2110.00262v3 [csMS] 26 Sep 2022

arxXiv

pyFFS: A PYTHON LIBRARY FOR FAST FOURIER SERIES
COMPUTATION AND INTERPOLATION WITH GPU
ACCELERATION*

ERIC BEZZAM', SEPAND KASHANIT, PAUL HURLEY?, MARTIN VETTERLI', AND
MATTHIEU SIMEONTIS

Abstract. Fourier transforms are an often necessary component in many computational tasks,
and can be computed efficiently through the fast Fourier transform (FFT) algorithm. However, many
applications involve an underlying continuous signal, and a more natural choice would be to work
with e.g. the Fourier series (FS) coeflicients in order to avoid the additional overhead of translating
between the analog and discrete domains. Unfortunately, there exists very little literature and tools
for the manipulation of FS coefficients from discrete samples. This paper introduces a Python
library called pyFFS for efficient F'S coefficient computation, convolution, and interpolation. While
the libraries SciPy and NumPy provide efficient routines for discrete Fourier transform coefficients
via the FFT algorithm, pyFFS addresses the computation of FS coefficients through what we call
the fast Fourier series (FFS). Moreover, pyFFS includes an FS interpolation method based on the
chirp Z-transform that can make it more than an order of magnitude faster than the SciPy equivalent
when one wishes to perform distortionless bandlimited interpolation. GPU support through CuPy
is readily available, and allows for further acceleration: an order of magnitude faster for computing
the 2-D FS coefficients of 1000 x 1000 samples and nearly two orders of magnitude faster for 2-D
interpolation. As an application, we discuss the use of pyFFS in Fourier optics. pyFFS is available
as an open source package at https://github.com/imagingofthings/pyFFS, with documentation at
https://pyffs.readthedocs.io.

Key words. fast Fourier series, bandlimited interpolation, chirp Z-transform, numerical library,
Python, GPU

AMS subject classifications. 65T40, 97N80, 97N50, 42B05

1. Introduction. Discretization is an inevitable part of digital signal process-
ing. Although the universe around us moves and shakes with infinite precision, our
computers can only handle so much. However, with a useful model and the appropri-
ate analog and digital processing, we can faithfully simulate and process continuous-
domain processes. This idea is the essence of the Nyquist-Shannon sampling theorem
for bandlimited signals [19] and more generally for signals that have a finite rate of
innovation [3]. Simply put: a function f(¢) with finite degrees-of-freedom can be
completely determined by a finite number of its samples. In his paper [19], Shannon
even admits that the theorem so often associated with him is a fact “which is com-
mon knowledge in the communication art.” However, without the proper formulation,
common knowledge may never seep into common practice.

The inception of the fast Fourier transform (FFT) algorithm [5] has a similar
story. Arguably one of the most influential algorithms in computational and natural
sciences, the FFT was nearly not published, as one of the original authors, John

*Published on August 18, 2022.

Funding: This work was in part funded by the Swiss National Science Foundation (SNSF) under
grants 200021.181978/1 SESAM — Sensing and Sampling: Theory and Algorithms (first, second and
fifth authors) and CRSII5 180232 FemtoLippmann — Digital twin for multispectral imaging (second
and fifth authors). For part of this work, the second, third, and fifth authors were also with the
Foundations of Cognitive Solutions group in the IBM Research Laboratory of Zurich.

T Audiovisual Communications Laboratory, Ecole Polytechnique Fédérale de Lausanne, Switzer-
land (eric.bezzam@epfl.ch, sepand.kashani@epfl.ch, martin.vetterli@epfl.ch).

TWestern Sydney University, Australia (p.hurley@westernsydney.edu.au).

8Centre for Imaging, Ecole Polytechnique Fédérale de Lausanne, Switzerland
(matthieu.simeoni@epfl.ch).

mailto:eric.bezzam@epfl.ch
mailto:sepand.kashani@epfl.ch
mailto:martin.vetterli@epfl.ch
mailto:p.hurley@westernsydney.edu.au
mailto:matthieu.simeoni@epfl.ch

2 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

Tukey, felt that it was a simple observation that was probably already known and
unworthy of attention.! With the digital revolution that ensued afterwards, the FFT
quickly became an indispensable algorithm in digital signal processing. Once again,
we see that without the proper formulation and implementation, common knowledge
may not establish itself in common practice.

Continuing along these lines, we formulate old Fourier analysis tricks with a new
perspective and propose new tools to efficiently compute and interpolate Fourier series
(FS) coefficients. As is well known, for discrete samples of a periodic, bandlimited
signal, we can perfectly recover the FS coefficients of the underlying function when
sampling is done according to the Nyquist-Shannon sampling theorem [21]. Moreover,
continuous-domain operations, such as convolution and interpolation, can be imple-
mented in terms of distortionless discrete operations on the FS coefficients. These
mathematical facts can be used in practice to design an algorithm for fast F'S compu-
tation and interpolation, which we call the fast Fourier series (FFS) algorithm. While
deceptively simple, the FFS algorithm is surprisingly neither described in signal pro-
cessing textbooks nor implemented in numerical computing libraries. For example,
NumPy [11] and SciPy [22] in the Python ecosystem focus mainly on the discrete
Fourier transform (DFT) and related operations. We aim to change this by providing
an efficient and easy-to-use interface to the FFS algorithm via a Python package called
pyFFS. Furthermore, distortionless discrete operations with pyFFS are not limited to
periodic signals. In fact, one is often interested in working with signals of compact-
support, which can be cast as periodic by repeating the signal with a period larger
than or equal to its support.

So why use pyFFS rather than the FFT routines from NumPy/SciPy? One
reason is convenience when working with continuous-domain signals. The philosophy
of pyFFS is to retain the continuous-domain perspective, often neglected when using
numerical libraries such as NumPy and SciPy, which allows for much clearer code
as seen in Listing 7. This can prevent common pitfalls due to an invalid conversion
between discrete and continuous domains. Moreover, F'S coefficients are an important
component of the Non Uniform Fast Fourier Transform (NUFFT), extensively used
in MRI imaging and other computational imaging modalities [2]. Another reason
is efficiency. We benchmark pyFFS with equivalent functions in SciPy, observing
scenarios in which the proposed library is more than an order of magnitude faster,
e.g. for interpolation. Moreover, GPU support has been seamlessly incorporated for
an even faster implementation. Just as the FFT implementation via NumPy and
SciPy can be readily used for an efficient O(N log N) analysis and synthesis of discrete
sequences, pyFFS offers the same ease-of-use and performance capabilities for discrete
representations of continuous-domain signals.

The paper is organized as follows. In Section 2, we go over the theory behind
pyFFS and motivate why working with FS coefficients may be preferable. We also
present theorems showing how FS coefficients of periodic, bandlimited signals can
be computed and interpolated exactly and efficiently. In Section 3, the Python user
interface of pyFFS$ is discussed.? Section 4 presents benchmarking tests showing the
efficiency of pyFFS against SciPy and the gains of GPU acceleration. In Section 5,
we discuss an application of pyFFS in Fourier optics. Another application of pyFFS
can be found in [7], where the authors make use of the FFS algorithm to efficiently

LAs history would later tell, Tukey was indeed right as Gauss had written a paper about an
interpolation technique with essentially the same idea [8].
2 A more extensive documentation can be found at https://pyffs.readthedocs.io.

https://pyffs.readthedocs.io

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 3

compute multidimensional periodic splines. Section 6 concludes the paper.

2. Theory. In this section, we give an overview of the theory behind pyFFS.
This can be useful to those who wish to understand what is happening under the
hood and sheds light as to when using FS coefficients over DFT ones may be of
interest.

2.1. Numerically compute F'S coefficients. At first glance, it seems unlikely
that FS coefficients could be of practical use in computational scenarios, as their very
definition necessitates the integral of a continuous function [21]

s 2
(2.1) X0 == x(t)exp | —j =kt | dt,
T T,;*% T

where : R — C is a T-periodic function and 7, is any period mid-point.
The synthesis equation, on the other hand, expresses this function in terms of a
discrete, albeit infinite, set of samples, namely the FS coefficients

27
(2.2) ZXk exp (]Tkt> .
keZ

For a bandlimited signal, we can write (2.2) as

27
2. XFs | —kt N >
(3) Z L €XpP (] T)) fatl Oa

where x(t) is said to have a bandwidth of Npg = 2N + 1.* Moreover, by taking
uniform samples with a sampling period of Ty = T//Ngg, we obtain

x(nTy) Z XFS exp <]211Tk(nTs)>
a 27'('

= XFS ex j—kn

z S exp (i tn)

(b) _
(2.4) = Z XPSWRE,
k=—N

where (a) uses (T/T) = 1/Nps and (b) uses Wy = exp (—j3F). Uniform sampling is
equivalent to convolution with a Dirac stream in the FS coefficient domain. Therefore
the sequence {X,ES eC, ke Z} is Npg-periodic, as shown in Figure 1. Moreover,
choosing Ts < T/Nrg ensures that the FS coefficients remain “intact”, i.e. there is no
distortion due to aliasing from the overlapping spectrum replicas.

In (2.4) we have an expression that is equivalent to what is commonly referred to
as the discrete Fourier series (DFS) [16]

(2.5) [x], = Ni 1 X], exp (Nlm) nez,

k=0

3This is equivalent to a maximal frequency of N/T Hz.

4 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

-+ DFS

el ‘ ‘ ‘ — “ (L lal Telell 11l Tl »
0

-N 0 N -N N

s S

Fig. 1: Visualizing the Fourier series (FS) coefficients of a sampled, bandlimited signal:
(left) original F'S coefficients of a signal whose bandwidth is Npg = 2N + 1; (right)
sampled FS coefficients where Ny > Npg such that the sampling period is Ty = T'/N;.
When performing synthesis, i.e. interpolating coefficients for time-domain values, our
formulation (2.4) sums over coefficients centered around zero (dashed box), while
the discrete Fourier series (2.5) sums over positive coefficients (dotted box). This is
equivalent as the sampled Fourier series coeflicients are a periodic sequence.

which is similar to the inverse discrete Fourier transform (IDFT), except that the
time index n spans all integers. As the coefficients of the sampled function are Ngg-
periodic, shifting the summation in (2.4) to [0, Nps — 1], as in (2.5), is equivalent to
the summation over [—N, NJ.

With (2.4), we can numerically compute the FS coefficients of a bandlimited,
periodic signal by setting up a system of equations with at least as many samples as
FS coefficients:

—(=N)(=N) —(—=N)(—=N+1) —(=N)(N)
x]_y Wl Wil WRl XFS,
- - —(= - —(- FS
(X]_ N1 _ WN£3N+1)(N) WN£SN+1)(N+1) WNISSN+1)(N) XFS,,
X —(=N)(N (=N4+1)(N _(NY(N XFS
x| WCW) N) N

A naive approach could solve this system of equations for the FS coefficients
by multiplying the left-hand side with the inverse of the matrix, requiring O(N3.g)
operations. However, the above matrix is unitary, allowing us to multiply both sides
by the complex conjugate of the matrix rather than having to invert it. This gives a
complexity of O(Nzg). With some manipulation, the matrix-vector relationship can
be turned into one where the matrix is the DFT matrix. We can then exploit the
FFT algorithm to further reduce the complexity to O(Npglog Nrg) [5]. This result
is given in the following theorem, with the proof provided in Appendix A.

THEOREM 2.1 (Fast Fourier series). Let z : R — C be a T-periodic function of
bandwidth Npg = 2N + 1, with T, € R the mid-point of any period. Let the zero-
padding amount Q € 2N be an arbitrary even integer such that the number of samples
Ny = Nps+ Q. Then

(2.6) x = N,IDFTy, (XFS ® BFl) © BB,
1

2. X8
(2.7) N,

DFTy, <x © B;NEZ) © BB,

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 5

where
(2.8) x = [x(to), ..., x(ta), x(tnr), - .., x(t_1)] € TN,
T
(2.9) t, =T, + En, n ez,
M = (N,—1)/2,

X = [XFY, .., XE5, 0] € CM,

2 2
and By =exp (] TTC> € C, By = exp <—J Ns) eC,

E; =[-N,...,N,0q] € Z™, E,=1[0,....,M,—M,...,—1] € Z"-.

DFTpy and IDFT y denote the length-N DFT and IDFT respectively. The operation
©® is an element-wise multiplication, with which in (2.6) and (2.7) we modulate the
input and the output of the standard DFT and IDFT operations. This modulation
shifts the summation bounds in (2.4) to those of the DFT, allowing direct use of the
FFT for an efficient computation. The zero-padding () can be used to set the FFT
length to a highly composite value for faster computation.

The above theorem assumes an odd-length Ng. For an even-length sequence, a
slight modification of the sample locations t, and modulation terms B, By is nec-
essary. As the general idea is the same, we refer the reader to Appendix A for the
presentation and proof for the odd- and the even-length cases.

2.2. Efficient interpolation of F'S coefficients. There is nothing particularly
unique about the FS coefficients given by Theorem 2.1 in (2.7). They are essentially
DFT coefficients modulated, reordered, and scaled so that the resulting sequence is
directly the FS coefficients within [—N, N]. However, their intrinsic link to a contin-
uous signal makes them all the more convenient when we consider interpolation at
arbitrary sample locations, rather than griding or sub-griding at the discrete level.
From a practitioner’s perspective, it may also be more intuitive to think and work
directly with the continuous-domain sample locations rather than the corresponding
sample (or subsample) values.

Equation (2.3) could be used to compute the value of the underlying bandlimited
function at arbitrary sample locations, requiring O(M Ngg) operations for M sam-
ple points. Below we show one way these FS coefficients can be interpolated at M
regularly-spaced samples in a more efficient manner. This is done by making use of
the chirp Z-transform (CZT).

DEFINITION 2.2 (Chirp Z-transform). Let x € CN. The length-M chirp Z-
transform CZTA (x) € CM of parameters A, W € C* is defined as [17]

N-1
(2.10) [CZTN (x)], = D [, A"W™, ke{0,...,M—1},
n=0

where A is the complex starting point and W is the complex ratio between points along
a logarithmic spiral contour. The CZT is a generalization of the DFT which samples
the Z plane at uniformly-spaced points along the unit circle.

CZTH can be efficiently computed using the DFT and IDFT in O(Llog L) opera-
tions, where L > N + M — 1. This is done via Bluestein’s algorithm [4]. A similar

6 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

formulation of the CZT and its efficient computation is known as the fast fractional
FT algorithm [1].

The theorem below makes use of the CZT and Bluestein’s algorithm to perform
efficient interpolation at regularly-spaced values.

THEOREM 2.3 (FS interpolation, x : R — C). Let x : R — C be a T-periodic
function of bandwidth Npg = 2N + 1. Let a < b € R be the end-points of an interval
on which we want to evaluate M equi-spaced samples of x. Then

(2.11) x = AN CZTy (XIS o Ww—NE,
where
o A 21
x = [x(ty), ..., x(ta—1)] € CV, =exp|—jra),
X = [XF%,. ., XE5) e Vs, o b—a
b—a W = exp Trm—1)°
tn:a+ n, nEZ,
M—1 E=[0,...,M—1] e NM,

and CZT (of parameters A, W) is as defined in Definition 2.2.

The proof can be found in Appendix B. A similar interpolation technique with the
fractional FT is presented in [1].

With Theorem 2.3, one can interpolate sub-sections of a period efficiently. More-
over, it is possible to perform DFTs of a smaller length than what would be normally
required with a more standard IDFT interpolation approach, namely zero-padding
the DFT coefficients and taking a longer IDFT for an increase in temporal resolution
across the entire period.

Complexity comparison. To get an idea of when it is preferable to use the
proposed technique over zero-padding DFT coefficients, we present a rough complexity
analysis. For a T-periodic function that we would like to evaluate at steps of At,
we would need Niarget = [T/At] samples within a single period. If we had N <
Niarget samples,” we would need to pad the DFT coefficients with (Niarget — N)
zeros in order to get this temporal resolution, resulting in an IDFT with complexity
O(Niarget 10g Niarget). With Theorem 2.3, interpolating at steps of At over the entire
period T would lend to a computational complexity of (’)((Ntarget + Nrg) log(Niarget +
NFS))7 which is certainly not advantageous. The benefits arise when we wish to
interpolate over a smaller region within the period, i.e. when zooming in on a section
of length mT with m € (0,1). In such a scenario, the number of interpolation points
is M = [mT/At]. As the complexity of Theorem 2.3 is O((M + Ngs) log(M + Ngs)),
it can be more efficient than zero-padding the DFT coefficients when (M + Ngg) is
less than the padded IDFT length Niarger = [T/ At].

Both the proposed approach in Theorem 2.3 and interpolation by zero-padding
the DFT coefficients are bandlimited interpolation techniques. Given all the FS or
DFT coefficients of a bandlimited signal, both yield a distortionless interpolation. A
comparison between these two approaches is done in Subsection 4.2.

Another approach for bandlimited interpolation is sinc interpolation with Dirich-
let apodization [20], and it allows one to focus on a specific region much like The-
orem 2.3. However, its complexity is given by O(M Ngs), which quickly becomes

4With N > Npg so that we can have ideal reconstruction according to the Nyquist-Shannon
sampling theorem.

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 7

1 =
_ original —\
R \- tapered \
= -
1

5 'nlllll L1114,
2 -10 5 0 5 10
E

S
i

one period
(=]

original

o
1=}

0
= 1 -“3 0.2
.E 0 [\ \ ’ \ orlalnal §<
.'é \ \ [—- Iapered
a1 0.1 1 1
0.5 1.5 2.5 -10 -5 0 5 10
Tlme [s] FS index
(a) (b)

Fig. 2: Example to motivate tapering window before Fourier analysis. Notice in Fig-
ure 2b, the higher frequency coefficients that appear in the Fourier analysis due to the

discontinuity (top), and how they are suppressed when applying a tapering window
(below).

prohibitive as the number of interpolation points or the bandwidth increases. So we
do not consider this approach in our comparison.

2.3. When to use FS coefficients. In our discussion above, we already came
across two requirements on the input in order to numerically compute its FS coeffi-
cients from a discrete set of samples without distortion:

e Periodic as the FS coefficients are defined for such signals.

e Bandlimited so that we can perfectly recover the FS coefficients from a finite

set of discrete samples.

In fact, the DFT makes similar assumptions on periodicity. As we saw with the
DFS, when we consider indices outside of the sequence’s finite support, we observe a
periodic structure. Consequently, when one wishes to interpolate outside the support
of a finite sequence, it is common to apply a tapering window in order to avoid
sharp discontinuities at the boundaries. Similarly, in order to apply Theorem 2.1,
we can consider the samples of an arbitrary continuous function as a truncation that
we periodize and optionally taper to remove any discontinuities at the boundaries.
For example, in Figure 2 we compute the FS coefficients of a truncated sinusoid
with a large discontinuity at the border. Applying a tapering window attenuates the
boundaries to zero, thereby removing the discontinuity as seen in the periodization
(bottom of Figure 2a) and suppressing higher frequency coefficients that arise due to
this discontinuity (Figure 2b).

Although not necessarily required for the DFT, bandlimitness of the input se-
quence is desired prior to sampling so that distortion due to aliasing is minimized.
However, after sampling there is not much that can be done to remove such aliasing.
The same is true for computing the FS coefficients. However, if one has control on
the acquisition process, the sampling rate can be set to avoid spectral overlap or the
signal can be bandlimited appropriately. As we saw in (2.3), bandlimiting corresponds
to truncating the FS summation.

FS coefficients coupled with knowledge about the underlying continuous signal
therefore allows us to better understand, and perhaps control, where errors could
arise during our analysis and processing:

8 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

e From aliasing if the underlying function could not be bandlimited or sampled
appropriately.
e From truncation of the F'S coefficients to ensure bandlimitedness. The mean-
squared error of this truncation can be bounded [9].
e From a tapering window to remove border discontinuities if a function was
simply periodized by truncation and repetition.
Applying the DFT has similar constraints and consequences that tend to get ignored
in practice, as they may not be critical for the application or cannot be corrected with
the discrete samples alone.

In practice, discrete samples are bandlimited due to the sampling operation, al-
though there might be aliasing if the proper filter could not be used beforehand, e.g.
in medical imaging [20]. In such scenarios, we can only expect to obtain the FS
coeflicients of the underlying aliased signal.

2.4. Multidimensional. The above methods are not limited to a single dimen-
sion. As the DFT plays a central role, the FS coefficient and interpolation tools
can be extended to multidimensional in a similar fashion as the DFT. By leveraging
the property that the multidimensional DFT can be computed as a composition of
one-dimensional DFTs along each dimension, the FS computation and interpolation
methods above, namely Theorems 2.1 and 2.3, can be similarly computed along each
dimension of the samples and the FS coefficients respectively.

This application of the 1-D FFT along each dimension results in a complexity
of O(Nlog N), where N = Ny - Ny - --- Np for a general N-D signal. More efficient
algorithms for performing the multidimensional DFT do exist [6], which we make use
of in our implementations of Theorems 2.1 and 2.3 in multiple dimensions.

3. pyFFS overview and usage. pyFFS is a Python library for performing ef-
ficient and distortionless FS coefficient computation, convolution, and interpolation
for periodic, bandlimited signals. The goal is to provide an intuitive tool to numer-
ically work with such signals of any dimension D. Just as the FFT functions from
NumPy [11] and SciPy [22] can be used without too much thought about the internal
details, we have created a user interface for F'S computations that can also be used
out-of-the-box for the appropriate scenario.

3.1. Fourier series analysis and synthesis. The user interface for 1-D func-
tions is shown below. Note that the samples provided to ffs must be in the same order
as specified in (2.8), which is not in chronological order. The method ffs_sample re-
turns the timestamps and indices necessary for ensuring the samples provided to ffs
are in the expected order.

determine appropriate timestamps and indices for rearranging input
sample_points, idx = pyffs.ffs_sample(

T, # function period

N_FS, # function bandwidth, i.e. number of FS coefficients (odd)
T_c, # function center

N_s # number of samples

~

sample a known function at the correctly ordered timestamps
x = pyffs.func.dirichlet(sample_points, T, T_c, N_FS)

OR rearrange ordered samples using ‘idx ‘¢

x = x[idx]

compute FS coefficients

x_FS = pyffs.ffs(x, T, T_c, N_FS)

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 9

back to samples with inverse transform
x_r = pyffs.iffs(x_FS, T, T_c, N_FS) # equivalent to x

Listing 1: 1-D fast Fourier series analysis and synthesis.

The user interface for the general N-D case is shown below, with the specific example
of 2-D. As in the 1-D case, samples provided to ffsn are not in increasing order
of the input variables. The method ffsn_sample returns the locations and indices
necessary for making sure the samples provided to ffsn are in the expected order.
Alternatively, the method ffs_shift can be used to reorder the samples.
= [T_x, T_yl list of periods for each dimension

= [T_cx, T_cy] list of function centers for each dimension

#
_c #
_FS = [N_FSx, N_FSy] # list of function bandwidths for each dimension
_s = [N_sx, N_syl] # number of samples per dimension

= =414

determine appropriate timestamps and indices for rearranging input
sample_points, idx = pyffs.ffsn_sample(T=T, N_FS=N_FS, T_c=T_c, N_s=N_s)

sample a known function at the correctly ordered timestamps
x = pyffs.func.dirichlet_2D(sample_points, T, T_c, N_FS)

OR rearrange ordered samples

x = pyffs.ffs_shift(x)

compute FS coefficients
x_FS = pyffs.ffsn(x, T=T, T_c=T_c, N_FS=N_FS)

go back to samples
x_r = pyffs.iffsn(x_FS, T=T, T_c=T_c, N_FS=N_FS) # equivalent to x

Listing 2: 2-D fast Fourier series analysis and synthesis.

3.2. Circular convolution. The user interface for N-D functions is shown be-
low. f and h are function values at the sampling points specified by ffsn_sample,
namely they must be functions of the same period T, with the same period center T_c,
and of the same bandwidth N_FS.

Samples can be provided in their natural order or in the order expected by ffsn.
By default, the argument reorder is set to True, such that samples are expected in
their natural order and are reordered internally. The output samples are returned in
the same order as the inputs.

out = pyffs.convolve(
f=f, # samples of one function in the convolution
h=h, # samples of the other function in the convolution
T=T, # period(s) of both functions along all dimensions
T_c=T_c, # period center(s) of both functions along all dimensions
N_FS=N_FS, # number of FS coefficients for both functions along all

dimensions
reorder=True # whether input samples should be reordered into
expected order for ffsn
)
Listing 3: Circular convolution of two N-D functions through Fourier series
coeflicients.

3.3. Interpolation. The user interface for 1-D functions is shown below.

x_interp = pyffs.fs_interp(
x_FS, # FS coefficients in increasing order of index

10 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

w, # period

a, # start time

b, # stop stop

M # number of points

Listing 4: 1-D fast Fourier series interpolation.

The user interface for the general N-D case is shown below, with the specific example
of 2-D.

x_interp = pyffs.fs_interpn(
x_FS, # multidimensional FS coefficients
T=[T_x, T_yl, # list of periods for each dimension
a=[a_x, a_y], # list of start points for each dimension
b=[b_x, b_yl, # list of stop points for each dimension
M=[M_x, M_yl # number of samples per dimension

Listing 5: 2-D fast Fourier series interpolation.

In both cases, the provided FS coefficients must be ordered such that the indices are
in increasing order, as returned by ffs and ffsn.

3.4. GPU support. GPU usage can lead to a significant reduction in compu-
tation time if a task consists of many operations that can be done in parallel. The
FFT algorithm can be parallelized and could therefore benefit from such a reduction
in computation time. As the fast F'S algorithm presented in Theorem 2.1 makes use
of the DFT and IDFT, it can directly benefit from this speed-up, and so can the
interpolation of F'S coefficients described in Theorem 2.3, as Bluestein’s algorithm for
the CZT employs the DFT and IDFT.

GPU support is available through the CuPy library [15]. If the appropriate version
of CuPy is installed,” nearly all array operations will take place on the GPU if the
provided input is a CuPy array, as shown below. NumPy arrays can be passed if one
wishes to still perform operations on the CPU.

import cupy as cp
Xx_cp = cp.array(x) # convert existing ‘numpy‘ array to ‘cupy‘ array

apply functions like before, array operations take place on GPU

x_FS = pyffs.ffs(x_cp, T, T_c, N_FS) # compute FS coefficients
x_r = pyffs.iffs(x_FS, T, T_c, N_FS) # back to samples
y = pyffs.convolve(x_cp, x_cp, T, T_c, N_FS) # convolve

x_interp = pyffs.fs_interp(x_FS, T, a, b, M) # interpolate
Listing 6: GPU support through CuPy.

Note that converting between CuPy and NumPy requires data transfer between the
CPU and GPU, which could be costly for large arrays. Therefore, if passing CuPy
arrays to pyFFS, it is recommended to perform as much pre-processing and post-
processing as possible on the GPU in order to limit such data transfer.

3.5. Summary. Table 1 compares equivalent functions between pyFFS and
SciPy. For a more extensive documentation and the latest information, we refer
to pyffs.readthedocs.io, and example scripts can be found in the examples folder of
the repository: github.com/imagingofthings/pyFFS/tree/master/examples.

5See installation guide: https://docs.cupy.dev/en/stable/install.html

http://pyffs.readthedocs.io
http://github.com/imagingofthings/pyFFS/tree/master/examples
http://https://docs.cupy.dev/en/stable/install.html

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 11

pyFFS SciPy
1-D Fourier analysis pyffs.ffs scipy.fft.fft

1-D Fourier synthesis pyffs.iffs scipy.fft.ifft

N-D Fourier analysis pyffs.ffsn scipy.fft.fftn

N-D Fourier synthesis pyffs.iffsn scipy.fft.ifftn

N-D convolution pyffs.convolve | scipy.signal.fftconvolve

1-D bandlimited interpolation | pyffs.fs_interp scipy.signal.resample
N-D bandlimited interpolation | pyffs.fs_interpn -

Table 1: Functionality comparison between pyFFS and SciPy [22]. SciPy’s con-
volution zero-pads the inputs in order to approximate a linear convolution, while
pyFFS performs a circular convolution. Within SciPy, circular convolution is
only supported for 2-D by calling scipy.signal.convolve2d with the parameter
boundary=‘wrap’. For N-D bandlimited interpolation with SciPy, it is possible to
use scipy.signal.resample along each dimension. However, there is no one-shot
function.

4. Benchmarking. Computational efficiency is a primary objective for pyFFS.
In this section, we present several benchmarking results to compare the computa-
tional speed between pyFFS and SciPy for convolution and interpolation, and to
demonstrate the benefits of GPU acceleration.® All benchmarking is performed on a
Lenovo ThinkPad P15 Gen 1 laptop, with an Intel i7-10850H six-core processor and
an NVIDIA Quadro RTX 3000 GPU (when applicable).

4.1. Convolution. Before presenting the benchmarking results, we show a toy
example of 1-D convolution, to compare the outputs of pyFFS and SciPy.

Both DFT and FS analysis assume periodic functions, discrete and continuous
ones respectively [21]. Moreover, the convolution of two periodic functions of the
same period results in a circular convolution, such that the output is also periodic.
In certain scenarios, one may be interested in the convolution of two signals that are
not necessarily periodic, e.g. a speech recording and a room impulse response. By
zero-padding the two inputs, a linear convolution can be computed from the circu-
lar convolution of two discrete inputs. This is precisely what the convolve function
of SciPy does. However, SciPy offers no function for the 1-D circular convolution.”
pyFFS’ convolution function performs the circular convolution, as expected by F'S con-
volution theory. This explains the noticeable difference between the two approaches
in Figure 3a, in particular at the leftmost boundary. The SciPy approach tapers off
due to zero-padding as it approximates a linear convolution, while pyFFS performs a
faithful circular convolution.

Benchmark. As SciPy’s function for 1-D convolution yields a different result,
we do not benchmark pyFFS against it. For 2-D convolution, SciPy has a func-
tion scipy.signal.convolve2d that can perform a circular convolution when the
argument boundary=‘wrap’. In Figure 3b we compare pyffs.convolve2d against
scipy.signal.convolve2d, as these two lead to the same output. As the number of

6The scripts to reproduce these results can be found in the in the profile folder of the repository:
github.com/imagingofthings/pyFFS/tree/master/profile.

"It can be manually done by taking the inverse DFT of the product of the DFTs of the two
inputs.

http://github.com/imagingofthings/pyFFS/tree/master/profile

12 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

1| —e— pyffs.convolve2d

10 ’
10 scipy.signal.convolve2d (wrap)
o ,
10"
0
10"

—0.2 0.0 0.2 0.4

10° g
ground truth /
10 pyffs.convolve 3 /
10 ———o

Processing time (s)

: —-— scipy.signal.fftconvolve
Y
0t A
02 00 02 04 10' 10°
Time [s] Number of samples per dimension
(a) (b)

Fig. 3: (a) Comparing 1-D convolution between pyFFS and SciPy. pyFFS performs
a circular convolution as is expected by Fourier series coefficients, while SciPy’s
fftconvolve approximates a linear convolution by zero-padding DFT coefficients.
(b) Profiling 2-D bandlimited circular convolution between pyFFS and SciPy.

samples per dimension grows, using pyFFS is noticeably faster than the equivalent
function in SciPy. At around 100 samples per dimension, pyFFS is already two orders
of magnitude faster than SciPy.

4.2. Interpolation. Likewise, before presenting the benchmarking results, we
show toy examples of interpolation in 1-D and 2-D, comparing Theorem 2.3 and
interpolation by zero-padding DFT coefficients.

Figures 4a and 4b show the interpolation of a section of a 1-D Dirichlet function

N

(41) o)=Y exp (k- T)),

k=—N

whose bandwidth is given by Ngg = 2N + 1. Theorem 2.3, which makes use of
pyffs.fs_interp, and interpolating zero-padded DFT coefficients, which employs
scipy.signal.resample, perfectly match the ground truth function, as shown in
Figure 4b. This is expected as both approaches are bandlimited interpolation tech-
niques and the target function is bandlimited.

Figures 4c to 4e show the interpolation of a section of a 2-D Dirichlet function,
which is essentially the outer product of two 1-D Dirichlet functions along the x- and
y- dimensions

(42) sy = Y 3 ew (jf,f;m:c - Tc,m)) exp (jQTZky(y - Tc,y)) ,

whose bandwidth is given by Ngs, = 2N, + 1 and Nps, = 2N, + 1 in the 2- and
y- dimensions respectively. We can draw similar conclusions as for the 1-D case: the

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 13

50 50

ground truth
e available samples

— ground truth

pyffs.fs_interp

40 40 —-= scipy.signal.resample

available samples
30 30

20 20

—0.4 —0.2 0.0 0.2 0.4 0.18 0.20 0.22 0.24 0.26
x [m] Time [s]
(a) 1-D Dirichlet. (b) Interpolated section of (a).
1000 -
—— ground truth
pyffs.fs_interpn
500 — — scipy.signal.resample

available samples

i

-0.50 -0.25 0.00 025 0.50 0.3 . 025 030 035 040 045
x [m] X [m] x [m]

—0.4

(¢) 2-D Dirichlet kernel. (d) Interpolated region of (c). (e) Cross-section at y = 0.3.

Fig. 4: (Top) Bandlimited interpolation of a 1-D Dirichlet kernel, Equation (4.1) with
Nps = 51, T =1, T. = 0, and 64 samples. (Bottom) Bandlimited interpolation
of a 2-D Dirichlet kernel, Equation (4.2) with Ngg, = Ngs, = 31, T, = T, = 1,
Ten = Tey = 0, and 256 samples along each dimension. The dashed box in (c)
indicates the 2-D interpolated section shown in (d). The dashed line in (d) indicates
the cross-section shown in (e).

proposed technique and interpolating zero-padded DFT coefficients perfectly match
the ground truth function as it is bandlimited.

Benchmark. As a reminder, the zero-padding technique results in a resampling
across the entire period, whereas the proposed technique yields finer resolution only
in the selected region through use of the CZT. As a result, the computational load of
both approaches can be very different with respect to the width of the selected region
and the number of interpolation points in that region.

In Figures 5a and 5b, we compare the two bandlimited interpolation techniques in
1-D. As the number of interpolation points increases as shown in Figure 5a, it becomes
slightly advantageous to use the CZT-based approach rather than interpolation by
zero-padding DFT coefficients. The clear advantage of the CZT approach is when we
focus in on smaller and smaller regions as shown in Figure 5b, as this necessitates
a very large IDFT for the zero-padding approach. Moreover, for a fixed number of
interpolation points, the computational load of the CZT approach is independent
of the interpolation region size. As shown in Figure 5b, this is beneficial when we

14 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

128 samples, 10.0% of period 128 samples, 10000 interpolation points
—e— pyfis.fs interp —e— pyffs.fs interp

< . scipy.signal.resample = scipy.signal.resample
L 10 4 o -1
g £ 10
g _ ol g T
R pe £

10° 10° 10* 10° 10° 10"’ 10° 10" 10°

Number of interpolation points in section Percentage of period

(a) (b)
[256, 256] samples, 2.0% of period [256, 256] samples, [100, 100] interp points

—o— pyffs.fs interpn
= 10”4 scipy.signal.resample x2 =]
- - 10
£ £ .
= = —o— pyffs.fs interpn
g 10 g scipy.signal.resample x2
8 8)
~ 10 " o—s o————O——— 0

107
10° 10° 107 107 107"
Number of interpolation points in section Percentage of period
(c) (d)

Fig. 5: (Top) Benchmarking 1-D bandlimited interpolation. 128 samples are taken of
a signal that has bandwidth Npg = 127. Each point in the curves is averaged over
10 trials. 10% of the period is equivalent to the dotted black region in Figure 4a.
(Bottom) Benchmarking 2-D bandlimited interpolation. 256 x 256 samples are taken
of a signal that has bandwidth Nrg = [255 x 255]. Each point in the curves is averaged
over 10 trials. 2% of the period is equivalent to the dashed red box in Figure 4c.

interpolate very small regions but detrimental when interpolating over larger sections.
In the latter scenario, it is better to use the traditional zero-padding approach.

In Figures 5¢ and 5d, we compare the two bandlimited interpolation techniques in
2-D. For a modest-sized input (256 x 256 samples), it is noticeably advantageous to use
the CZT-based approach as the number of interpolation points increases (Figure 5c¢),
and very beneficial when we focus in on smaller regions (Figure 5d). The latter
result makes the CZT-based approach an attractive choice when desiring to zoom
into bandlimited images in a distortionless fashion.

4.3. GPU acceleration. We now quantify the speed-up provided by a GPU
for FS computation and interpolation. There are two important considerations when
using a GPU. Firstly, if the application permits, it is recommended to work with
float32 / complex64 arrays for less memory consumption and potentially faster
computation. By default, NumPy and CuPy create float64 / complex128 arrays,

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 15

10 10
—e— CPU . —e— CPU
= —&— GPU % 10°] —— GPU
2107 :
2 £ 107
=11} =11}
. ; 10
% 10 7 2
2 e _
A A 10 1
-4
10 4§ —4
10' 107 10° 10* 10° 10" 10 10° 10*
Number of FS coefficients Number of FS coefficients
(a) 1-D (b) 2-D

1 1000 interpolation points 1 1001 FS coefficients

10 10
—e— CPU —o— (CPU
% —&— GPU % —&— GPU
g 4 —¥— direct g B —%— direct
21 21
1] 1]
2 2
= 2
~ ~
1071 1071
10" 10° 10° 10° 10° 10° 10° 10* 10°
Number of FS coefficients Number of interpolations points
(c) (d)

2 p—

000 interpolations points per dimension , 1001 FS coefficients per dimension

10 1
—e— CPU —e— CPU
| —*— GPU —&— GPU

(=] S
=)

Processing time (s)
S
b L
Processing time (s)
S

—_
(=

|
[}

—_
(=}

10' 10” 10° 10' 10' 10° 10° 10°
Number of FS coefficients per dimension Number of interpolation points per dimension
(e) (f)

Fig. 6: Profiling GPU acceleration; each point is averaged over 10 trials. (Top) Fourier
series computation; 1-D (middle) and 2-D (bottom) Fourier series interpolation.

e.g. when initializing an array with np.zeros, so casting the arrays accordingly is
recommended. In the benchmarking tests below, we use float32 / complex64 arrays.
Secondly, the benefits of using a GPU typically emerge when the processed arrays are
larger than the CPU cache. So the crossover between CPU and GPU performance

16 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

can be very hardware dependent.

Figures 6a and 6b compares the processing time between a CPU and a GPU for
computing an increasing number of F'S coefficients. In 1-D, for more than 1’000 coef-
ficients it starts to become beneficial to use a GPU, and at around 10’000 coefficients
it is an order of magnitude faster to use a GPU. In 2-D, the crossover point is at
around 100 coefficients per dimension, and at around 1’000 coefficients per dimension
it is more than an order of magnitude faster to use a GPU. From the 1-D and 2-D
cases, it is clear that using a GPU scales well as the input increases in size. When
considering a 2-D or even a 3-D object, where input sizes quickly grow, it is attractive
to make use of a GPU for even modest input sizes.

Figures 6¢ and 6d profiles the processing time for 1-D FS interpolation. The
following three approaches are compared:

e Directly evaluating the bandlimited Fourier synthesis expression (2.3) at each

timestamp on a CPU.

e Applying Theorem 2.3 on a CPU.

e Applying Theorem 2.3 on a GPU.
As we vary both the number of F'S coefficients and the number of interpolation points,
using Theorem 2.3 greatly reduces computational cost, as we observe an order of mag-
nitude reduction for the interpolation of 300 F'S coefficients. The difference between
“direct” and “CPU” is essentially the gains we get from the FFT algorithm, namely
O(N log N) complexity instead of O(N?). Using a GPU becomes more attractive as
the number of coefficients and number of samples exceeds 300. As mentioned earlier,
this is probably the point when the arrays and computation can no longer fit on the
CPU cache.

Figures 6e and 6f compares the CPU and GPU approaches in 2-D function. Using
a GPU consistently provides two orders of magnitude faster computation for a varying
number of FS coefficients and varying number of interpolation points per dimension.
The direct approach is not even considered as it is much too slow. The benefits
of using a GPU are even more prominent in 2-D as input sizes quickly grow when
considering multidimensional scenarios.

At the time of writing, CuPy has not implemented an equivalent of SciPy’s
resample function to perform interpolation comparisons as in Figure 5.

5. Example application in Fourier optics. In Fourier optics, we are often
interested in the propagation of light between two planes, i.e. a source plane and a
target plane as shown in Figure 7a. Given an aperture function or phase pattern
at the source plane, we would like to determine the pattern at the target plane, as
predicted by the Rayleigh-Sommerfeld diffraction formula. This propagation is often
modeled with one of three approaches that make use of the FFT for an efficient sim-
ulation: Fraunhofer approximation, Fresnel approximation, or the angular spectrum
method [10]. The choice between these three approaches typically depends on the
requirements of the application, e.g. the distance between the two planes and the size
of input and output regions [18]. For all approaches, we again find ourselves with
a continuous-domain phenomenon that can be considered bandlimited and periodic.
Bandlimited as in practice we consider finite input and output regions, lending to a
restricted set of angles and therefore a bandlimited spatial frequency response between
the source and target planes. This restriction of angles is shown in Figure 7b. Even
though our input may not be bandlimited, the resulting output is bandlimited after
convolution with such a response [12]. Finally, we can frame the optical simulation
as periodic as the input and output regions have a compact support and can thus be

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 17

oy oy 0 9x)

Fig. 7: Visualization of optical wave propagation setup. (7a) When simulating opti-
cal wave propagation for holography, one often considers the propagation along the
z-axis between two parallel planes, one being the source - f(z,y) - and the other
being the target plane - g(x,y). (7b) In practice we have a finite input and out-
put region, which determines the maximum angle and therefore maximum spatial
frequency we can observe. Focusing on a single axis z, this maximum frequency is
given by sin Omax/A, where A is the optical wavelength. (7c¢) Lower resolution source
wavefront for holographic tiling.

replicated to form periodic signals.

The application of the CZT, or equivalently the fractional FT, for interpolation
has already found its use in Fourier optics to resample the output plane outside of
the grid defined by the FFT [13, 14, 23], as demonstrated with pyFFS in Figures 4c
and 4d.

Below we show how the pyFFS interface can be used in optical wave propagation
for efficient simulation and interpolation.

pad input and reorder

f_pad = numpy.pad(f, pad_width=pad_width)
f_pad_reorder = pyffs.ffs_shift(f_pad)

compute FS coefficients of input
F = pyffs.ffsn(f_pad_reorder, T, T_c, N_FS)

convolution in frequency domain with free space transfer function
G =F x H

interpolate at the desired location and resolution
a and b specify the region while N_out specifies the resolution
= pyffs.fs_interpn(G, T, a, b, N_out)

0] #

Listing 7: Optical free space propagation with pyFFS.

The free space propagation transfer function H in the above code listing can be
obtained by evaluating the analytic expression for the Fresnel approximation or the
angular spectrum method transfer functions at the appropriate frequency values [10],
or by measuring this response and computing its FS coefficients with pyffs.ffsn.

One may wish to simulate an output window with the same size as the input
but at a finer resolution. In order to circumvent the much larger FFT that this may
require, an approach known as rectangular tiling [13], as shown in Figure 7¢, can
be used to split the output window into tiles. In its original proposition, the tiles
were simulated sequentially, but with a GPU they could be computed in parallel for a
significantly shorter simulation time: pyFFS’s GPU support enables this possibility.

18 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

Moreover, rectangular tiling in its original proposition requires that each tile has the
same number of samples as the input window. This restriction is removed by the
interpolation approach of pyFFS.

6. Conclusion. In this paper we have presented pyFFS, a Python library for
efficient Fourier series (FS) coefficient computation, convolution, and interpolation.
The intended use of this package is when working with discrete samples that arise
from a continuous-domain signal. When the underlying signal is periodic (or has finite
support and can be periodized) and bandlimited, its F'S coefficients can be computed
and interpolated in a straightforward and distortionless fashion with pyFFS. If either
periodicity or bandlimitedness is not met, the same workarounds as when applying
the discrete Fourier transform can be used, namely windowing to taper discontinuous
boundaries or bandlimiting by FS coefficient truncation.

As computation is posed in the continuous-domain, accuracy loss that may arise
from switching between the discrete- and the continuous-domain can be minimized.
Moreover, this package serves as a handy continuous-domain complement to the func-
tionalities already available in SciPy [22]. We also provide functionality not available
in SciPy, namely N-D circular convolution, N-D bandlimited interpolation, and a
bandlimited interpolation technique based on the chirp Z-transform. As shown in our
benchmarking results, the latter can be more than an order of magnitude faster when
interpolating sub-regions of a 1-D or 2-D periodic function. Similar results can be
expected for a general N-D function. Furthermore, GPU support has been seamlessly
integrated through the CuPy package [15], offering more than an order of magnitude
reduction when computing and interpolating a large number of F'S coeflicients.

In summary, pyFFS offers researchers and engineers a convenient and efficient
interface for working with FS coefficients. The source code is made available on
GitHub® and can be easily installed for Python through PyPi.® More extensive and
up-to-date documentation can be found at pyffs.readthedocs.io.

Appendix A. Fast Fourier series computation for even-length sequences
and proofs.

Theorem 2.1 addresses the fast Fourier series computation for odd-length se-
quences. For even-length sequences, there is a slight modification in the timestamps
and modulation terms.

THEOREM A.l1 (Fast Fourier series, Ny € 2N). Let z : R — C be a T-periodic
function of bandwidth Nps = 2N + 1, with T, € R the mid-point of any period. Let
Q € 2N + 1 be an arbitrary odd integer such that Ny = Nps+ Q. Then

(A.1) x = N,IDFTy, (XFS © B{El) © BBz,
1
(A.2) XS — - DFTy, (x® B ") @ Br™,

8github.com/imagingofthings/pyFFS
9pip install pyffs

http://pyffs.readthedocs.io
http://github.com/imagingofthings/pyFFS

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 19

where
X = [ZE(to),. . -ax(tM—l)ax(t—M)a cee ax(t—l)} € CNS?
XS = [XFR,,..., XE5, 0] € CN,
T (1
M = Ng/2,
and
2T T 2w
Bl—exp< T { 2NJ> eC, By = exp (—]Ns> eC,
E, = [-N,...,N,0q] € Z™:, E,=1[0,...,.M—1,-M,...,—1] € Z".

Proof. Theorems 2.1 and A.1
Starting with the Fourier series (FS) synthesis expression for a bandlimited sig-
nal (2.3), we plug in ¢, from (2.9) and (A.3)

z(ty) = Z Xr exp(ktn>

k=—N
Z XS ex k T. + zn Theorem 2.1
k p T c Ns) .
_ J k=N
2 T (1
k_E_:NXk exp < ,;k {Tc + N <2 + n)]) , Theorem A.1l.

With B; = exp (j 27rT) for Theorem 2.1 and B; = exp (32% [TC + N, }) for Theo-

rem A.1, and By = exp (fj]QV—’T) for both cases, we can write

N
w(ta) =) Xi°BiBy".
k=—N

We can then shift the summation terms so they are similar to that of an inverse
discrete Fourier transform (IDFT), i.e. summation starting at k =0

2N

where Ng = 2N + 1.
We now introduce notation to index the k-th element of a vector as x = [x]; in
order to write
Ny—1
2(ta) = BN Z xS o BB B

where E; is as defined in Theorems 2.1 and A.1, and XS contains the ordered FS
coefficients of z(t) within [N, N].

20 E. BEZZAM, S. KASHANI, P. HURLEY, M. VETTERLI, AND M. SIMEONI

As By = exp (— j]2\,—”) , we can write the above expression as an IDFT of modulated
FS coefficients

2(tn) = N, [IDFTNS (X o BP)| By,

Using the periodicity of z(t), namely z(t,) = z(tntqn,) for ¢ € Z, we can write

Theorem 2.1

X = [x(to), L. 7$E(tM),:L’(tM+1)7 .. .,m(tQM)]
= [Sﬂ(to), .o 71‘(75]\/[),&'(1?71»[), e ,x(tfl)] .

Theorem A.1

X = [x(to), ... ,x(tM_l),:c(tM), ... ,x(th_l)]
= [Ji(to), v x(tv—1), z(t-m), - - ,:B(t_1)] .

We can write this set of reordered samples as the IDFT of modulated FS coefficients
x = N,IDFTy (X¥S @ BE")BYE2,

where E,, as defined in Theorems 2.1 and A.1, encapsulates this reordering of sam-
ples. We have therefore shown the relations (2.6) and (A.1) for Theorems 2.1 and A.1
respectively. In order to obtain (2.7) and (A.2), which express the ordered FS coeffi-
cients as a function of the reordered samples, we simply have to invert (2.6) and (A.1)
respectively. 0

Appendix B. Fast Fourier series interpolation proof.

Proof. Theorem 2.3
Starting with the Fourier series (FS) synthesis expression for a bandlimited sig-
nal (2.3), we plug in ¢, from Theorem 2.3

N N
27 2m b—a
_ FS . FS .
x(tn) = k}_NXk exp (] T ktn) = k,E_NXk exp (]T k(a + 1n)))

Using A = exp (—j%ﬂa) and W = exp (j%” 1bv1__a1) from Theorem 2.3, we can write

N
o(tn) = Y XfSATRWE
k=—N

We can then shift the summation terms so they are similar to that of the chirp Z-
transform (CZT) from Definition 2.2, i.e. summation starting at k = 0

2N Npg—1
2(tn) =Y XSy ATETNIm =N — ANy =Nn N XS AT,
k=0 k=0

where Npg = 2N + 1.
We can then use Definition 2.2 of the CZT to writex

a(ty) = ANW N [CZT, (XF9)]

n"

Rearranging x(t,) into vector form concludes the proof. 0

pyFFS: FAST FOURIER SERIES COMPUTATION WITH PYTHON 21

REFERENCES

D. H. BAILEY AND P. N. SWARZTRAUBER, Fractional Fourier transform and applications, STAM
Rev., 33 (1991), pp. 389-404, https://doi.org/10.1137/1033097.

A. H. BARNETT, J. MAGLAND, AND L. AF KLINTEBERG, A parallel nonuniform fast fourier
transform library based on an “exponential of semicircle” kernel, SIAM Journal on Scien-
tific Computing, 41 (2019), pp. C479-C504.

T. BLu, P. L. DRAGOTTI, M. VETTERLI, P. MARZILIANO, AND L. COULOT, Sparse sampling of
signal innovations, IEEE Signal Process. Mag., 25 (2008), pp. 31-40, https://doi.org/10.
1109/MSP.2007.914998.

L. I. BLUESTEIN, A linear filtering approach to the computation of discrete Fourier transform,
IEEE Trans. Audio Electroacoust., 18 (1970), pp. 451-455, https://doi.org/10.1109/TAU.
1970.1162132.

J. W. CoOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex Fourier
series, Math. Comput., 19 (1965), p. 297, https://doi.org/10.2307/2003354.

P. DUHAMEL AND M. VETTERLI, Fast fourier transforms: A tutorial review and a state of
the art, Signal Processing, 19 (1990), pp. 259-299, https://doi.org/10.1016,/0165-1684(90)
90158-U.

J. FAGEOT AND M. SIMEONI, Tw-based reconstruction of periodic functions, Inverse Problems,
36 (2020), p. 115015.

C. F. Gauss, Theoria interpolationis methodo nova tractata, vol. Band 3, 1866.

C. R. GIARDINA AND P. M. CHIRLIAN, Bounds on the truncation error of periodic signals,
(1972), pp. 206-207.

J. GOODMAN, Introduction to Fourier optics, 2005.

C. R. HARRIS ET AL., Array programming with NumPy, Nature, 585 (2020), p. 357, https:
//doi.org/10.1038 /s41586-020-2649-2, https://doi.org/10.1038/s41586-020-2649-2.

K. MATSUSHIMA AND T. SHIMOBABA, Band-limited angular spectrum method for numerical
simulation of free-space propagation in far and near fields, Optics Express, 17 (2009),
p. 19662, https://doi.org/10.1364/0e.17.019662.

R. P. MurroLETTO, J. M. TYLER, AND J. E. TOHLINE, Shifted Fresnel diffraction for com-
putational holography, Optics Express, 15 (2007), p. 5631, https://doi.org/10.1364/0e.15.
005631.

V. Nascov AND P. C. LoGOFATU, Fast computation algorithm for the Rayleigh-Sommerfeld
diffraction formula using a type of scaled convolution, Appl. Opt., 48 (2009), pp. 4310—
4319, https://doi.org/10.1364/A0.48.004310.

R. Okuta, Y. UnNO, D. NisuiNo, S. Hipo, aNnp C. Loowmis, CuPy: A NumPy-compatible
library for NVIDIA GPU calculations, tech. report, 2017, http://learningsys.org/nipsl17/
assets/papers/paper-16.pdf.

P. PRANDONI AND M. VETTERLI, Signal processing for communications, EPFL Press,
aug 2008, https://doi.org/10.1201/9781439808009, https://www.taylorfrancis.com/books/
9781439808009.

L. RABINER, R. W. SCHAFER, AND C. RADER, The chirp z-transform algorithm, IEEE trans-
actions on audio and electroacoustics, 17 (1969), pp. 86-92.

J. D. ScHMIDT, Numerical simulation of optical wave propagation with examples in MATLAB,
SPIE, jul 2010, https://doi.org/10.1117/3.866274, https://spiedigitallibrary.org/ebooks/
PM/Numerical-Simulation-of-Optical- Wave- Propagation-with- Examples-in- MATLAB/
eISBN-9780819483270,/10.1117/3.866274.

C. E. SHANNON, Communication theory in the presence of noise, Proc. IRE, 37 (1949), pp. 10—
21.

P. THEVENAZ, T. BLu, AND M. UNSER, Image interpolation and resampling, Handb. Med.
Image Process. Anal., (2009), pp. 465-493, https://doi.org/10.1016/B978-012373904-9.
50037-4.

M. VETTERLI, J. KOVACEVIC, AND V. K. GOYAL, Foundations of signal processing, Cambridge
University Press, 2014.

P. VIRTANEN ET AL., SciPy 1.0: Fundamental algorithms for scientific computing in Python,
Nat. Methods, 17 (2020), pp. 261-272, https://doi.org/10.1038/s41592-019-0686-2, https:
//doi.org/10.1038/s41592-019-0686-2, https://arxiv.org/abs/1907.10121.

X. Yu, T. X1aHUI, Q. YINGXIONG, P. HA0, AND W. WEI, Band-limited angular spectrum
numerical propagation method with selective scaling of observation window size and sample
number, J. Opt. Soc. Am. A, 29 (2012), p. 2415, https://doi.org/10.1364/josaa.29.002415.

https://doi.org/10.1137/1033097
https://doi.org/10.1109/MSP.2007.914998
https://doi.org/10.1109/MSP.2007.914998
https://doi.org/10.1109/TAU.1970.1162132
https://doi.org/10.1109/TAU.1970.1162132
https://doi.org/10.2307/2003354
https://doi.org/10.1016/0165-1684(90)90158-U
https://doi.org/10.1016/0165-1684(90)90158-U
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1364/oe.17.019662
https://doi.org/10.1364/oe.15.005631
https://doi.org/10.1364/oe.15.005631
https://doi.org/10.1364/AO.48.004310
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1201/9781439808009
https://www.taylorfrancis.com/books/9781439808009
https://www.taylorfrancis.com/books/9781439808009
https://doi.org/10.1117/3.866274
https://spiedigitallibrary.org/ebooks/PM/Numerical-Simulation-of-Optical-Wave-Propagation-with-Examples-in-MATLAB/eISBN-9780819483270/10.1117/3.866274
https://spiedigitallibrary.org/ebooks/PM/Numerical-Simulation-of-Optical-Wave-Propagation-with-Examples-in-MATLAB/eISBN-9780819483270/10.1117/3.866274
https://spiedigitallibrary.org/ebooks/PM/Numerical-Simulation-of-Optical-Wave-Propagation-with-Examples-in-MATLAB/eISBN-9780819483270/10.1117/3.866274
https://doi.org/10.1016/B978-012373904-9.50037-4
https://doi.org/10.1016/B978-012373904-9.50037-4
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/1907.10121
https://doi.org/10.1364/josaa.29.002415

	1 Introduction
	2 Theory
	2.1 Numerically compute FS coefficients
	2.2 Efficient interpolation of FS coefficients
	2.3 When to use FS coefficients
	2.4 Multidimensional

	3 pyFFS overview and usage
	3.1 Fourier series analysis and synthesis
	3.2 Circular convolution
	3.3 Interpolation
	3.4 GPU support
	3.5 Summary

	4 Benchmarking
	4.1 Convolution
	4.2 Interpolation
	4.3 GPU acceleration

	5 Example application in Fourier optics
	6 Conclusion
	Appendix A. Fast Fourier series computation for even-length sequences and proofs
	Appendix B. Fast Fourier series interpolation proof
	References

