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Abstract. In the second part of this series, we use the Lagrange multiplier approach proposed in the first part
[6] to construct efficient and accurate bound and/or mass preserving schemes for a class of semi-linear and quasi-linear
parabolic equations. We establish stability results under a general setting, and carry out an error analysis for a second-
order bound preserving scheme with a hybrid spectral discretization in space. We apply our approach to several typical
PDEs which preserve bound and/or mass, also present ample numerical results to validate our approach.
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1. Introduction. Solutions of partial differential equations (PDEs) arising from sciences and
engineering applications are often required to be positive or to remain in a bounded interval. It is
beneficial, and often necessary, that their numerical approximations preserve the positivity or bound
at the discrete level. In recent years, a large effort has been devoted to construct bound preserving
schemes for various problems.

In the first part of this series [6], we constructed a class of positivity preserving schemes using a
new Lagrange multiplier approach. A main objective of this paper is to extend the approach in [6]
to construct bound preserving schemes for a class of nonlinear PDEs in the following form:

(1.1) ut + Lu+N (u) = 0,

with suitable initial and boundary conditions, where L is a linear or nonlinear non-negative operator
and N (u) is a semi-linear or quasi-linear operator. We assume that the solution of (1.1) is bound
preserving, i.e., a ≤ u(x, 0) ≤ b for all x ∈ Ω, then a ≤ u(x, t) ≤ b for all (x, t) ∈ Ω× (0, T ).

There are a large body of work devoted to construct positivity/bound preserving schemes for
(1.1). We refer to the first part of this series [6] (and the references therein) for a summary of existing
approaches for constructing positivity/bound preserving schemes. In particular, large efforts have
been devoted to construct spatial discretization for (1.1) such that the resulting numerical scheme
satisfies a discrete maximum principle (cf., for instance, [11, 7, 8, 10, 21, 27, 20, 19], and the review
paper in [12] for a up-to-date summary in this regard).

Given a generic spatial discretization of (1.1):

∂tuh + Lhuh +Nh(uh) = 0,(1.2)

where uh is in certain finite dimensional approximation space Xh and Lh is a certain approximation
of L. In general, the solution uh, if it exists, may not be bound preserving. Oftentimes, (1.2) may
not be well posed if the values of uh go outside of [a, b]. For example, a direct finite elements or
spectral approximation to the Allen-Cahn or Cahn-Hilliard equation with logarithmic potential may
not be well posed. Instead of using special spatial discretizations which satisfy a discrete maximum
principle, we aim to develop a bound preserving approach which can be used for a large class of
spatial discretizations. To preserve positivity, it suffices to introduce a Lagrange multiplier λh. But
to preserve bound, we need to introduce an additional quadratic function g(u) = (b− u)(u− a), and
consider the following expanded system with a Lagrange multiplier λh:

∂tuh + Lhuh +Nh(uh) = λhg
′(uh),

λh ≥ 0, g(uh) ≥ 0, λhg(uh) = 0.
(1.3)
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The second equation in (1.3) represents the well-known KKT conditions [17, 14, 16, 2] for constrained
minimization. The problem (1.3) can be viewed as an approximation to (1.1), it can also be viewed as
a discrete problem without a background PDE, e.g., coming from a discrete constrained minimization
problem.

Existing approaches for (1.3) usually start with an implicit time discretization scheme so that the
nonlinear system at each time step can still be interpreted as a constrained minimization, then apply a
suitable iterative procedure (cf. [26]). As in [6], we shall use a different approach which decouples the
computation of Lagrange multiplier λh from that of uh, leading to a much more efficient algorithm.

We recall that for positivity preserving, we simply use g(uh) = uh in the above formulation.
However, for bound preserving, the nonlinear nature of g(uh) makes it much harder to prove stability
in norms involving derivatives, and mass conservation whenever is necessary. On the other hand,
since the numerical solutions remain to be bounded by construction, this allows us to derive more
precise stability results, which in turns enable us to obtain optimal error estimates for both semi-
linear and quasi-linear PDEs. More precisely, the bound preserving schemes that we construct based
on the operator splitting approach enjoy all advantages of the positivity preserving schemes in [6],
and furthermore, thanks to the bound preserving property, it allows us to prove a more precise
stability result (see Theorem 3.1) and to establish rigorous error estimates for a class of semi-linear
and quasi-linear dissipative equations (see Theorem 4.1).

We would like to point out that the schemes constructed in this paper include the usual cut-off
approach [22] as a special case. Therefore, our presentation provides an alternative interpretation of
the cur-off approach, and allows us to construct new cut-off implicit-explicit (IMEX) schemes with
mass conservation.

To validate our schemes, we apply our new schemes to a variety of problems with bound preserving
solutions, including the Allen-Cahn [1] and Cahn-Hilliard [3] equations and a class of Fokker-Planck
equations [23].

The remainder of the paper is organized as follows. In Section 2, we construct bound preserving
schemes for general nonlinear systems (1.1) using the Lagrange multiplier approach. For problems
which also conserve mass, we modify our bound preserving schemes so that they also conserve mass.
In Section 3, we restrict ourselves to second-order parabolic type equations, and establish a stability
result for, as an example, the second-order scheme with mass conservation. In Section 4, we consider
a hybrid spectral method as an example to carry out an error analysis for a fully discretized second-
order scheme. In Section 5, we describe applications of our schemes to several typical PDEs with
bound and/or mass preserving properties. In Section 6, we present some numerical simulations to
validate the accuracy and robustness of our schemes. And we conclude with some remarks in the
final section.

2. Bound-preserving schemes. We construct in this section efficient bound preserving schemes
for solving (1.3). The key is to adopt an operator splitting approach in which a standard scheme,
which is not bound preserving, is used in the first step, while in the second step, the solution is made
bound preserving with a simple yet consistent procedure.

We shall first describe a generic spatial discretization with nodal Lagrangian basis functions,
followed by time discretization without and with mass conservation.

Let Σh be a set of mesh points or collocation points in Ω̄. Note that Σh should not include the
points at the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed,
while it should include the points at the part of the boundary where a Neumann or mixed (or non-
essential) boundary condition is prescribed.

We assume that (1.3) is satisfied point-wisely as follows:

∂tuh(z, t) + Lhuh +Nh(uh) = λh(z, t)g′(uh), ∀z ∈ Σh,

λh(z, t) ≥ 0, g(uh(z, t)) ≥ 0, λh(z, t)g(uh(z, t)) = 0, ∀z ∈ Σh,
(2.1)

with the Dirichlet boundary condition to be satisfied point-wisely if the original problem includes
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Dirichlet boundary condition at part or all of boundary. The above scheme includes finite difference
schemes, collocation schemes, or Galerkin type spatial discretization with a Lagrangian basis.

Denote δt the time step, and tn = nδt for n = 0, 1, 2, · · · , Tδt where T is the final computational
time. Our schemes consist of two steps: in the first step, we use a generic time discretization, which
can be implicit, explicit or implicit-explicit, to find an intermediate solution ũn+1

h which is usually not
bound preserving; then we introduce a Lagrange multiplier λn+1

h (z) to determine a bound preserving
un+1
h , which is a correction to ũn+1

h . We shall first construct bound preserving schemes which do
not necessarily preserve mass, then we introduce a simple modification which allows us to construct
bound preserving schemes which can also preserve mass.

For the sake of clarity, we shall restrict ourselves to constructed schemes based on the implicit-
explicit (IMEX) type time discretization since they are most commonly used for parabolic type
systems. It is straightforward to extend the approach below to schemes based on other types of time
discretization.

2.1. A class of multistep IMEX schemes. We construct below k-th order bound-preserving
schemes for (2.1) based on backward difference formula (BDF) for the time derivative and Adams-
Bashforth extrapolation by using a predictor-corrector approach.

In order to describe the scheme, we define a sequence {αk}, and with a slight abuse of no-
tation. For any function v, we use Ak(vn) and Bk−1(vn) to denote two operators depending on
(vn, · · · , vn−k+1) as follows:
k = 1:

(2.2) α1 = 1, A1(vn) = vn, B0(vn) = 0;

k = 2:

(2.3) α2 =
3

2
, A2(vn) = 2vn − 1

2
vn−1, B1(vn) = vn;

k = 3:

α3 =
11

6
, A3(vn) = 3vn − 3

2
vn−1 +

1

3
vn−2,

B2(vn) = 2vn − vn−1.
(2.4)

The formula for k = 4, 5, 6 can be derived similarly with Taylor expansions.
We assume that ujh, j = 0, 1, · · · , k − 1 are properly initialized. Then

Step 1: (Predictor) solve ũn+1
h from

αkũ
n+1
h (z)−Ak(unh(z))

δt
+ Lhũn+1

h (z) +Nh(Bk(unh(z))) = Bk−1(λnhg
′(unh(z))), ∀z ∈ Σh;(2.5)

Step 2: (Corrector) solve un+1
h and λn+1

h from

αk(un+1
h (z)− ũn+1

h (z))

δt
= λn+1

h (z)g′(un+1
h (z))−Bk−1(λnh(z)g′(unh(z))),(2.6a)

g(un+1
h (z)) ≥ 0, λn+1

h (z) ≥ 0, λn+1
h (z)g(un+1

h (z)) = 0, ∀z ∈ Σh.(2.6b)

The second step can be solved point-wisely as follows. We denote

(2.7) ηn+1
h := − δt

αk
Bk−1(λnhg

′(unh)),

and rewrite (2.6a) as

αk(un+1
h (z)− (ũn+1

h (z) + ηn+1
h (z)))

δt
= λn+1

h (z)g′(un+1
h (z)).
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We find from the above and (2.6b) that

(un+1
h (z), λn+1

h (z)) =


(ũn+1
h (z) + ηn+1

h (z), 0) if a < ũn+1
h (z) + ηn+1

h (z) < b

(a,
a−(ũn+1

h (z)+ηn+1
h (z))

δt
αk
g′(a)

) if ũn+1
h (z) + ηn+1

h (z) ≤ a

(b,
b−(ũn+1

h (z)+ηn+1
h (z))

δt
αk
g′(b)

) if ũn+1
h (z) + ηn+1

h (z) ≥ b
, ∀z ∈ Σh.

(2.8)

Remark 2.1. It is obvious that the above scheme is a k-th order approximation to (2.1). We
would like to point out that it is also a k-th order (in time) approximation plus the spatial discretization
error to (1.1).

On the other hand, if we replace Bk−1(λnhg
′(unh)) in the above scheme by zero, then it is easy to see

that the second step is equivalent to the simple cut-off approach, which is a first-order approximation
to (2.1). However, it is easy to see that the error in maximum norm by the cut-off approach is smaller
than the error by the corresponding semi-implicit scheme, therefore, the cut-off approach is also a k-th
order (in time) approximation plus the spatial discretization error to (1.1).

2.2. Mass conservation. A drawback of the schemes (2.5)- (2.6) is that they do not preserve
mass if the exact solution does.

We present below a simple modification which enables mass conservation. More precisely, we
introduce another Lagrange multiplier ξn+1

h , which is independent of spatial variables, to enforce the
mass conservation in the second step.

The first step is still exactly the same as (2.5).
Step 1 (predictor): solve ũn+1

h from

αkũ
n+1
h (z)−Ak(unh(z))

δt
+ Lhũn+1

h (z) +Nh(Bk(unh(z)))

= Bk−1(λnh(z)g′(unh(z))) +Bk−1(ξnh ), ∀z ∈ Σh.

(2.9)

We introduce another Lagrange multiplier ξn+1
h in the second step to enforce the mass conserva-

tion.
Step 2 (corrector): solve (un+1

h , λn+1
h ) from

αk(un+1
h (z)− ũn+1

h (z))

δt
= λn+1

h (z)g′(un+1
h (z))(2.10a)

−Bk−1(λnh(z)g′(unh(z))) + ξn+1
h −Bk−1(ξnh ), ∀z ∈ Σh,

λn+1
h (z) ≥ 0, g(un+1

h (z)) ≥ 0, λn+1
h (z)g(un+1

h (z)) = 0, ∀z ∈ Σh,(2.10b)

(un+1
h , 1)h = (unh, 1)h,(2.10c)

where (·, ·)h is a discrete inner product.
In order to solve the above system, we denote

(2.11) ηn+1
h :=

δt

αk
(ξn+1
h −Bk−1(ξnh )−Bk−1(λnhg

′(unh))),

and rewrite (2.10a) as

(2.12)
αk(un+1

h (z)− (ũn+1
h (z) + ηn+1

h (z)))

δt
= λn+1

h (z)g′(un+1
h (z)).
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Hence, assuming ξn+1
h is known, we find from the above and (2.10b) that

(un+1
h (z), λn+1

h (z)) =


(ũn+1
h (z) + ηn+1

h (z), 0) if a < ũn+1
h (z) + ηn+1

h (z) < b

(a,
a−(ũn+1

h (z)+ηn+1
h (z))

δt
αk
g′(a)

) if ũn+1
h (z) + ηn+1

h (z) ≤ a

(b,
b−(ũn+1

h (z)+ηn+1
h (z))

δt
αk
g′(b)

) if ũn+1
h (z) + ηn+1

h (z) ≥ b
, ∀z ∈ Σh.

(2.13)

It remains to determine ξn+1
h .

Denote

aΣh(ξ) = {z ∈ Σh : ũn+1
h (z) + δtξ ≤ a},

aΣbh(ξ) = {z ∈ Σh : a < ũn+1
h (z) + δtξ < b},

Σbh(ξ) = {z ∈ Σh : ũn+1
h (z) + δtξ ≥ b}.

(2.14)

Then, thanks to (2.13), the discrete mass conservation (2.10c) can be rewritten as

(2.15)
∑

z∈aΣbh(ηn+1
h )

(ũn+1
h (z) + δtηn+1

h )ωz +
∑

z∈Σbh(ηn+1
h )

b ωz +
∑

z∈aΣh(ηn+1
h )

aωz = (unh, 1)h.

Setting

Gn(η) :=
∑

z∈aΣbh(η)

(ũn+1
h (z) + δtη)ωz +

∑
z∈Σbh(η)

b ωz +
∑

z∈aΣh(η)

aωz − (unh, 1)h,

Fn(ξ) := Gn
( δt
αk

(ξ −Bk−1(ξnh )−Bk−1(λnhg
′(unh)))

)
,

(2.16)

we find from the above and (2.15) that ξn+1
h is a solution to the nonlinear algebraic equation Fn(ξ) = 0.

Since F ′n(ξ) may not exist and is difficult to compute if it exists, instead of the Newton iteration, we
can use the following secant method:

(2.17) ξk+1 = ξk −
Fn(ξk)(ξk − ξk−1)

Fn(ξk)− Fn(ξk−1)
.

Since ξn+1
h is an approximation to zero, we can choose ξ0 = 0 and ξ1 = O(δt). In all our experiments,

(2.17) converges in a few iterations so that the cost is negligible.
Once ξn+1

h is known, we can update (un+1
h , λn+1

h ) with (2.13).

Remark 2.2. It is usually very difficult to construct mass conserved IMEX schemes using the
simple cut-off approach. However, replacing Bk−1(λnh(z)g′(unh(z))) in (2.9)-(2.10) by zero, we obtain
a mass conserved kth-order IMEX cut-off scheme. This is one of the advantages of reformulating the
cut-off approach with the operator splitting approach.

3. Stability results. While the schemes constructed in the last section automatically ensure
the L∞ bound for {unh}, it does not imply any bound on the energy norm < L·, · >. In this section,
we shall use the energy estimates to derive a bound on the energy norm for {ũnh} as well as a bound
on the Lagrange multiplier.

To fix the idea, we assume that L is a second-order unbounded positive self-adjoint operator in
L2(Ω) with domain D(L), and that the nonlinear term can be written as follows:

N (u) = f1(u) +∇ · f2(u), with f1(0) = f2(0) = 0,

and f1, f2 are locally Lipchitz semi-linear functions.
(3.1)
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Without loss of generality, we assume that ab ≤ 0. Otherwise, we can always find a constant C such
that (a + C)(b + C) ≤ 0 and consider the equation for v = u + C. Since ab ≤ 0, we have 0 ∈ (a, b).
Hence, (3.1) implies in particular

(3.2) |f1(u)| = |f1(u)− f1(0)| ≤ C1|u|, |f2(u)| = |f2(u)− f2(0)| ≤ C2|u| if a ≤ u ≤ b.

We observe that the nonlinearities in common nonlinear parabolic equations do satisfy (3.1), see in
particular some specific examples given in Section 5.

We shall also interpret the first step of the schemes, (2.5) and (2.9), in a Galerkin formulation.
More precisely, let Xh ⊂ X be a subspace with Lagrangian basis functions on Σh. We define a discrete
inner product on Σh = {z} in Ω̄:

(3.3) (u, v)h =
∑
z∈Σh

βzu(z)v(z),

where we require that the weights βz > 0. We also denote the induced norm by ‖u‖ = (u, u)
1
2

h , and we
assume that this norm is equivalent to the L2 norm for functions in Xh. We denote by < Lhuh, vh >
the bilinear form on Xh ×Xh based on the discrete inner product after suitable integration by part,
and we assume that

(3.4) C0‖∇uh‖2 ≤< Lhuh, uh > ∀uh ∈ Xh,

with C0 > 0, which is satisfied by many common spatial discretizations. Hereafter, we shall use C
and Ci to denote generic positive constants which are independent of δt and h.

We shall only consider a second-order scheme with mass conservation in this section. It is clear
that similar bounds can be derived for second-order scheme without mass conservation, and for the
first-order schemes, but bounds for higher-order schemes are still elusive. For clarity, we rewrite the
second-order version of (2.9)- (2.10) as:
Step 1 (predictor): Find ũn+1

h ∈ Xh such that, for ∀vh ∈ Xh

(
3ũn+1

h − 4unh + un−1
h

2δt
, vh)h+ < Lhũn+1

h , vh > +(f1(uh), vh)h − (f2(uh),∇vh)h = (λnhg
′(unh) + ξnh , vh)h;

(3.5)

Step 2 (corrector): Find un+1
h , λn+1

h , ξn+1
h from

3(un+1
h (z)− ũn+1

h (z))

2δt
= λn+1

h (z)g′(un+1
h (z))− λnh(z)g′(unh(z)) + ξn+1

h − ξnh , ∀z ∈ Σh,(3.6a)

λn+1
h (z) ≥ 0, g(un+1

h (z)) ≥ 0, λn+1
h (z)g(un+1

h (z)) = 0, ∀z ∈ Σh,(3.6b)

(un+1
h , 1)h = (unh, 1)h;(3.6c)

and we assume that ũ0
h and u0

h are computed with the first-order scheme (2.9)-(2.10) with k = 1.

Theorem 3.1. We assume (3.1), (3.2) and (3.4). Then, for the scheme (3.5)-(3.6), if the generic
scheme in (2.9) is mass conservative, i.e.,

(3.7) < Lhũn+1
h , 1 > +(f1(uh), 1)h − (f2(uh),∇1)h = 0,

then, we have

4‖umh ‖2 + ‖2umh − um−1
h ‖2 +

4

3
δt2‖λn+1

h g′(umh ) + ξmh ‖2

+ 2δt

m−1∑
n=0

C0‖∇ũn+1
h ‖2 ≤ C(T )‖u0

h‖2, ∀1 ≤ m ≤ T/δt.
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Proof. Choosing vh = 4δtũn+1
h in (3.5), using the assumption (3.4), we obtain

(3ũn+1
h − 4unh + un−1

h , 2ũn+1
h )h + 4δtC0‖∇ũn+1

h ‖2

+ 4δt(f1(2unh − un−1
h ), ũn+1

h )h − 4δt(f2(2unh − un−1
h ),∇ũn+1

h )h ≤ 4δt(λnhg
′(unh) + ξnh , ũ

n+1
h )h.

(3.8)

We start by dealing with the first term in (3.8).

(3ũn+1
h − 4unh + un−1

h , 2ũn+1
h )h = 2(3un+1

h − 4unh + un−1
h , un+1

h )h

+ 6(ũn+1
h − un+1

h , ũn+1
h )h + 2(3un+1

h − 4unh + un−1
h , ũn+1

h − un+1
h )h.

(3.9)

For the terms on the righthand side of (3.9), we have

2(3un+1
h − 4unh + un−1

h , un+1
h )h = ‖un+1

h ‖2 − ‖unh‖2

+ ‖2un+1
h − unh‖2 − ‖2unh − un−1

h ‖2 + ‖un+1
h − 2unh + un−1

h ‖2;
(3.10)

(3.11) 6(ũn+1
h − un+1

h , ũn+1
h )h = 3(‖ũn+1

h ‖2 − ‖un+1
h ‖2 + ‖ũn+1

h − un+1
h ‖2);

and

2(3un+1
h − 4unh + un−1

h , ũn+1
h − un+1

h )h

= 2(un+1
h − 2unh + un−1

h , ũn+1
h − un+1

h )h + 4(un+1
h − unh, ũn+1

h − un+1
h )h

≥ −‖un+1
h − 2unh + un−1

h ‖2 − ‖ũn+1
h − un+1

h ‖2 + 4(un+1
h − unh, ũn+1

h − un+1
h )h.

(3.12)

The last term in the above needs a special treatment. Using (3.6a) and the fact that (un+1
h −unh, 1)h =

0, we can write

4(un+1
h − unh, ũn+1

h − un+1
h )h = −8δt

3
(un+1
h − unh, λn+1

h g′(un+1
h )− λnhg′(unh) + ξn+1

h − ξnh )h

= −8δt

3
(un+1
h − unh, λn+1

h g′(un+1
h )− λnhg′(unh))h −

8δt

3
(ξn+1
h − ξnh )(un+1

h − unh, 1)h

= −8δt

3
(un+1
h − unh, λn+1

h g′(un+1
h ))h −

8δt

3
(unh − un+1

h , λnhg
′(unh))h := I1 + I2.

(3.13)

Thanks to λn+1
h (z)g(un+1

h (z)) = 0, we obtain

I1 = −8δt

3
(λn+1
h , (un+1

h − unh)(a+ b− 2un+1
h )− g(un+1

h ))h

= −8δt

3
(λn+1
h ,−(un+1

h )2 + ab+ 2unhu
n+1
h − (a+ b)unh)h

=
8δt

3
(λn+1
h , (un+1

h − unh)2)h −
8δt

3
(λn+1
h , (unh − a)(unh − b))h ≥ 0,

where we used the facts that a ≤ unh ≤ b and λn+1
h ≥ 0. Similarly, we use λnh(z)g(unh(z)) = 0 to

derive

I2 = −8δt

3
(λnh, (u

n
h − un+1

h )g′(unh)− g(unh))h

= −8δt

3
(λnh,−(unh)2 + ab+ 2unhu

n+1
h − (a+ b)un+1

h )h

=
8δt

3
(λnh, (u

n+1
h − unh)2)h − (λnh, (u

n+1
h − a)(un+1

h − b))h ≥ 0,
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where we used again the facts that λnh ≥ 0 and a ≤ un+1
h ≤ b. We derive from the last two inequalities

that

4(un+1
h − unh, ũn+1

h − un+1
h )h = −8δt

3
(un+1
h − unh, λn+1

h g′(un+1
h )− λnhg′(unh))h ≥ 0.(3.14)

Combining the above inequalities in (3.9), we find

(3ũn+1
h − 4unh + un−1

h , 2ũn+1
h )h ≥ ‖un+1

h ‖2 − ‖unh‖2 + ‖2un+1
h − unh‖2 − ‖2unh − un−1

h ‖2

+ 3(‖ũn+1
h ‖2 − ‖un+1

h ‖2) + 2‖ũn+1
h − un+1

h ‖2.
(3.15)

Next, we rewrite (3.6a) as

(3.16) 3un+1
h − 2δt(λn+1

h g′(un+1
h ) + ξn+1

h ) = 3ũn+1
h − 2δt(λnhg

′(unh) + ξnh ).

Taking the discrete inner product of each side of the equation (3.16) with itself, dividing by 3, we
obtain

3‖un+1
h ‖2 − 4δt(un+1

h , λn+1
h g′(un+1

h ) + ξn+1
h )h +

4

3
δt2‖λn+1

h g′(un+1
h ) + ξn+1

h ‖2

= 3‖ũn+1
h ‖2 − 4δt(ũn+1

h , λnhg
′(unh) + ξnh )h +

4

3
δt2‖λnhg′(unh) + ξnh‖2.

(3.17)

Note that we can interpret (3.5) pointwisely as

3ũn+1
h (z)− 4unh(z) + un−1

h (z)

2δt
+ Lhũn+1

h (z) +Nh(2unh(z)− un−1
h (z)) = λnh(z)g′(unh(z)) + ξnh , ∀z ∈ Σh,

(3.18)

where Nh is defined by (Nh(uh), vh)h = (f1(uh), vh)h − (f2(uh),∇vh)h. Summing up (3.18) and
(3.6a), we obtain

3un+1
h (z)− 4unh(z) + un−1

h (z)

2δt
+ Lhũn+1

h (z) +Nh(2unh(z)− un−1
h (z)) = λn+1

h (z)g′(un+1
h (z)) + ξn+1

h , ∀z ∈ Σh.

(3.19)

Taking the discrete inner product of (3.19) with 1 on both sides, using (3.6c) and (3.7), we obtain

(3.20) (λn+1
h g′(un+1

h ) + ξn+1
h , 1)h = 0,

which implies that

(3.21) ξn+1
h = −

(λn+1
h g′(un+1

h ), 1)h
|Ω|

= −
(λn+1
h , a+ b− 2un+1

h )h
|Ω|

,

where |Ω| := (1, 1)h = Σz∈Σkβz > 0.
It remains to show that the second term of (3.17) is non negative. Using the fact that λn+1

h (z)g(un+1
h (z)) =

0, we have

−4δt(un+1
h ,λn+1

h g′(un+1
h ) + ξn+1

h )h = −4δt(λn+1
h , un+1

h g′(un+1
h )− g(un+1

h ))h − 4δtξn+1
h (un+1

h , 1)h

= −4δt(λn+1
h , ab− (un+1

h )2)h +
4δt

|Ω|
(λn+1
h , a+ b− 2un+1

h )h(un+1
h , 1)h

= −4δt(λn+1
h ,−(un+1

h −
(un+1
h , 1)h
|Ω|

)2 + (
(un+1
h , 1)h
|Ω|

− a)(
(un+1
h , 1)h
|Ω|

− b))h.
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Since a ≤ un+1
h ≤ b, we have

(3.22) (
(un+1
h , 1)h
|Ω|

− a)(
(un+1
h , 1)h
|Ω|

− b) ≤ 0,

which, together with λn+1
h ≥ 0, implies that

(3.23) − 4δt(un+1
h , λn+1

h g′(un+1
h ) + ξn+1

h )h ≥ 0.

Then, summing up (3.8) with (3.17), and using (3.14), (3.15) and(3.23), after dropping some unnec-
essary terms, we obtain

4‖un+1
h ‖2 − 4‖unh‖2 + ‖2un+1

h − unh‖2 − ‖2unh − un−1
h ‖2 + 2‖ũn+1

h − un+1
h ‖2

+
4

3
δt2(‖λn+1

h g′(un+1
h ) + ξn+1

h ‖2 − ‖λnhg′(unh) + ξnh‖2) + 4δtC0‖∇ũn+1
h ‖2

≤ −4δt(f1(2unh − un−1
h ), ũn+1

h )h + 4δt(f2(2unh − un−1
h ),∇ũn+1

h )h.

(3.24)

Using (3.4), the two terms on the righthand side above can be bounded as follows:

4δt(f1(2unh − un−1
h ), ũn+1

h )h = 4δt(f1(2unh − un−1
h ), ũn+1

h − un+1
h )h + 4δt(f1(2unh − un−1

h ), un+1
h )h

≤ 2‖ũn+1
h − un+1

h ‖2 + 2C2
1δt

2‖2unh − un−1
h ‖2

+ 2δt(C2
1‖2unh − un−1

h ‖2 + ‖un+1
h ‖2).

(3.25)

Similarly, we have

4δt(f2(2unh − un−1
h ),∇ũn+1

h )h ≤ 2δtC0‖∇ũn+1
h ‖2 +

2δt

C0
‖f2(2unh − un−1

h )‖2

≤ 2δtC0‖∇ũn+1
h ‖2 +

2δtC2
2

C0
‖2unh − un−1

h ‖2.
(3.26)

Combining (3.24), (3.25) and (3.26), we obtain

4‖un+1
h ‖2 − 4‖unh‖2 + ‖2un+1

h − unh‖2 − ‖2unh − un−1
h ‖2

+
4

3
δt2(‖λn+1

h g′(un+1
h ) + ξn+1

h ‖2 − ‖λnhg′(unh) + ξnh‖2) + 2δtC0‖∇ũn+1
h ‖2

≤ Cδt‖2unh − un−1
h ‖2 + 2δt‖un+1

h ‖2, ∀n ≥ 1.

(3.27)

For n = 0, we use a first-order scheme, namely (2.9)-(2.10) with k = 1, to compute ũ1
h and u1

h. Using
a similar (but much simplified) procedure as above, we can obtain

‖u1
h‖2 − ‖u0

h‖2 + δt2(‖λ1
hg
′(u1

h) + ξ1
h‖2 − ‖λ0

hg
′(u0

h) + ξ0
h‖2) + 2δtC0‖∇ũ1

h‖2

≤ Cδt‖2u0
h‖2 + 2δt‖u1

h‖2.
(3.28)

Finally summing up (3.28) with (3.27) from n = 1 to n = m− 1, we obtain

4‖umh ‖2 + ‖2umh − um−1
h ‖2 +

4

3
δt2‖λmh g′(umh ) + ξmh ‖2 + 2δt

m−1∑
n=1

C0‖∇ũn+1
h ‖2

≤ ‖2u1
h − u0

h‖2 + 4‖u0
h‖2 + Cδt

m−1∑
n=0

{‖2unh − un−1
h ‖2 + ‖un+1

h ‖2}.

Applying the discrete Gronwall lemma, and using (3.28), we arrive at the desired result.
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4. Error estimate. The error analysis for the second-order scheme (3.5)-(3.6) with a general
spatial discretization is very tedious and may obscure its essential difficulty. Therefore, we shall carry
out a complete error analysis for a second-order bound preserving scheme with a hybrid spectral
discretization that we shall describe below. To further simplify the presentation, we assume L = −∆
with Dirichlet boundary conditions on Ω = (−1, 1)d (d = 1, 2, 3).

We now describe some preliminaries for our hybrid spectral discretization. Let PN be the space
of polynomials of degree less than or equals to N in each direction, we set

(4.1) X = H1
0 (Ω), XN = {v ∈ PN : v|∂Ω = 0}.

We define the projection operator ΠN : X → XN by

(4.2) (∇(v −ΠNv),∇vN ) = 0, ∀v ∈ X, vN ∈ XN ,

and recall that for any r ≥ 1, we have [4]

(4.3) ‖v −ΠNv‖Hs . Ns−r‖v‖Hr , ∀v ∈ Hr(Ω) ∩X, (s = 0, 1),

where ‖ · ‖Hr denote the usual norm in Hr(Ω).
Let LN be the Legendre polynomial of degree N , and {xk}0≤k≤N be the roots of (1− x2)L′N (x),

i.e., the Legendre-Gauss-Lobatto points. We set ΣN = {xk}1≤k≤N−1 and Σ̄N = {xk}0≤k≤N if d = 1,
ΣN = {(xk, xi)}1≤k,i≤N−1 and Σ̄N = {(xk, xi)}0≤k,i≤N if d = 2 and ΣN = {(xk, xi, xj)}1≤k,i,j≤N−1

and Σ̄N = {(xk, xi, xj)}0≤k,i,j≤N if d = 3. We define the interpolation operator IN : C(Ω)→ PN by
(INu)(z) = u(z) for all z ∈ Σ̄N . Then, we also have [4]

(4.4) ‖v − INv‖Hs . Ns−r‖v‖Hr , ∀v ∈ Hr(Ω) ∩X, (s = 0, 1).

Let (·, ·)N be the discrete inner product based on the Gauss-Lobatto quadrature, then it is well
known that [24]

(uN , vN )N = (uN , vN ) ∀uN · vN ∈ P2N−1,

‖vN‖2 ≤ (vN , vN )N ≤ (2 + 1/N)‖vN‖2 ∀vN ∈ PN .
(4.5)

We observe that the bound preserving is enforced at the second step, so the first-step in the bound
preserving schemes can be replaced by any other k-th order scheme. We shall consider a second-order
modified Crank-Nicholson scheme which is easier to analyze. More precisely, we consider the following
modified Crank-Nicholson scheme [15] with a hybrid spectral discretization: find un+1

N ∈ XN such
that for all n ≥ 1,

(
ũn+1
N (z)− unN (z)

δt
, vN )N + (∇

3ũn+1
N (z) + ũn−1

N (z)

4
,∇vN )

+ (N (
3

2
unN (z)− 1

2
un−1
N (z)), vN ) = 0, ∀vN ∈ XN ;

(4.6)

and find un+1
N , λn+1

N such that

un+1
N (z)− ũn+1

N (z)

δt
= λn+1

N (z)g′(un+1
N (z)), ∀z ∈ ΣN ,

λn+1
N (z) ≥ 0, g(un+1

N (z)) ≥ 0, λn+1
N (z)g(un+1

N (z)) = 0, ∀z ∈ ΣN .

(4.7)

For n = 0, we replace N ( 3
2u

n
N (z)− 1

2u
n−1
N (z)) in (4.6) by N (unN (z)).

To simplify the notation, we shall use u(t) to denote u(x, t). We denote

(4.8) ēn+1
N = u(tn+1)−ΠNu(tn+1), ên+1

N = ΠNu(tn+1)− un+1
N , ẽn+1

N = ΠNu(tn+1)− ũn+1
N .
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Then, we have

(4.9) u(tn+1)− un+1
N = ēn+1

N + ên+1
N , u(tn+1)− ũn+1

N = ēn+1
N + ẽn+1

N .

Let tk = kδt, tk+ 1
2 = 1

2 (tk+1 + tk) and un+ 1
2 = un+1+un

2 . We denote

K
n+ 1

2

N =
ēn+1
N − ēnN

δt
,

T
n+ 1

2

N = −∆(u(tn+ 1
2 )− 3u(tn+1) + u(tn−1)

4
),

R
n+ 1

2

N = ∂tu(tn+ 1
2 )− u(tn+1)− u(tn)

2
,

J
n+ 1

2

N = u(tn+ 1
2 )− (

3

2
u(tn)− 1

2
u(tn−1)).

(4.10)

Theorem 4.1. Let ũn+1
N , un+1

N , λn+1
N be the solution of (4.6)-(4.7). Given T ≥ 0, for some l ≥ 1,

assuming (3.1)-(3.2), and the exact solution of (1.1) u(x, t) ∈ C2([0, T ], H2(Ω))∩C1([0, T ], H l(Ω))∩
C3([0, T ], L2(Ω)), then we have the following error estimate:

‖u(tm)− umN‖2 +
δt

4
‖∇(u(tm)− ũmN )‖2 +

δt

4
‖∇(u(tm−1)− ũm−1

N )‖2 + δt2
m−1∑
n=1

‖λn+1
N g′(un+1

N )‖2N

+ δt

m−1∑
n=1

‖∇(u(tn+1)− ũn+1
N + u(tn−1)− ũn−1

N )‖2 ≤ C(δt4 +N−2l), ∀2 ≤ m ≤ T

δt
.

Proof. We derive from (1.1) and (4.2) that

(4.11) (∂tu, vN )N + (∇ΠNu,∇vN ) + (N (u), vN ) = ε(vN ), ∀vN ∈ XN ,

where

(4.12) ε(vN ) = (∂tu, vN )N − (∂tu, vN ).

We find from (4.5), the definition of IN and (4.3)-(4.4) that

|ε(vN )| = |(ut, vN )N − (ut, vN )| = |(ut −ΠN−1ut, vN )N + (ΠN−1ut − ut, vN )|
= |(INut −ΠN−1ut, vN )N + (ΠN−1ut − ut, vN )|
≤ (3‖INut −ΠN−1ut‖+ ‖ΠN−1ut − ut‖)‖vN‖
≤ (3‖INut − ut‖+ 4‖ut −ΠN−1ut‖)‖vN‖ ≤ CN−l‖vN‖, ∀vN ∈ PN .

(4.13)

Subtracting equation (4.11) from scheme (4.6), we obtain

(
ẽn+1
N − ênN

δt
, vN )N + (∇

3ẽn+1
N + ẽn−1

N

4
,∇vN ) + (N (u(tn+ 1

2 ))−N (
3

2
unN −

1

2
un−1
N ), vN )

= (−Kn+ 1
2

N , vN )− (R
n+ 1

2

N , vN )− (T
n+ 1

2

N , vN ) + ε(vN ).

(4.14)

We also derive from (4.7) that

(4.15)
ên+1
N (z)− ẽn+1

N (z)

δt
= sn+1

N , ∀z ∈ ΣN ,
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where sn+1
N = −λn+1

N g′(un+1
N ). Denoting Q

n+ 1
2

N = N (u(tn+ 1
2 )) − N ( 3

2ΠNu(tn) − 1
2ΠNu(tn−1)), we

have

(N (u(tn+ 1
2 ))−N (

3

2
unN −

1

2
un−1
N ), vN ) = (Q

n+ 1
2

N , vN )

+ (N (
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))−N (

3

2
unN −

1

2
un−1
N ), vN ).

(4.16)

Then (4.14) can be written as

(
ẽn+1
N − ênN

δt
, vN )N + (∇

3ẽn+1
N + ẽn−1

N

4
,∇vN )

+ (N (
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))−N (

3

2
unN −

1

2
un−1
N ), vN )

= −(K
n+ 1

2

N , vN )− (R
n+ 1

2

N , vN )− (T
n+ 1

2

N , vN )− (Q
n+ 1

2

N , vN ) + ε(vN ).

(4.17)

Taking vN = 2δtẽn+1
N in (4.17), we obtain

(ẽn+1
N − ênN , 2ẽn+1

N )N + (R
n+ 1

2

N +K
n+ 1

2

N + T
n+ 1

2

N , 2δtẽn+1
N ) + 2δt(∇

3ẽn+1
N + ẽn−1

N

4
,∇ẽn+1

N )

+ (N (
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))−N (

3

2
unN −

1

2
un−1
N ), 2δtẽn+1

N ) + (Q
n+ 1

2

N , 2δtẽn+1
N ) = 2δtε(ẽn+1

N ).

(4.18)

For the first term in (4.18), we have

(ẽn+1
N − ênN , 2ẽn+1

N )N = ‖ẽn+1
N ‖2N − ‖ênN‖2N + ‖ẽn+1

N − ênN‖2N .(4.19)

We rewrite (4.15) as

ên+1
N (z)− δtsn+1

N (z) = ẽn+1
N (z), ∀z ∈ ΣN ,(4.20)

and take the discrete inner product of (4.20) with itself to get

‖ên+1
N ‖2N + δt2‖sn+1

N ‖2N − 2δt(ên+1
N , sn+1

N )N = ‖ẽn+1
N ‖2N .(4.21)

On the other hand,

2δt(∇
3ẽn+1
N + ẽn−1

N

4
,∇ẽn+1

N ) =
δt

4
{5(∇ẽn+1

N ,∇ẽn+1
N )− (∇ẽn−1

N ,∇ẽn−1
N )

+ (∇(ẽn+1
N + ẽn−1

N ),∇(ẽn+1
N + ẽn−1

N ))}.

Combining the above equations, we obtain

‖ên+1
N ‖2N − ‖ênN‖2N + ‖ẽn+1

N − ênN‖2N + δt2‖sn+1
N ‖2N − 2δt(ên+1

N , sn+1
h )N

+
δt

4
{5(∇ẽn+1

N , ẽn+1
N )− (∇ẽn−1

N ,∇ẽn−1
N ) + (∇(ẽn+1

N + ẽn−1
N ),∇(ẽn+1

N + ẽn−1
N ))}

= −(R
n+ 1

2

N +K
n+ 1

2

N + T
n+ 1

2

N +Q
n+ 1

2

N , 2δtẽn+1
N )− (N (

3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))

−N (
3

2
unN −

1

2
un−1
N ), 2δtẽn+1

N ) + 2δtε(ẽn+1
N ).

(4.22)

We now bound the terms on the righthand side as follows.
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Firstly, consider the final term in (4.22), using (4.13), we obtain

2δtε(ẽn+1
N ) ≤ 2CδtN−l‖ẽn+1

N ‖ ≤ 2CδtN−l‖ẽn+1
N − ênN‖+ 2CδtN−l‖ênN‖

≤ 8C2δt2N−2l +
1

8
‖ẽn+1
N − ênN‖2 + δt‖ênN‖2 + C2δtN−2l.

Thanks to the KKT-condition λn+1
N ≥ 0 and a ≤ ΠNu(tn+1) ≤ b, we find

−2δt(ên+1
N , sn+1

h )N = −2δt(un+1
N −ΠNu(tn+1), λn+1

N g′(un+1
N ))N + 2δt(λn+1

N , g(un+1
N ))N

= −2δt(λn+1
N ,−(un+1

N )2 + ab+ 2ΠNu(tn+1)un+1
N − (a+ b)ΠNu(tn+1))N

= 2δt(λn+1
N , (ΠNu(tn+1)− un+1

N )2)N

− 2δt(λn+1
N , (ΠNu(tn+1)− a)(ΠNu(tn+1)− b))N ≥ 0.

On the other hand, since N (u) = f1(u) +∇ · f2(u) with (3.1) and (3.2), we have

(N (
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))−N (

3

2
unN −

1

2
un−1
N ), 2δtẽn+1

N )

= (f1(
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))− f1(

3

2
unN −

1

2
un−1
N ), 2δtẽn+1

N )

− (f2(
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))− f2(

3

2
unN −

1

2
un−1
N ), 2δt∇ẽn+1

N ).

(4.23)

The terms on the righthand side of (4.23) can be bounded as follows:

(f1(
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))− f1(

3

2
unN −

1

2
un−1
N ), 2δtẽn+1

N ) ≤ 2C1δt(|
3

2
ênN −

1

2
ên−1
N |, ẽn+1

N )

= 2C1δt(|
3

2
ênN −

1

2
ên−1
N |, ẽn+1

N − ênN ) + 2C1δt(|
3

2
ênN −

1

2
ên−1
N |, ênN )

≤ 1

8
‖ẽn+1
N − ênN‖2 + 8C2

1δt
2‖3

2
ênN −

1

2
ên−1
N ‖2 + C1δt(‖ênN‖2 + ‖3

2
ênN −

1

2
ên−1
N ‖2).

(4.24)

Similarly,

(f2(
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1))− f2(

3

2
unN −

1

2
un−1
N ), 2δt∇ẽn+1

N )

≤ 2δtC2(|3
2
ênN −

1

2
ên−1
N |,∇ẽn+1

N ) ≤ 1

3
δt‖∇ẽn+1

N ‖2 + 3δtC2
2‖

3

2
ênN −

1

2
ên−1
N ‖2.

(4.25)

It remains to deal with the first term on the righthand side of (4.22).

− 2δt(R
n+ 1

2

N + T
n+ 1

2

N , ẽn+1
N ) = −2δt(R

n+ 1
2

N + T
n+ 1

2

N , ẽn+1
N − ênN )− 2δt(R

n+ 1
2

N + T
n+ 1

2

N , ênN )

≤ 4δt2‖Rn+ 1
2

N ‖2 + 4δt2‖Tn+ 1
2

N ‖2 +
1

4
‖ẽn+1
N − ênN‖2 + δt(‖Rn+ 1

2

N ‖2 + ‖Tn+ 1
2

N ‖2 + ‖ênN‖2);
(4.26)

and

− 2δt(Kn+1
N , ẽn+1

N ) = −2δt(
ēn+1
N − ēnN

δt
, ẽn+1
N )

= −2((I −ΠN )(u(tn+1)− u(tn)), ẽn+1
N − ênN + ênN )

≤ 2|((I −ΠN )(u(tn+1)− u(tn)), ẽn+1
N − ênN )|+ 2|((I −ΠN )(u(tn+1)− u(tn)), ênN )|

≤ 8δt

∫ tn+1

tn
‖(I −ΠN )ut(t)‖2dt+

1

8
‖ẽn+1
N − ênN‖2 +

∫ tn+1

tn
‖(I −ΠN )ut(t)‖2dt+ δt‖ênN‖2;

(4.27)
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and

(Q
n+ 1

2

N , 2δtẽn+1
N ) = (N (u(tn+ 1

2 ))−N (
3

2
ΠNu(tn)− 1

2
ΠNu(tn−1)), 2δtẽn+1

N )

= (N (u(tn+ 1
2 ))−N (

3

2
u(tn)− 1

2
u(tn−1)), 2δtẽn+1

N )

+ (N (
3

2
u(tn)− 1

2
u(tn−1))−N (

3

2
ΠNu(tn)− 1

2
ΠNu(tn−1)), 2δtẽn+1

N ).

(4.28)

For the first term in right hand side of (4.28), we have

(N (u(tn+ 1
2 ))−N (

3

2
u(tn)− 1

2
u(tn−1)), 2δtẽn+1

N )

= (f1(u(tn+ 1
2 ))− f1(

3

2
u(tn)− 1

2
u(tn−1)), 2δtẽn+1

N )

− (f2(u(tn+ 1
2 ))− f2(

3

2
u(tn)− 1

2
u(tn−1)), 2δt∇ẽn+1

N ).

(4.29)

Using assumptions (3.1)-(3.2) and Young’s inequality, we have

(f1(u(tn+ 1
2 ))− f1(

3

2
u(tn)− 1

2
u(tn−1)), 2δtẽn+1

N ) ≤ C1(|Jn+ 1
2

N |, 2δtẽn+1
N )

= 2C1δt(|J
n+ 1

2

N |, ẽn+1
N − ênN ) + 2C1δt(|J

n+ 1
2

N |, ênN )

≤ 1

4
‖ẽn+1
N − ênN‖2 + 4C2

1δt
2‖Jn+ 1

2

N ‖2 + δtC1(‖ênN‖2 + ‖Jn+ 1
2

N ‖2);

(4.30)

and

(f2(u(tn+ 1
2 ))− f2(

3

2
u(tn)− 1

2
u(tn−1)), 2δt∇ẽn+1

N ) ≤ C2(|Jn+ 1
2

N |, 2δt∇ẽn+1
N )

≤ 3δtC2
2‖J

n+ 1
2

N ‖2 +
1

3
δt‖∇ẽn+1

N ‖2.
(4.31)

For the second term in right hand side of (4.28), similar with (4.30) and (4.31), we have

(N (
3

2
u(tn)− 1

2
u(tn−1))−N (

3

2
ΠNu(tn)− 1

2
ΠNu(tn−1)), 2δtẽn+1

N )

≤ C1(|3
2
ēnN −

1

2
ēn−1
N |, 2δtẽn+1

N ) + C2(|3
2
ēnN −

1

2
ēn−1
N |, 2δt∇ẽn+1

N ).

(4.32)

For the first term in the right hand side of (4.32), using assumption (4.3), we have

C1(|3
2
ēnN −

1

2
ēn−1
N |, 2δtẽn+1

N ) ≤ 2C1δt(|
3

2
ēnN −

1

2
ēn−1
N |, ẽn+1

N − ênN ) + 2C1δt(|
3

2
ēnN −

1

2
ēn−1
N |, ênN )

≤ CδtN−2l +
1

8
‖ẽn+1
N − ênN‖2 + C1δt‖ênN‖2.

For the second term in the right hand side of (4.32), we have

C2(|3
2
ēnN −

1

2
ēn−1
N |, 2δt∇ẽn+1

N ) ≤ 1

3
δt‖∇ẽn+1

N ‖2 + 3δtC2
2‖

3

2
ēnN −

1

2
ēn−1
N ‖2

≤ 1

3
δt‖∇ẽn+1

N ‖2 + CδtN−2l.
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Combining the above relations into (4.22) and using (4.5), we arrive at

‖ên+1
N ‖2N − ‖ênN‖2N + δt2‖sn+1

N ‖2N +
δt

4
{(∇ẽn+1

N ,∇ẽn+1
N )− (∇ẽn−1

N ,∇ẽn−1
N )

+ (∇(ẽn+1
N + ẽn−1

N ),∇(ẽn+1
N + ẽn−1

N ))} ≤ (8C2
1δt

2 + C1δt+ 3δtC2
2 )‖3

2
ênN −

1

2
ên−1
N ‖2

+ 3(C1 + 1)δt‖ênN‖2N + (4δt2 + δt)‖Rn+ 1
2

N ‖2 + (4δt2 + δt)‖Tn+ 1
2

N ‖2

+ (4C2
1δt

2 + δtC1 + 3δtC2
2 )‖Jn+ 1

2

N ‖2 + 8δt

∫ tn+1

tn
‖(I −ΠN )ut(t)‖2dt

+

∫ tn+1

tn
‖(I −ΠN )ut(t)‖2dt+ (C2 + 2C + 8C2δt)δtN−2l, ∀n ≥ 1.

(4.33)

For n = 0, a similar estimate can be easily derived. Summing up (4.33) from n = 1 to n = m− 1 and
its corresponding inequality at n = 0, we obtain

‖êmN‖2N + δt2
m−1∑
n=1

‖sn+1
N ‖2N +

δt

4
‖∇ẽmN‖2 +

δt

4
‖∇ẽm−1

N ‖2 +

m−1∑
n=1

‖∇(ẽn+1
N + ẽn−1

N )‖2

≤ ‖ê0
N‖2N +

δt

4
‖∇ẽ0

N‖2 + +
δt

4
‖∇ẽ1

N‖2 +

m−1∑
n=0

{(8C2
1δt

2 + C1δt+ 3δtC2
2 )‖3

2
ênN −

1

2
ên−1
N ‖2

+ 3(C1 + 1)δt‖ênN‖2 + (4δt2 + δt)‖Rn+ 1
2

N ‖2 + (4δt2 + δt)‖Tn+ 1
2

N ‖2

+ (4C2
1δt

2 + δtC1 + 3δtC2
2 )‖Jn+ 1

2

N ‖2}+ 8δt

∫ T

0

‖(I −ΠN )ut(t)‖2dt

+

∫ T

0

‖(I −ΠN )ut(t)‖2dt+ (C2 + 2C + 8C2δt)TN−2l.

(4.34)

For the term in (4.34) with l ≥ 0, we have∫ T

0

‖(I −ΠN )ut(t)‖2dt ≤ CN−2l‖ut‖2L2(0,T ;Hl); ‖Tn+ 1
2

N ‖2 ≤ Cδt3
∫ tn+1

tn
‖utt‖2H2dt;

‖Jn+ 1
2

N ‖2 ≤ Cδt3
∫ tn+1

tn
‖utt‖2dt; ‖Rn+ 1

2

N ‖2 ≤ Cδt3
∫ tn+1

tn
‖uttt‖2dt.

Finally, applying the discrete Gronwall’s Lemma to the above, using the norm equivalence (4.5) and
the triangular inequality, we obtain the desired result.

Remark 4.1. By following exactly the same procedure, we can also derive a similar error estimate
if we use a hybrid Fourier spectral method instead of the hybrid Legendre spectral method.

5. Some typical applications. The bound preserving schemes that we constructed and studied
in previous sections can be applied to a large class of PDEs which are bound preserving. We describe
applications to several typical examples below.

5.1. Allen-Cahn equation. Consider the Allen-Cahn equation [1]

(5.1) ut −∆u+
1

ε2
u(u2 − 1) = 0,

with homogeneous Dirichlet, homogeneous Neumann or periodic boundary condition, and ε is a
positive constant. It is well known that the above equation satisfies the maximum principle, in
particular, if the values of the initial condition u0 is in [−1, 1], the solution of the Allen-Cahn equation
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(5.1) will stay within the range [−1, 1]. Setting L = −∆ + 1
ε2 and N (u) = f1(u) = 1

ε2u(u2 − 1)− 1
ε2 ,

a second-order scheme based on the modified Crank-Nicholson for (5.1) is:

ũn+1 − un

δt
+ L(

3

4
ũn+1 +

1

4
ũn−1) +N (

3

2
un − 1

2
un−1) = λng′(un);(5.2)

and

un+1 − ũn+1

δt
=

1

2
(λn+1g′(un+1)− λng′(un)),

λn+1 ≥ 0, g(un+1) ≥ 0, λn+1g(un+1) = 0,

(5.3)

where g(u) = (1 + u)(1− u).
Similarly, we have its cut off version:

ũn+1 − un

δt
+ L(

3

4
ũn+1 +

1

4
ũn−1) +N (

3

2
un − 1

2
un−1) = 0;(5.4)

and

un+1 − ũn+1

δt
= λn+1g′(un+1),

λn+1 ≥ 0, g(un+1) ≥ 0, λn+1g(un+1) = 0.

(5.5)

Since f1(u) = 0, and f2(u) is certainly locally Lipschitz and satisfies (3.1)- (3.4). Hence, results
which are similar to those in Theorem 3.1 and Theorem 4.1 can be derived for the above schemes.

5.2. Cahn-Hilliard equation with variable mobility. Consider the Cahn-Hilliard equation
[3] with a logarithmic potential:

ut = ∇ · (M(u)∇µ),

µ = −ε2∆u+ ln(1 + u)− ln(1− u)− θ0u,
(5.6)

where µ is the chemical potential and M(u) = 1−u2 > 0 is the mobility function. θ0, ε are two positive
constants. u and µ are prescribed with homogeneous Neumann or periodic boundary condition. The
Cahn-Hilliard equation (5.6) is a gradient flow which takes on the form

(5.7) ut = ∇ · (M(u)∇δE
δu

),

with the total free energy

(5.8) E(u) =

∫
Ω

(1 + u)ln(1 + u) + (1− u)ln(1− u)− θ0

2
u2 +

ε2

2
|∇u|2dx.

With a given initial condition ‖u0‖L∞ < 1−γ for a constant γ ∈ (0, 1), due to the singular logarithmic
potential, the solution of Cahn-Hilliard equation (5.6) is expected to remain in the range (−1+δ, 1−δ)
for some δ ∈ (0, 1) [9, 13]. Note that (5.6) is a fourth-order equation written as a system of two coupled
second-order equations, so the approach for constructing bound preserving schemes introduced in
Section 2 can be directly applied to (5.6). For example, the second-order version of (2.5)-(2.6) for
(5.6) is as follows:

3ũn+1 − 4un + un−1

2δt
= ∇ · (M(2un − un−1)∇µn+1) + λng′(un),

µn+1 = −ε2∆un+1 + ln(1 + 2un − un−1)− ln(1− 2un + un−1)− θ0(2un − un−1);

(5.9)
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and

3un+1 − 3ũn+1

2δt
= λn+1g′(un+1)− λng′(un),

λn+1 ≥ 0, g(un+1) ≥ 0, λn+1g(un+1) = 0,

(5.10)

where g(u) = (u + 1 − δ)(1 − δ − u). Notice that g(u) = (u + 1 − δ)(1 − δ − u) > 0 is equivalent to
−1 + δ ≤ u ≤ 1− δ.

The system (5.6) also preserves mass. Indeed, integrate the first equation in (5.6) over Ω, we
obtain ∂t

∫
Ω
udx = 0. As described in Section 2, we can also easily modify the scheme (5.9)-(5.10) to

construct a bound and mass preserving scheme for (5.6).
While the stability results in Section 3 was derived only for a second-order equation for the sake

of simplicity, since the nonlinear term N (u) = f2(u) = ln(1 + u)− ln(1− u)− θ0u is locally Lipschitz
for u ∈ (−1, 1) and satisfies (3.1)-(3.4), a similar procedure can be used to derive a stability result
which is similar to Theorem 3.1. However, the error analysis in Section 4 can not be easily extended
to this case.

5.3. Fokker-Planck equation. Consider the following Fokker-Planck equation

(5.11) ∂tu = ∂x(xu(1− u) + ∂xu),

with no flux or periodic boundary conditions, which models the relaxation of fermion and boson gases
taking on the form [5, 25]. The long time asymptotics of the one dimensional model has been studied
in [5].

The Fokker-Planck equation (5.11) can be interpreted as a gradient flow

(5.12) ∂tu = ∂x(u(1− u)∂x
δE

δu
),

with E(u) being the entropy functional

(5.13) E(u) =

∫
Ω

(x2

2
u+ u log(u) + (1− u) log(1− u)

)
dx.

Hence, the solution of (5.11) is expected to take values in [0, 1].
The approach for constructing bound preserving schemes introduced in Section 2 can be directly

applied to (5.11). For example, let Lu = −∂xxu and N (u) = ∂xf2(u) = ∂x(−xu(1 − u)), a second-
order version of (2.5)-(2.6) for (5.11) is as follows:

3un+1 − 4un + un−1

2δt
= ∂x(x(2un − un−1)(1− 2un + un−1) + ∂xu

n+1) + λng′(un);(5.14)

and

3ũn+1 − 3ũn+1

2δt
= λn+1g′(un+1)− λng′(un),

λn+1 ≥ 0, g(un+1) ≥ 0, λn+1g(un+1) = 0,

(5.15)

where g(u) = u(1− u).
We observe that the Fokker-Plank equation (5.11) with no flux or periodic boundary conditions

conserves mass, i.e., ∂t
∫

Ω
udx = 0. The above scheme can be easily modified to be mass conserving

as follows:

3un+1 − 4un + un−1

2δt
= ∂x(x(2un − un−1)(1− 2un + un−1) + ∂xu

n+1) + λng′(un),(5.16)
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and

3un+1 − 3ũn+1

2δt
= λn+1g′(un+1)− λng′(un) + ξn+1,

λn+1 ≥ 0, g(un+1) ≥ 0, λn+1g(un+1) = 0, (un+1, 1) = (un, 1).

(5.17)

It is clear that f2(u) = −xu(1 − u) is locally Lipschitz and satisfies (3.1)- (3.2) with f1(u) = 0.
Therefore, a similar result as in Theorem 3.1 can be derived for the scheme (5.14)-(5.15) and (5.16)-
(5.17).

6. Numerical results. In this section, we will present various numerical experiments to validate
the proposed bound preserving schemes. For all examples presented below, we assume periodic
boundary conditions in Ω = [0, 2π)d, and use a Fourier-spectral method for spatial approximation.

6.1. Allen-Cahn equation. The first example is the Allen-Cahn equation (5.1).

6.1.1. Accuracy test. We first verify the convergence rate for the scheme (5.2)-(5.3) and its
first-order version for (2.1) in the domain Ω = [0, 2π]2 with the initial condition

(6.1) u(x, y, 0) = tanh(
1−

√
(x− π)2 + (y − π)2

√
2ε

).

We use 1282 uniform collocation points in [0, 2π]2, i.e., ΣN = {xjk = ( j
2π ,

k
2π ); j, k = 0, 1, , · · · , 128},

so that the spatial discretization error is negligible compared with the time discretization error. We
shall test their accuracy as approximations of (2.1) and (1.1) respectively.

First, we consider these schemes as approximations of (2.1), and use the reference solution com-
puted by (5.2)-(5.3) with a very small time step δt = 10−6. We observe from table 1 that the scheme
(5.2)-(5.3) (resp. its first-order version) achieves second-order (resp. first-order) convergence rate in
time. The scheme (5.4)-(5.5) only achieves the first-order convergence in time. We plot in Fig. 1 the
profile of numerical solution u and the Lagrange multiplier λ at T = 0.001.

δt BDF1 version of (5.2)-(5.3) Order (5.2)-(5.3) Order (5.4)-(5.5) Order
4× 10−5 4.89E(−3) − 3.56E(−4) − 1.36E(−3) −
2× 10−5 2.47E(−3) 0.98 9.50E(−5) 1.90 6.75E(−4) 1.01
1× 10−5 1.24E(−3) 0.99 2.31E(−5) 2.04 3.24E(−4) 1.06
5× 10−6 6.22E(−4) 0.99 5.84E(−6) 1.98 1.44E(−4) 1.17

2.5× 10−6 3.11E(−4) 1.00 1.25E(−6) 2.22 5.43E(−5) 1.40

Table 1
Accuracy test for approximations to (2.1): The L∞ errors at t = 0.01 with ε2 = 0.001.

δt (5.2)-(5.3) Order (5.4)-(5.5) Order
4× 10−5 1.05E(−4) − 1.05E(−4) −
2× 10−5 4.25E(−5) 1.30 4.25E(−5) 1.30
1× 10−5 1.00E(−5) 2.08 1.00E(−5) 2.08
5× 10−6 2.76E(−6) 1.86 2.76E(−6) 1.86

2.5× 10−6 6.29E(−7) 2.13 6.29E(−7) 2.13

Table 2
Accuracy test for approximations to (1.1): The L∞ errors at t = 0.01 with ε2 = 0.001.

18



We then consider these schemes as approximations of (1.1), and use the reference solution as
a highly accurate approximation to the original PDE (1.1) which is computed by a standard semi-
implicit scheme with δt = 10−8. We compare the accuracy between the scheme (5.2)-(5.3) and
its cur-off version (5.4)-(5.5). The results are reported in Table 2. We observe that both schemes
have essentially the same accuracy and are second-order in time, which are consistent with the error
estimates in Theorem 4.1.

The results reported in Tables 1 and 2 are consistent with Remark 2.1.

Fig. 1. Numerical solution u and Lagrange multiplier λ at T = 0.001 computed by scheme (2.5)-(2.6) with k = 2
and δt = 10−6.

6.1.2. Comparison with a usual semi-implicit scheme. We consider the Allen-Cahn equa-
tion with ε2 = 0.001 and the initial condition

u(x, y, 0) = tanh(
1−

√
(x− π)2 + (y − 3π/2)2

√
2ε

)

+ tanh(
1−

√
(x− π)2 + (y − 3π/4)2

√
2ε

) + 1.

(6.2)

We use the scheme (5.4)-(5.5) and its usual semi-implicit version:

un+1 − un

δt
+ L(

3

4
un+1 +

1

4
un−1) +N (

3

2
un − 1

2
un−1) = 0,(6.3)

with time step δt = 8× 10−4 and 1282 Fourier modes.
In Figure. 2, we plot the numerical solution u at T = 0.08 and T = 0.4 using the semi-implicit

scheme (6.3) and the bound-preserving scheme (5.4)-(5.5). It is observed that the numerical solution
by the bound-preserving scheme stays within [−1, 1], while that by the semi-implicit scheme (6.3)
violates this property. The Lagrange multiplier λ by the bound-preserving scheme (5.4)-(5.5) are also
shown in Figure. 2. In Fig. 3, we plot the evolution of max{u} and min{u} by both schemes.

6.2. Cahn-Hilliard equation. We now consider the Cahn-Hilliard equation (5.6) with the
initial condition

(6.4) u0(x, y) = 0.2 + 0.05 rand(x, y),

where function rand(x, y) is a uniformed distributed random function with values in (−1, 1). We set
θ0 = 5 and ε = 0.1, and use δt = 10−5 with 1282 Fourier modes in (0, 2π)2. We first use the following
semi-implicit scheme

3un+1 − 4un + un−1

2δt
= ∇ · (M(2un − un−1)∇µn+1),

µn+1 = −ε2∆un+1 + ln(1 + 2un − un−1)− ln(1− 2un + un−1)− θ0(2un − un−1),

(6.5)
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(a) u at T = 0.08 by (6.3). (b) u at T = 0.08 by (5.4)-(5.5). (c) λ at T = 0.08.

(d) u at T = 0.4 by (6.3). (e) u at T = 0.4 (5.4)-(5.5). (f) λ at T = 0.4.

Fig. 2. (a)-(d): Numerical solutions at T = 0.08, 0.4 computed by (6.3). (b)-(c) and (e)-(f): numerical solutions
and Lagrange multiplier λ at T = 0.08, 0.4 computed by (5.4)-(5.5).

Fig. 3. Evolution of max{u} and min{u} with respect to time for the semi-implicit scheme (6.3) and the bound-
preserving scheme (5.4)-(5.5).

and found that it blows up at t ≈ .025 when ‖un‖l∞ > 1 due to the singular potential. We then use
the bound preserving scheme (5.9)-(5.10) with δ = 0.01 to compute up to t = 0.1, and plot in Fig. 4
the evolution of maxz∈ΣN u

n(z) and minz∈ΣN u
n+1(z) by the scheme (6.5) up to t ≈ .025, and by the

scheme (5.9)-(5.10) up to t = 0.1. In Fig. 5, we plot the numerical solutions at various times which
depict the coarsening process.
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Fig. 4. The evolution of maxi,j u
n
i,j and mini,j u

n
i,j with respect to time computed by the scheme (6.5) up to

t ≈ .025, and by the scheme (5.9)-(5.10) up to t = 0.1.

(a) t = 0.001 (b) t = 0.02 (c) t = 0.05 (d) t = 0.1

Fig. 5. Numerical solutions of Cahn-Hilliard equation at t = 0.001, 0.02, 0.05, 0.1 computed by the scheme (5.9)-
(5.10).

6.3. Fokker-Planck equation. As the final example, we consider the Fokker-Planck equation
(5.11) with periodic boundary condition whose solution remains in [0, 1] and is mass preserving. We
present below simulations of (5.11) on the domain (−2π, 2π) with the initial condition u(x, 0) =

−e−
(x−1)2

0.4 using three second-order schemes: a usual semi-implicit scheme

3un+1 − 4un + un−1

2δt
= ∂x(x(2un − un−1)(1− 2un + un−1) + ∂xu

n+1),(6.6)

the bound-preserving scheme (5.14)-(5.15) and the mass conservative, bound-preserving scheme (5.16)-
(5.17).

In Fig. 6, we plot the numerical results using the semi-implicit scheme (6.6) and the bound-
preserving scheme (5.14)-(5.15) with 32 Fourier modes and δt = 10−4. We observe that while the
two numerical solutions look very similar, the minimum value by the semi-implicit scheme (6.6) does
become negative in a short period at the beginning, while the numerical solutions by (5.14)-(5.15)
remain in [0, 1].

In Fig. 7, we plot the numerical results using the bound-preserving scheme (5.14)-(5.15) and the
mass conservative, bound-preserving scheme (5.16)-(5.17) with 32 Fourier modes and δt = 10−4. We
observe that (5.14)-(5.15) can not preserve mass, while (5.16)-(5.17) preserves mass exactly. Only a
few iterations are needed to compute the Lagrange multiplier ξ at each time step by using the mass

21



(a) By the bound-preserving scheme. (b) By the semi-implicit scheme.

(c) Evolutions of minimum values (d) λ at t = 0.01

Fig. 6. (a)-(b) :Numerical solutions computed with 32 Fourier modes plotted on the 256 uniform grids using
(5.14)-(5.15) and -(6.6). (c): Evolutions of minimal values using (5.14)-(5.15) and -(6.6). (d): Lagrange multiplier
lambda at t = 0.01 using (5.14)-(5.15).

conservative, bound-preserving scheme (5.16)-(5.17) .

7. Concluding remarks. We constructed efficient and accurate bound and/or mass preserving
schemes for a class of semi-linear and quasi-linear parabolic equations using the Lagrange multiplier
approach.

First, we constructed a class of multistep IMEX schemes (2.5)-(2.6) for the semi-discrete problem
(2.1) with a Lagrange multiplier to enforce bound preserving, which is an approximation to the original
PDE (1.1). Hence, the scheme (2.5)- (2.6) is a k-th order approximation in time for both (2.1) and
(1.1). In particular, the (2.5)-(2.6) can be very useful if one is interested in the discrete problem (2.1)
without a background PDE.

Then, we pointed out in Remark 2.1 that by dropping out the term Bk−1(λnhg
′(unh)) in (2.5)

and (2.6), we recover the usual cut-off scheme which is a k-th order approximation in time for (1.1),
but only a first-order approximation in time for (2.1). Thus, our presentation provided an alternative
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(a) Evolution of mass (b) Solution profiles: u at t = 0.01, 0.1, 0.4.

(c) Iteration number

Fig. 7. (a): Evolution of mass by (5.14)-(5.15) and (5.16)-(5.17). (b): Solution profiles by (5.16)-(5.17). (c):
Iteration numbers for solving ξn+1 at each time step of (5.16)-(5.17).

interpretation of the cur-off approach, and moreover, allowed us to construct new cut-off implicit-
explicit (IMEX) schemes with mass conservation.

We also established some stability results involving norms with derivatives under a general setting,
and derived optimal error estimates for a second-order bound preserving scheme with a hybrid spectral
discretization in space.

Finally, we applied our approach to several typical PDEs which preserve bound and/or mass, and
presented ample numerical results to validate our approach. The approach presented in this paper is
quite general and can be used to develop bound preserving schemes for other bound preserving PDEs
such as the Keller-Segel equations [18].
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[2] Mäıtine Bergounioux, Kazufumi Ito, and Karl Kunisch. Primal-dual strategy for constrained optimal control
problems. SIAM Journal on Control and Optimization, 37(4):1176–1194, 1999.

23



[3] John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial free energy. The Journal
of chemical physics, 28(2):258–267, 1958.

[4] Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, A Thomas Jr, et al. Spectral methods in fluid dynamics.
Springer Science & Business Media, 2012.

[5] José A Carrillo, Jesús Rosado, and Francesco Salvarani. 1d nonlinear Fokker–Planck equations for fermions and
bosons. Applied Mathematics Letters, 21(2):148–154, 2008.

[6] Qing Cheng and Jie Shen. A new Lagrange multiplier approach for constructing structure preserving schemes, i.
positivity preserving. arXiv preprint arXiv:2107.00504, 2021.

[7] Philippe G Ciarlet. Discrete maximum principle for finite-difference operators. Aequationes mathematicae, 4(1-
2):266–268, 1970.

[8] Philippe G Ciarlet and P-A Raviart. Maximum principle and uniform convergence for the finite element method.
Computer Methods in Applied Mechanics and Engineering, 2(1):17–31, 1973.

[9] Arnaud Debussche and Lucia Dettori. On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear
Analysis: Theory, Methods & Applications, 24(10):1491–1514, 1995.
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