,My) ∈ A ⇐⇒ (x,My) ∈ A ∩ (H× ImM)

⇐⇒ (x, y) ∈M−1(A ∩ (H× ImM)).

This suggests that standard demands on the structure of A, e.g., the maximal mono-
tonicity, can be relaxed without affecting the well-posedness of T . The following
notion will be crucial.

Definition 2.4 (M-monotonicity). LetM : H→H be a bounded linear positive
semi-definite operator then B : H→ 2H is M-monotone if

〈v − v′, u− u′〉M ≥ 0 for all (u, v), (u′, v′) ∈ B.

As for the non-degenerate case, we will largely rely on theM-monotonicity ofM−1A,
which in terms of A can be explicitly characterized with the following.

Proposition 2.5. Let A : H→ 2H, and M : H→H be a linear, bounded, self-
adjoint and positive semi-definite operator. Then we have thatM−1A isM-monotone
if and only if A ∩ (H× ImM) is monotone.

The proof is postponed to the appendix.

2.1. On the convergence of PPP. In this section we provide a proof of the
weak convergence of PPP according to (2.2) under the additional assumption that
(M+A)−1 is Lipschitz, a condition often satisfied in the context of splitting algorithms
(cf. section 3).

It has already been observed (see, e.g., [6, 9]) that some important notions can
be easily generalized to the degenerate case, such as the firm non-expansiveness.

Lemma 2.6. Let A : H→ 2H be an operator andM an admissible preconditioner
such that M−1A is M-monotone. Then T is M-firmly non-expansive, i.e.,

(2.5) ‖T u1−T u2‖2M+‖(I−T )u1−(I−T )u2‖2M ≤ ‖u1−u2‖2M for all u1, u2 ∈H.
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For a proof see [6, Lemma 2.5]. There, monotonicity of A is assumed, but exactly the
same proof holds even if we only assume the monotonicity of A ∩ (H× ImM).

Remark 2.7. As in the non-degenerate case, one can show that an operator T is
M-firmly non-expansive if and only if it isM-(1/2)-averaged, that is, R := 2T − I is
M-nonexpansive, i.e.,

‖Ru1 −Ru2‖M ≤ ‖u1 − u2‖M for all u1, u2 ∈H.

This follows in an obvious way from the parallelogram identity w.r.t. M, since for
any u, u′ ∈H,

‖Ru1 −Ru2‖2M = ‖T u1 − u1 − (T u2 − u2) + T u1 − T u2‖2M
= 2‖(I − T )u1 − (I − T )u2‖2M + 2‖T u1 − T u2‖2M − ‖u1 − u2‖2M ≤ ‖u1 − u2‖2M

is equivalent to ‖(I − T )u1 − (I − T )u2‖2M + ‖T u1 − T u2‖2M ≤ ‖u1 − u2‖2M.
From theM-firm non-expansiveness (2.5) we can derive the analogous in theM-

seminorm of the asymptotic regularity and the Fejér monotonicity of {uk}k w.r.t. the
fixed points of T , which we denote by Fix T .

Lemma 2.8. Let A : H → 2H be an operator such that zerA 6= ∅ and M an
admissible preconditioner such thatM−1A isM-monotone. Let {uk}k be the sequence
generated by PPP according to (2.2). Then, {uk}k is M-asymptotically regular and
M-Fejér monotone with respect to Fix T , i.e., we have

lim
k→+∞

‖T uk−uk‖M = 0, ‖uk+1−u‖M ≤ ‖uk−u‖M for all k ∈ N, and u ∈ Fix T .

Proof. First, notice that for all α ∈ R and for all u, u′ ∈H we have

(2.6) ‖αu+ (1− α)u′‖2M + α(1− α)‖u− u′‖2M = α‖u‖2M + (1− α)‖u′‖2M.

By Lemma 2.6, the operator T is M-firmly non-expansive, hence, R := 2T − I is
M-non-expansive, see Remark 2.7. Observe that Fix T = FixR and that, putting
µk = λk/2, we have,

uk+1 = uk + µk(Ruk − uk) for all k ∈ N.

It follows from (2.6) and theM-non-expansiveness of R that for every u ∈ Fix T and
every k ∈ N

(2.7)

‖uk+1 − u‖2M = ‖(1− µk)(uk − u) + µk(Ruk − u)‖2M
= (1− µk)‖uk − u‖2M + µk‖Ruk −Ru‖2M − µk(1− µk)‖Ruk − uk‖2M
≤ ‖uk − u‖2M − µk(1− µk)‖Ruk − uk‖2M.

Hence, {uk}k is M-Fejér monotone with respect to Fix T . For the M-asymptotic
regularity, we derive from (2.7) that

(2.8)
∑
k∈N

µk(1− µk)‖Ruk − uk‖2M ≤ ‖u0 − u‖2M.

Since
∑
k∈N µk(1−µk) = 1

4

∑
k∈N λk(2−λk) = +∞, we have lim infk ‖Ruk−uk‖M =

0. However, for every k ∈ N,

‖Ruk+1 − uk+1‖M = ‖Ruk+1 −Ruk + (1− µk)(Ruk − uk)‖M
≤ ‖uk+1 − uk‖M + (1− µk)‖Ruk − uk)‖M = ‖Ruk − uk‖M.
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Consequently, {‖Ruk − uk‖M}k converges and we have limk→+∞ ‖Ruk − uk‖M = 0,
that implies in particular limk→+∞ ‖T uk − uk‖M = 0.

Theorem 2.9 (Convergence). Let A : H → 2H be an operator with zerA 6= ∅
andM an admissible preconditioner such thatM−1A isM-monotone and (M+A)−1

is L-Lipschitz. Let {uk}k be the sequence generated by PPP according to (2.2). If
every weak cluster point of {T uk}k lies in Fix T , then the sequence {T uk}k converges
weakly in H to some u∗ ∈ Fix T . Furthermore, if 0 < infk λk ≤ supk λk < 2 also the
sequence {uk}k converges weakly to u∗.

Proof. Let M = CC∗ be a decomposition of M according to Proposition 2.3.
First, since (M +A)−1 is L-Lipschitz and ‖C∗u‖ = ‖u‖M for every u ∈ H, we have
for all u′, u′′ ∈H

(2.9) ‖T u′ − T u′′‖ = ‖(M+A)−1CC∗u′ − (M+A)−1CC∗u′′‖ ≤ L‖C‖‖u′ − u′′‖M.

This property, combined with theM-Fejér monotonicity of {uk}k given by Lemma 2.8
yields the boundedness of the sequence {T uk}. Indeed, for all u ∈ Fix T we have

‖T uk − u‖ ≤ C‖uk − u‖M ≤ C‖u0 − u‖M,

and thus, {T uk}k is bounded. Furthermore, for all u ∈ Fix T , we have

(2.10) ‖T uk − u‖2M = ‖T uk − uk‖2M + ‖uk − u‖2M + 2〈T uk − uk, uk − u〉M.

The term 〈T uk − uk, uk − u〉M in (2.10) converges to 0 by the Cauchy-Schwarz in-
equality w.r.t. the M-scalar product and Lemma 2.8. Thus, we obtain, thanks to
Lemma 2.8, that for all u ∈ Fix T the sequence {‖T uk − u‖M}k converges.

To conclude the proof we use Opial’s argument adapted to our degenerate context.
For any fixed point u∗ we define `(u∗) to be the limit of ‖T uk − u∗‖M. Since the
sequence {T uk}k is bounded, has at least one weak cluster point. Let {T uki}i be a
sequence converging to this cluster point u∗. By assumption, every weak cluster point
of {T uk}k lies in Fix T , hence, u∗ = T u∗. Let u∗∗ be another weak cluster point of
{T uk}k (which implies u∗∗ = T u∗∗) and {T uli}i be the sequence weakly converging
to u∗∗. If we suppose ‖u∗ − u∗∗‖M > 0, then Opial’s property would give us

lim inf
i→∞

‖T uki − u∗‖M < lim inf
i→∞

‖T uki − u∗∗‖M,

lim inf
i→∞

‖T uli − u∗∗‖M < lim inf
i→∞

‖T uli − u∗‖M,

so that we get both `(u∗) < `(u∗∗) and `(u∗∗) < `(u∗), which is a contradiction and
thus, ‖u∗ − u∗∗‖M = 0. Therefore, Mu∗ = Mu∗∗ and in particular u∗ = T u∗ =
T u∗∗ = u∗∗ by construction of T . Thus, the iterates {T uk}k weakly converge to a
fixed point of T .

Let us turn our attention to the sequence {uk}k. Under the additional assumption
0 < infk λk ≤ supk λk < 2, say λk ∈ [ε, 2 − ε] for some ε > 0, we can prove that
{T uk − uk}k converges to zero strongly, so that, since {T uk}k converges weakly to
a fixed point of T , also {uk}k would converge weakly to the same point. Let us call
φk := ‖T uk − uk‖2. We have

φk+1 = ‖T uk+1 − T uk − (1− λk)(uk − T uk)‖2 = ‖T uk+1 − T uk‖2

+ |1− λk|2‖T uk − uk‖2 + 2(1− λk)〈T uk+1 − T uk, T uk − uk〉.



8 K. BREDIES, E. CHENCHENE, D. LORENZ, E. NALDI

Therefore, using (2.9), the fact that |1−λk| ≤ 1− ε for all k, and choosing δ > 0 such
that η := (1− ε)2 + δ < 1 we get

φk+1 ≤ ‖T uk+1 − T uk‖2 + (1− ε)2φk +

(
1

δ
‖T uk+1 − T uk‖2 + δφk

)
≤ ηφk + C‖uk+1 − uk‖2M

The relation φk+1 ≤ ηφk + αk, with αk = C‖uk+1 − uk‖2M, which is summable when
λk ∈ [ε, 2 − ε], see (2.8), allows to conclude that also {φk}k is summable. Indeed,

induction yields φk ≤ ηkφ0 +
∑k
j=0 η

jαk−j , whose right-hand side is summable being
the sum of a geometric sequence and the Cauchy product of two absolutely convergent
series. Thus, {φk}k is summable too and in particular φk → 0.

Corollary 2.10. Let A : H → 2H be a maximal monotone operator with
zerA 6= ∅ and M an admissible preconditioner such that (M +A)−1 is L-Lipschitz.
Let {uk}k be the sequence generated by PPP according to (2.2). Then {T uk}k con-
verges weakly to some u∗ ∈ Fix T , i.e., a zero of A. Furthermore, if 0 < infk λk ≤
supk λk < 2 also the sequence {uk}k converges weakly to u∗.

Proof. Since A is monotone,M−1A isM-monotone. We just have to prove that
every weak cluster point of {T uk}k belongs to Fix T . Assume T uki ⇀ u ∈H. Using
the M-asymptotic regularity of {uk}k we have

(2.11) AT uki 3M(uki − T uki) −→ 0.

By the maximality ofA we have thatA is closed in Hweak×Hstrong (see [2, Proposition
20.38]), hence 0 ∈ Au. In other words, u is a fixed point of T .

Remark 2.11. We point out that in Corollary 2.10, we assumed two crucial prop-
erties, namely the Lipschitz regularity of (M+A)−1 and the maximality of A. The
former, which is a mild assumption especially in applications to splitting algorithms,
is employed, together with the boundedness of {uk}k in the M-seminorm, to estab-
lish the boundedness of {T uk}k in H. The latter is only assumed for its geometric
consequences, namely that if for all k ∈ N, (ξk, ak) ∈ A and ak → 0, ξk ⇀ ξ, then
0 ∈ Aξ, since this guarantees that every weak cluster point of {T uk}k lies in Fix T .
Other different assumptions could be considered, for instance in [6, 7], the authors
rely on the demiclosedness principle, which, however, could be challenging to control
and may not hold in general.

2.2. The reduced preconditioned proximal point algorithm. The aim of
splitting methods is to turn an inclusion 0 ∈ Ax with possibly difficult resolvent for A
into an inclusion 0 ∈ A0x+ · · ·+ANx where the individual resolvents for the Ai are
cheaper to evaluate. This approach, however, increases the number of variables that
one needs to store. As we have seen in the introduction, one can reduce the number
of variables in the case of the DRS method, and perform an iteration in just a single
variable. While this is not of great practical importance for DRS, it will be more
important in the case of methods where the number N is larger. In this section we
will derive a systematic way to deduce a reduced version of degenerate preconditioned
proximal point methods.

The main idea is that, for u ∈H, to evaluate T u = (M+A)−1Mu we are actu-
ally interested in the information contained in Mu which belongs to ImM, and for
degenerate preconditioners this is typically a proper subspace of H. In this section we
show how to exploit this fact to significantly reduce the number of variables involved
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in the iterations, resulting in a storage efficient, but still equivalent, method that we
will call reduced preconditioned proximal point (rPPP) algorithm. In the rest of this
section we assume that M has closed range.

Lemma 2.12. Let A : H → 2H be an operator, M : H → H be an admissible
preconditioner with closed range and M = CC∗ be a decomposition of M according to
Proposition 2.3. The parallel composition C∗ BA := (C∗A−1C)−1 can be expressed as

C∗ BA = {(C∗x, C∗y) ∈H2 s.t. (x, y) ∈M−1A}.

Proof. Let B be the right-hand side. If (x̄, ȳ) ∈ B, then x̄ = C∗x and ȳ = C∗y for
some x, y ∈ H with (x, y) ∈ M−1A. Then, x ∈ A−1CC∗y, hence, C∗x ∈ C∗A−1CC∗y,
thus (x̄, ȳ) = (C∗x, C∗y) ∈ C∗ BA. Conversely, if (x̄, ȳ) ∈ C∗ BA then x̄ ∈ C∗A−1Cȳ.
Since C∗ is onto, there is x, y ∈ H such that x̄ = C∗x, ȳ = C∗y and hence C∗x ∈
C∗A−1My. This precisely means that there exists x̃ ∈ A−1My such that C∗x = C∗x̃,
since x̃ ∈ A−1My we have (x̃, y) ∈M−1A, thus (x̄, ȳ) = (C∗x̃, C∗y) ∈ B.

We denote by T̃ the resolvent of C∗ BA, i.e.,

(2.12) T̃ := (I + C∗ BA)
−1
.

We have the following fundamental theorem.

Theorem 2.13. Let A be an operator on H and M an admissible preconditioner
with closed range such thatM−1A isM-monotone. LetM = CC∗ be a decomposition
of M according to Proposition 2.3 with C : D → H. Then, C∗ B A is a maximal
monotone operator and for T̃ according to (2.12) the following identity holds

(2.13) T̃ = C∗(M+A)−1C.

In particular, T̃ : D → D is everywhere well defined and firmly non-expansive.

Proof. First, since M−1A is M-monotone, C∗A−1C is a monotone operator on
D. Indeed, by Lemma 2.12, for all (x, y), (x′, y′) ∈ C∗BA there exist (u, v), (u′, v′) ∈
M−1A such that C∗u = x, C∗u′ = x′; C∗v = y, C∗v′ = y′. Therefore, using that
M−1A is M-monotone, we have

〈y − y′, x− x′〉 = 〈C∗v − C∗v′, C∗u− C∗u′〉 = 〈u′ − v′, u− v〉M ≥ 0.

This shows the monotonicity of C∗BA, which is equivalent to the monotonicity of its
inverse C∗A−1C. The rest of the proof is an application of a Woodbury-like identity:

(2.14)
(
I + C∗A−1C

)−1
= I − C∗ (CC∗ +A)

−1 C.

To prove this, we proceed as in [2, Proposition 23.25]. Let u ∈ D and note that, by

the surjectivity of C∗ and the fact that T has full domain, v = (CC∗ +A)
−1 Cu is

well defined. We prove that for p := u − C∗v it holds p = (I + C∗A−1C)−1u. Since
Cu ∈ CC∗v +Av, we have

Cp = C (u− C∗v) = Cu− CC∗v ∈ Av.

Therefore, v ∈ A−1Cp, hence u − p = C∗v ∈ C∗A−1Cp. This proves that the right

hand side in (2.14) is contained in
(
I + C∗A−1C

)−1
. It follows that the latter operator

has full domain, and since C∗A−1C is monotone, by Minty’s theorem, C∗A−1C is also
maximal and, hence, its resolvent is single valued, and the two operators in (2.14)

coincide. Using the Moreau identity on
(
I + C∗A−1C

)−1
we get the desired result.
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We are now ready to state and prove the main theorem of this section, which in the
degenerate case provides an equivalent reduced scheme for PPP.

Theorem 2.14 (Reduction and convergence). Let A : H→ 2H with zerA 6= ∅
and let M be an admissible preconditioner with closed range such that M−1A is M-
monotone. Let M = CC∗ be a decomposition of M according to Proposition 2.3 with
C : D → H and denote by {uk}k the sequence generated by PPP from (2.2). Then,
the following proximal point algorithm

(2.15) w0 = C∗u0, wk+1 = wk + λk(T̃ wk − wk),

is equivalent to (2.2), in the sense that wk = C∗uk for all k ∈ N. Moreover, {wk}k
weakly converges in D to a point w∗ such that (M+A)

−1 Cw∗ is a fixed point of T .

Proof. First, we prove that wk = C∗uk for all k ∈ N. The case k = 0 holds by
assumption and using (2.13), we get inductively that

wk+1 = wk + λk
(
C∗(M+A)−1Cwk − wk

)
= C∗uk + λk

(
C∗(M+A)−1CC∗uk − C∗uk

)
= C∗

(
uk + λk

(
(M+A)−1Muk − uk

))
= C∗uk+1.

To establish convergence of the reduced algorithm, since C∗BA is maximal monotone
by Theorem 2.13, we only need to prove that T̃ has fixed points (see for example [2,

Corollary 5.17]). We actually have that C∗ Fix T = Fix T̃ . Indeed, given u ∈ Fix T
then w = C∗u is a fixed point of T̃ , in fact,

T̃ w = C∗ (M+A)
−1 Cw = C∗ (M+A)

−1 CC∗u = C∗T u = C∗u = w.

Conversely, if w is a fixed point of T̃ then to retrieve a fixed point of T we take
u := (M+A)

−1 Cw. Clearly w = C∗u and u is a fixed point of T since

T u = (M+A)
−1 CC∗ (M+A)

−1 Cw = (M+A)
−1 Cw = u.

Since Fix T = zerA, which is assumed non-empty, we have the desired result.

Corollary 2.15. Let A : H → 2H with zerA 6= ∅ be a maximal monotone
operator and M : H → H be an admissible preconditioner with closed range such
that (M + A)−1 is Lipschitz. Let M = CC∗ be a decomposition of M according to
Proposition 2.3 with C : D → H and denote by {wk}k the sequence generated by

rPPP from (2.15). Then {wk}k converges weakly to a point w∗ ∈ Fix T̃ such that
u∗ := (M+A)−1Cw∗ ∈ Fix T . Moreover, {(M+A)−1Cwk}k weakly converges to u∗.

Proof. Thanks to Theorem 2.14 and Corollary 2.10, we only need to prove that
{T uk}k converges weakly to u∗ (notice that T uk = (M+A)−1Cwk for all k), where
{uk}k is the correspondent PPP sequence. Let u∗∗ ∈ Fix T be the weak limit of
{T uk}k according to Corollary 2.10. Since C∗ is a linear bounded map, C∗u∗∗ is the

weak limit of C∗T uk = T̃ wk. Furthermore, since ‖T̃ wk − wk‖ → 0 (cf. [2, Corollary
5.17 (ii)]), we get w∗ = C∗u∗∗. Thus, u∗ = (M+A)−1Cw∗ = T u∗∗ = u∗∗.

Remark 2.16. If we restrict C∗ to ImM = KerM⊥, since by Proposition 2.3 the
operator C∗ is onto and Ker C∗ = KerM, the resulting map is a bijection between
ImM and D. Furthermore, if on ImM we consider the Hilbert space structure given
by theM-scalar product, then it is easy to check that C∗|ImM : ImM→ D is actually
an isometric isomorphism. For this reason, when M is not onto, D could be thought
as a strictly smaller space than H.
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2.3. Linear convergence. Let A : H → 2H be an operator and M be an
admissible preconditioner with closed range, and let M = CC∗ be a decomposition
of M according to Proposition 2.3. Having at hand an explicit characterization of
the reduced algorithm, we may wonder which conditions on A should be imposed to
have a strongly monotone reduced operator, as this would imply that T̃ is a Banach
contraction [2, Proposition 23.13], and we could therefore conclude the linear con-
vergence of the reduced algorithm, at least if λk is constant. To this end, as it will
become clearer afterwards, we introduce the analogue of the strong-monotonicity (see
[2, Definition 22.1]) adapted in our degenerate case, that is:

Definition 2.17 (M-strong-monotonicity). LetM : H→H be a bounded linear
positive semi-definite operator. Then B : H→ 2H is M-α-strongly monotone if

(2.16) 〈v − v′, u− u′〉M ≥ α‖u− u′‖2M for all (u, v), (u′, v′) ∈ B.

As in Proposition 2.5 we have a characterization of the M-strong monotonicity
of M−1A in terms of a weaker notion of strong monotonicity for A ∩ (H × ImM),
which will be useful in applications.

Proposition 2.18. Let A : H → 2H be an operator and M : H → H be a
positive semi-definite operator, then M−1A is M-α-strongly monotone if and only if

(2.17) 〈v − v′, u− u′〉 ≥ α‖u− u′‖2M for all (u, v), (u′, v′) ∈ A ∩ (H× ImM).

Proof. Using (2.4), we have the following equivalences

〈v − v′,u− u′〉 ≥ α‖u− u′‖2M for all (u, v), (u′, v′) ∈ A ∩ (H× ImM)

⇐⇒ 〈Mṽ −Mṽ′, u− u′〉 ≥ α‖u− u′‖2M for all (u, ṽ), (u′, ṽ′) ∈M−1A
⇐⇒ 〈ṽ − ṽ′, u− u′〉M ≥ α‖u− u′‖2M for all (u, ṽ), (u′, ṽ′) ∈M−1A,

which yields the thesis.

The following theorem gives the right conditions we are looking for.

Theorem 2.19. Let A : H→ 2H be an operator andM be an admissible precon-
ditioner. Then M−1A is M-α-strongly monotone with α > 0 if and only if C∗BA is
α-strongly monotone. In that case, T̃ is a contraction of factor 1/(1 + α).

Proof. Let (w1, w
′
1), (w2, w

′
2) ∈ C∗ B A. By Lemma 2.12 there exist (u1, u

′
1),

(u2, u
′
2) ∈ M−1A such that (C∗ui, C∗u′i) = (wi, w

′
i) for i = 1, 2. Thus, using the

M-strong monotonicity of M−1A, we have

〈w′1 − w′2, w1 − w2〉 = 〈C∗u′1 − C∗u′2, C∗u1 − C∗u2〉 = 〈u′1 − u′2, u1 − u2〉M
≥ α‖u1 − u2‖2M = α‖C∗u1 − C∗u2‖2 = α‖w1 − w2‖2.

By [2, Proposition 23.13], T̃ is a Banach contraction with constant 1/(1 + α).

Remark 2.20. It is clear that condition (2.16), which is equivalent to (2.17), is
in general weaker than the strong monotonicity of A ∩ (H × ImM). We stress that
(2.17) is also quite easy to check in some practical cases, see section 3.

Corollary 2.21. If A is α‖C‖2-strongly monotone and zerA 6= ∅, then T̃ is a
contraction of factor 1/(1 + α).

Proof. We have for all (u, v), (u′, v′) ∈ A that

(2.18) 〈v − v′, u− u′〉 ≥ α‖C‖2‖u− u′‖2 ≥ α‖C∗(u− u′)‖2M = α‖u− u′‖2M,

which implies (2.16).
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3. Application to splitting algorithms. Now we consider problems of the
form (1.4), i.e., an inclusion for the sum of (N + 1) maximal monotone operators Ai
and we assume that each Ai is simple, i.e., we are able to cheaply compute the resolvent
JAi for each i ∈ {0, . . . , N}. The strategy we focus on consists in reformulating (1.4)
as an inclusion problem (1.1) in a proper product space and applying a degenerate
preconditioned proximal point algorithm.

As we illustrate now, there are many ways to broadcast problem (1.4) as the
inclusion problem (1.1), generating a wide range of (known and new) splitting algo-
rithms.

Chambolle-Pock. As firstly noticed in [21], one of the most popular splitting al-
gorithm that can be seen as a PPP method is the so-called Chambolle-Pock (CP)
scheme, which aims to solve the following problem

(3.1) min
x∈H

f(x) + g(Lx)

where f : H → R ∪ {+∞}, g : K → R ∪ {+∞} are convex, lower semicontinuous
functions, H and K are real Hilbert spaces and L ∈ B(K,H). From a monotone
operator standpoint, problem (3.1) can be formulated as

(3.2) find x ∈ H such that: 0 ∈ (A+ L∗BL)x

where A = ∂f and B = ∂g are maximal monotone operators on H and K respectively.
Following [21] we reformulate this problem in H := H × K introducing A and M
defined by

A :=

[
A L∗

−L B−1

]
, M :=

[
1
τ I −L∗
−L 1

σ I

]
.

Let u := (x, y) ∈H, the inclusion problem 0 ∈ Au in H is indeed equivalent to (3.2).
The PPP iteration (2.2) with λk = 1 and starting point (x0, y0) ∈H hence writes as

(3.3)

{
xk+1 = JτA(xk − τL∗yk),

yk+1 = JσB−1

(
yk + σL(2xk+1 − xk)

)
.

We focus on the degenerate case τσ‖L‖2 = 1 (since the case τσ‖L‖2 < 1 induces a
positive definite preconditioner). The operator A is maximal monotone on H since it
is the sum of the maximal monotone operator (x, y) 7→ Ax×B−1y (which is maximal
monotone since A and B−1 are maximal monotone [2, Proposition 20.23]) and the
operator (x, y) 7→ (L∗y,−Lx) (which is maximal monotone, since it is skew symmetric,
linear and bounded). Additionally (M+A)−1 is Lipschitz, since

(3.4) (M+A)
−1

: (u1, u2) 7→ (JτA(τu1), JσB−1(2σLJτA(τu1) + σu2)) .

which is a composition of Lipschitz functions. The Lipschitz constant is not relevant
in this context, in fact, we can already conclude using Corollary 2.10 that even if
τσ‖L‖2 = 1, the CP algorithm, i.e., iteration (3.3), converges weakly to a solution as
soon as (3.2) has a solution. This result has been proven in [28] in a finite dimensional
setting and more recently in [12, Section 5], reformulating the so-called Generalized
CP (which actually includes CP as a particular case) as an instance of DRS in a
modified space and relying on existing proofs of convergence for DRS, namely [2,
Theorem 26.11], that exploits the particular structure of the problem.
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Remark 3.1. In this case, the reduction of variables in the sense of (2.15) could
not easily be established in general. Indeed, in an infinite dimensional setting it is not
clear if M has necessarily closed range or not. Moreover, the decomposition of M
according to Proposition 2.3 is not explicit and the space D is not necessarily much
smaller than H.

Douglas-Rachford. Let A and B be two maximal monotone operators on H. The
DRS method can be introduced as a particular case of CP with L = I and stepsize
τ = σ = 1 for solving

(3.5) find x ∈ H such that: 0 ∈ Ax+Bx

scaled by σ > 0. As anticipated in the introduction, DRS admits a genuinely degen-
erate PPP formulation on H = H2, withM, A according to (1.5), and PPP iteration
(2.2) with λk = 1 according to (1.6).

In this case, the decomposition of M according to Proposition 2.3 is explicit,
we have C∗ =

[
I −I

]
, with D = H, which gives exactly the same substitution we

performed in the introduction. SinceM has closed range, this leads us to the reduced
algorithm

(3.6) wk+1 := (I + C∗ BA)
−1
wk = wk + JσB(2JσAw

k − wk)− JσAwk,

that is DRS according to (1.7). Notice that we only need to store one variable (instead
of two).

DRS is known to be a proximal point algorithm since the work of Eckstein and
Bertsekas [18], but no link between the operator SA,B from [18] and the one in (1.5)
has been observed so far. We have, in fact, that SA,B characterized in [18] coincides
exactly with C∗ BA.

While the convergence of the reduced method (3.6), in case (3.5) has a solution,
has been established in the seminal paper [24] already, the convergence of the non-
reduced method (in our notation: the convergence of the PPP method (2.2) forM and
A according to (1.5)), and in particular the convergence of the sequence {xk}k, xk =
JσAw

k, has been open for a longer time and has been settled more recently in [35] and,
afterwards in [14] for a more general framework. Using the tools we developed so far,
we can conclude the same results in an arguably easier way following from our general
framework on degenerate and reduced proximal point iterations. In fact (since we are
in a particular case of the CP algorithm), A is maximal monotone and (M+A)−1 is
Lipschitz, and by Corollary 2.15, we can conclude that the PPP iterates generated by
(1.5) converge weakly in H to a zero of A. In particular, if wk is generated by DRS,
then xk := JσAw

k converges weakly in H to a solution of (3.5).
Exploiting our multivalued operator framework, in particular Theorem 2.19, we

can also shed light on recent results about the strong convergence of DRS [19]. Intro-
ducing the notion of cocoercivity as in [2, Definition 4.10], we can obtain the following
theorem, where, for each case we can prove that M−1A is M-α-strongly monotone.
The proof is postponed to the appendix.

Theorem 3.2 (Linear convergence). Let A, M be the operators defined in (1.5),
assume that zerA 6= ∅ and that one of the following holds for µ, β > 0:

1. A µ-strongly monotone and B 1/β-cocoercive;
2. A µ-strongly monotone and 1/β-cocoercive;
3. A µ-strongly monotone and β-Lipschitz continuous,
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or the analogous statements with A and B inverted. Then, the reduced algorithm,
i.e., DRS, converges strongly with linear rate r = 1/(1 + α) where

1. α = min

{
σµ

2
,

1

2σβ

}
, 2. α =

σµ

σ2µβ + 1
, 3. α =

σµ

σ2β2 + 1
.

Remark 3.3. Giving tight rates is beyond the scope of this paper, but the rates
we derived with our techniques are already satisfying. The rate for case 1 could be
optimized taking σ = 1/

√
µβ which gives the rate

√
β/µ/(

√
β/µ+ 1/2). This is the

same obtained in [19, Theorem 5.6] if with the notation of [19] we put α = 1/2 and
optimize only on γ. Regarding case 2 and 3, the rates we derived are (in practice)
almost the same as those given in [19, Theorem 6.5], but not tight.

Peaceman-Rachford and overrelaxed generalizations. In this section we show that
relaxation parameters for DRS can be encoded from a purely monotone operator point
of view. Let σ > 0, α > −1 and consider the following operators

(3.7) Aα :=

αI + σA0 −I −I
I 0 −I

(1− 2α)I I αI + σA1

 , M :=

I I I
I I I
I I I

 .
Let u = (x0, v, x1) ∈ H := H3, note that 0 ∈ Aαu is equivalent to v + x1 − αx0 ∈
σA0x0, x0 = x1 and (2α− 1)x0 − v − αx1 ∈ σA1x1, which implies 0 ∈ A0x0 +A1x0.
Conversely, if 0 ∈ A0x + A1x, setting x0 = x1 = x, there exists a0 ∈ σA0x and
a1 ∈ σA1x such that 0 = a0 + a1. Setting v = (α− 1)x0 + a0 yields 0 ∈ Aαu. Hence,
finding zeros of Aα is in a certain sense equivalent to finding zeros of A0 +A1.

The operator M is an admissible preconditioner to Aα (whenever α > −1) and
the iteration updates can be computed explicitly. Indeed, we need to invert (M+Aα)
which has a lower triangular structure. This inversion only involves the resolvents JγA0

and JγA1
, where γ = σ/(1 +α), as well as linear combinations and is hence Lipschitz

continuous. Let w = C∗u = x0 + v + x1, where C∗ =
[
I I I

]
is a decomposition of

M according to Proposition 2.3, then Tα = (M+Aα)−1M can be expressed as

Tαu =

(
JγA0

(
w

1 + α

)
, w − 2JγA0

(
w

1 + α

)
, JγA1

(
2JγA0

(
w

1 + α

)
− w

1 + α

))
.

Taking as relaxation parameters θk = λk/(1 + α) for all k ∈ N, and scaling w with
a factor of (1 + α)−1, i.e., considering w̃ = w/(1 + α) instead of w in the iteration

updates wk+1 = wk + λk(T̃αwk − wk) (where T̃α = (I + C∗ BAα)−1) we get

(3.8)


xk+1

0 = JγA0w̃
k,

xk+1
1 = JγA1

(
2xk+1

0 − w̃k
)
,

w̃k+1 = w̃k + θk(xk+1
1 − xk+1

0 ).

We are interested in overrelaxation cases, i.e., with θk ≥ 2
(
θk = 2 for all k is the so-

called Peaceman-Rachford splitting
)
, that correspond to a non-positive α. In these

cases we cannot expect to have an unconditionally convergent algorithm. Indeed,
denoting by ai ∈ Aixi, a′i ∈ Aix′i, ∆ai = ai − a′i and ∆xi = xi − x′i, for i = 0, 1, after
some computations we have (with the usual mild abuse of notation)

(3.9) 〈Aαu−Aαu′, u− u′〉 = α‖∆x1 −∆x2‖2 + σ〈∆a0,∆x1〉+ σ〈∆a1,∆x2〉,
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which could be negative in general if α is negative. However, it is clear from (3.9)
that in that case to gain a non-negative expression, suitable additional assumptions
on A0 and A1 should be imposed in order to achieve monotonicity of Aα.

Proposition 3.4. Let A0 and A1 be maximal monotone operators such that for
i ∈ {0, 1}, Ai is µi-strongly monotone and assume that zer(A0 +A1) 6= ∅. For α > −1
and σ > 0 set γ = σ/(1 + α) and assume that {θk}k satisfy

(3.10) θk ∈
[
0, 2 +

2γµ0µ1

µ0 + µ1

]
,
∑
k

θk

(
2 +

2γµ0µ1

µ0 + µ1
− θk

)
= +∞.

Then, the sequence {w̃k}k generated by (3.8) with starting point w̃0 weakly converges
to a fixed point w̃∗ such that x∗ = JγA0

w̃∗ is a solution of 0 ∈ A0x+A1x. Moreover,
the sequences {xk0}k, {xk1}k also converge weakly to x∗.

Proof. We rely on Corollary 2.15. The Lipschitz regularity of (M + Aα)−1 is
clear. As for monotonicity of Aα, using the strong monotonicity of A0 and A1 we
have that

(3.9) ≥ (α+ σµ0)‖∆x0‖2 + (α+ σµ1)‖∆x1‖2 − 2α〈∆x0,∆x1〉.

The right-hand side is non-negative if α+ σµ0 ≥ 0, α+ σµ1 ≥ 0, and (α+ σµ0)(α+
σµ1) = α2, i.e., α = − σµ0µ1

µ0+µ1
. Using that γ = σ/(1+α) then yields α = − γµ0µ1

γµ0µ1+µ0+µ1
.

Now, since λk = (1+α)θk, condition (3.10) leads to λk ∈ [0, 2],
∑
k λk(2−λk) = +∞.

The maximality of Aα follows from standard arguments, e.g., [2, (i) Corollary 25.5].

Proposition 3.4 is known, and has been discussed in [15] and [27] with µ0 = µ1

and θk = θ fixed for all k ∈ N.
Forward Douglas-Rachford. In this example we show that even forward steps can

be encoded in a PPP formulation. Consider the 3-operator problem

(3.11) find x ∈ H such that: 0 ∈ A0x+A1x+ Cx,

where A0, A1 and C are three maximal monotone operators and C has full domain
and is 1/β-cocoercive, with β > 0. The so-called Forward Douglas-Rachford (FDR)
algorithm, also known as Davis-Yin algorithm [14], can be thought as a DRS scheme
with an additional forward term. Whether it can be seen from a degenerate precon-
ditioned point of view is not obvious at first glance, but here is a proper splitting

(3.12) Aα :=

 αI + σA0 −I −I
I 0 −I

(1− 2α)I + σC I αI + σA1

 , M :=

I I I
I I I
I I I

 .
As can be seen analogous to the previous case, denoting by u = (x0, v, x1) ∈H := H3,
x solves (3.11) if and only if 0 ∈ Aαu with x0 = x1 = x and v = (α−1)x−a0−Cx for
a0 ∈ σA0x, a1 ∈ σA1x such that 0 = a0 + a1 +σCx. Furthermore, whenever α > −1,
the operator M is an admissible preconditioner to Aα, has closed range, block-rank
one and obeys M = CC∗ for C∗ =

[
I I I

]
. Also in this case, (M + Aα)−1 is

Lipschitz continuous. Performing the same sort of computations as in the paragraph
devoted to the analysis of the Peaceman-Rachford splitting, in particular putting
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γ = σ/(1 + α), we eventually get to the following resolvent Tα := (I +M−1Aα)−1

Tαu =

(
JγA0

(
w

1 + α

)
, w − 2JγA0

(
w

1 + α

)
,

JγA1

(
2JγA0

(
w

1 + α

)
− w

1 + α
− γCJγA0

(
w

1 + α

)))
,

where w = C∗u = x0 + v + x1. Again, introducing new relaxation parameters θk =
λk/(1 + α) for all k ∈ N, and scaling w with a factor of (1 + α)−1, i.e., considering
w̃ = w/(1 + α) instead of w, we obtain a reduced algorithm of the form

xk+1
0 = JγA0w̃

k,

xk+1
1 = JγA1(2xk+1

0 − w̃k − γCxk+1
0 ),

w̃k+1 = w̃k + θk(xk+1
1 − xk+1

0 ),

which coincides with FDR with relaxation parameters θk.
The monotonicity of Aα in this case is not obvious and fails in general. This

is not surprising, as the FDR operator is in general only averaged but not firmly
non-expansive, as also noticed in [14]. However, assuming suitable regularity for C,
the proposed PPP framework provides straightforward conditions on the parameters
that ensure convergence. Indeed, introducing similar notations to those introduced in
Theorem 3.2 and Proposition 3.4 (namely, ∆Cx0 = Cx0 − Cx′0 and ∆xi = xi − x′i,
i = 0, 1), we have

〈Aαu−Aαu′, u− u′〉 ≥ α‖∆x0 −∆x1‖2 + σ〈∆Cx0,∆x1〉
= α‖∆x0 −∆x1‖2 + σ〈∆Cx0,∆x1 −∆x0〉+ σ〈∆Cx0,∆x0〉

≥ α‖∆x0 −∆x1‖2 + σ〈∆Cx0,∆x1 −∆x0〉+
σ

β
‖∆Cx0‖2.

Thus, we obtain the desired monotonicity by setting α = σβ
4 > 0. In terms of

γ = σ/(1 + α) this means α = γβ
4−γβ , which is positive for all γ ∈ (0, 4/β). Since we

want to use Corollary 2.15, this choice of α yields the conditions θk ∈
[
0, 2 − γβ

2

]
,∑

k θk(2− γβ
2 − θk) = +∞, which slightly improves those found in [14, Theorem 2.1].

The maximality of Aα follows from [2, Corollary 25.5] as it can be seen as the sum of
the maximal monotone operator diag(σA0, 0, σA1) and a maximal monotone operator
with full domain. Using Corollary 2.15 we get that in case (3.11) has a solution, for
all starting points w̃0 ∈ H, the sequence {w̃k}k generated by rPPP weakly converges
to some w̃∗ such that JγA0

w̃∗ is a solution of (3.11), moreover, also the sequences
{xk0}k, {xk1}k weakly converge to this same solution.

Remark 3.5. It is also possible to consider the case α ≤ 0, that would correspond
to a Peaceman-Rachford and an overrelaxed version of FDR, but further assumptions
on the operators (e.g., A0 and A1 strongly monotone) would be required.

3.1. Parallel and sequential generalizations of FDR. We now turn our
attention to the (N+1)-operator case. We show how the proposed framework provides
different new generalizations of the above-discussed splitting methods to tackle a
larger class of operators. In particular, we focus on FDR (3.12) (and hence, on DRS
and the well-known Forward-Backward and Backward-Forward methods as particular
cases, see [14]), we describe its parallel version from a PPP standpoint and introduce
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a new sequential generalisation. Consider the following problem:

(3.13) find x ∈ H such that: 0 ∈ A0x+

N∑
i=1

[
Aix+ Cix

]
,

where A0, Ai, Ci for i ∈ {1, . . . , N} are maximal monotone operators and Ci for
i ∈ {1, . . . , N} have full domain and are 1/β−cocoercive, with β > 0.

3.1.1. Parallel generalization of FDR. One of the most popular approaches
to extend a splitting algorithm to tackle (3.13) is to re-formulate the problem as a
3-operator problem on a suitable product-space, and then applying the 3-operator
splitting to this larger problem, typically yielding schemes which are intrinsically par-
allel in nature. This is often referred to as product space trick, or consensus technique
and is also known as Pierra’s reformulation [29]. We refer to [13, Section 8] and
the references therein for further details. We show that the same scheme can be re-
obtained as one natural generalization of (3.12) to tackle the (2N + 1)-operator case
(3.13). Consider, for instance

Aα :=



NαI + σA0 −I −I . . . −I −I
I −I

(1− 2α)I + σC1 I αI + σA1

...
. . .

I −I
(1− 2α)I + σCN I αI + σAN

 , M :=



NI I I . . . I I
I I I
I I I
...

. . .
I I I
I I I

 .

It is easy to see that if u := (x0, v1, x1, . . . , vN , xN ) ∈H = H(2N+1) satisfies 0 ∈ Aαu
then x = x0 = · · · = xN solves (3.13), and that a solution x of (3.13) yields 0 ∈ Aαu
setting x0 = · · · = xN = x and vi = (α − 1)x − ai − σCix for all i ∈ {1, . . . , N},
where ai ∈ σAix, i ∈ {0, . . . , N}, such that 0 = a0 +

∑N
i=1 ai + σCix. Also, choosing

C∗ : u 7→ (x0+v1+x1, . . . , x0+vN+xN ) we obtain an onto decompositionM = CC∗,
showing that rPPP reduces the number of variables from (2N + 1) to N . Moreover,
(M+Aα) is lower-triangular, hence easy to invert, with (M+Aα)−1 easily seen to
be Lipschitz continuous. Denoting by w = C∗u ∈ HN we obtain wi = x0 + vi + xi,
for all i ∈ {1, . . . , N}, that we re-scale with a factor of (1 + α)−1, namely considering
w̃i = wi/(1 + α) instead of wi for i ∈ {1, . . . , N}. We also set γ = σ/(1 + α). Thus,

we can explicitly compute T̃α = (I + C∗ BAα)
−1

and the reduced algorithm with
relaxation parameters θk = λk/(1 + α) writes as

(3.14)


xk+1

0 = J γ
NA0

(
1

N

N∑
i=1

w̃ki

)
,

xk+1
i = JγAi(2x

k+1
0 − w̃ki − γCixk+1

0 ) for i ∈ {1, . . . , N},
w̃k+1
i = w̃ki + θk(xk+1

i − xk+1
0 ) for i ∈ {1, . . . , N}.

Notice that the reduced proximal point iteration in this case coincides exactly with the
parallel extension of the so-called FDR/Davis-Yin algorithm presented, for instance
in [13], for convex minimization. If A0 = 0, then rPPP coincides with the Generalized
Backward-Forward iteration [31] and if Ci = 0 for all i ∈ {1, . . . , N − 1} we get the
parallel extension of DRS that can be found in the literature for the convex minimiza-
tion case [13, Theorem 8.1]. The novelty that the proposed framework provides is an
alternative derivation of the scheme as a proximal point algorithm with respect to an
explicit operator C∗ BAα, that allows to give a straightforward proof of convergence
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(below, see also [14, 31] for similar versions) and to derive new variants (see next
subsection).

Theorem 3.6. Let w̃k = (w̃k1 , . . . , w̃
k
N ) for k ∈ N be the sequence generated by the

parallel FDR iteration in (3.14) with starting point w̃0 ∈ HN . Let γ ∈ (0, 4/β) and
{θk}k satisfy θk ∈

[
0, 2− γβ

2

]
and

∑
k θk

(
2− γβ

2 − θk
)

= +∞. If a solution to (3.13)

exists, then {w̃k}k converges weakly to a w̃∗ ∈ HN such that J γ
NA0

(
1
N

∑N
i=1 w̃

∗
i

)
is a

solution to (3.13). Moreover, the sequences {xki }k, for i ∈ {0, . . . , N}, weakly converge
to this solution.

Proof. First, we need to check the monotonicity of Aα. Pick (u, p) and (u′, p′) ∈
Aα. Then, denoting ∆x0 = x0 − x′0, and ∆xi = xi − x′i, ∆Ci = Cix0 − Cix

′
0,

∆ai = ai − a′i where ai ∈ Aixi and a′i ∈ Aix′i for all i ∈ {1, . . . , N}, we have

〈p− p′,u− u′〉 = Nα‖∆x0‖2 + σ〈∆a0,∆x0〉

+

N∑
i=1

−2α〈∆x0,∆xi〉+ σ〈∆Cix0,∆xi〉+ α‖∆xi‖2 + σ〈∆ai,∆xi〉

≥
N∑
i=1

α‖∆x0‖2 − 2α〈∆x0,∆xi〉+ α‖∆xi‖2

+ σ〈∆Cix0,∆xi −∆x0〉+ σ〈∆Cix0,∆x0〉

≥
N∑
i=1

α‖∆x0 −∆xi‖2 + σ〈∆Cix0,∆xi −∆x0〉+ σ/β‖∆Cix0‖2,

where the right-hand side is non-negative if we impose the condition α = βσ
4 > 0. In

terms of γ = σ/(1 + α) this means α = γβ
4−γβ , which is positive for all γ ∈ (0, 4/β).

Notice moreover that λk = θk(1 + α) satisfy λk ∈ [0, 2] and
∑
k λk(2 − λk) = +∞.

Thus, we are now under the hypothesis of Theorem 2.14, that entails the convergence
of {w̃k}k to a point w̃∗ such that (M+Aα)−1C(1+α)w̃∗ ∈ zerAα. As a consequence,

JγA0

(
1
N

∑N
i=1 w̃

∗
i

)
is a solution to (3.13).

As for the convergence of the associated PPP, we first observe that the maximality
of Aα is clear: indeed, Aα can be written as a sum of a maximal monotone operator
and a Lipschitz term [8, Lemma 2.4]. By inspection, (M+Aα)−1 is Lipschitz. There-
fore, by Corollary 2.15, the sequence {(M+Aα)−1C(1 +α)w̃k}k weakly converges to
a fixed point of Tα. This gives us in particular the weak convergence of {xki }k, for all
i ∈ {0, . . . , N}, to the same solution of (3.13).

As observed for the case N = 1 in [14, Theorem 2.1], the convergence of {xki }k is
strong if at least one operator is uniformly monotone (cf. [2, Definition 22.1 (iii)]).

Corollary 3.7 (Strong convergence). Assume that there exists i ∈ {0, . . . , N}
such that Ai is uniformly monotone on every bounded set of domAi, then for all
i ∈ {0, . . . , N} the sequences {xki }k generated by (3.14) converge strongly to a solution
x∗ of (3.13).

Proof. Let u∗ be in zerA. Consider the bounded set S = {x∗}∪{xki }k ⊂ domAi.
Then, by definition of uniform monotonicity, there exists an increasing function
φ : R+ → [0,+∞] that vanishes only at 0 such that

〈p− p′, x− x′〉 ≥ φ (‖x− x′‖) for all ai ∈ Aix, a′i ∈ Aix′.
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By definition of Tα we have M(uk − Tαuk) ∈ AαTαuk, thus

〈M(uk − Tαuk), Tαuk − u∗〉 ≥ σ〈aki − a∗i , xki − x∗〉 ≥ φ
(
‖xki − x∗‖

)
,

with aki ∈ Aixki , a∗i ∈ Aix∗. Using (2.11) and the fact that Tαuk ⇀ u∗ weakly in H,
the left hand-side vanishes as k → +∞, thus xki → x strongly in H. For all other
sequences {xki }k, by inspection, we notice that (2.11) also implies that xk0 − xki → 0
for all i ∈ {1, . . . , N}. The thesis follows.

3.1.2. Sequential generalization of FDR. The flexibility of the proposed
framework allows to easily design new schemes for the (2N + 1)-operator case that
do not rely on the usual product space trick. In particular, we show how to retrieve
a generalization of the FDR splitting that, in contrast to the iteration discussed in
subsection 3.1.1, admits an intrinsic sequential nature. Of course, setting Ci = 0 for
all i, this can be thought as a sequential generalization of DRS as well. Consider the
following operators (confer C∗ below for a precise definition of M = CC∗)

Aα =



αI + σA0 −I −I
I −I

(1− 2α)I + σC1 I 2αI + σA1 · · ·
..
.

. . .
..
.

· · · 2αI + σAN−1 −I −I
I −I

(1− 2α)I + σCN I αI + σAN


, M =



I I I
I I I
I I 2I · · ·

...
. . .

...
· · · 2I I I

I I I
I I I


.

Also in this case, if u = (x0, v1, x1, . . . , vN , xN ) ∈ H := H2N+1 satisfies 0 ∈ Aαu
then x = x0 = · · · = xN solves (3.13) and a solution x of (3.13) yields 0 ∈ Aαu
setting x0 = · · · = xN = x and vi = (α − 1)x − ai − σCix, for all i ∈ {1, . . . , N},
where ai ∈ σAix, i ∈ {0, . . . , N}, such that 0 = a0 +

∑N
i=1 ai + σCix. The operator

(M + Aα) is lower-triangular and easy to invert, leading to a Lipschitz continuous
inverse. We choose the decomposition of M (according to Proposition 2.3) to be
M = CC∗ with C∗ : u 7→ (x0 + v1 + x1, . . . , xN−1 + vN + xN ) giving the reduced
variables wi = xi−1 + vi + xi for all i ∈ {1, . . . , N}, which for the sake of exposition
we re-scale again with a factor of (1 + α)−1, considering w̃i = wi/(1 + α) instead of
wi for i ∈ {1, . . . , N}. We put γ = σ/(1 +α). So that, even if we introduced (2N + 1)
variables, the reduced algorithm would only need to store N . Again, the operator
T̃α = (I + C∗ BAα)

−1
can be computed explicitly and the relaxed reduced algorithm

reads as

(3.15)



xk+1
0 = JγA0

w̃k1 ,

xk+1
i = J γ

2Ai

(
xk+1
i−1 +

w̃ki+1 − w̃ki
2

− γ

2
Cix

k+1
i−1

)
for i ∈ {1, . . . , N − 1},

xk+1
N = JγAN

(
2xk+1

N−1 − w̃
k
N − γCNxk+1

N−1

)
,

w̃k+1
i = w̃ki + θk(xk+1

i − xk+1
i−1 ) for i ∈ {1, . . . , N}.

Theorem 3.8. Let w̃k = (w̃k1 , ..., w̃
k
N ) for k ∈ N be the sequence generated by the

sequential FDR scheme (3.15) with starting point w̃0 ∈ HN . Let γ ∈ (0, 4β) and {θk}k
satisfy θk ∈

[
0, 2− γβ

2

]
and

∑
k θk

(
2− γβ

2 − θk
)

= +∞. If a solution to (3.13) exists,
then {w̃k}k converges weakly to a w̃∗ ∈ HN such that x∗ := JγA0

w̃∗1 is a solution to
(3.13). Moreover, the sequences {xki }k, for i ∈ {0, . . . , N}, weakly converge to this
solution.

The proof is similar to Theorem 3.6 and therefore omitted.
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Corollary 3.9 (Strong convergence). If there exists i ∈ {0, . . . , N} such that Ai
is uniformly monotone on every bounded set of domAi, then for all i ∈ {0, . . . , N}
the sequences {xki }k generated by (3.15) converge strongly to a solution x∗ of (3.13).

Again, the proof follows the lines of the parallel case, see Corollary 3.7.

3.2. Numerical experiments. In this section, we show the numerical perfor-
mance of the algorithms discussed in section 3, in particular, we will focus on the
novel sequential generalization of FDR and its parallel counter-variant. We do not
claim to out-perform state-of-art optimization methods. We only show that indeed,
the sequential FDR reaches comparable performance when the computations are per-
formed on a single CPU and the number of addends is small. For all the methods, the
parameters were roughly tuned for best performance.

Problem formulation. A classical benchmark for testing optimization algorithms,
already considered, for instance, in [34], is the so-called Markowitz portfolio optimiza-
tion problem. Taking into account transaction costs we have a problem of the form

min
w∈∆

wTΣw − rTw +
δ

2
‖w‖2 +

n∑
i=1

|wi − (w0)i|+
n∑
i=1

|wi − (w0)i|3/2,

where δ > 0, r ∈ Rn is a vector of estimated assets returns, Σ is the estimated
covariance matrix of returns (which is a symmetric positive semi-definite n×n matrix),
∆ ⊂ Rn is the standard simplex and w0 ∈ Rn is the initial position. The term
φ(w) =

∑n
i=1 |wi−(w0)i|+

∑n
i=1 |wi−(w0)i|3/2 is a standard penalization for financial

transactions [5] and (δ/2)‖w‖2 is motivated from a robust-optimization viewpoint [22].
Optimization procedure. We apply the sequential and the parallel generalizations

of FDR to this problem splitting the objective function into the following terms

min
w∈Rn

wTΣw − rTw +
δ

2
‖w‖2︸ ︷︷ ︸

f(w)

+

n∑
i=1

|wi − (w0)i|︸ ︷︷ ︸
g0(w)

+

n∑
i=1

|wi − (w0)i|3/2︸ ︷︷ ︸
g1(w)

+ I∆(w)︸ ︷︷ ︸
g2(w)

.

For the sake of completeness we will also split the regular term f into the two parts
f1(w) = wTΣw−rTw and f2(w) = (δ/2)‖w‖2. We denote by L the largest eigenvalue
of Σ, i.e., the Lipschitz constant of w 7→ Σw. We consider the following three versions
of sequential FDR applied to 0 ∈ (A0+A1+A2+C1+C2)x with Ai = ∂gi for i = 0, 1, 2

1. SeqFDRv1: we split the regular term, meaning that C1 = ∇f1 and C2 = ∇f2.
Thus, we may set γ = min{1/L, 1/δ} and θk = 1 for all k ∈ N.

2. SeqFDRv2: we do not split the regular term but consider C1 = ∇f and
C2 = 0. Thus, we may set γ = 1/(L+ δ) and θk = 1 for all k ∈ N.

3. SeqFDRv3: we repeat two times the regular term, i.e., C1 = (1/2)∇f and
C2 = (1/2)∇f . Thus, we may set γ = 2/(L+ δ) and θk = 1 for all k ∈ N.

Their convergence behaviour, in particular the differences, are shown in Figure 1.
We select the best version, in this case SeqFDRv3, and we compare its behaviour with
the following algorithms. The generalized Backward-Forward (GenBF) in [31], which
is actually an instance of the parallel FDR applied to a larger problem with four non-
regular terms: Ã0 = 0 and Ã1 = A0, Ã2 = A1, Ã3 = A2, hence ending up with three
variables. The parallel FDR with non-split regular term (ParFDR), with the parallel
DR (ParDR) introducing g3 = f and computing its proximal operator (having thus one
additional variable), and eventually with PPXA [30], which, as ParDR, requires three
variables. Since our algorithms and ParFDR have the lesser number of variables to
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Fig. 1. Norm distance to the minimizer as a function of the number of iterations. The estimated
returns r and the matrix Σ are derived from real data2 considering 200 market days and n = 53
assets. We show two cases: (above) the initial state w0 has been chosen randomly and (below) w0

is the output of the first one considered on the same optimization problem but 20 days later.

store and the costs per iterations of all methods are similar, we show the performance
only in terms of iterations.

Comments. Figure 1 shows that SeqFDRv3 performs as well as the other algo-
rithms and reaches high precision within a few iterations. In the literature, there are
no essential guidelines in splitting the forward term, indeed, it is not even considered
as a possibility in [31, 12]. However, we believe that is of interest when the compu-
tation of the full gradient is computationally expensive, so that splitting it into two
parts or computing it only once (instead of N times) at each iteration would result
in more efficient updates. During the experiments, since the projections onto affine
sets are much easier to compute than the projection onto the simplex which in prac-
tice takes O(n) time, we also split the simplex constraint into its affine components
I∆(w) = I{w : w1 + · · ·+ wn = 1}+ I{w : wi ≥ 0 for all i} at the cost of one addi-
tional variable. However, in our small-scale problem, splitting the simplex constraint
behaves quite badly and therefore, we omitted it.

4. Conclusions. In this paper, we studied preconditioned proximal point al-
gorithms with a particular focus on the degenerate case. We established weak and
strong convergence results and proposed a new perspective on well-known algorithms
that directly yields sharp conditions for the parameters. Moreover, an intuitive way
to generalize those algorithms to tackle the sum of many operators is shown. In the
future, we plan to: (i) better understand the limitations we found for the parame-

2Downloaded from https://stanford.edu/class/engr108/portfolio.html (accessed on March 27,
2021).

https://stanford.edu/class/engr108/portfolio.html
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ters’ freedom regarding the convergence of {uk}k in Theorem 2.9; (ii) study a full
characterisation à la Minty of the requirements we are implicitly imposing on A with
assumptions (2.1); (iii) analyze overrelaxed methods, such as the overrelaxed For-
ward Peaceman-Rachford method mentioned in Remark 3.5, and their sequential and
parallel extensions.

Appendix.

Proof of Proposition 2.3. In finite dimension, i.e., for H = Rd, one shows via
spectral decomposition, that every linear positive semi-definite operator admits such
a decomposition, and, moreover, D can be chosen as Rd−k, where k = dim (KerM).
One way to construct such a decomposition in infinite dimension is as follows: sinceM
is self-adjoint positive semi-definite then M admits an (actually unique) self-adjoint
square root (see [32, Chapter VII], or [4, Theorem 4]) which means that there exists
a bounded self-adjoint operator E : H → H such that M = E2. Let us denote
by D = Im E , which is a real Hilbert space. Denoted by i : D → H the inclusion
operator, define C := Ei. We have that C is injective, in fact

Ker C = D ∩Ker E = Im E ∩Ker E = (Ker E)
⊥ ∩Ker E = {0}.

Moreover, since ii∗d = d for all d ∈ D ⊂ H, it follows that CC∗ = Eii∗E∗ = EE∗ =
EE =M. Notice that the image of E is dense in D, hence, since i∗d = d for all d ∈ D,
we have Im E = Im C∗ and the image of C∗ is dense in D and C∗ would be onto if it
has closed range. We prove by contradiction that this is the case whenM has closed
range. Let {xk}k be a sequence in H such that C∗xk → y with y ∈ D \ Im C∗, then
Mxk = CC∗xk → Cy. Since M has closed range there exists an x ∈ H such that
Cy = Mx = CC∗x so that C(y − C∗x) = 0 and y = C∗x by injectivity of C, which
yields a contradiction.

Proof of Proposition 2.5. We start by proving that if M−1A is M-monotone,
then A ∩ (H × ImM) is monotone. Let (u, v), (u′, v′) ∈ A ∩ (H × ImM), then by
definition there exist ṽ, ṽ′ such that (u, v) = (u,Mṽ) and (u′, v′) = (u′,Mṽ′), thus,
since (u, ṽ), (u′, ṽ′) ∈M−1A

〈v − v′, u− u′〉 = 〈Mṽ −Mṽ′, u− u′〉 = 〈ṽ − ṽ′, u− u′〉M ≥ 0,

by the M-monotonicity of M−1A. Conversely, given (u, ṽ), (u′, ṽ′) ∈ M−1A, since
(u, v) := (u,Mṽ) and (u′, v′) := (u′,Mṽ′) belong to A ∩ (H× ImM) we have

〈ṽ − ṽ′, u− u′〉M = 〈Mṽ −Mṽ′, u− u′〉 = 〈v − v′, u− u′〉 ≥ 0.

Proof of Theorem 3.2. Our goal is to prove that there exists a constant α > 0 such
that (2.17) holds. Let u = (x, y), u′ = (x′, y′) and (u, ξ), (u′, ξ′) ∈ A ∩ (H× ImM),
then

ξ ∈ Au =

(
σAx+ y

−x+ (σB)−1y

)
, ξ′ ∈ Au′ =

(
σAx′ + y′

−x′ + (σB)−1y′

)
.

This means that there exists a ∈ σAx, a′ ∈ σAx′ and b ∈ (σB)−1y, b′ ∈ (σB)−1y′

such that ξ1 = a + y, ξ2 = −x + b and ξ′1 = a′ + y′, ξ′2 = −x′ + b′. Moreover,
since ξ = (ξ1, ξ2), ξ′ = (ξ′1, ξ

′
2) ∈ ImM, we have ξ1 = −ξ2 and ξ′1 = −ξ′2. Together,

a+ y = x− b, a′ + y′ = x′ − b′, such that

(4.1) ∆a+ ∆y = ∆x−∆b,
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where ∆a = a− a′, ∆b = b− b′, ∆x = x− x′ and ∆y = y − y′.
Now we prove all claimed cases by checking the strong M-monotonicity:

Case 1a) A µ-strongly monotone and B 1/β-cocoercive. Note that σA is σµ-strongly
monotone and (σB)−1 is 1

σβ -strongly monotone. With the notations introduced above
we have that

〈ξ − ξ′, u− u′〉 = 〈∆a+ ∆y,∆x〉+ 〈−∆x+ ∆b,∆y〉 = 〈∆a,∆x〉+ 〈∆b,∆y〉

≥ σµ‖∆x‖2 +
1

σβ
‖∆y‖2 ≥ min

{
σµ,

1

σβ

}
(‖∆x‖2 + ‖∆y‖2)

≥ min

{
σµ

2
,

1

2σβ

}
‖∆x−∆y‖2 = α‖C∗∆u‖2 = α‖∆u‖2M,

where ∆u = u−u′. This establishes (2.17) and gives us a convergence rate of 1/(1+α)
with α = min{σµ2 ,

1
2σβ }.

Case 1b) B µ-strongly monotone and A 1/β-cocoercive. Here, σA is 1
σβ -strongly

monotone and (σB)−1 is σµ-strongly monotone. We have

〈ξ − ξ′, u− u′〉 = 〈∆a,∆x〉+ 〈∆b,∆y〉

≥ 1

σβ
‖∆a‖2 + σµ‖∆b‖2 ≥ min

{
σµ,

1

σβ

}
(‖∆a‖2 + ‖∆b‖2)

≥ min

{
σµ

2
,

1

2σβ

}
‖∆a+ ∆b‖2.

Finally, making use of (4.1), we obtain

〈ξ − ξ′, u− u′〉 ≥ min

{
σµ

2
,

1

2σβ

}
‖∆x−∆y‖2 = α‖C∗∆u‖2 = α‖∆u‖2M.

Case 2a) A µ-strongly monotone and 1/β-cocoercive. Using monotonicity of B, σµ-
strong monotonicity, 1

σµ -cocoercivity of A and (4.1), we have, introducing t ∈ (0, 1),
that

〈ξ − ξ′, u− u′〉 = 〈∆a,∆x〉+ 〈∆b,∆y〉 ≥ (1− t)〈∆a,∆x〉+ t〈∆a,∆x〉

≥ (1− t)σµ‖∆x‖2 +
t

σβ
‖∆a‖2 = (1− t)σµ‖∆x‖2 +

t

σβ
‖∆x−∆y −∆b‖2

= (1− t)σµ‖∆x‖2 +
t

σβ
‖∆x−∆y‖2 +

t

σβ
‖∆b‖2 − 2t

σβ
〈∆x−∆y,∆b〉

= (1− t)σµ‖∆x‖2 − 2t

σβ
〈∆x,∆b〉+

t

σβ
‖∆b‖2 +

t

σβ
‖∆x−∆y‖2 +

2t

σβ
〈∆y,∆b〉.

Choosing t := (1+(σ2µβ)−1)−1 ∈ (0, 1) we see that (1−t)σµ = t/(σβ). Thus, the first
three terms of the latter expression together yield a non-negative term. Therefore,
using that 〈∆b,∆y〉 ≥ 0 we get

〈ξ − ξ′, u− u′〉 ≥ t

σβ
‖∆x−∆y‖2 =

t

σβ
‖u− u′‖2M =

σµ

σ2µβ + 1
‖u− u′‖2M.

Case 2b) B µ-strongly monotone and 1/β-cocoercive. Using monotonicity of A, σµ-
strong monotonicity, 1

σµ -cocoercivity of B and (4.1), we have, introducing t ∈ (0, 1),
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that

〈ξ − ξ′, u− u′〉 = 〈∆a,∆x〉+ 〈∆b,∆y〉 ≥ 〈∆a,∆x〉+ (1− t)〈∆b,∆y〉+ t〈∆b,∆y〉

≥ 〈∆a,∆x〉+
1− t
σβ
‖∆y‖2 + tσµ‖∆b‖2

= 〈∆a,∆x〉+
1− t
σβ
‖∆y‖2 + tσµ‖∆x−∆a−∆y‖2

= 〈∆a,∆x〉+
1− t
σβ
‖∆y‖2 + tσµ‖∆x−∆y‖2 + tσµ‖∆a‖2 − 2tσµ〈∆x−∆y,∆a〉

=
1− t
σβ
‖∆y‖2 + 2tσµ〈∆y,∆a〉+ tσµ‖∆a‖2 + (1− 2tσµ)〈∆a,∆x〉+ tσµ‖∆x−∆y‖2.

Choosing t := (1 + σ2µβ)−1 ∈ (0, 1) yields tσµ = (1 − t)/(σβ). Thus, the first three
terms of the latter expression together yield a non-negative term. Moreover, using
the obvious relation µ ≤ β we have (1− 2σµ

1+σ2µβ ) ≥ 0, so we can use 〈∆a,∆x〉 ≥ 0 to
obtain

〈ξ − ξ′, u− u′〉 ≥ tσµ‖∆x−∆y‖2 = tσµ‖u− u′‖2M =
σµ

σ2µβ + 1
‖u− u′‖2M.

Case 3) A µ-strongly monotone and β-Lipschitz continuous or vice-versa. It is easy
to see that if an operator is µ-strongly monotone and β-Lipschitz then it is also µ/β2

cocoercive. Therefore, we can apply case 2 and obtain the rate 1/(1 + α) where
α = σµ

σ2β2+1 .
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[25] B. Martinet, Brève communication. régularisation d’inéquations variationnelles par approx-
imations successives, ESAIM: Math. Model. Num., 4 (1970), pp. 154–158.

[26] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962),
pp. 341–346.

[27] R. D. C. Monteiro and C.-K. Sim, Complexity of the relaxed Peaceman-Rachford splitting
method for the sum of two maximal strongly monotone operators, Comput. Optim. Appl.,
70 (2018), pp. 763–790.

[28] D. O’Connor and L. Vandenberghe, On the equivalence of the primal-dual hybrid gradient
method and Douglas-Rachford splitting, Math. Program., 179 (2020), pp. 85–108.

[29] G. Pierra, Decomposition through formalization in a product space, Math. Programming, 28
(1984), pp. 96–115.

[30] N. Pustelnik, C. Chaux, and J.-C. Pesquet, Parallel proximal algorithm for image restora-
tion using hybrid regularization, IEEE Trans. Image Process., 20 (2011), pp. 2450–2462.
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