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Abstract. In this paper, we consider the Newton-Schur method in Hilbert space and obtain qua-
dratic convergence. For the symmetric elliptic eigenvalue problem discretized by the standard finite
element method and non-overlapping domain decomposition method, we use the Steklov-Poincaré
operator to reduce the eigenvalue problem on the domain Ω into the nonlinear eigenvalue subprob-
lem on Γ, which is the union of subdomain boundaries. We prove that the convergence rate for the
Newton-Schur method is εN ≤ CH2(1 + ln(H/h))2ε2, where the constant C is independent of the
fine mesh size h and coarse mesh size H, and εN and ε are errors after and before one iteration step
respectively. Numerical experiments confirm our theoretical analysis.
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1. Introduction. It is well-known that the smallest eigenvalue problem is very
important in scientific and engineering computations. Suppose V is a Hilbert space
with inner product (·, ·), the eigenvalue problem can be defined as

(1.1) a(vλ, v) = λ (vλ, v) ∀ v ∈ V,

where a(·, ·) is a symmetric bilinear form on V × V .
There are many classical methods for computing the eigenvalue and its corre-

sponding eigenvector in algebraic view [4,15,32,34,39]. However, traditional methods
suffer from slow convergence for problems from fluid dynamics or electronic device
simulation [33]. Therefore, preconditioning techniques are often necessary for con-
verging fast. One of the most famous preconditioned method for eigenvalue problem
is the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method
proposed by Knyazev et al. [23–25].

In PDE view, especially for symmetric elliptic eigenvalue problems, there are
many effective methods. For the early important researches on computing the eigen-
pair, a multigrid method was proposed by Hackbusch in [17], a mesh refinement
strategy was introduced by McCormick in [31] and a multilevel inverse iteration pro-
cedure was analyzed by Bank in [5]. As for the theoretical analysis, the standard
Galerkin approximation scheme for computing the approximate eigenpair was ana-
lyzed by Babuška and Osborn in [1–3]. When it comes to the domain decomposi-
tion method, some two-domains decomposition methods for computing the smallest
eigenpair were proposed by Lui in [28] and a Schwarz alternating method for many
subdomains case was constructed by Maliassov in [29]. Another effective eigenvalue
solver is the two grid method proposed by Xu and Zhou in [42,43]. There were some
further study about it, such as [18,45,46]. Moreover, some methods based on correc-
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tion were also proposed for eigenvalue problem, such as [27,40]. Recently, a two-level
overlapping hybrid domain decomposition method for solving the large scale ellip-
tic eigenvalue problem by Jacobi-Davidson method was proposed by Wang and Xu
in [36,37].

One important theoretical problem for these methods is to find conditions such
that the algorithm is optimal [35], which means that there exists a constant C inde-
pendent of fine mesh size h such that

εN ≤ Cε,

where εN and ε are errors after and before one iteration respectively. In early versions
of two grid method, some conditions between h and H are needed to ensure the
optimality, where H is the mesh size of the coarse space. The first method proposed by
Xu and Zhou in [42,43] needs O(H2) = h, another two level methods based on inverse
iteration can be optimal under the condition O(H4) = h, see [18, 45]. Recently, the
method proposed by Wang and Xu in [36,37] is optimal with no assumptions between
h and H. For Maxwell eigenvalue problem, similar results can be found in [26].

One popular non-overlapping domain decomposition method for eigenvalue prob-
lem is the spectral Schur complements method proposed by Bekas and Saad in [6].
It can be regarded as a variation of Automated MultiLevel Substructuring (AMLS)
method in [7], whose numerical implementation can be found in [14]. Recently, the
spectral Schur complement method was developed into the Newton-Schur method
in [19–22] by Kalantzis, Li and Saad. All these researches focused on algorithm de-
sign and numerical implementation in algebraic view. As for the convergence rate,
since the Newton-Schur method is essentially Newton’s method, it could be expected
to converge quadratically, at least if a sufficiently accurate initial approximation is
provided [21]. But a rigorous theoretical analysis is hard.

In this paper, we focus on the theoretical analysis of the convergence rate. The
Newton-Schur method is studied in the abstract Hilbert space, and the quadratic
convergence is obtained under some assumptions on the bilinear form a(·, ·) in (1.1).
For symmetric elliptic eigenvalue problems discretized by the standard finite element
method and non-overlapping domain decomposition method, we use the Steklov-
Poincaré operator to reduce the eigenvalue problem in the domain Ω into the nonlin-
ear eigenvalue subproblem on Γ, which is the union of subdomain boundaries. The
assumptions on the bilinear form are verified and the convergence rate of the Newton-
Schur method is

(1.2) εN ≤ CH2
(
1 + ln(H/h)

)2
ε2,

where the constant C is independent of h and H. The theoretical results are confirmed
by our numerical examples for both two-dimensional and three-dimensional elliptic
problems. To the best of our knowledge, similar results are not found in the references.

The outline of this paper is organized as follows: we extend the Newton-Schur
method into Hilbert space and provide some results about convergence in section 2. In
section 3, we analyze an important problem, the symmetric elliptic eigenvalue prob-
lem discretized by the standard finite element method and non-overlapping domain
decomposition method, we prove the rate of convergence in (1.2). Finally, numerical
experiments are given in section 4. In the rest of this paper, we use notations in [41].
Let A . B represent the statement that A ≤ cB, where the constant c is positive
and independent of h, H and the variables in A and B. The notation A & B means
B . A and A ≈ B means that A . B and B . A.
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2. Newton-Schur method in Hilbert space.

2.1. Setting the problem. Let W be a Hilbert space with inner product (·, ·)
and norm ‖·‖, and V ⊂W be a closed subspace. Suppose a(·, ·) is a symmetric bilinear
form on V × V . Let VI be a closed subspace of V and suppose a(·, ·) is coercive on
VI , i.e., there exists a constant α > 0 such that

(2.1) a(v, v) ≥ α ‖v‖2

for all v ∈ VI and with equality for some vI ∈ VI . Since α > 0, a(·, ·) can be regarded
as an inner product on VI . For a scalar ρ < α, let

(2.2) aρ(·, ·) ≡ a(·, ·)− ρ (·, ·),

then aρ(·, ·) is positive definite on VI , and the aρ-orthogonal space of VI is defined as

(2.3) VB,ρ ≡ {v ∈ V | aρ(v, vI) = 0, ∀ vI ∈ VI}.

By using the Lax-Milgram’s lemma, we can get the following decomposition for V .

Proposition 2.1. For any ρ < α and all v ∈ V , there exists a unique decompo-
sition

v = vI + vB ,

where vI ∈ VI and vB ∈ VB,ρ.

Suppose WΓ is another Hilbert space with one inner product (·, ·)Γ and the cor-
responding norm ‖·‖Γ, and VΓ ⊂ WΓ is a closed subspace. Let Hρ be a bijective
bounded extension from VΓ to VB,ρ satisfying

(2.4) |||Hρ||| ≤ cH

for all ρ < α, where cH is a constant independent of ρ and

|||Hρ||| ≡ sup
06=u∈VΓ

‖Hρu‖
‖u‖Γ

.

Moreover, for any ρ1, ρ2 < α, the extensions Hρ1
and Hρ2

satisfy

(2.5) Hρ1u−Hρ2u ∈ VI

for all u ∈ VΓ. The following lemma describes the continuity of Hρ respect to ρ.

Lemma 2.2. Let ρ1, ρ2 < α and δH = Hρ1
−Hρ2

, then

‖δHu‖ ≤ |ρ1 − ρ2|
α− ρ1

‖Hρ2
u‖ ≤ cH|ρ1 − ρ2|

α− ρ1
‖u‖Γ

for all u ∈ VΓ.

Proof. According to δHu = Hρ1
u−Hρ2

u ∈ VI and VI is aρ1
-orthogonal to VB,ρ1

,

aρ1
(δHu, δHu) = aρ1

(δHu,Hρ1
u−Hρ2

u) = −aρ1
(δHu,Hρ2

u).

Due to VI is aρ2
-orthogonal to VB,ρ2

and the linearity of aρ respect to ρ,

aρ1
(δHu,Hρ2

u) = aρ2
(δHu,Hρ2

u) + (ρ2 − ρ1) (δHu,Hρ2
u) = (ρ2 − ρ1) (δHu,Hρ2

u).
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Therefore, by combining these two equations above,

(2.6) aρ1
(δHu, δHu) = (ρ1 − ρ2) (δHu,Hρ2

u).

Since aρ1(·, ·) is coercive on VI and δHu ∈ VI ,

(α− ρ1) ‖δHu‖2 ≤ (ρ1 − ρ2) (δHu,Hρ2
u) ≤ |ρ1 − ρ2| ‖δHu‖ ‖Hρ2

u‖.

By eliminating ‖δHu‖ on both sides of the equation above and using the bound for
|||Hρ2 |||,

‖δHu‖ ≤ |ρ1 − ρ2|
α− ρ1

‖Hρ2
u‖ ≤ cH |ρ1 − ρ2|

α− ρ1
‖u‖Γ.

This inequality means Hρ1
u −Hρ2

u goes to zero when |ρ1 − ρ2| → 0, which leads to
the continuity.

The Steklov-Poincaré operator Sρ : VΓ 7→ (VΓ)′ can be defined as

(2.7) 〈Sρu1, u2〉 ≡ aρ(Hρu1,Hρu2)

for all u1, u2 ∈ VΓ, where (VΓ)′ is the dual space of VΓ and the bilinear form 〈·, ·〉 is
the duality pairing.

2.2. The smallest eigenvalue problem and the Newton-Schur method.
We are interested in the smallest eigenvalue problem of a(·, ·) in V , which is to find
the smallest λ and ‖vλ‖ = 1 such that

(2.8) a(vλ, v) = λ (vλ, v)

for all v ∈ V . In the rest of this paper, we assume that the smallest eigenvalue of a(·, ·)
is simple and −∞ < λ < α. Actually, due to the variation principle of eigenvalues
(see Equation 2.1 in Section 3 of [38]),

λ = min
06=v∈V

a(v, v)

(v, v)
≤ min

0 6=v∈VI

a(v, v)

(v, v)
= α,

with equality only when vλ ∈ VI . So λ < α means that the eigenvector vλ correspond-
ing to the smallest eigenvalue λ is not in VI . If there exists a scalar λ and uλ ∈ VΓ,
uλ 6= 0 such that

(2.9) 〈Sλuλ, u〉 = 0

for all u ∈ VΓ, by using the definition of Steklov-Poincaré operator in (2.7),

aλ(Hλuλ,Hλu) = 〈Sλuλ, u〉 = 0

for all u ∈ VΓ. On the one hand, as Hλ is injective on VB,ρ, uλ 6= 0 leads to Hλuλ 6= 0.
On the other hand, since Hλ is surjective to VB,λ and VB,λ is the aλ-orthogonal
complement of VI , by Proposition 2.1,

(2.10) aλ(Hλuλ, v) = 0

for all v ∈ V , i.e., λ is the eigenvalue of a(·, ·) andHλuλ is parallel to the corresponding
eigenvector. It is easy to verify that if λ is the smallest root of (2.9), then λ is the
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smallest eigenvalue of a(·, ·). So we can use Steklov-Poincaré operator to reduce the
smallest eigenvalue problem of a(·, ·) into the smallest root finding problem of Sρ
respect to ρ. The Newton-Schur method in [6,19–22] is in this framework of algebraic
view. In this paper, we take a look at the method in Hilbert space and extend the
Newton-Schur method to infinite dimension space. First, let us consider the eigenvalue
problem of Sρ:

(2.11) 〈Sρuρ, u〉 = θρ (uρ, u)Γ ∀u ∈ VΓ,

where (θρ, uρ) is the smallest eigenpair of Sρ and ‖uρ‖Γ = 1. The root of (2.9) is
found if we can find a λ such that θλ = 0. Therefore, the root-finding problem (2.9)
can be transformed into the nonlinear eigenvalue problem (2.11). In order to apply
the Newton-Schur method for (2.11) to find ρ such that θρ = 0, the first order Fréchet
derivative S′ρ ≡ S′(ρ) with respect to ρ needs to be calculated first. By H′ρu ∈ VI for
all u ∈ VΓ, we have the following proposition.

Proposition 2.3. The linear operator S′ρ : VΓ → (VΓ)′ can be expressed as

〈S′ρu1, u2〉 = −(Hρu1,Hρu2) ∀u1, u2 ∈ VΓ.

Lemma 2.4. Assume (θρ, uρ) is the smallest eigenpair of Sρ as (2.11). If ρ < α,
then the first order derivative θ′ρ ≡ θ′(ρ) satisfies

θ′ρ =
〈S′ρuρ, uρ〉
(uρ, uρ)Γ

= − (Hρuρ,Hρuρ)
(uρ, uρ)Γ

< 0.

Proof. By taking the derivative of (2.11) first:

(2.12) 〈S′ρuρ, u〉+ 〈Sρu′ρ, u〉 = θ′ρ (uρ, u)Γ + θρ (u′ρ, u)Γ.

Let u = uρ, since (θρ, uρ) is the eigenpair of Sρ and Sρ is symmetric,

〈Sρu′ρ, uρ〉 = 〈Sρuρ, u′ρ〉 = θρ (uρ, u
′
ρ)Γ = θρ (u′ρ, uρ)Γ.

The lemma is proved by combining these two equations above with Proposition 2.3.

The Newton iteration ρN = ρ− θρ/θ′ρ becomes

ρN = ρ− 〈Sρuρ, uρ〉
〈S′ρuρ, uρ〉

by Lemma 2.4 and (2.11). Furthermore, let us take vρ = Hρuρ, since

〈Sρuρ, uρ〉 = aρ(Hρuρ,Hρuρ) = a(vρ, vρ)− ρ (vρ, vρ),

and 〈S′ρuρ, uρ〉 = −(vρ, vρ), the Newton iteration becomes

(2.13) ρN =
a(vρ, vρ)

(vρ, vρ)
.

Based on the iteration (2.13), the Newton-Schur method in Hilbert space can be
sketched as Algorithm 1.
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Algorithm 1: Newton-Schur method in Hilbert space

Input: initial point ρ.
Output: The approximation for the smallest eigenvalue ρ.

1 repeat
2 Solve the smallest eigenvalue problem (2.11) in VΓ to get uρ;
3 Extend uρ to V by vρ = Hρuρ;
4 Update ρ with (2.13):

ρ =
a(vρ, vρ)

(vρ, vρ)
;

5 until Convergence;

Since each iteration point ρ is a Rayleigh quotient of a(·, ·) and λ is the smallest
eigenvalue of a(·, ·), ρ ≥ λ always holds during the algorithm. Let ε and εN be errors
before and after one step of Newton iteration respectively:

(2.14) ε = ρ− λ and εN = ρN − λ.

The following proposition can guarantee the convergence of Algorithm 1.

Proposition 2.5. Let ρ0 ∈ (λ, α) be the initial point of Algorithm 1, where α is
the constant for coercivity and λ is the smallest eigenvalue of a(·, ·). The Newton-
Schur method is convergent and at each iteration

0 ≤ εN < ε.

Proof. According to (2.13) and (2.14),

εN = ε− θρ
θ′ρ
.

Due to Lemma 2.4, we know θρ < θλ = 0. By combining it with θ′ρ < 0,

εN = ε− θρ
θ′ρ

< ε.

On the other hand, as ρN is a Rayleigh quotient of a(·, ·), we have εN = ρN −λ ≥ 0.

2.3. Convergence factor for the Newton-Schur method. In order to ana-
lyze the convergence, we need to use the well-known result about Newton’s method.

Proposition 2.6. Let ε and εN be errors before and after one step of Newton
iteration. Suppose the iterative point ρ is in (λ, α), the error εN satisfies

εN =
θ′′ξ
2θ′ρ

ε2,

where λ ≤ ξ ≤ ρ and θ′′ξ ≡ θ′′(ξ).

The Newton-Schur method will converge quadratically if θ′′ξ /2θ
′
ρ is bounded. In

this paper, we refer to the upper bound of θ′′ξ /2θ
′
ρ as convergence factor η, i.e.,

η = sup
λ≤ξ≤ρ≤ρ0

θ′′ξ
2θ′ρ

,
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then errors satisfy εN ≤ ηε2.

Lemma 2.7. Assume (θρ, uρ) is the smallest eigenpair of Sρ as (2.11). If ρ < α,
then the second order derivative θ′′ρ respect to ρ satisfies

θ′′ρ ≤ 0.

Proof. First, let us take the derivative in (2.12) respect to ρ again,

〈S′′ρuρ, u〉+ 2 〈S′ρu′ρ, u〉+ 〈Sρu′′ρ , u〉 = θ′′ρ (uρ, u)Γ + 2 θ′ρ (u′ρ, u)Γ + θρ (u′′ρ , u)Γ.

Let u = uρ and by using (2.11), it becomes

θ′′ρ (uρ, uρ)Γ = 〈S′′ρuρ, uρ〉 − 2 θ′ρ (u′ρ, uρ)Γ + 2 〈S′ρu′ρ, uρ〉.

Let u = u′ρ in (2.12),

(2.15) 〈S′ρuρ, u′ρ〉+ 〈Sρu′ρ, u′ρ〉 = θ′ρ (uρ, u
′
ρ)Γ + θρ (u′ρ, u

′
ρ)Γ.

Combining these two equations above, we know

(2.16) θ′′ρ (uρ, uρ)Γ = 〈S′′ρuρ, uρ〉+ 2 θρ (u′ρ, u
′
ρ)Γ − 2 〈Sρu′ρ, u′ρ〉.

Since θρ is the smallest eigenvalue of Sρ, we have θρ (u′ρ, u
′
ρ)Γ ≤ 〈Sρu′ρ, u′ρ〉. Thus, the

θ′′ρ can be bounded by

(2.17) θ′′ρ (uρ, uρ)Γ ≤ 〈S′′ρuρ, uρ〉.

By taking the derivative of S′ρ in Lemma 2.4,

〈S′′ρuρ, uρ〉 = lim
ε→0

1

ε

(
(Hρuρ,Hρuρ)− (Hρ+εuρ,Hρ+εuρ)

)
.

Let δH = Hρ+ε −Hρ, then

(2.18)

〈S′′ρuρ, uρ〉 = lim
ε→0

1

ε

(
(Hρuρ −Hρ+εuρ,Hρuρ) + (Hρuρ −Hρ+εuρ,Hρ+εuρ)

)
= lim
ε→0

1

ε

(
− (δHuρ,Hρuρ)− (δHuρ,Hρ+εuρ)

)
= − lim

ε→0

1

ε

(
2 (δHuρ,Hρ+εuρ)− (δHuρ, δHuρ)

)
.

According to (2.6),

aρ(δHuρ, δHuρ) = ε(δHuρ,Hρ+εuρ).

Substituting it into (2.18), we have

(2.19) 〈S′′ρuρ, uρ〉 = − lim
ε→0

1

ε

(2

ε
aρ(δHuρ, δHuρ)− (δHuρ, δHuρ)

)
.

Since aρ(·, ·) is coercive on VI , then

(2.20) (δHuρ, δHuρ) ≤
1

α− ρ
aρ(δHuρ, δHuρ).
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Therefore, by combining (2.17), (2.19), and (2.20),

(2.21) θ′′ρ ≤
〈S′′ρuρ, uρ〉
(uρ, uρ)Γ

≤ −1

(uρ, uρ)Γ
lim
ε→0

(( 2

ε2
− 1

ε (α− ρ)

)
aρ(δHuρ, δHuρ)

)
≤ 0.

The lemma is proved.

Remark 2.8. Lemma 2.7 also holds for other eigenvalues of Sρ if ρ < α.

Proposition 2.6 can be relaxed to

εN ≤ sup
ξ∈(λ,ρ)

θ′′ξ
2θ′ξ

ε2

based on Lemma 2.7.

Theorem 2.9. Suppose ρ0 ∈ (λ, α) is the initial point of Algorithm 1, denote gρ
the gap between the smallest two eigenvalues of Sρ, if there exists a constant cg > 0
such that

(2.22) gρ ≥ cg

for all ρ ∈ (λ, ρ0), then Algorithm 1 is quadratic convergence, and

εN ≤
( 1

α− ρ0
+
c2H
cg

)
ε2.

Proof. Suppose ‖uρ‖Γ = 1, according to (2.16), (θ′′ρ/2θ
′
ρ) can be divided into two

parts:

(2.23) − 〈S′′ρuρ, uρ〉 ≤ C1 ‖vρ‖2,

and

(2.24) 〈Sρu′ρ, u′ρ〉 − θρ(u′ρ, u′ρ)Γ ≤ C2 ‖vρ‖2,

where vρ = Hρuρ. According to (2.18),

−〈S′′ρuρ, uρ〉 = lim
ε→0

1

ε

(
2 (δHuρ,Hρ+εuρ)− (δHuρ, δHuρ)

)
= lim
ε→0

1

ε

(
2 (δHuρ,Hρuρ) + (δHuρ, δHuρ)

)
≤ lim
ε→0

‖δHuρ‖
|ε|

(2 ‖Hρuρ‖+ ‖δHuρ‖)

Due to Lemma 2.2,

−〈S′′ρuρ, uρ〉 ≤ lim
ε→0

‖Hρuρ‖
(α− ρ− ε)

(
2 ‖Hρuρ‖+

|ε|
α− ρ

‖Hρuρ‖
)

=
2

α− ρ
‖vρ‖2 ≤

2

α− ρ0
‖vρ‖2.

Then the constant C1 in estimation (2.23) can be 2 (α − ρ0)−1. For the estimation
(2.24), an orthogonality about uρ and u′ρ is needed. By taking the derivative on both



CONVERGENCE ANALYSIS OF THE NEWTON-SCHUR METHOD 9

sides of ‖uρ‖2Γ = 1, we have (uρ, u
′
ρ)Γ = 0, which means uρ and u′ρ are orthogonal in

(·, ·)Γ. Let

(2.25) VΓ,ρ ≡ {u ∈ VΓ | (u, uρ)Γ = 0}.

Since gρ is the gap between θρ and the smallest eigenvalue of Sρ in VΓ,ρ, and u′ρ ∈ VΓ,ρ,

(2.26) 〈Sρu′ρ, u′ρ〉 − θρ (u′ρ, u
′
ρ)Γ ≥ gρ ‖u′ρ‖2Γ.

Let u = u′ρ in (2.12), by combining the orthogonality of uρ and u′ρ,

(2.27) 〈Sρu′ρ, u′ρ〉 − θρ (u′ρ, u
′
ρ)Γ = −〈S′ρuρ, u′ρ〉+ θ′ρ (uρ, u

′
ρ) = −〈S′ρuρ, u′ρ〉.

According to the Cauchy-Schwarz inequality and Proposition 2.3,

(2.28) − 〈S′ρuρ, u′ρ〉 = (Hρuρ,Hρu′ρ) ≤ ‖vρ‖ ‖Hρu′ρ‖ ≤ cH‖vρ‖ ‖u′ρ‖Γ.

By combining the inequalities (2.26)–(2.28) and eliminating ‖u′ρ‖Γ on both sides,

(2.29) ‖u′ρ‖Γ ≤
cH
gρ
‖vρ‖.

And combining the inequalities (2.27)–(2.29), we have

〈Sρu′ρ, u′ρ〉 − θρ (u′ρ, u
′
ρ)Γ ≤

c2H
gρ
‖vρ‖2 ≤

c2H
cg
‖vρ‖2,

which means C2 in estimation (2.24) can be set as c2Hc
−1
g . Therefore, the constant in

Theorem 2.9 can be
(
(α− ρ0)−1 + c2Hc

−1
g

)
, which is independent of ρ.

The condition (2.22) in Theorem 2.9 may be difficult to verified directly, here we
give a lemma for the existence of cg.

Lemma 2.10. Let λ̂ be the second smallest eigenvalue of a(·, ·). If the initial point

ρ0 ∈ (λ, λ̂) and λ̂ < α, then the constant cg in Theorem 2.9 exists and

cg ≥
λ̂− ρ0

λ̂− λ
θ

(2)
λ ,

where θ
(2)
λ is the second smallest eigenvalue of Sλ.

Proof. Suppose θ
(2)
ρ is the second smallest eigenvalue of Sρ, since θ

(2)
ρ is concave,

θ
(2)
ρ − θ(2)

λ

ρ− λ
≥
θ

(2)
ρ − θ(2)

λ̂

ρ− λ̂

for λ < ρ < λ̂. Since λ̂ is the second smallest eigenvalue of a(·, ·), we know that

θ
(2)

λ̂
= 0. By using θ

(2)
λ > θ

(2)

λ̂
= 0 and

θ(2)
ρ ≥

λ̂− ρ
λ̂− λ

θ
(2)
λ ≥

λ̂− ρ0

λ̂− λ
θ

(2)
λ ,

the proof is finished.
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If the bilinear form a(·, ·) satisfies some more conditions, the convergence factor
η can be estimated more specifically.

Lemma 2.11. Suppose ρ0 ∈ (λ, λ̂) is the initial point, where λ and λ̂ are the
smallest two eigenvalues of a(·, ·) respectively. If there exists a constant ct > 0 such
that

(2.30) a(Hλu,Hλu) ≥ ct‖u‖2Γ
holds for all u ∈ VΓ, then there is a lower bound for the constant cg, i.e.,

cg ≥
λ̂− ρ0

λ̂
csct,

where 0 < cs = θ
(2)
λ /θ

(3)
λ ≤ 1 and θ

(2)
λ , θ

(3)
λ are the second and third smallest eigenvalue

of Sλ respectively, including multiplicities.

Proof. Let θλ, θ
(2)
λ and θ

(3)
λ be the smallest three eigenvalues of Sλ with cor-

responding eigenvectors uλ, û2 and û3, where ‖uλ‖Γ = ‖û2‖Γ = ‖û3‖Γ = 1 and
(uλ, û2)Γ = (û2, û3)Γ = (û3, uλ)Γ = 0. Let

ûλ =


(Hλuλ,Hλû2) û3 − (Hλuλ,Hλû3) û2

‖(Hλuλ,Hλû2) û3 − (Hλuλ,Hλû3) û2‖Γ
if (Hλuλ,Hλû2) 6= 0,

û2 if (Hλuλ,Hλû2) = 0,

then it is easy to be verified that ‖ûλ‖Γ = 1 and (Hλuλ,Hλûλ) = 0. Since Hλuλ is
the eigenvector corresponding to λ of a(·, ·), (Hλuλ,Hλûλ) = 0 leads to Hλûλ lies in

the eigenspace corresponding to the eigenvalue at least λ̂, then

aλ(Hλûλ,Hλûλ) = a(Hλûλ,Hλûλ)− λ (Hλûλ,Hλûλ)

≥
(

1− λ

λ̂

)
a(Hλûλ,Hλûλ) ≥ ct

(
1− λ

λ̂

)
.

Since ûλ is the linear combination of û2 and û3, and ‖ûλ‖Γ = 1,

θ
(2)
λ ≤ 〈Sλûλ, ûλ〉 ≤ θ

(3)
λ .

Therefore, the second smallest eigenvalue of Sλ satisfies

θ
(2)
λ =

θ
(2)
λ

θ
(3)
λ

θ
(3)
λ ≥ cs 〈Sλûλ, ûλ〉 = cs aλ(Hλûλ,Hλûλ) ≥ (1− λ

λ̂
) csct.

Then the constant cg can be bounded by

cg ≥
λ̂− ρ0

λ̂
csct

by using Lemma 2.10.

Corollary 2.12. Let λ and λ̂ be the smallest two eigenvalues of a(·, ·) satisfying

λ < λ̂ < α. Suppose the constants cs and ct are defined as Lemma 2.11, if the initial
point ρ0 ∈ (λ, λ̂), then the rate of convergence for Algorithm 1 is

εN ≤
( 1

α− ρ0
+

c2H λ̂

csct (λ̂− ρ0)

)
ε2.
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3. Finite element method for the symmetric elliptic eigenvalue prob-
lem. In this section, we focus on the smallest eigenvalue problem of the symmetric
elliptic operator. The problem is discretized by finite element method and solved
by the Newton-Schur method, the space VI , VB,ρ and VΓ are constructed by non-
overlapping domain decomposition method.

3.1. Elliptic eigenvalue problem and finite element method. Let Ω ⊂ Rd,
where d = 2 or 3 be a bounded convex polygonal domain, the smallest eigenvalue
problem of the symmetric elliptic operator is to find the smallest λ ∈ R and sufficiently
smooth vλ such that

(3.1)
Avλ = λvλ in Ω,

vλ = 0 on ∂Ω,

where

Av ≡ −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂v(x)

∂xj

)
and

∫
Ω
v2
λ dx = 1. Assume the matrix {aij(x)}di, j=1 is symmetric and uniformly

positive definite and aij(x) ∈ C0,1(Ω) for i, j = 1, . . . , d. Let W = L2(Ω), (·, ·) be L2

inner product on Ω and V be the Sobolev space H1
0 (Ω), then the variational form of

(3.1) is

(3.2) a(vλ, v) ≡
d∑

i,j=1

∫
Ω

aij
∂vλ
∂xi

∂v

∂xj
dx = λ (vλ, v) ≡ λ

∫
Ω

vλv dx ∀ v ∈ V.

Let λ be the smallest eigenvalue of (3.2), it is well-known that λ is simple (see The-
orem 2 in Section 6.5 of [13]). Moreover, we assume that a(·, ·) is equivalent to the
square of the H1

0 norm, i.e.,

(3.3) |v|a ≡
(
a(v, v)

)1/2 ≈ (∫
Ω

|∇v|2 dx
)1/2

.

We construct continuous and piecewise linear element spaces V H ⊂ V h ⊂ V based
on quasi-uniform triangular partitions T H and T h, where 0 < h < H < 1 are mesh
sizes of T H and T h respectively and T h is refined by T H . By using the finite element
discretization, the variational form of (3.2) becomes

(3.4) a(vhλ, v
h) = λh (vhλ, v

h) ∀ vh ∈ V h,

where vhλ ∈ V h. Then the discrete elliptic operator Ah is defined as

(Ahvh1 , v
h
2 ) ≡ a(vh1 , v

h
2 ) ∀ vh1 , vh2 ∈ V h.

The convergence of the discrete eigenvalues can be found in [1].

Proposition 3.1. Suppose Ah and AH are discrete elliptic operators with mesh
sizes h and H respectively, then, following properties hold.

(3.5) λh− λ ≈ h2, λ̂h− λ̂ ≈ h2 and λH − λ ≈ H2,

where λ, λh and λH are the smallest eigenvalues of A, Ah and AH , λ̂ and λ̂h are the
second smallest eigenvalues of A and Ah respectively.
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From Proposition 3.1 and the variational principle of eigenvalues (see Equation 2.1
in Section 3 of [38]), the gap between λh and λH can be bounded by

(3.6) 0 ≤ λH − λh . H2.

In the rest of this paper, we take the initial point ρ0 = λH , thus 0 ≤ ρ0 − λh . H2.

3.2. Non-overlapping domain decomposition methods. Suppose Ω is di-
vided into N non-overlapping convex polygonal subdomains {Ωk}Nk=1 with diameter
no more than H and the union of the boundaries are denoted by Γ = ∪Nk=1∂Ωk. Let
WΓ = L2(Γ), (·, ·)Γ be an inner product on Γ, whose corresponding norm ‖·‖Γ is

spectral equivalent to ‖·‖L2(Γ), and VΓ = H
1/2
∗ (Γ), where u ∈ H1/2

∗ (Γ) means that the

restriction of u on ∂Ωk belongs to H1/2(Ωk) for all k = 1, . . . , N . Let

‖uh‖
H

1/2
∗ (Γ)

≡
( N∑
k=1

‖uh‖2H1/2(∂Ωk)

)1/2

,

where the scaled full-norm (see, for examples, [35, 44]) in Ωk is defined as

‖uh‖H1(Ωk) ≡
(
|uh|2H1(Ωk) +H−2‖uh‖2L2(Ωk)

)1/2
,

‖uh‖H1/2(∂Ωk) ≡
(
|uh|2H1/2(∂Ωk) +H−1‖uh‖2L2(∂Ωk)

)1/2
.

Then we can define V hΓ as the trace space of V h on Γ and V hI as the subspace of V h

whose members vanish at Γ, i.e.,

V hΓ ≡ {uh ∈ H
1/2
∗ (Γ) | ∃ vh ∈ V h, uh = Tr(vh)},

V hI ≡ {vh ∈ V h | Tr(vh) = 0},

where Tr: H1(Ω) 7→ H
1/2
∗ (Γ) is the trace map defined as Tr(v) = v. In order to define

the extension, a lemma for the coercivity of a(·, ·) in V hI is needed.

Lemma 3.2. Suppose α is the smallest eigenvalue of a(·, ·) in V hI , i.e.,

α = min
vh∈V hI

a(vh, vh)

(vh, vh)
,

then we have α & H−2.

Proof. For every vh ∈ V hI , it can be decomposed as vh =
∑N
k=1 v

h
k , where

supp(vk) ⊂ Ωk. Since a(vhi , v
h
j ) = (vhi , v

h
j ) = 0 for all i 6= j, we know

a(vh, vh)

(vh, vh)
=

∑N
k=1 a(vhk , v

h
k )∑N

k=1(vhk , v
h
k )
≥ min

1≤k≤N

a(vhk , v
h
k )

(vhk , v
h
k )
≥ min

1≤k≤N
λhk ,

where λhk refers to the smallest eigenvalue of a(·, ·) restricted on Ωk. Since the diameter
of Ωk is no more than H, then α & H−2 holds due to the Poincaré inequality.

For all ρ < α, denote aρ(·, ·) ≡ a(·, ·)− ρ (·, ·), the aρ-orthogonal space of V hI can
be defined as

V hB,ρ ≡ {vh ∈ V h | aρ(vh, vhI ) = 0, ∀ vhI ∈ V hI }.
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Then the discrete aρ-harmonic extension Hhρ : V hΓ 7→ V hB,ρ can be defined. For all

uh ∈ V hΓ , let Hhρuh be the solution of

(3.7)
aρ(Hhρuh, vhI ) = 0 ∀ vhI ∈ V hI ,

Hhρuh = uh on Γ.

Here are some propositions about the extension Hhρ (see [9]).

Proposition 3.3. The extension Hhρ is bijective since the functions in V hB,ρ are
completely determined by their values on Γ.

Proposition 3.4. For any uh ∈ V hΓ and vh ∈ V h, if uh is the trace of vh on Γ,
i.e., Tr(vh) = uh, then aρ(Hhρuh,Hhρuh) ≤ aρ(vh, vh) holds for all ρ < α.

Proposition 3.5. For any uh ∈ V hΓ and λh ≤ ρ ≤ ρ0, H‖uh‖2Γ . |Hhρuh|2a.

Lemma 3.6. Suppose D ⊂ Rd, where d = 2 or 3, is a convex polygonal domain
with unit diameter. Let

A(v1, v2) =

d∑
i,j=1

∫
D

aij(x)
∂v1

∂xi

∂v2

∂xj
− c(x) v1v2 dx

be a symmetric positive definite bilinear form on H1(D) satisfying

(3.8) A(v, v) ≈ ‖v‖2H1(D),

where aij(x) and c(x) ∈ C0,1(D) for i, j = 1, . . . , d. For all u ∈ H1/2(∂D), let Hu be
the solution of

(3.9)
A(Hu, v) = 0 ∀ v ∈ H1

0 (D),

Hu = u on ∂D,

then the following estimation holds:

‖Hu‖L2(D) . ‖u‖H−1/2(∂D).

Proof. For any v ∈ L2(D), let ψ ∈ H1
0 (D) be the solution of

A(w,ψ)− 〈∂ψ
∂ν

,w〉∂D = (v, w)L2(D) ∀w ∈ H1(D),

where

∂ψ

∂ν
=

d∑
i,j=1

aij(x) cos(n, xi)
∂ψ

∂xj

with n is the outer normal to the boundary ∂D and

〈∂ψ
∂ν

,w〉∂D =

∫
∂D

∂ψ

∂ν
w ds.

By using Aubin-Nitsche’s trick, for all u ∈ H1/2(∂D)

‖Hu‖L2(D) = sup
06=v∈L2(D)

(Hu, v)L2(D)

‖v‖L2(D)
= sup

0 6=v∈L2(D)

−〈Hu, ∂ψ∂ν 〉∂D +A(Hu, ψ)

‖v‖L2(D)
.
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Since ψ ∈ H1
0 (D) and Hu is the solution of (3.9), A(Hu, ψ) = 0, then

(3.10) ‖Hu‖L2(D) = sup
06=v∈L2(D)

−〈Hu, ∂ψ∂ν 〉∂D
‖v‖L2(D)

.

By using the Cauchy-Schwarz inequality and trace theorem,

(3.11)
∣∣∣〈Hu, ∂ψ

∂ν
〉∂D

∣∣∣ ≤ ‖u‖H−1/2(∂D)

∥∥∥∂ψ
∂ν

∥∥∥
H1/2(∂D)

. ‖u‖H−1/2(∂D)‖ψ‖H2(D).

Due to the H2 regularity (see Theorem 3.2.1.2 in [16]),

(3.12) ‖ψ‖H2(D) . ‖v‖L2(D).

By combining (3.10)–(3.12), the proof is finished.

Corollary 3.7. If the diameter of domain D is H, it can be verified that

‖Hu‖L2(D) . ‖u‖H−1/2(∂D) . H1/2‖u‖L2(∂D)

by a scaling argument and the Sobolev inequality.

The following lemma gives a finite element method version of Lemma 3.6.

Lemma 3.8. Suppose D and A are defined as Lemma 3.6. Let V hD ⊂ H1(D) be the
continuous and piecewise linear elements space based on the quasi-uniform triangular
partition TD with mesh size h and V h∂D is the trace space of V hD on ∂D. For all
uh ∈ V h∂D, let Hhuh be the solution of

(3.13)
A(Hhuh, vh) = 0 ∀ vh ∈ H1

0 (D) ∩ V hD ,
Hhuh = uh on ∂D,

then the following estimation holds:

‖Hhuh‖L2(D) . ‖uh‖H−1/2(∂D).

Proof. According to Lemma 3.6, it is enough to prove that

‖Hhuh−Huh‖L2(D) . ‖uh‖H−1/2(∂D).

By the L2 estimation for Hhuh (see Theorem 5.4.8 in [10]),

(3.14) ‖Hhuh−Huh‖L2(D) . h ‖Hhuh−Huh‖H1(D).

Since Hhuh−Huh vanishes on ∂D and Huh is the solution of (3.13),

A(Huh,Hhuh−Huh) = 0.

By using the norm equivalence (3.8) and the Cauchy-Schwarz inequality,

‖Hhuh−Huh‖2H1(D) ≈ A(Hhuh−Huh,Hhuh−Huh)

= A(Hhuh−Huh,Hhuh)

. ‖Hhuh−Huh‖H1(D)‖Hhuh‖H1(D).



CONVERGENCE ANALYSIS OF THE NEWTON-SCHUR METHOD 15

Then eliminating ‖Hhuh−Huh‖H1(D) on both sides, we have

(3.15) ‖Hhuh−Huh‖H1(D) . ‖Hhuh‖H1(D).

Since Hhuh is the solution of (3.13), by using Proposition 3.4 and the extension
theorem (see Lemma 3.77 in [30]),

(3.16) ‖Hhuh‖H1(D) . ‖uh‖H1/2(∂D).

And by combining (3.14)–(3.16),

‖Hhuh−Huh‖L2(D) . h ‖uh‖H1/2(∂D).

Since uh is piecewise linear on ∂D, by using the inverse estimation (see Theorem 4.1
and Theorem 4.6 in [12]),

‖Hhuh−Huh‖L2(D) . h ‖uh‖H1/2(∂D) . ‖uh‖H−1/2(∂D),

which finishes the proof.

Corollary 3.9. If the diameter of domain D is H, it can be verified that

‖Hhuh‖L2(D) . ‖uh‖H−1/2(∂D) . H1/2‖uh‖L2(∂D)

by a scaling argument and the Sobolev inequality.

Suppose Hhρ,kuh is the solution of

aρ(Hhρ,kuh, vhi,k) = 0 ∀ vhi,k ∈ V hI , supp(vhi,k) ⊂ Ωk,

Hhρ,kuh = uh on ∂Ωk,

then Hhρ,kuh is well-defined in Ωk and Hhρuh = Hhρ,kuh in Ωk for all 1 ≤ k ≤ N , where

Hhρuh is the solution of (3.7). In other words, the extension Hhρuh can be computed
in each subdomain by the boundary value problem separately.

Lemma 3.10. Assume λ ≤ ρ ≤ ρ0 < α, the extension operator Hρ is bounded
with norm

∣∣∣∣∣∣Hhρ ∣∣∣∣∣∣ ≡ sup
06=uh∈V hΓ

‖Hhρuh‖
‖uh‖Γ

,

and the bound for
∣∣∣∣∣∣Hhρ ∣∣∣∣∣∣ is cH, where cH . H1/2.

Proof. For all uh ∈ V hΓ , according to Corollary 3.9,

‖Hhρuh‖2 =

∫
Ω

|Hhρuh|2 dx =

N∑
k=1

∫
Ωk

|Hhρuh|2 dx =

N∑
k=1

∫
Ωk

|Hhρ,kuh|2 dx . H ‖uh‖2Γ.

Therefore cH = max
λ≤ρ≤ρ0

∣∣∣∣∣∣Hhρ ∣∣∣∣∣∣ . H1/2.

The Steklov-Poincaré operator Shρ : V hΓ 7→ (V hΓ )′ can be defined as

〈Shρuh1 , uh2 〉 ≡ aρ(Hhρuh1 ,Hhρuh2 ),



16 NIAN SHAO AND WENBIN CHEN

and the eigenvalue problem on Γ is

(3.17) 〈Shρuhρ , uh〉 = θhρ (uhρ , u
h)Γ ∀uh ∈ V hΓ .

Now we can use Algorithm 1 to calculate the elliptic eigenvalue problem (3.1).

Remark 3.11. Suppose {φj}nj=1 is the basis of V hΓ , then the discrete L2 inner
product on Γ can be defined as

(u, u∗)l2(Γ) ≡ hd−1
n∑
j=1

uju
∗
j

for u =
∑n
j=1 ujφj and u∗ =

∑n
j=1 u

∗
jφj . Since ‖u‖L2(Γ) ≈ ‖u‖l2(Γ) (see Equation 2.2

in [8]), the convergence analysis also holds for the discrete L2 norm. Moreover, the
mass matrix for (3.17) becomes a scalar matrix, which makes it easy to compute.

Lemma 3.12. For all λh ≤ ρ ≤ ρ0, ‖Hhρuhρ‖ ≈ H1/2‖uhρ‖Γ.

Proof. On the one hand, by Lemma 3.10, we have ‖Hhρuhρ‖ . H1/2‖uhρ‖Γ. On the

other hand, since uhρ is the eigenvector of (3.17) and θhρ ≤ 0,

aρ(Hhρuhρ ,Hhρuhρ) = 〈Shρuhρ , uhρ〉 = θhρ‖uhρ‖2Γ ≤ 0.

The lemma is obtained by using Proposition 3.5.

3.3. Convergence analysis. In order to analyze the convergence factor of Al-
gorithm 1, some estimations on the eigenvalue of Shρ should be calculated first. Similar
to Lemma 3.10, a bounded bijective extension Hρ from VΓ to VB,ρ can be defined as

(3.18)
aρ(Hρu, vI) = 0 ∀ vI ∈ VI ,

Hρu = u on Γ,

where VΓ is the trace space of V on Γ, and VI is the subspace of V whose members
vanish at Γ and VB,ρ is the aρ-orthogonal space of VI , i.e.,

VI ≡ {v ∈ V | Tr(v) = 0},
VB,ρ ≡ {v ∈ V | aρ(v, vI) = 0, ∀ vI ∈ VI}.

The Steklov-Poincaré operator Sρ : VΓ 7→ (VΓ)′ can be defined as

〈Sρu1, u2〉 ≡ aρ(Hρu1,Hρu2),

and its eigenvalue problem is

〈Sρuρ, u〉 = θρ (uρ, u)Γ ∀u ∈ VΓ.

Now we can generalize Theorem 3.1 in [1] to estimate the gap between eigenvalues of
Sρ and Shρ .

Lemma 3.13. Suppose θh1 ≤ θh2 ≤ θh3 and θ1 < θ2 ≤ θ3 are the smallest three
eigenvalues of Shρ and Sρ respectively, where λh ≤ ρ ≤ ρ0, then

lim
h→0
|θhj − θj | = 0 j = 1, 2, 3.
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Proof. Since θ2 may be equal to θ3, we need to consider both cases. According
to the well-known variational principles of eigenvalue (see Theorem 2.3 in Section 3
of [38]), for j = 1, 2, 3,

(3.19) θj = min
Uj⊂VΓ

dimUj=j

max
u∈Uj

〈Sρu, u〉
(u, u)Γ

and θhj = min
Uhj ⊂V

h
Γ

dimUhj =j

max
uh∈Uhj

〈Shρuh, uh〉
(uh, uh)Γ

.

Suppose the first minimal of θj and θhj in (3.19) are reached by Uj and Uhj respectively.
Let

(3.20) θ̄hj ≡ max
uh∈Uhj

〈Sρuh, uh〉
(uh, uh)Γ

,

then the error |θj − θhj | can be decomposed as

(3.21)

|θj − θhj | ≤ |θj − θ̄hj |+ |θ̄hj − θhj |

≤
∣∣∣max
u∈Uj

〈Sρu, u〉
(u, u)Γ

− max
uh∈Uhj

〈Sρuh, uh〉
(uh, uh)Γ

∣∣∣+ max
uh∈Uhj

∣∣∣ 〈Sρuh, uh〉 − 〈Shρuh, uh〉
(uh, uh)Γ

∣∣∣.
For the first term, it can be regarded as the error between the eigenvalue of Sρ in VΓ

and V hΓ . Let

〈Sρ,βu1, u2〉 ≡ 〈Sρu1, u2〉+ β (u1, u2)Γ,

it is obvious that eigenvalues of Sρ,β are eigenvalues of Sρ plus β in both VΓ and V hΓ ,
so it is enough to analyze the error between the eigenvalue of Sρ,β in VΓ and V hΓ .
When β = ρ0 c

2
H +H−1, by the trace theorem and the norm equivalence (3.3),

‖u‖2
H

1/2
∗ (Γ)

.
N∑
k=1

|u|2H1/2(∂Ωk) +
1

H
‖u‖2Γ . |Hρu|2a + (β − ρ |||Hρ|||2) ‖u‖2Γ

≤ |Hρu|2a + β ‖u‖2Γ = 〈Sρ,βu, u〉.

On the other hand, by the definition of aρ(·, ·), Proposition 3.4 and (3.3),

〈Sρ,βu, u〉 = aρ(Hρu,Hρu) + β (u, u)Γ ≤ aρ(Hu,Hu) + β ‖u‖2Γ

≤ |Hu|2a + β ‖u‖2Γ ≈
N∑
k=1

|Hu|2H1(Ωk) + β ‖u‖2Γ

.
N∑
k=1

|u|2H1/2(∂Ωk) + β ‖u‖2Γ . ‖u‖2
H

1/2
∗ (Γ)

,

where Hu is an extension satisfying |Hu|H1(Ωk) . |u|H1/2(∂Ωk) for all 1 ≤ k ≤ N (see

Lemma 3.78 in [30]). So Sρ,β is bounded in H
1/2
∗ (Γ). Let

‖u‖β ≡
(
〈Sρ,βu, u〉

)1/2 ≈ ‖u‖
H

1/2
∗ (Γ)

,

by using the Theorem 3.1 in [1],

(3.22)
∣∣∣(max

u∈Uj

〈Sρu, u〉
(u, u)Γ

− max
uh∈Uhj

〈Sρuh, uh〉
(uh, uh)Γ

)∣∣∣ . δ2
j,h,
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where

δj,h = inf
u∈M(θj)
‖u‖β=1

inf
uh∈V hΓ

‖u− uh‖β j = 1, 2,

and

δ3,h =


inf

u∈M(θ3)
‖u‖β=1

inf
uh∈V hΓ

‖u− uh‖β if θ2 6= θ3,

inf
u∈M(θ2)
‖u‖β=1

(u,u2)β=0

inf
uh∈V hΓ

‖u− uh‖β if θ2 = θ3,

where u2 is the choice of the first infimum of δ2,h and M(θj) is the eigenspace corre-
sponding to θj . Due to Theorem 3.2.3 of [11], we have limh→0 δj,h = 0, thus, the first
term in (3.21) goes to zeros as h→ 0, i.e.,

(3.23) lim
h→0
|θj − θ̄hj | = 0.

For the second term,

〈Sρuh, uh〉 − 〈Shρuh, uh〉 = aρ(Hρuh−Hhρuh,Hρuh+Hhρuh).

Since Hρuh−Hhρuh vanishes on Γ, due to Hρuh is the solution of (3.18),

aρ(Hρuh−Hhρuh,Hρuh) = 0.

Since aρ(·, ·) is positive definite on VI , combining these two equations above, we have

(3.24)

∣∣∣ 〈Sρuh, uh〉 − 〈Shρuh, uh〉 ∣∣∣ =
∣∣∣ aρ(Hρuh−Hhρuh,Hρuh+Hhρuh)

∣∣∣
=
∣∣∣ aρ(Hρuh−Hhρuh,−Hρuh+Hhρuh)

∣∣∣
= aρ(Hρuh−Hhρuh,Hρuh−Hhρuh).

Similar to Céa’s lemma, for all vh ∈ V hB,ρ with trace uh on Γ,

(3.25) aρ(Hρuh−Hhρuh,Hρuh−Hhρuh) ≤ aρ(Hρuh− vh,Hρuh− vh) . |Hρuh− vh|2H1

due to the norm equivalence (3.3) and the Poincaré inequality. Combining (3.21),
(3.24), and (3.25) we know

(3.26)

|θ̄hj − θhj | . max
uh∈Uhj

inf
vh∈V hB,ρ

|Hρuh− vh|2H1

‖uh‖2Γ

= max
uh∈Uhj

{ |Hρuh|2H1

‖uh‖2Γ
inf

vh∈V hB,ρ

|Hρuh− vh|2H1

|Hρuh|2H1

}
.

According to the definition of θ̄hj (3.20) and the norm equivalence (3.3),

θ̄hj ≥
〈Sρuh, uh〉
(uh, uh)Γ

=
aρ(Hρuh,Hρuh)

(uh, uh)Γ
≈
|Hρuh|2H1 − ρ‖Hρuh‖2

‖uh‖2Γ
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for all uh ∈ Uhj . So

(3.27)
|Hρuh|2H1

‖uh‖2Γ
. θ̄hj + ρ0H . θj + δ2

j,h + ρ0H

due to Lemma 3.10 and (3.22). By combining (3.26) and (3.27),

(3.28) lim
h→0
|θ̄hj − θhj | . lim

h→0

(
max
uh∈Uhj

{ |Hρuh|2H1

‖uh‖2Γ
inf

vh∈V hB,ρ

|Hρuh− vh|2H1

|Hρuh|2H1

})
= 0.

Combining (3.23) and (3.28), we finish the proof.

Corollary 3.14. Let (θhλ)(j) and θ
(j)
λ be the jth smallest eigenvalue of Shλ and

Sλ respectively, then

lim
h→0
|chs − cs| = 0,

where chs =
(θhλ)(2)

(θhλ)(3) and cs =
θ
(2)
λ

θ
(3)
λ

.

Now we can give the convergence factor for Algorithm 1.

Theorem 3.15. Suppose that the coarse mesh size H is small enough, there exists
a constant C independent of h and H such that

εN ≤ Cε2,

where ε and εN are errors of the eigenvalue before and after one iteration.

Proof. This proof is mainly based on Corollary 2.12. First, some conditions in
Lemma 2.11 need to be verified. According to Proposition 3.5, the constant ct in
Lemma 2.11 satisfies ct & H. Due to Proposition 3.1, Lemma 2.11, and Corollary 3.14,
the constant cg satisfies

(3.29)

cg = min
ρ∈(λh, ρ0)

(
θ(3)
ρ − θ(2)

ρ

)
≥ λ̂h− ρ0

λ̂h
chs ct

=
λ̂− λ+ (λ̂h− λ̂) + (λ− ρ0)

λ̂+ (λ̂h− λ̂)
chs ct

&
λ̂− λ+ h2 +H2

λ̂+ h2
csH & H.

By using Lemmas 3.2 and 3.10, Theorem 2.9, and Proposition 3.1, the convergence
factor is bounded by

(3.30)
εN
ε2
≤ 1

α− ρ0
+
c2H
cg

. H2 + 1,

which finishes the proof.

3.4. A sharper bound for the convergence factor. After carefully checking
the numerical results in next section, we find the estimation in Theorem 3.15 can be
further improved. In this part, we will give a sharper estimation for the convergence
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factor by using a special norm ‖·‖Γ on Γ, which is spectral equivalent to ‖·‖L2(Γ). Let

V hΓ,ρ be the Shρ -orthogonal space of uhρ in V hΓ , for all uh ∈ V hΓ,ρ, we have

〈Shρuh, uh〉 − θhρ (uh, uh)Γ & H (uh, uh)Γ

due to the estimation for cg in (3.29). In V hΓ,ρ, the operator (Shρ − θhρ )−1 is symmetric

positive definite, and it is spectral equivalent to (Sh0 )−1, which means

(3.31)
〈
(Shρ − θhρIh)−1uh, uh

〉
≈
〈
(Sh0 )−1uh, uh

〉
holds for all uh ∈ V hΓ,ρ, where Ih is the identity operator in V hΓ . Now we need some
important results in non-overlapping domain decomposition methods, whose detailed
proof can be found in many papers and books, for examples, [30, 35,44].

Proposition 3.16. For Ω ∈ Rd, where d = 2 or 3, there exists a decomposition

V hΓ = RT
HV

H
Γ +

nl∑
i=1

RT
i V

i
Γ,

where RT
H and RT

i ’s are interpolation operators, such that following properties hold.
• The space RT

HV
H
Γ is a global coarse space, and all functions in RT

HV
H
Γ are

linear in coarse meshes. Other spaces, i.e., RT
i V

i
Γ’s, are local spaces.

• Let Mh be the preconditioner defined as

Mh ≡ RT
H(RHS

h
0R

T
H)−1RH +

nl∑
i=1

RT
i (RiS

h
0R

T
i )−1Ri,

then for all uh ∈ V hΓ ,

〈Sh0 uh, uh〉 .
(
1 + ln(H/h)

)2〈Sh0 uh,MhSh0 u
h〉.

• For all uh ∈ VΓ,

(3.32) 〈Mhuh, uh〉 . H−1‖RHuh‖2∗ +H‖uh‖2Γ,

where ‖RHuh‖∗ is defined as

‖RHuh‖∗ ≡ sup
06=uhH∈RT

HV
H
Γ

(uh, uhH)Γ

‖uhH‖Γ
.

Remark 3.17. The estimation (3.32) can be obtained by the Poincaré inequality
and scaling arguments when RT

i V
i
Γ’s are local spaces with diameters no more than H.

Let QH be the L2(Γ) projection from V hΓ to RT
HV

H
Γ , i.e.,

(3.33) (QHu
h, uhH)L2(Γ) = (uh, uhH)L2(Γ) ∀uhH ∈ RT

HV
H
Γ .

From the definition we know

(3.34) ‖RHrhρ‖∗ = sup
06=uhH∈RT

HV
H
Γ

(rhρ , u
h
H)Γ

‖uhH‖Γ
= ‖QHrhρ‖Γ.



CONVERGENCE ANALYSIS OF THE NEWTON-SCHUR METHOD 21

Now, we can define a bilinear form (·, ·)Γ as follows:

(3.35) (uh1 , u
h
2 )Γ ≡ H−1(Hh0QHuh1 ,Hh0QHuh2 ) + (uh1 −QHuh1 , uh2 −QHuh2 )L2(Γ).

It can be verified that (·, ·)Γ is an inner product on V hΓ . Moreover, QH is also a
(·, ·)Γ- projection, and

(3.36) H1/2‖QHuh‖Γ = ‖Hh0QHuh‖

holds for all uh ∈ V hΓ , where ‖·‖Γ is the norm corresponding to (·, ·)Γ.

Lemma 3.18. For all uh ∈ V hΓ , ‖uh‖Γ ≈ ‖uh‖L2(Γ).

Proof. By (3.35), it is sufficient to prove that for all uhH ∈ RT
HV

h
Γ ,

‖uhH‖L2(Γ) ≈ ‖uhH‖Γ = H−1/2‖Hh0uhH‖.

On the one hand, by Lemma 3.10, we have

‖Hh0uhH‖ . H1/2‖uhH‖L2(Γ).

On the other hand, according to Theorem 1.6.6 of [10] and the Cauchy-Schwarz in-
equality,

‖uhH‖2L2(Γ) .
N∑
k=1

‖Hh0uhH‖L2(Ωk)‖Hh0uhH‖H1(Ωk)

≤ ‖Hh0uhH‖(|Hh0uhH |2H1 +H−2‖Hh0uhH‖2)1/2.

By the inverse estimation, Proposition 3.4 and (3.3),

|Hh0uhH |2H1 .
N∑
k=1

|uhH |2H1/2(∂Ωk) . H−1‖uhH‖2L2(Γ).

Combining these two inequalities above, we have

‖uhH‖L2(Γ) . H−1/2‖Hh0uhH‖,

which finishes the proof.

Lemma 3.19. Let ΠH denote the interpolation operator associated with the coarse
space RT

HV
H
Γ , for all λh ≤ ρ ≤ ρ0,∣∣‖ΠHu

h
ρ‖Γ − ‖uhρ‖Γ

∣∣ . H‖uhρ‖Γ.

Proof. By the estimation of interpolation and the trace theorem, we have

∣∣‖ΠHu
h
ρ‖Γ − ‖uhρ‖Γ

∣∣2 ≤ ‖ΠHu
h
ρ − uhρ‖2Γ . H

N∑
k=1

|uhρ |2H1/2(∂Ωk) . H |Hhρuhρ |2H1(Ω).

According to (3.3) and Lemma 3.10,

|Hhρuhρ |2H1 . |Hhρuhρ |2a = θhρ‖uhρ‖2Γ + ρ‖Hhρuhρ‖2 . H ‖uhρ‖2Γ.

The lemma is proved by combining these two inequalities above.
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Corollary 3.20. Since QH is a projection,
∣∣‖QHuhρ‖Γ − ‖uhρ‖Γ∣∣ . H‖uhρ‖Γ.

Lemma 3.21. By using notations in Theorem 2.9, in the finite element space,〈
(Shρ − θhρIh)(uhρ)′, (uhρ)′

〉
. H2

(
1 + ln(H/h)

)2∥∥vhρ∥∥2

holds for all λh ≤ ρ ≤ ρ0, where vhρ = Hhρuhρ and ‖uhρ‖Γ = 1.

Proof. Let rhρ = (θhρ )′uhρ − (Shρ )′uhρ , according to (3.31) and (3.34) and Proposi-
tion 3.16, we have〈

(Shρ − θhρIh)(uhρ)′, (uhρ)′
〉

=
〈
(Shρ − θhρIh)−1rhρ , r

h
ρ

〉
≈
〈
(Sh0 )−1rhρ , r

h
ρ

〉
=
〈
Sh0 (Sh0 )−1rhρ , (S

h
0 )−1rhρ

〉
.
(
1 + ln(H/h)

)2〈
Mhrhρ , r

h
ρ

〉
.
(
1 + ln(H/h)

)2(
H−1‖QHrhρ‖2Γ +H ‖rhρ‖2Γ

)
.

By Lemmas 2.4 and 3.12 and Proposition 2.3,

‖rhρ‖Γ ≤ |(θhρ )′|‖uhρ‖Γ + ‖vhρ‖
∣∣∣∣∣∣Hhρ ∣∣∣∣∣∣ . H.

Combining these two inequalities above, we have

(3.37)
〈
(Shρ − θhρIh)(uhρ)′, (uhρ)′

〉
.
(
1 + ln(H/h)

)2(
H−1‖QHrhρ‖2Γ +H3

)
.

According to Proposition 2.3, Lemma 3.10, and Corollary 3.20,

(3.38)
‖QHrhρ‖Γ ≤

∥∥(θhρ )′QHu
h
ρ −QH(Shρ )′QHu

h
ρ

∥∥
Γ

+
∥∥QH(Shρ )′(uhρ −QHuhρ)

∥∥
Γ

.
∥∥(θhρ )′QHu

h
ρ −QH(Shρ )′QHu

h
ρ

∥∥
Γ

+H2.

For the first term, due to Lemmas 2.2 and 3.10,

(3.39)

∥∥(θhρ )′QHu
h
ρ −QH(Shρ )′QHu

h
ρ

∥∥
Γ

≤
∥∥(θhρ )′QHu

h
ρ −QH(Sh0 )′QHu

h
ρ

∥∥
Γ

+
∥∥QH((Sh0 )′ − (Shρ )′

)
QHu

h
ρ

∥∥
Γ

.
∥∥(θhρ )′QHu

h
ρ −QH(Sh0 )′QHu

h
ρ

∥∥
Γ

+H3.

By Proposition 2.3 and (3.35)

(3.40)

∥∥(θhρ )′QHu
h
ρ −QH(Sh0 )′QHu

h
ρ

∥∥2

Γ

=
(
(θhρ )′

)2‖QHuhρ‖2Γ + 2(θhρ )′‖Hh0QHuhρ‖2 + sup
06=uh∈V hΓ

∣∣(Hh0QHuhρ ,Hh0QHuh)
∣∣2

‖uh‖2Γ

≤
((

(θhρ )′
)2

+ 2(θhρ )′H +H2
)
‖QHuhρ‖2Γ ≤

(
(θhρ )′ +H

)2
.

Using Lemmas 2.2, 2.4 and 3.10 and (3.36), we know that

(3.41)

∣∣(θhρ )′ +H
∣∣ ≤∣∣‖Hhρuhρ‖2 − ‖HhρQHuhρ‖2∣∣+

∣∣‖HhρQHuhρ‖2 − ‖Hh0QHuhρ‖2∣∣
+H

∣∣‖QHuhρ‖2Γ − ‖uhρ‖2Γ∣∣ . H2.

Thus the lemma is proved by Lemma 3.12 and (3.37)–(3.41).

Combining Lemma 3.21 with Theorem 2.9, we obtain a sharper estimation for
the convergence factor.
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Theorem 3.22. Suppose the coarse mesh size H is small enough, if the inner
product (·, ·)Γ is defined as (3.35), there exists a constant C independent of h and H
such that

εN ≤ CH2
(
1 + ln(H/h)

)2
ε2,

where ε and εN are errors of the eigenvalue before and after one iteration.

Remark 3.23. In this part, we only prove that when (·, ·)Γ is defined as (3.35), the
rate of convergence is εN ≤ CH2(1 + ln(H/h))2ε2. For other inner products, whose
corresponding norms are spectral equivalent to ‖·‖L2(Γ), whether similar results can be
obtained is still unknown. We do not know similar results before, and the discussions
along this direction is quite interesting.

4. Numerical experiments. In this section, we present some numerical results
to support our theoretical analysis above. We compute some second order symmetric
elliptic eigenvalue problems in 2D and 3D by Algorithm 1. Assume Kh and Mh

are the stiffness matrix and mass matrix generated by the finite element method as
section 3 respectively. Due to the non-overlapping domain decomposition method,
Kh and Mh can be partitioned as

Kh =

[
Kh
II Kh

IB

Kh
BI Kh

BB

]
and Mh =

[
Mh

II Mh
IB

Mh
BI Mh

BB

]
,

where Kh
IB = (Kh

BI)
T and Mh

IB = (Mh
BI)

T, indices I are associated with the nodes
in ∪Ni=1Ωi while B are associated with the nodes on Γ. Let

(4.1) Shρ ≡ (Kh
BB − ρMh

BB)− (Kh
BI − ρMh

BI) (Kh
II − ρMh

II)
−1(Kh

IB − ρMh
IB),

the eigenvalue problem Khvh = λh Mhvh can be rewritten as Shλhu
h = 0, where uh

is the restriction of vh on Γ. Suppose Mh
Γ = hd−1 IhΓ is the mass matrix on Γ, where

Ih is identity matrix on Γ, the nonlinear eigenvalue problem can be written as

(4.2) Shρu
h
ρ = θhρ Mh

Γuhρ .

By defining the extension operator from Γ to Ω as

Hh
ρ =

[
−(Kh

II − ρMh
II)
−1(Kh

IB − ρMh
IB)

Ih

]
,

we get the matrix version of Algorithm 1. Our numerical experiments were performed
in Matlab 2020b, the real solution λh is calculated from solving the smallest eigenvalue
of (Kh,Mh) by the MATLAB function “eigs” with tolerance 10−15, the stopping
criterion is chosen as ε < 10−12 and the subproblem (4.2) is solved by the Matlab
function “eigs” with tolerance 10−12. Let ρk and ηk be the approximated eigenvalue
and convergence factor after k steps of Newton’s method respectively, i.e.,

εk = ρk − λh and ηk =
εk+1

ε2k
.

In our experiments, Algorithm 1 converges after few steps, so we only consider η0.
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(a) 3D case (b) 2D L-shaped case

Fig. 4.1: A partition for non-overlapping domain decomposition. Red points are nodes
for coarse mesh. Meshes in T h with same color belong to a same subdomain.

4.1. The Laplacian eigenvalue problem in 3D. In this subsection, the do-
main Ω is the unit cube [0, 1]3 in 3D, and a partition is shown in Figure 4.1a. We
consider the relationship between the convergence factor η and the fine mesh size h
or the coarse mesh size H separately. For the relationship with the fine mesh size,
the coarse mesh size is fixed as H = 2−1 and fine mesh sizes h are chosen as 2−j for
j = 2, . . . , 5. For the relationship with the coarse mesh size, the fine mesh size is fixed
as h = 2−5 and the coarse mesh sizes H are chosen as 2−j for j = 1, . . . , 4. Table 4.1
and Figure 4.2 show that the Newton-Schur method converges quadratically. We can
see that the convergence factor η0 decreases in O(H2) from Figure 4.3, which means
the logarithmic factor may be removed.

h ε0 ε1 ε2 ε3 ε4 ε5
2−2 0.6000 0.0220 2.5235e-05 3.2885e-11 3.7896e-16

√

2−3 0.9031 0.1442 0.0030 1.2326e-06 2.1061e-13
√

2−4 0.9943 0.2411 0.0119 2.7295e-05 1.4354e-10 4.3693e-15
2−5 1.0183 0.2799 0.0183 7.4511e-05 1.2260e-09 2.2229e-14

(a) Various fine mesh sizes

H ε0 ε1 ε2 ε3 ε4 ε5
2−1 1.0183 0.2799 0.0183 7.4511e-05 1.2260e-09 2.2229e-14
2−2 0.2614 0.0029 3.5313e-07 2.7726e-14

√ √

2−3 0.0605 2.7729e-05 5.8386e-12 2.2946e-14
√ √

2−4 0.0120 1.0350e-07 2.1750e-14
√ √ √

(b) Various coarse mesh sizes

Table 4.1: Relative errors for approximated eigenvalues by Algorithm 1 for the 3D
Laplacian eigenvalue problem. The “

√
” entry means that the algorithm converged.
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Fig. 4.2: Convergence history of the 3D Laplacian eigenvalue problem. The green
dashed lines are references lines with y0 = 0.3.
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Fig. 4.3: Convergence factor for the 3D Laplacian eigenvalue problem.

4.2. The Laplacian eigenvalue problem on a 2D L-shaped domain. In
this subsection, the domain Ω is an L-shaped domain in 2D, which is shown in Fig-
ure 4.1b. Similar to the previous subsection, we also consider the relationship between
the convergence factor η and the fine mesh size h or the coarse mesh size H separately.
For the relationship with the fine mesh size, the coarse mesh size is fixed as H = 2−2

and fine mesh sizes h are chosen as 2−j for j = 3, . . . , 9. For the relationship with the
coarse mesh size, the fine mesh size is fixed as h = 2−8 and the coarse mesh sizes H are
chosen as 2−j for j = 2, . . . , 6. Table 4.2 and Figure 4.4 show that the Newton-Schur
method converges quadratically. We can see that the convergence factor η0 decreases
in O(H2) from Figure 4.5, which is similar to the 3D case, even though the domain
Ω is no longer convex.

5. Conclusions. In this paper, we study the Newton-Schur method in Hilbert
space and obtain some sufficient conditions for quadratic convergence. Moreover, we
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h ε0 ε1 ε2 ε3
2−3 0.0811 5.5397e-04 2.5657e-08 1.7824e-16
2−4 0.1061 0.0011 1.2506e-07 1.4172e-16
2−5 0.1139 0.0014 2.0185e-07 2.0201e-15
2−6 0.1164 0.0015 2.4069e-07 1.4172e-14
2−7 0.1172 0.0015 2.5877e-07 6.8337e-14
2−8 0.1175 0.0015 2.6718e-07 2.8761e-13
2−9 0.1176 0.0016 2.7114e-07 1.1677e-12

(a) Various fine mesh sizes

H ε0 ε1 ε2 ε3
2−2 0.1175 0.0015 2.6718e-07 2.8761e-13
2−3 0.0337 2.8695e-05 2.0531e-11 2.9258e-13
2−4 0.0103 6.5277e-07 2.9424e-13

√

2−5 0.0033 1.5976e-08 3.0769e-13
√

2−6 0.0010 3.6742e-10 2.9516e-13
√

(b) Various coarse mesh sizes

Table 4.2: Relative errors for approximated eigenvalues by Algorithm 1 for the 2D
Laplacian eigenvalue problem on an L-shaped domain. The “

√
” entry means that

the algorithm converged.
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Fig. 4.4: Convergence history of the 2D Laplacian eigenvalue problem on an L-shaped
domain. The black dashed lines are references lines with y0 = 0.01.

analyze the Newton-Schur method for symmetric elliptic eigenvalue problems dis-
cretized by the standard finite element method and non-overlapping domain de-
composition method. Theoretical analysis shows that the rate of convergence is
εN ≤ CH2(1 + ln(H/h))2ε2, which is supported by our numerical results.
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Fig. 4.5: Convergence factor for the 2D Laplacian eigenvalue problem on an L-shaped
domain.
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