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UNBIASED MLMC-BASED VARIATIONAL BAYES FOR

LIKELIHOOD-FREE INFERENCE∗

ZHIJIAN HE† , ZHENGHANG XU‡ , AND XIAOQUN WANG§

Abstract. Variational Bayes (VB) is a popular tool for Bayesian inference in statistical model-
ing. Recently, some VB algorithms are proposed to handle intractable likelihoods with applications
such as approximate Bayesian computation. In this paper, we propose several unbiased estimators
based on multilevel Monte Carlo (MLMC) for the gradient of Kullback-Leibler divergence between
the posterior distribution and the variational distribution when the likelihood is intractable, but can
be estimated unbiasedly. The new VB algorithm differs from the VB algorithms in the literature
which usually render biased gradient estimators. Moreover, we incorporate randomized quasi-Monte
Carlo (RQMC) sampling within the MLMC-based gradient estimators, which was known to provide
a favorable rate of convergence in numerical integration. Theoretical guarantees for RQMC are pro-
vided in this new setting. Numerical experiments show that using RQMC in MLMC greatly speeds
up the VB algorithm, and finds a better parameter value than some existing competitors do.

Key words. Multilevel Monte Carlo, quasi-Monte Carlo, variational Bayes, intractable likeli-
hood, nested simulation
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1. Introduction. In this article, we are interested in variational Bayes (VB),
which is widely used as a computationally effective method for approximating the
posterior distribution of a Bayesian problem. Let y∗ be the observed data and θ ∈ Rp

be the parameter of interest. The posterior distribution p(θ|y∗) ∝ p(θ)p(y∗|θ), where
p(θ) is the prior and p(y∗|θ) is the likelihood function. VB approximates the pos-
terior by a tractable distribution q(θ) within certain distribution families, chosen to
minimize the Kullback-Leibler (KL) divergence between the VB distribution q(θ) and
the posterior p(θ|y∗). The optimization problem is usually solved by using the sto-
chastic gradient decent (SGD) algorithm [8]. It calls for computing the gradient of
the KL divergence. A difficulty with SGD is that plain Monte Carlo (MC) sampling
to estimate the gradient can be error prone or inefficient. Some variance reduction
methods have been adopted to improve SGD [24, 29]. On the other hand, randomized
quasi-Monte Carlo (RQMC) methods have been used to improve SGD in the VB set-
ting [4]. Recently, Liu and Owen [23] combined RQMC with a second order limited
memory method known as L-BFGS for VB. RQMC methods such as scrambled digital
nets proposed by [26] were known to provide a favorable rate of convergence in nu-
merical integration [27]. Improved sampling accuracy translates directly to improved
optimization as shown in [4, 23].

A second difficulty with SGD is due to the absence of the likelihood function
p(y∗|θ). In many applications, the likelihood function is intractable making it difficult
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to render an unbiased gradient estimator of the KL divergence. For example, the
likelihood is an intractable high-dimensional integral over the state variables governed
by a Markov process in state space-space models [9]. More examples can be found
in the context of approximate Bayesian computation (ABC). ABC methods provide
a way of approximating the posterior p(θ|y∗) when the likelihood function is difficult
to compute but it is possible to simulate data from the model [30, 34].

Likelihood-free inference is an active area in Bayesian computation. There are
some progresses on using VB in the likelihood-free context. Barthelmé and Chopin
[2] used a variational approximation algorithm known as expectation propagation in
approximating ABC posteriors. Tran et al. [35] developed a new VB with intractable
likelihood (VBIL) method, which can be applied to commonly used statistical models
without requiring an analytical solution to model-based expectations. Ong et al.
[25] modified the VBIL method to work with unbiased log-likelihood estimates in
the synthetic likelihood framework, resulting in the VB synthetic likelihood (VBSL)
method.

We focus on the problems in which the likelihoods are formulated as an intractable
expectation. The KL divergence turns out to be a nested expectation and so does its
gradient. It is natural to use nested simulation for estimating these quantities. How-
ever, the plain nested estimator is biased. It is critical to develop unbiased gradient
estimators for stochastic gradient-based optimization algorithms. To this end, we use
the unbiased multilevel Monte Carlo (MLMC) proposed by [33] in the framework of
nested simulation. MLMC is a sophisticated variance reduction technique introduced
by [19] for parametric integration and by [12] for the estimation of the expectations
arising from stochastic differential equations. Nowadays MLMC methods have been
extended extensively. For a thorough review of MLMC methods, we refer to [13].
Nested simulation combined with the MLMC method has been widely studied in the
literature due to its broad applicability [5, 14, 15, 17].

In this paper, we develop an unbiased nested MLMC-based VB method to deal
with intractable likelihoods. Our work is related to [18], who developed an unbiased
MLMC stochastic gradient-based optimization method for Bayesian experimental de-
signs. Our proposed VB algorithm finds a better parameter value and a larger evidence
lower bounded (ELBO) thanks to unbiased gradient and ELBO estimators. This leads
to a better estimate of the marginal likelihood p(y∗) compared to the VBIL method,
which is an important factor in model selection. We also incorporate the RQMC
sampling within the gradient and the ELBO estimators, which reduces the compu-
tational complexity effectively. Goda et al. [18] worked on the MC sampling rather
than RQMC. We provide some numerical analysis for both MC and RQMC settings.

The rest of this paper is organized as follows. In Section 2, we review some
VB methods with intractable likelihoods, such as VBIL and VBSL, and illuminate
their limitations. In Section 3, we provide our unbiased MLMC methods for VB
and discuss two different estimators of gradient, which are the score function gra-
dient and re-parameterization gradient. In Section 4, we provide the details of our
algorithms when using Gaussian variational family in VB. In Section 5, we improve
the algorithms by incorporating RQMC and do some numerical analysis. Finally, in
Section 6, some numerical experiments are conducted to support the advantages of
our proposed methods. Section 7 concludes this paper.
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2. Variational Bayes with an intractable likelihood. Recall that our target
is to estimate the posterior distribution

(2.1) p(θ|y∗) = p(θ)p(y∗|θ)
p(y∗)

,

where p(y∗) =
∫
p(θ)p(y∗|θ)dθ is usually an unknown constant (called the marginal

likelihood or evidence). In many applications such as state-space models and ABC,
the likelihood is analytically intractable. For these cases, the likelihood p(y∗|θ) is
usally formulated as an expectation

(2.2) p(y∗|θ) = E[f(x; y∗)|θ],

where x ∼ p(x|θ) is the latent variable.
Suppose that there exists an unbiased estimator p̂N (y∗|θ) for the intractable like-

lihood p(y∗|θ) for given θ, where N is an algorithmic parameter relating to the preci-
sion in estimating the likelihood. For estimating (2.2), one can take the sample-mean
estimator

(2.3) p̂N (y∗|θ) = 1

N

N∑

i=1

f(xi; y
∗),

where xi are iid copies of x for a given θ. In this paper, we restrict our attention to
the sample-mean estimator (2.3). We should note that for the state-space models, the
likelihood can be unbiasedly estimated by an importance sampling estimator [10], or
by a particle filter estimator [31]. The later case does not fit into our framework.

VB approximates the posterior distribution p(θ|y∗) by a tractable density qλ(θ)
with a variational parameter λ, chosen to minimize the KL divergence from qλ(θ) to
p(θ|y∗), which is defined by

KL(λ) = KL(qλ(θ)||p(θ|y∗)) = Eqλ(θ)[log qλ(θ)− log p(θ|y∗)].

Using (2.1), we have
log p(y∗) = KL(λ) + L(λ),

where L(λ) is defined by

L(λ) = Eqλ(θ)[log p(y
∗|θ) + log p(θ)− log qλ(θ)].

Since KL(λ) ≥ 0, L(λ) is a lower bound of the log-evidence log p(y∗), which is called
the ELBO. The minimization of KL is translated to the maximization of the ELBO
since the marginal likelihood p(y∗) is fixed. The problem turns out to solve

λ∗ = argmax
λ∈Λ

L(λ),

where Λ is the feasible region of λ. Stochastic gradient method and its variants are
widely used to solve such a problem. They use a sequence of steps

λ(t+1) = λ(t) + ρt∇λL(λ
(t)),

where ∇λL(λ) is gradient of the ELBO and ρt > 0 is the learning rate satisfying
the Robbins-Monro conditions:

∑∞
t=0 ρt = ∞ and

∑∞
t=0 ρ

2
t < ∞. A simple choice is
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ρt = a/(t + b) for some constants a, b > 0. Some adaptive methods for choosing the
learning rate ρt were proposed in the literature, notably AdaGrad [7] and Adam [20].

The key in stochastic gradient methods is to estimate the gradient∇λL(λ) unbias-
edly. In the literature, the re-parameterization (RP) trick [21] and the score function
(SF) are two popular methods to derive unbiased gradient estimators. Allowing the
interchange of differentiation and expectation as required in the SF method, we have

∇λL(λ) = ∇λEqλ(θ)[log p(y
∗|θ) + log p(θ)− log qλ(θ)]

= Eqλ(θ)[∇λ log qλ(θ)(log p(y
∗|θ) + log p(θ)− log qλ(θ))],

where we used the fact that Eqλ(θ)[∇λ log qλ(θ)] = 0. If the likelihood function p(y∗|θ)
is known, it is straightforward to derive an unbiased estimator for ∇λL(λ) by sam-
pling θ ∼ qλ(θ) repeatedly. However, in our setting, log p(y∗|θ) is intractable. The
question is how to use the unbiased estimator p̂N (y∗|θ) of the likelihood to construct
an unbiased SF estimator for ∇λL(λ).

On the other hand, for applying the RP trick, we assume that there exists a trans-
formation θ = Γ(u;λ) ∼ qλ(θ), where the random variate u ∼ p1(u) independently
of λ. Allowing the interchange of differentiation and expectation again, we have

∇λL(λ) = ∇λEqλ(θ)[log p(y
∗|θ) + log p(θ)− log qλ(θ)]

= ∇λEu[log p(y
∗|θ) + log p(θ)− log qλ(θ)]

= Eu[∇λΓ(u;λ) · (∇θ log p(y
∗|θ) +∇θ log p(θ)−∇θ log qλ(θ))],(2.4)

where ∇λΓ(u;λ) is the Jacobian matrix with entries [∇λΓ(u;λ)]ij = ∂Γj(u;λ)/∂λi.
The RP gradient is much complicated than the SF gradient. In (2.4), one needs to
estimate the intractable gradient of log-likelihood ∇θ log p(y

∗|θ) unbiasedly. Due to
the absence of likelihood, the SF and RP methods for the traditional VB cannot be
applied directly.

The VBIL method proposed by [35] works with the augmented space (θ, z), where
z = log p̂N(y

∗|θ) − log p(θ|y∗). Let gN(z|θ) be the distribution of z given θ. Tran et
al. [35] applied the variational inference for the target distribution

pN (θ, z) = p(θ|y∗) exp(z)gN(z|θ)

with a family of distributions of the form qλ(θ, z) = qλ(θ)gN (z|θ). The KL divergence
in the augmented space is

K̃L(λ) = KL(qλ(θ, z)||pN(θ, z)) = Eqλ(θ,z)[log qλ(θ)− log p(θ|y∗)− z].

The ELBO in the augmented space is

L̃(λ) = Eqλ(θ,z)[log p̂N (y∗|θ) + log p(θ)− log qλ(θ)](2.5)

= L(λ) + Eqλ(θ,z)[z].

Note that

E[z|θ] = E[log p̂N (y∗|θ)]− log p(y∗|θ) ≤ logE[p̂N (y∗|θ)] − log p(y∗|θ) = 0

by using Jensen’s inequality. As a result, L(λ) ≥ L̃(λ). The equality holds if and only
if p̂N (y∗|θ) is a constant with probability 1 (w.p.1). Generally, the maximization of
L̃(λ) is not the same as the maximization of L(λ) unless Eqλ(θ,z)[z] is independent of λ.
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Tran et al. [35] made an attempt to choose N as a function of θ such that E[z|θ] ≡ τ
does not depend on θ. By doing so, Eqλ(θ,z)[z] = τ does not depend on λ. Hence, in
practice, one needs to adapt N so that the variance of the log-likelihood estimator is
approximately constant with θ. Ong et al. [25] suggested to set some minimum value
N ′ for the initially estimating the likelihood. Then, if some target value for the log-
likelihood variance is exceed based on an empirical estimate, an additional number of
samples is repeatedly simulated until the target accuracy is achieved. Although the
two ELBOs have the same maximizer, there is a gap (i.e., τ) between the maximums
of the two ELBOs. The smaller the target accuracy is, the more work is required in
estimating the likelihood. Actually, L(λ) is a locally marginalized version of L̃(λ),
which is tighter. This can help to approximate the evidence better. Furthermore, this
tighter lower bound can potentially help to compute the criterion for model selection
such as perplexity used in topic modeling.

In fact, if we use an unbiased estimator of log p(y∗|θ) to replace log p̂N (y∗|θ) in
(2.5), then the resulting ELBO corresponds to the original ELBO L(λ). However, an
unbiased estimator of log p(y∗|θ) is not trivial. To overcome this, [25] proposed to use
a synthetic likelihood. Suppose we have a summary statistic S = S(y∗) of dimension
d ≥ p and the inference is based on the observed value s of the summary statistic S,
which is thought to be informative about θ. Assume that the statistic S is exactly
Gaussian conditional on each value of θ, that is p(s|θ) = φ(s;µ(θ),Σ(θ)), where φ is
the density of multivariate normal with µ(θ) = E[S|θ] and Σ(θ) = Cov(S|θ). Now the
posterior density is given by

p(θ|s) ∝ p(θ)p(s|θ) = p(θ)φ(s;µ(θ),Σ(θ)).

For a given θ, we may simulate summary statistics S1, . . . ,SN under the model given
θ. The mean vector µ(θ) and the covariance matrix Σ(θ) are then estimated by

µ̂(θ) =
1

N

N∑

i=1

Si,

Σ̂(θ) =
1

N − 1

N∑

i=1

(Si − µ̂(θ))(Si − µ̂(θ))⊤,

respectively. Then an unbiased estimate of the log-synthetic likelihood log p(s|θ) is
given by

ℓ̂N (s|θ) =− d

2
log(2π)− 1

2

{
log
∣∣∣Σ̂(θ)

∣∣∣+ d log

(
N − 1

2

)
−

d∑

i=1

ψ

(
N − i

2

)}

− 1

2

{
N − d− 2

N − 1
(s− Σ̂(θ))⊤Σ̂(θ)−1(s− Σ̂(θ)) − d

N

}
,

where ψ(t) = Γ′(t)/Γ(t) denotes the digamma function and N > d+ 2. By replacing

log p̂N (y∗|θ) with ℓ̂N (s|θ), then L̃(λ) = L(λ). However, it should be noted that the

unbiasedness of ℓ̂N(s|θ) relies heavily on the assumption of the normality of S|θ, and
the inference is based on the information of the summary statistic s rather than the
full data y∗.

3. Unbiased MLMC for variational Bayes. To fix our idea, we work on
the likelihood (2.2) with an unbiased estimate (2.3). Now the ELBO is a nested
expectation

L(λ) = Eqλ(θ)[logE[f(x; y
∗)|θ] + log p(θ)− log qλ(θ)].
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3.1. Score function gradient. Applying the SF method, we reformulate the
gradient as

∇λL(λ) = Eqλ(θ)[∇λ log qλ(θ)(logE[f(x; y
∗)|θ] + log p(θ)− log qλ(θ))],

which is a nested expectation. Define

(3.1) SFN (λ) = ∇λ log qλ(θ)[log p̂N(y
∗|θ) + log p(θ)− log qλ(θ)],

where p̂N (y∗|θ) is given by (2.3), and (θ, x) ∼ qλ(θ)p(x|θ). Although p̂N (y∗|θ) is an
unbiased likelihood estimator, SFN (λ) is generally biased for estimating the gradient
∇λL(λ). We next show how to find an unbiased estimator for the log-likelihood by
using unbiased MLMC. Let ψθ,N = log p̂N (y∗|θ). It is clear that

lim
N→∞

E[ψθ,N |θ] = log p(y∗|θ).

Consider an increasing sequence 0 < M0 < M1 < · · · such that Mℓ → ∞ as ℓ → ∞.
Then the following telescoping sum holds,

log p(y∗|θ) = E[ψθ,M0 |θ] +
∞∑

ℓ=1

E[ψθ,Mℓ
− ψθ,Mℓ−1

|θ].

More generally, if we have a sequence of correction random variables ∆ψθ,ℓ, ℓ ≥ 0
such that E[∆ψθ,0|θ] = E[ψθ,M0 |θ] and for ℓ > 0,

E[∆ψθ,ℓ|θ] = E[ψθ,Mℓ
− ψθ,Mℓ−1

|θ],

then it follows that

log p(y∗|θ) =
∞∑

ℓ=0

E[∆ψθ,ℓ|θ].

Let wℓ > 0 satisfying
∑∞
ℓ=0 wℓ = 1, and let I be an independent discrete random

variable with P(I = ℓ) = wℓ. We then have

log p(y∗|θ) = E

[
∆ψθ,I
wI

∣∣∣∣θ
]
.

Define

(3.2) SFMLMC(λ) = ∇λ log qλ(θ)

[
∆ψθ,I
wI

+ log p(θ)− log qλ(θ)

]
,

which is unbiased for the gradient ∇λL(λ). For any number of outer samples S ≥ 1,
the following gradient estimator,

(3.3) ∇̂λL
SF
(λ) =

1

S

S∑

i=1

SF
(i)
MLMC(λ),

is unbiased, where SF
(i)
MLMC(λ) are iid copy of SFMLMC(λ) for the MC sampling.

Now

ψθ,Mℓ
= log p̂Mℓ

(y∗|θ) = log

(
1

Mℓ

Mℓ∑

i=1

f(xi; y
∗)

)
,
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where xi ∼ p(x|θ) independently. We take ∆ψθ,0 = ψθ,M0 . For ℓ ≥ 1, we take an
antithetic coupling estimator

∆ψθ,ℓ = ψθ,Mℓ
− 1

2

(
ψ
(a)
θ,Mℓ−1

+ ψ
(b)
θ,Mℓ−1

)
,

where

ψ
(a)
θ,Mℓ−1

= log


 1

Mℓ−1

Mℓ−1∑

i=1

f(xi; y
∗)


 , ψ

(b)
θ,Mℓ−1

= log


 1

Mℓ−1

Mℓ∑

i=Mℓ−1+1

f(xi; y
∗)


 .

The strategy of antithetic coupling is widely used in the MLMC literature [16, 17],
which yields a better rate of convergence for smooth functions. Denote Cℓ as the
expected cost of computing ∆ψθ,ℓ, which is proportional to Mℓ. To ensure a finite
variance and finite expected computational cost of SFMLMC(λ), it is required that

(3.4)

∞∑

ℓ=0

E[∆ψ2
θ,ℓ||∇λ log qλ(θ)||22]

wℓ
<∞ and

∞∑

ℓ=0

Cℓwℓ <∞.

In this paper, we takeMℓ =M02
ℓ for someM0 ≥ 1 and all ℓ ≥ 0, implying Cℓ = O(2ℓ).

Assume that E[∆ψ2
θ,ℓ||∇λ log qλ(θ)||22] = O(2−rℓ) for some r > 1. Let wℓ = w02

−αℓ

for w0 = 1 − 2−α and α > 0. Then (3.4) holds if we take α ∈ (1, r). The expected
computational cost is then proportional to

(3.5) C(α,M0) =

∞∑

ℓ=0

Mℓwℓ =

∞∑

ℓ=0

M0w02
(1−α)ℓ =

(
1 +

1

2α − 2

)
M0.

Lemma 3.1. Let X be a random variable with zero mean, and let X̄N be an av-

erage of N iid samples of X. If E[|X |p] < ∞ for p > 2, then there exists a constant

Cp depending only on p such that

E[
∣∣X̄N

∣∣p] ≤ Cp
E[|X |p]
Np/2

.

Lemma 3.1 is stated as Lemma 1 in [15], with which we have the following theorem.

Theorem 3.1. Suppose that f(x; y∗) > 0 w.p.1, and there exist p, q > 2 with

(p− 2)(q − 2) > 4 such that

E

[∣∣∣∣
f(x; y∗)

p(y∗|θ)

∣∣∣∣
p]
<∞ and E

[(
1 +

∣∣∣∣log
f(x; y∗)

p(y∗|θ)

∣∣∣∣
q)

||∇λ log qλ(θ)||q2
]
<∞,

where the expectations are taken with respect to (θ, x) ∼ qλ(θ)p(x|θ), then

E[∆ψ2
θ,ℓ||∇λ log qλ(θ)||22] = O(2−rℓ) with r = min

(
p(q − 2)

2q
, 2

)
∈ (1, 2].

Proof. This proof is in line with Theorem 2 of [17], which developed MLMC for
a nested expectation of the form EX,Y [log[g(X,Y )|Y ]]. Let

R =
1

Mℓ

Mℓ∑

i=1

f(xi; y
∗)

p(y∗|θ) ,
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R(a) =
1

Mℓ−1

Mℓ−1∑

i=1

f(xi; y
∗)

p(y∗|θ) , R
(b) =

1

Mℓ−1

Mℓ∑

i=Mℓ−1+1

f(xi; y
∗)

p(y∗|θ) .

We then have

∆ψθ,ℓ = (logR−R+ 1)− 1

2

[
(logR(a) −R(a) + 1) + (logR(b) −R(b) + 1)

]
.

Applying Jensen’s inequality gives

∆ψ2
θ,ℓ ≤ 2(logR−R+ 1)2 + (logR(a) −R(a) + 1)2 + (logR(b) −R(b) + 1)2.

Note that | log x−x+1| ≤ |x−1|rmax(− log x, 1) for any x > 0 and any 1 < r ≤ 2.
By Holder’s inequality, we have

E[(logR−R+ 1)2||∇λ log qλ(θ)||22] ≤ E[(R − 1)2rmax(− logR, 1)2||∇λ log qλ(θ)||22]
≤ E[(R − 1)2rs]1/sE[max(− logR, 1)2t||∇λ log qλ(θ)||2t2 ]1/t

for any s, t ≥ 1 satisfying 1/s+ 1/t = 1.
Note that E[R− 1] = 0. Hence, if 2rs ≤ p, then it follows from Lemma 3.1 that

E[(R − 1)2rs] ≤ C2sr

M sr
ℓ

E
[
|f(x; y∗)/p(y∗|θ)− 1|2rs

]
,

where E
[
|f(x; y∗)/p(y∗|θ)− 1|2rs

]
< ∞. Notice that the function max(− log x, 1)2t

is convex for x > 0. Thus, applying Jensen’s inequality and using f(xi; y
∗) > 0, we

have

max(− logR, 1)2t = max

(
− log

1

Mℓ

Mℓ∑

i=1

f(xi; y
∗)

p(y∗|θ) , 1
)2t

≤ 1

Mℓ

Mℓ∑

i=1

max

(
− log

f(xi; y
∗)

p(y∗|θ) , 1
)2t

≤ 1 +
1

Mℓ

Mℓ∑

i=1

∣∣∣∣log
f(xi; y

∗)

p(y∗|θ)

∣∣∣∣
2t

.

As a result, as long as 2t ≤ q, we have

(3.6)

E[max(− logR, 1)2t||∇λ log qλ(θ)||2t2 ]

≤ E

[(
1 +

∣∣∣∣log
f(x; y∗)

p(y∗|θ)

∣∣∣∣
2t
)
||∇λ log qλ(θ)||2t2

]
<∞.

Particularly, we take s = q/(q − 2), t = q/2 and r = min(p(q − 2)/(2q), 2).
Since (p − 2)(q − 2) > 4, r > 1. Therefore, E[(logR − R + 1)2||∇λ log qλ(θ)||22] =
O(M−r

ℓ ). This argument holds also by replacing R with R(a) or R(b). We thus have
E[∆ψ2

θ,ℓ||∇λ log qλ(θ)||22] = O(M−r
ℓ ) = O(2−rℓ).

It should be noticed that Theorem 3.1 requires f(x; y∗) > 0 w.p.1. If not, the
inequalities in (3.6) do not hold. This implies that our result rules out the case of
indicator functions in formulating likelihoods.
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3.2. Re-parameterization gradient. Assume that there exists a transforma-
tion x = Λ(v; θ) ∼ p(x|θ), where v ∼ p2(v) independently of θ and ∇θΛ(v; θ) exists.
Using θ = Γ(u;λ) as before gives x = Λ(v; Γ(u;λ)). Allowing the interchange of
expectation and differentiation, the gradient (2.4) is then rewritten as

∇λL(λ) = Eu[∇λΓ(u;λ) · (∇θ logEx[f(x; y
∗)] +∇θ log p(θ)−∇θ log qλ(θ))]

= Eu[∇λΓ(u;λ) · (∇θ logEv [f(x; y
∗)] +∇θ log p(θ)−∇θ log qλ(θ))]

= Eu

[
∇λΓ(u;λ) ·

(
Ev [∇θf(x; y

∗)]

Ev[f(x; y∗)]
+∇θ log p(θ)−∇θ log qλ(θ)

)]

= Eu

[
∇λΓ(u;λ) ·

(
Ev [∇θΛ(v; θ)∇xf(x; y

∗)]

Ev [f(x; y∗)]
+∇θ log p(θ) −∇θ log qλ(θ)

)]
,

where ∇λΓ(u;λ) is the Jacobian matrix with entries [∇λΓ(u;λ)]ij = ∂Γj(u;λ)/∂λi.
Define

(3.7) RPN (λ) = ∇λΓ(u;λ) ·
(∇θp̂N (y∗|θ)

p̂N (y∗|θ) +∇θ log p(θ)−∇θ log qλ(θ)

)
,

where

p̂N (y∗|θ) = 1

N

N∑

i=1

f(xi; y
∗) with xi = Λ(vi; θ),

∇θ p̂N (y∗|θ) = 1

N

N∑

i=1

∇θf(xi; y
∗) =

1

N

N∑

i=1

∇θΛ(vi; θ)∇xf(xi; y
∗),

with [∇θΛ(v; θ)]ij = ∂Λj(v; θ)/∂θi and vi ∼ p2(v) independently. The estimator
(3.7) is also biased. Now we take

ψ̃θ,Mℓ
=

∇θ p̂Mℓ
(y∗|θ)

p̂Mℓ
(y∗|θ) =

∑Mℓ

i=1 ∇θΛ(vi; θ)∇xf(xi; y
∗)

∑Mℓ

i=1 f(xi; y
∗)

,

to differ from ψθ,Mℓ
in the SF method. Analogously, we take ∆ψ̃θ,0 = ψ̃θ,M0 . For

ℓ ≥ 1, we use an antithetic coupling estimator again

(3.8) ∆ψ̃θ,ℓ = ψ̃θ,Mℓ
− 1

2

(
ψ̃
(a)
θ,Mℓ−1

+ ψ̃
(b)
θ,Mℓ−1

)
,

where

ψ̃
(a)
θ,Mℓ−1

=

∑Mℓ−1

i=1 ∇θΛ(vi; θ)∇xf(xi; y
∗)

∑Mℓ−1

i=1 f(xi; y∗)
,

ψ̃
(b)
θ,Mℓ−1

=

∑Mℓ

i=Mℓ−1+1 ∇θΛ(vi; θ)∇xf(xi; y
∗)

∑Mℓ

i=Mℓ−1+1 f(xi; y
∗)

.

Define

(3.9) RPMLMC(λ) = ∇λΓ(u;λ) ·
(
∆ψ̃θ,I
wI

+∇θ log p(θ)−∇θ log qλ(θ)

)
,
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where θ = Γ(u;λ) and wI is defined as in the SF method. For any number of outer
samples S ≥ 1, the gradient estimator

∇̂λL
RP

(λ) =
1

S

S∑

i=1

RP
(i)
MLMC(λ),

is unbiased, where RP
(i)
MLMC(λ) are iid copy of RPMLMC(λ).

Similarly, to ensure a finite variance and finite expected computational cost of
RPMLMC(λ), it suffices to show E[||∇λΓ(u;λ) · ∆ψ̃θ,ℓ||22] = O(2−rℓ) for some r > 1.
This can be achieved as shown in the following theorem.

Theorem 3.2. If

sup
x

||∇λ log f(x; y
∗))||∞ <∞,

where x = Λ(v; Γ(u;λ)), and assume that there exists p > 2 such that

E

[∣∣∣∣
f(x, y∗)

p(y∗|θ)

∣∣∣∣
p]
<∞,

then

E[||∇λΓ(u;λ)∆ψ̃θ,ℓ||22] = O(2−rℓ) with r = min(p/2, 2) ∈ (1, 2].

Proof. The proof follows an argument similar to Theorem 3.1 in [18], which con-
sidered a nested expectation involving a ratio of two inner conditional expectations.

4. Parameterizations in Gaussian variational family. Throughout this pa-
per, we use the Gaussian family N(µ,Σ) as the variational family. For the SF method,
we take the variational parameters as λ = (µ, vech(C)), where C is the Cholesky de-
composition (lower triangular) of Σ−1 and vech(C) denotes a vector obtained by
stacking the lower triangular elements of C. The number of variational parame-
ters dλ = p + p(p + 1)/2. Since log qλ(θ) = log | det(C)| − 1

2 (θ − µ)⊤CC⊤(θ − µ),
∇λ log qλ(θ) = (∇µ log qλ(θ),∇vech(C) log qλ(θ)) with

∇µ log qλ(θ) = CC⊤(θ − µ),

∇vech(C) log qλ(θ) = vech(diag(1/C)− (θ − µ)(θ − µ)⊤C),

where diag(1/C) denotes the diagonal matrix with the same dimensions as C with
ith diagonal entry 1/Cii. Note that the score function ∇λ log qλ(θ) is model-free.
The SF estimator SFN (λ) can be easily obtained by (3.1). It is common to use
control variate (CV) to reduce the noise in estimating the gradient [24, 29]. Note that
E[∇λ log qλ(θ)] = 0. For any constant vector c = (c1, . . . , cp) ∈ Rp, the estimator is
also unbiased for the gradient,

SFCV
MLMC(λ, c) = ∇λ log qλ(θ)

[
∆ψθ,I
wI

+ log p(θ)− log qλ(θ)− c

]
.

We can take an optimal ci to minimize the variance of the ith entry of SFCV
MLMC(λ, c).

Solving
c∗i = argmin

ci∈R

Var
(
SFCV

MLMC,i(λ, ci)
)

gives

(4.1) c∗i =
E[(∇λi

log qλ(θ))
2
ξ]

E[(∇λi
log qλ(θ))

2
]
=

Cov(∇λi
log qλ(θ),∇λi

log qλ(θ)ξ)

Var (∇λi
log qλ(θ))

,
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where ξ =
∆ψθ,I

wI
+ log p(θ)− log qλ(θ). In practice, c∗i (i = 1, . . . , p) are estimated by

using the samples in the previous iteration. The whole procedure is summarized in
Algorithm 4.1.

Algorithm 4.1 Unbiased MLMC with the SF gradient estimator

1: Initialize λ(0) = (µ(0), vech(C(0))), t = 0, M the number of outer samples, α ∈
(1, r) and wℓ ∝ 2−αℓ such that

∑∞
ℓ=0 wℓ = 1 and all wℓ > 0.

2: Repeat

(a) Generate θ
(t)
1 , . . . , θ

(t)
m ∼ N(µ(t), (C(t)C(t)⊤)−1) independently and

I
(t)
1 , . . . , I

(t)
m independently and randomly with probability wℓ.

(b) Let ni = M02
I
(t)
i . For i = 1, . . . ,m, generate x

(t)
i1 , . . . , x

(t)
ini

∼ p(x|θ(t)i ) inde-
pendently. Compute the associated samples of the correction ∆ψθ,I , denoted by

∆ψ
(t)
i , i = 1, . . . ,m.

(c) Estimate c∗ defined by (4.1) by the samples θ
(t)
i , I

(t)
i , ∆ψ

(t)
i , i = 1, . . . ,m,

resulting in c(t).
(d) If t > 0, compute the gradient estimator

∇̂λL
SF
(λ(t))

=
1

m

m∑

i=1

∇λ log qλ(θ
(t)
i )

[
∆ψ

(t)
i

w
I
(t)
i

+ log p(θ
(t)
i )− log qλ(t) (θ

(t)
i )− c(t−1)

]
,

and the ELBO estimator

LB(λ(t)) =
1

S

S∑

i=1

∆ψ
(t)
i

w
I
(t)
i

+ log p(θ
(t)
i )− log qλ(t) (θ

(t)
i ).

Update the VB parameter:

λ(t+1) = λ(t) + ρt∇̂λL
SF

(λ(t)).

If t = 0, then set λ(t+1) = λ(t). Note that this step is used to initialize c∗ rather
than updating the VB parameter.
(e) t = t+ 1
until some stopping rule is satisfied.

Using the RP method, we take the variational parameter as λ = (µ, vech(L)),
where L is the Cholesky decomposition of Σ, which is different from the parameter-
izations in the SF method. For this case, θ = Γ(u;λ) = µ + Lu ∼ N(µ,Σ), where
u ∈ Rp×1 is a standard normal. Let

G =
∆ψ̃θ,I
wI

+∇θ log p(θ)−∇θ log qλ(θ) ∈ Rp×1,

where ∆ψ̃θ,ℓ is given by (3.8) and ∇θ log qλ(θ) = −Σ−1(θ − µ) = −(LL⊤)−1(θ − µ).
Then the RP estimator is given by

RPMLMC(λ) = (G, vech(Gu⊤)) ∈ Rdλ×1.

The second term ∇θ log p(θ) in G depends on the prior. Particularly, if the prior is
normally distributed, say, N(µ0,Σ0), then ∇θ log p(θ) = −Σ−1

0 (θ−µ0). It is crucial to
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work out the term ∇θΛ(v; θ)∇xf(x; y
∗) used in ∆ψ̃θ,ℓ, which is model-specific. The

whole procedure for the RP method is summarized in Algorithm 4.2.

Algorithm 4.2 Unbiased MLMC with the RP estimator

1: Initialize λ(0) = (µ(0), vech(L(0))), t = 0, M the number of outer samples, α ∈
(1, r) and wℓ ∝ 2−αℓ such that

∑∞
ℓ=0 wℓ = 1 and all wℓ > 0.

2: Repeat

(a) Generate u
(t)
1 , . . . ,u

(t)
m ∼ N(0, Ip) independently and set θ

(t)
i = µ(t)+L(t)

u
(t)
i .

Generate I
(t)
1 , . . . , I

(t)
m independently and randomly with probability wℓ.

(b) Let ni = M02
I
(t)
i . For i = 1, . . . ,m, generate v

(t)
i1 , . . . ,v

(t)
ini

∼ p2(v) indepen-

dently and set x
(t)
ij = Λ(v

(t)
ij ; θ

(t)
i ), j = 1, . . . , ni. Compute the associated samples

of the corrections ∆ψθ,I and ∆ψ̃θ,I , denoted by ∆ψ
(t)
i and ∆ψ̃

(t)
i , respectively.

(c) Compute the gradient estimator

∇̂λL
RP

(λ(t)) =
1

m

m∑

i=1

(G
(t)
i , vech(G

(t)
i u

⊤
i )),

where

G
(t)
i =

∆ψ̃
(t)
i

w
I
(t)
i

+∇θ log p(θ
(t)
i )−∇θ log qλ(t)(θ

(t)
i ),

and compute the ELBO estimator

LB(λ(t)) =
1

S

S∑

i=1

∆ψ
(t)
i

w
I
(t)
i

+ log p(θ
(t)
i )− log qλ(t) (θ

(t)
i ).

Update the VB parameter:

λ(t+1) = λ(t) + ρt∇̂λL
RP

(λ(t)).

(d) t = t+ 1
until some stopping rule is satisfied.

Notice that not only the gradient estimators but also the ELBO estimators are
unbiased in Algorithms Algorithms 4.1 and 4.2. The unbiased MLMC methods can
be expected to estimate the ELBO more accurately.

5. Incorporating RQMC. We now incorporate RQMC sampling based scram-
bled (t, s)-sequences within the MLMC estimators. Quasi-Monte Carlo (QMC) is de-
signed for computing expectations of f(v) for v ∼ U [0, 1]s. We should note that in
our present context, the underlying distributions are not the form of uniforms. To fit
QMC in practice, one must transform the base distribution U [0, 1]s to the underlying
distributions. Suppose that there exists a transformation ψ(·) such ψ(v) ∼ p, where p
is the underlying distribution. Below we subsume any such transformation ψ(·) into
the definition of f .

To estimate µ =
∫
[0,1]s f(v)dv, QMC methods use a sample-mean estimator

µ̂ =
1

N

N∑

i=1

f(vi),



UNBIASED MLMC-BASED VB FOR LIKELIHOOD-FREE INFERENCE 13

where v1, . . . ,vN are the firstN points of a low discrepancy sequence. By the Koksma-
Hlawka inequality, we have

|µ̂− µ| ≤ VHK(f)D
∗(v1, . . . ,vN ),

where VHK(f) is the variation of the integrand f(·) in the sense of Hardy and Krause,
and D∗(v1, . . . ,vN ) is the star discrepancy of the point set {v1, . . . ,vN}. For (t, s)-
sequences, we have

D∗(v1, . . . ,vN) = O(N−1(logN)s) = O(N−1+ǫ),

where we use an arbitrarily small ǫ > 0 for hiding the logarithm term throughout this
paper. If f is of bounded variation in the sense of Hardy and Krause (BVHK), one gets
a QMC error of O(N−1+ǫ). To get a practical error estimate, RQMC methods were
introduced, see [22] for a review. In this paper, we use the scrambling technique pro-
posed by [26] to randomize (t, s)-sequences. In RQMC, each vi ∼ U [0, 1]s marginally,
implying that µ̂ is unbiased for µ. More importantly, scrambled (t, s)-sequence retains
a (t, s)-sequence w.p.1. This leads to

Var (µ̂) = E[(µ̂− µ)2] ≤ VHK(f)
2D∗(v1, . . . ,vN )2,

where the expectation is taken with respect to the randomness of scrambling. Appar-
ently, the RQMC variance is of O(N−2+ǫ) if f is of BVHK.

Now we focus on how to incorporate RQMC within the MLMC estimators. In
fact, for both the SF and RP estimators, one needs to sample θ ∼ qλ(θ), x1, . . . , xMI

∼
p(x|θ, I) and I from a discrete distribution with P (I = i) = wi as stated above. For
each realization, the number of random variables depends on I, which takes values in
N. It is not possible to use a scrambled (t, s)-sequence to sample all random variables
in a single run because we need determine the dimension s in advance. Instead, we
use hybrid sequences within the MLMC estimators. Specifically, we still use MC to
sample θ and I, but use RQMC in inner simulation. That is, x1, . . . , xMI

is based on
a scrambled (t, s)-sequence. To this end, we assume that there exists a transformation
Λ such that

x = Λ(v; θ) ∼ p(x|θ),
where v ∼ U [0, 1]s. We then takes xi = Λ(vi; θ) in the inner simulation, where
v1, . . . ,vMI

are the first MI points of a scrambled (t, s)-sequence. Since RQMC
estimates are unbiased, the replacement of RQMC will not change the unbiasedness
of the gradient estimators.

We are ready to establish an RQMC version of Theorem 3.1 for the SF gradient.
We should note that Theorem 3.1 may not be extended to the RQMC setting since
Lemma 3.1 holds only for iid samples. Recently, for proving strong law of large
numbers for scrambled net integration, [28] showed that E[

∣∣X̄N

∣∣p] ≤ CpN
1−p for

p ∈ (1, 2) via the Riesz-Thorin interpolation theorem, where X̄N is an average of N
RQMC samples of X with E[X ] = 0. However, this result is not for the case p > 2
required in Lemma 3.1. It is not clear whether the RQMC version of Lemma 3.1 holds.
This is left for future research. The theorem we provide below is totally different from
Theorem 3.1, and the proof of which does not depend on Lemma 3.1.

Theorem 5.1. Suppose that samples xi = Λ(vi; θ), i = 1, . . . ,Mℓ are used in the

SF estimator subsection 3.1, where vi ∈ [0, 1]s are the first Mℓ points of a scrambled

(t, s)-sequence. If

E

[
VHK(fθ)

2||∇λ log qλ(θ)||22
fθ(v)2

]
<∞,
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where v ∼ U [0, 1]s, fθ(v) = f(Λ(v; θ); y∗), and Λ(v; θ) ∼ p(x|θ), then we have

E[∆ψ2
θ,ℓ||∇λ log qλ(θ)||22] = O(2−rℓ) with r = 2− ǫ

for arbitrarily small ǫ > 0.

Proof. Note that p(y∗|θ) = E[fθ(v)|θ]. Let

Pℓ =
1

Mℓ

Mℓ∑

i=1

f(xi; y
∗) =

1

Mℓ

Mℓ∑

i=1

fθ(vi),

with P
(a)
ℓ−1 = 1

Mℓ−1

∑Mℓ−1

i=1 fθ(vi), and P
(b)
ℓ−1 = 1

Mℓ−1

∑Mℓ

i=Mℓ−1+1 fθ(vi). All of them

are RQMC estimators for p(y∗|θ). We have

∆ψθ,ℓ = [logPℓ − log p(y∗|θ)]− 1

2
[(logP

(a)
ℓ − log p(y∗|θ)) + (logP

(b)
ℓ − log p(y∗|θ))].

Applying Jensen’s inequality gives

∆ψ2
θ,ℓ ≤ 2(logPℓ − log p(y∗|θ))2 + (logP

(a)
ℓ − log p(y∗|θ))2 + (logP

(b)
ℓ − log p(y∗|θ))2.

Note that |log t| ≤ max(1, 1/t) |t− 1| ≤ (1 + 1/t) |t− 1| for any t > 0. We thus
have

|logPℓ − log p(y∗|θ)| ≤ (1/p(y∗|θ) + 1/Pℓ) |Pℓ − p(y∗|θ)| .
By the Koksma-Hlawka inequality, we have

|Pℓ − p(y∗|θ)| ≤ VHK(fθ)Dℓ,

where Dℓ = D∗(v1, . . . ,vMℓ
). This implies that

(logPℓ − log p(y∗|θ))2 ≤ 2VHK(fθ)
2D2

ℓ

(
1

p(y∗|θ)2 +
1

P 2
ℓ

)
.

Let H(θ) = VHK(fθ)||∇λ log qλ(θ)||2. We then have

E[(logPℓ − log p(y∗|θ))2||∇λ log qλ(θ)||22] ≤ 2D2
ℓ

(
E

[
H(θ)2

p(y∗|θ)2
]
+ E

[
H(θ)2

P 2
ℓ

])
.

By Jensen’s inequality, we have

(5.1)
1

P 2
ℓ

=

(
1

1
Mℓ

∑Mℓ

i=1 fθ(vi)

)2

≤ 1

Mℓ

Mℓ∑

i=1

1

fθ(vi)2
.

By the unbiasedness of RQMC estimators and the law of total expectation,

E

[
H(θ)2

P 2
ℓ

]
≤ E

[
H(θ)2

Mℓ

Mℓ∑

i=1

1

f(xi; y∗)2

]

= E

[
H(θ)2E

[
1

Mℓ

Mℓ∑

i=1

1

f(xi; y∗)2

∣∣∣∣θ
]]

= E

[
H(θ)2E

[
1

f(x; y∗)2

∣∣∣∣θ
]]

= E

[
H(θ)2

f(x; y∗)2

]
<∞.
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On the other hand, by using Jensen’s inequality and the law of total expectation
again,

E

[
H(θ)2

p(y∗|θ)2
]
= E

[
H(θ)2

E[f(x; y∗)|θ]2
]

≤E

[
H(θ)2E

[
1

f(x; y∗)2

∣∣∣∣θ
]]

= E

[
H(θ)2

f(x; y∗)2

]
<∞.

We therefore have

E[(logPℓ − log p(y∗|θ))2||∇λ log qλ(θ)||22] = O(D2
ℓ ) = O(M−2+ǫ

ℓ ) = O(2−rℓ)

for r = 2 − ǫ and any ǫ > 0. This argument holds also by replacing Pℓ with P
(a)
ℓ or

P
(b)
ℓ . We thus have E[∆ψ2

θ,ℓ||∇λ log qλ(θ)||22] = O(2−rℓ).

We next establish an RQMC version of Theorem 3.2 for the RP gradient. Theo-
rem 3.2 cannot be extended to the RQMC setting since its proof depends on Lemma 3.1
as well.

Theorem 5.2. Suppose that samples xi = Λ(vi; θ), i = 1, . . . ,Mℓ in the RP

estimator (3.9), where vi ∈ [0, 1]s are the firstMℓ points of a scrambled (t, s)-sequence.
If

E

[
||∇λΓ(u;λ)||2max

p(y∗|θ)2

(
(‖∇p(y∗|θ)‖22 + ‖VHK(∇θfθ)‖22)VHK(fθ)

2

fθ(v)2
+ ‖VHK(∇θfθ)‖22

)]

is finite, where v ∼ U [0, 1]s, fθ(v) = f(Λ(v; θ); y∗), Λ(v; θ) ∼ p(x|θ), θ = Γ(u;λ) ∼
qλ(θ), VHK(∇θfθ) denotes a vector of VHK(∂θifθ), and ||A||max denotes the largest

absolute value of the entries of the matrix A, we have

E[||∇λΓ(u;λ)∆ψ̃θ,ℓ||22] = O(2−rℓ) with r = 2− ǫ

for arbitrarily small ǫ > 0.

Proof. We use the notations Pℓ, P
(a)
ℓ−1 and P

(b)
ℓ−1 defined in the proof of Theo-

rem 5.1, and define

Nℓ =
1

Mℓ

Mℓ∑

i=1

∇θΛ(vi; θ)∇xf(xi; y
∗) =

1

Mℓ

Mℓ∑

i=1

∇θfθ(vi),

with N (a)
ℓ−1 = 1

Mℓ−1

∑Mℓ−1

i=1 ∇θfθ(vi), and N (b)
ℓ−1 = 1

Mℓ−1

∑Mℓ

i=Mℓ−1+1 ∇θfθ(vi). It is

clear that E[Nℓ|θ] = E[N (a)
ℓ−1|θ] = E[N (b)

ℓ−1|θ] = ∇θp(y
∗|θ), and E[Pℓ|θ] = E[P

(a)
ℓ−1|θ] =

E[P
(b)
ℓ−1|θ] = p(y∗|θ). Note that

∆ψ̃θ,ℓ =
Nℓ

Pℓ
− 1

2

(
N (a)
ℓ−1

P
(a)
ℓ−1

+
N (b)
ℓ−1

P
(b)
ℓ−1

)

=

[Nℓ

Pℓ
− ∇θp(y

∗|θ)
p(y∗|θ)

]
− 1

2

[
N (a)
ℓ−1

P
(a)
ℓ−1

− ∇θp(y
∗|θ)

p(y∗|θ)

]
− 1

2

[
N (b)
ℓ−1

P
(b)
ℓ−1

− ∇θp(y
∗|θ)

p(y∗|θ)

]
.
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Let Nℓ,i be the ith entry of Nℓ, which is an unbiased estimator for ∂θip(y
∗|θ). By the

triangle inequality, we find that

(Nℓ,i

Pℓ
− ∂θip(y

∗|θ)
p(y∗|θ)

)2

=

(Nℓ,i

Pℓ
− Nℓ,i

p(y∗|θ) +
Nℓ,i

p(y∗|θ) −
∂θip(y

∗|θ)
p(y∗|θ)

)2

≤ 2

p(y∗|θ)2

[
N 2
ℓ,i

P 2
ℓ

(Pℓ − p(y∗|θ))2 + (Nℓ,i − ∂θip(y
∗|θ))2

]
.(5.2)

By the Koksma-Hlawka inequality, we have

|Pℓ − p(y∗|θ)| ≤ VHK(fθ)Dℓ,

|Nℓ,i − ∂θip(y
∗|θ)| ≤ VHK(∂θifθ)Dℓ,

where Dℓ = D∗(v1, . . . ,vMℓ
).

For large enough ℓ, it is reasonable to assume that Dℓ < 1. Together with (5.1)
and (5.2), we then have

(Nℓ,i

Pℓ
− ∂θip(y

∗|θ)
p(y∗|θ)

)2

≤ 2D2
ℓ

p(y∗|θ)2

[
N 2
ℓ,i

P 2
ℓ

VHK(fθ)
2 + VHK(∂θifθ)

2

]

≤ 4D2
ℓ

p(y∗|θ)2
[
∂θip(y

∗|θ)2 + VHK(∂θifθ)
2

P 2
ℓ

VHK(fθ)
2 + VHK(∂θifθ)

2

]

≤ 4D2
ℓ

p(y∗|θ)2

[
(∂θip(y

∗|θ)2 + VHK(∂θifθ)
2)VHK(fθ)

2

Mℓ

Mℓ∑

i=1

1

fθ(vi)2
+ VHK(∂θifθ)

2

]
.

Let nr and nc be the number of rows and columns of the Jacobian matrix ∇λΓ(u;λ),
respectively, and Mλ = ||∇λΓ(u;λ)||max. As a result,

E

[∥∥∥∥∇λΓ(u;λ) ·
(Nℓ

Pℓ
− ∇θp(y

∗|θ)
p(y∗|θ)

)∥∥∥∥
2

2

]

≤ncnrE
[
nr∑

i=1

M2
λ

(Nℓ,i

Pℓ
− ∂θip(y

∗|θ)
p(y∗|θ)

)2
]

≤CℓE
[

M2
λ

p(y∗|θ)2
nr∑

i=1

(
(∂θip(y

∗|θ)2 + VHK(∂θifθ)
2)VHK(fθ)

2

fθ(v)2
+ VHK(∂θifθ)

2

)]

=CℓE

[
M2
λ

p(y∗|θ)2

(
(‖∇p(y∗|θ)‖22 + ‖VHK(∇θfθ)‖22)VHK(fθ)

2

fθ(v)2
+ ‖VHK(∇θfθ)‖22

)]

=O(M−2+ǫ
ℓ ) = O(2−rℓ)

with Cℓ = 4ncnrD
2
ℓ for r = 2− ǫ and any ǫ > 0. By a similar argument in the proof

of Theorem 5.1, we have E[||∇λΓ(u;λ)∆ψ̃θ,ℓ||22] = O(2−rℓ).

In Theorems 5.1 and 5.2, the integrands in RQMC quadratures need to be BVHK.
For practical problems, it may be very hard to verify such a condition. Particularly,
if the integrands are not smooth enough, the BVHK condition does not hold. For
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such cases, one may get a lower rate r. For any integrand in L2[0, 1]s, scrambled nets
have variance o(1/N) without requiring the BVHK condition [27]. Additionally, for
any fixed N , the scrambled nets variance is no worse than a constant times the MC
variance. From this point of view, under the same conditions in Theorems 3.1 and 3.2,
we can expect that the rate r for RQMC is no worse than that of MC. Finally, we
should note that the rates established in Theorems 5.1 and 5.2 do not benefit from the
antithetic coupling, implying that the results also hold for the usual way of coupling.
One might get a better rate by taking account for the form of antithetic coupling.

There are some other ways to incorporate RQMC in MLMC. For example, one
can use RQMC in the outer simulation. That is, the samples of θ are based on a
scrambled (t, s′)-sequence while the inner samples xi and the samples of I are based
on MC. To this end, assuming θ = Γλ(u) ∼ qλ(θ) with u ∼ U [0, 1]s

′

, we take

θi = Γλ(ui), i = 1, . . . , S,

where u1, . . . ,uS are the first S points of a scrambled (t, s′) sequence. Taking the SF
gradient estimator (3.3) for instance, we have

Var

(
∇̂λL

SF
(λ)

)
= E

[
Var

(
∇̂λL

SF
(λ)|θ{1:S}

)]
+Var

(
E[∇̂λL

SF
(λ)|θ{1:S}]

)

=
1

S
E[Var (SFMLMC(λ)|θ)] + Var

(
1

S

S∑

i=1

E[SF
(i)
MLMC(λ)|θi]

)

=
1

S
E[Var (SFMLMC(λ)|θ)] + Var

(
1

S

S∑

i=1

H(θi)

)
,(5.3)

where H(θ) := ∇λ log qλ(θ) [log p(y
∗|θ) + log p(θ)− log qλ(θ)], θ{1:S} = {θ1, . . . , θS}

and Var (·) and E[·] are applied component-wisely. The second term in (5.3) is O(1/S)
when the θi’s are generated using MC, while it should be o(1/S) when the θi’s are
generated using RQMC, or even better O(S−2+ǫ) if H ◦ Γλ is of BVHK. The first
term in (5.3) is O(1/S) for both cases. As a result, this strategy helps to reduce
the variance in the outer sampling. Buchholz and Chopin [3] applied this strategy
in ABC. They found that the resulting ABC estimate has a lower variance than the
MC counter-part. However, the rate of convergence cannot be improved due to the
first term in (5.3). This strategy cannot improve the rates r in Theorems 3.1 and 3.2
either.

One the other hand, we can also use a two-stage RQMC strategy. In the outer
samples, we use a scrambled (t, s′)-sequence to simulate θ; while in each inner sim-
ulation, we use another independent branch of scrambled (t, s)-sequence to sample
xi. This two-stage RQMC strategy helps to reduce the noise in both inner and outer
simulations. In our numerical experiments, we shall compare the effects of the three
ways of using RQMC in MLMC.

6. Numerical experiments.

6.1. Approximate Bayesian computation. ABC method is a generic tool
in likelihood-free inference provided that it is easy to generate y ∼ p(y|θ). However,
ABC methods do not target the exact posterior, but an approximation to some extent.
More specially, let S(·) : Rn → Rd be a vector of summary statistics, and Kh(·, ·) be
a d-dimensional kernel density with bandwidth h > 0. ABC posterior density of θ is
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given by

pABC(θ|y∗) ∝ p(θ)p̃(y∗|θ),

where the intractable likelihood is given by

(6.1) p̃(θ|y∗) =
∫
Kh(S(y),S(y∗))p(y|θ)dy = Ep(y|θ)[Kh(S(y),S(y∗))].

To fit the form (2.2), one gets f(y; y∗) := Kh(S(y),S(y∗)), in which the latent variable
x is replaced by y. To ensure f(y; y∗) > 0, we particularly take the Gaussian kernel

Kh(s, s
∗) = (2πh)−d/2 exp

{
− (s− s∗)⊤(s− s∗)

2h

}
,

where d denotes the dimension of the summary statistics S(y). If S(y∗) is a sufficient
statistic, then pABC(θ|y∗) converges to the exact posterior p(θ|y∗) as h → 0. Oth-
erwise, pABC(θ|y∗) converges to the posterior p(θ|S(y∗)) as h → 0, where is a gap
between p(θ|S(y∗)) and p(θ|y∗).

To apply the SF method, it suffices to provide the sample-mean likelihood esti-
mator

p̂N (y∗|θ) = 1

N

N∑

i=1

Kh(S(y[i]),S(y∗)),

where y[i] are iid sample of p(y|θ). To apply the RP methods, we need to find the
mappings such that

θ = Γ(u;λ) ∼ qλ(θ) and y = Λ(v; θ) ∼ p(y|θ),

where the distributions of u,v do not depend on λ and θ, respectively. We also require
the closed forms of ∇yf(y; y

∗), ∇θΛ(v; θ), and ∇λΓ(u;λ). Note that

∂f(y; y∗)

∂yi
=

d∑

j=1

∂Kh(S(y),S(y∗))
∂Sj

∂Sj(y)
∂yi

=
Kh(S(y),S(y∗)

h

d∑

j=1

[Sj(y∗)− Sj(y)]
∂Sj(y)
∂yi

.

As a result,

∇yf(y; y
∗) =

Kh(S(y),S(y∗))∇yS(y)[S(y∗)− S(y)]
h

.

It reduces to verify and then compute the Jacobian matrix ∇yS(y). If we take the
entire data as the summary statistics, then ∇yS(y) is an identity matrix. If the sum-
mary statistics S(y) are sample moments, ∇yS(y) can be easily computed. However,
if the summary statistics S(y) are functions of sample quantiles, ∇yS(y) does not
exist. So the SF method has a wider scope than the RP method.
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6.1.1. A toy example. To show the unbiasedness of our methods visually, we
consider a toy example of ABC which is investigated in [25]. Let the data y1, . . . , yn
be from a Gaussian distribution with unknown mean θ and unit variance. We assume
further the prior of θ is a standard normal distributionN(0, 1). Under this setting, the
posterior distribution is tractable actually, which is θ|y∗ ∼ N(n/(1+n)ȳ∗, 1/(1+n)),
where ȳ∗ is the sample mean, but we still approximate the posterior distribution by
VB methods for comparisons. Naturally, we take variational distribution q(θ) to be
a normal N(µ, σ2).

We take the entire data set y∗ as the summary statistics (i.e., S(y) = y) to
compare the VBIL, VBSL and MLMC methods. The distribution of the summary
statistic is normal, and so VBSL renders an unbiased estimator acting as a benchmark.
With the Gaussian kernel, the ABC likelihood (6.1) can be calculated analytically
actually, which gives a guidance to choose a proper h. The details have been stated
in [25]. We take h = 0.1 for the kernel function Kh to guarantee the accuracy of the
kernel approximation to the true posterior.

We test the SF and RP methods under the MC framework, respectively. In the
all simulations, we consider d = n = 4 and set the number of outer samples S = 100
and the number of inner samples N = 100 for all of the methods. We set the learning
rate ρt = 1/(5 + t). And α = 1.3 is taken for the SF methods while α = 1.1 is taken
for the RP methods. We initialize the starting points for q(θ) to be N(ȳ∗, 1) and
y∗ = (0, . . . , 0).

Figure 1 illustrates the variational posterior approximations of θ and correspond-
ing ELBOs of VBSL, VBIL and unbiased MLMC method under the SF and RP
frameworks respectively. Observed from the left panel of Figure 1, the estimated
densities of the MLMC methods and the benchmark method (VBSL) overlap con-
siderably. On the contrary, the VBIL methods yield inaccurate densities and lower
ELBOs. The ELBO of unbiased MLMC methods has more volatility than the other
methods. A possible explanation is that, although the MLMC method eliminates
bias, it may introduce more randomness. Nevertheless, it is apparent that MLMC
methods find better variational parameters which benefit from the unbiasedness of
the gradient estimators.

Fig. 1. Comparison of VBIL, VBSL and unbiased MLMC.
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6.1.2. The g-and-k model. The univariate g-and-k distribution is a flexible
unimodal distribution that is able to describe data with significant amounts of skew-
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ness and kurtosis [32]. Its density function has no closed form, but is alternatively
defined through its quantile function as:

Q(q|θ) = A+B

[
1 + 0.8

1− exp{−gz(q)}
1 + exp{−gz(q)}

]
(1 + z(q)2)kz(q),

where θ = (A,B, g, k), B > 0, k > −1/2, and z(q) = Φ−1(q) denotes the inverse CDF
of N(0, 1). If g = k = 0, it reduces to a normal distribution. As shown in [1], ABC is
a good candidate for handling this model.

Suppose that the observations y∗ of length T = 1000 are independently gener-
ated from the g-and-k distribution with parameter θ0 = (3, 1, 2, 0.5). We use the
unconstrained parameter θ̃ = (A, logB, g, log(k + 1/2)) in the VB and take the prior
density for θ̃ as N(0, 4 · I4). As suggested in [6], we take the summary statistics
S(y) = (SA,SB,Sg,Sk) with

SA = E4,

SB = E6 − E2,

Sg = (E6 + E2 − 2E4)/SB,

Sk = (E7 − E5 + E3 − E1)/SB,

where E1 ≤ E2 ≤ · · · ≤ E7 are the octiles of y. Note that S(y) is not differentiable,
and thus the RP method cannot be applied. The observed summary statistics S(y∗) =
(3.05, 1.63, 1.58, 0.42).

We compare MLMC and VBIL for a large bandwidth (h = 5) and a small band-
width (h = 0.5), and look at the effect of bandwidth. The benchmark is the ABC
acceptance-rejection (ABC-AR) samples of size 104. When h = 5, the acceptance rate
of ABC sampling is about 18%, while h = 0.5, the acceptance rate reduces to 1%.
We take α = 1.3 when h = 5 while α = 1.1 when h = 0.5 for the minor h has effect
on the smoothness of the inner function.

Figure 2 shows the variational posterior distributions of VBIL and unbiased
MLMC. As we can see, unbiased MLMC-based VB approximates the ABC poste-
rior well, particularly for the marginal distributions of A and g. Again, as shown in
Figure 3, unbiased MLMC leads to a larger ELBO.

Using RQMC in MLMC is minor for this example (the results are similar to
Figures 2 and 3, and are thus omitted for saving space). The reason is two-fold.
First, it is required 1000-dimensional RQMC points in the inner simulation, which
is quite large. On the other hand, the summary statistics are functions of sampling
quantiles, which are not smooth enough. Due to the high-dimensionality and the
absence of smoothness in the integrands, RQMC may not perform well as expected.
To overcome this, one may design some dimension reduction techniques for handling
the integrand in (6.1).

6.2. Generalized linear mixed models. Generalized linear mixed models
(GLMM) use a vector of random effects αi to account for the dependence between
the observations yi = {yij, j = 1, . . . , ni} which are measured on the same individual
i. The joint likelihood function of the model parameters θ and the random effects
α = (α1, . . . , αn) is p(y∗, α|θ) = ∏n

i=1 p(αi|θ)p(yi|θ, αi) which is tractable. However,
the likelihood function p(y∗|θ) =∏n

i=1 p(yi|θ) with

p(yi|θ) =
∫
p(yi|θ, αi)p(αi|θ)dαi
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Fig. 2. Comparison of marginal posterior distributions.
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Fig. 3. Comparison of ELBOs.
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is analytically intractable in most cases, while it can be easily estimated unbiasedly
with importance sampling. Suppose hi(αi|y∗, θ) is an importance density for αi, then
the likelihood p(yi|θ) is estimated unbiasedly by

p̂Ni
(yi|θ) =

1

Ni

Ni∑

j=1

p(yi|α(j)
i , θ)p(α

(j)
i |θ)

hi(α
(j)
i |y∗, θ)

,

with α
(j)
i

iid∼ hi(·|y∗, θ).
We now compare the VBIL method and the unbiased MLMC methods using the

Six City data in [11]. The data consist of binary responses yij which is the wheezing
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status (1 if wheezing, 0 if not wheezing) of the ith child at time-point j, where
i = 1, . . . , 537 which represent 537 children and j = 1, 2, 3, 4 which denote 7, 8, 9, 10
year-old centered at 9 years correspondingly. Covariates are Aij ,the age of the ith
child at time-point j and Si the ith maternal smoking status (0 or 1). We consider the
logistic regression model with a random intercept yij |β, α ∼ Binomial(1, pij), where
logit(pij) = β1 + β2Aij + β3Si+αi with αi ∼ N(0, τ2). The parameters of this model
are θ = (β, τ2). Then the likelihood function is given by

p(y∗|θ) =
537∏

i=1

∫ 4∏

j=1

exp{yij(β1 + β2Aij + β3Si + αi)}
1 + exp{β1 + β2Aij + β3Si + αi}

· 1√
2πτ2

exp{− α2
i

2τ2
}dαi.

A normal prior N(0, 50I3) is taken for β with a Gamma(1, 0.1) prior for τ , the
square root of τ2. We set the variational distribution qλ(θ) to be a 4-dimensional
normal N(µ,Σ), where we let (θ1, θ2, θ3, θ4) denote (β1, β2, β3, log τ

2), which means
the variational distribution of β is a 3-dimensional normal distribution and τ2 is a
log-normal distribution. This example was also investigated in [35]. We focus on the
RP method in this example because there is overwhelming empirical evidence in the
literature showing the superiority of RP than SF. Some theoretical explanation can
be found in [36].

In the RP method, we take θ = (β, log τ2) = µ + Lu, where u ∼ N(0, I4). In

the inner simulation, we take xi = (xi1, . . . , xi4) = (zi1, . . . , zi4) +
√
τ2vi · 14, where

zij = β1 + β2Aij + β3Si, vi ∼ N(0, 1) and 14 denotes the vector (1, 1, 1, 1).

Firstly, we test the decreasing rates of E[‖∇λΓ(u;λ)∆ψ̃θ,ℓ‖22] for testing MLMC-
based gradient estimation and E[|∆ψθ,ℓ|2] for testing MLMC-based ELBO estimation.
We run the algorithms starting with µ = (0, 0, 0, 0)T ,Σ = I4 and M0 = 16. We
compare the cases of using MC and RQMC in the inner simulation. To get accurate
estimates of these quantities, we use RQMC in the outer sampling. As shown in
Figure 4, we find that r = 1.52 for the gradient estimator when RQMC is used in the
inner simulation while r = 1.43 for MC in the inner. Also, RQMC leads to a larger
r = 1.96 for the ELBO estimator. When MC is used in the inner, we take α = 1.4 to
finalize the probability distribution of wℓ. While α = 1.5 when RQMC is used in the
inner. A large α speeds up the VB algorithm. According to (3.5), RQMC reduces the
cost by a factor of 16% compared to MC.

Fig. 4. Tests of the decrease rates.
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The results in Figure 4 show that RQMC can improve the sampling accuracy
in the inner simulation with a large r, but the effect of RQMC used in the outer
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Table 1

Variances of unbiased MLMC-based gradient estimators for the initial variational parameters.
‘I’ is short for ‘Inner’, ‘O’ for ‘Outer’, ‘M’ for ‘MC’ and ‘Q’ for ‘RQMC’.

I/O β1 β2 β3 τ2 L11 L21 L31 L41 L22 L23 L24 L33 L34 L44

M/M 152 164 30 41 253 182 54 118 226 28 74 55 99 32
M/Q 69 97 11 30 171 142 26 99 215 18 89 29 87 30
Q/M 111 84 17 22 260 148 34 49 162 31 47 27 33 17
Q/Q 82 80 13 40 170 146 30 93 161 24 86 20 30 11

simulation is still unclear. To this end, we estimate the variance of the unbiased
MLMC-based gradient estimator for the initial variational parameters by 50 repeti-
tions. The empirical variances are shown in Table 1. It can be seen that using RQMC
in either inner or outer simulation reduce the variances for most parameters. Variance
reduction of gradient estimates should help to improve VB.

Fig. 5. Comparison of VBIL and four unbiased MLMC methods: MC+MC, MC+RQMC,
RQMC+MC and RQMC+RQMC.

-4 -3 -2
0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5
0

1

2

3

4

5

6

7

-1 0 1 2
0

0.5

1

1.5

2

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Marginal posterior distributions

0 10 20 30 40 50 60 70 80 90 100

-1600

-1400

-1200

-1000

-800

(b) ELBO

Finally, we compare VBIL with four unbiasedMLMCmethods: MC+MC, MC+RQMC,
RQMC+MC and RQMC+RQMC, where for example, MC+RQMC means the MC
method is used in the outer while the RQMC method is used in the inner and so on.
We take M0 = 8 for the unbiased MLMC methods and N = 16 for VBIL. The RStan
package ‘rstanarm’ is used to sample from p(θ|y∗) as a benchmark, which performs
posterior analysis for models with dependent data such as GLMMs. As shown in Fig-
ure 5, unbiased MLMC-based methods show great consistency with the benchmark
distribution (labeled as RS). On the other hand, all unbiased MLMC methods lead
to larger ELBOs than VBIL.
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7. Concluding remarks. In this paper, we developed a general method to
deal with VB problems with intractable likelihoods. The central point is to find an
unbiased gradient estimator in stochastic gradient-based optimization. We achieve
this goal by designing unbiased nested MLMC estimators for both the SF and RP
gradients. Compared to VBIL, our proposed methods find a better fitting of the
posterior distribution and a tighter estimate of the marginal likelihood. Compared
to VBSL, our methods work with general distributions of summary statistics. To
improve the sampling efficiency, we incorporated RQMC in the inner and the outer
simulations. Using RQMC in the inner simulation can reduce the average cost of
unbiased MLMC. Using RQMC in the outer simulation can reduce the variance of the
gradient estimator. Both aspects speed up the VB algorithm.
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