
MANIFOLD OBLIQUE RANDOM FORESTS:
TOWARDS CLOSING THE GAP ON CONVOLUTIONAL DEEP

NETWORKS

ADAM LI∗,1,3, RONAN PERRY∗,1, CHESTER HUYNH∗,1,3, TYLER M. TOMITA1,

RONAK MEHTA2, JESÚS ARROYO2, JESSE PATSOLIC2, BENJAMIN FALK2, SRIDEVI

V. SARMA1,3, JOSHUA T. VOGELSTEIN1,2,3∗

Abstract.
Decision forests, in particular random forests and gradient boosting trees have demonstrated

state-of-the-art accuracy compared to other methods in many supervised learning scenarios. Forests
dominate other methods in tabular data, that is, when the feature space is unstructured, so that the
signal is invariant to a permutation of the feature indices. However, in structured data lying on a
manifold—such as images, and time-series—deep networks, specifically convolutional deep networks
(ConvNets), tend to outperform forests. We conjecture that it is in part due to networks not simply
analyzing feature magnitudes, but also their indices. In contrast, näıve forest implementations fail
to explicitly consider feature indices. A recent approach demonstrates that forests, for each node,
implicitly sample a random matrix from some specific distribution. These forests, like some networks,
learn by partitioning the feature space into convex polytopes corresponding to linear functions. We
build on that approach with Manifold Oblique Random Forests (Morf) that chooses distributions in a
manifold-aware fashion to incorporate feature locality. Morf runs fast and maintains interpretability
and theoretical justification. Morf also has excellent empirical classification performance on simulated
data and real images and multivariate time-series. It outperforms non-neural network approaches
that ignore feature space structure and challenges the performance of ConvNets in some cases.

1. Introduction. Decision forests, including random forests and gradient boost-
ing trees, have solidified themselves in the past couple decades as a powerful ensemble
learning method in supervised settings [1, 2], including both classification and regres-
sion [3]. In classification, each forest is a collection of decision trees whose individual
classifications of a data point are aggregated together using majority vote. One of
the strengths of this approach is that each decision tree need only perform better
than chance for the forest to be a strong learner, given a few assumptions [4, 5].
Additionally, decision trees are relatively interpretable because they can provide an
understanding of which features are most important for correct classification [6]. In
2001, Breiman originally proposed decision trees that partition the data set using
hyperplanes aligned to feature axes [6]. Yet, this limits the flexibility of the forest
and requires trees of large depth to classify some data sets, leading to overfitting. He
also suggested that algorithms which partition based on linear combinations of the
coordinate axes can improve performance [6, 7], which was corroborated in subsequent
work [8]. More recently, Sparse Projection Oblique Randomer Forest (Sporf)—which
leverages sparse random projections of the data—has shown impressive improvement
over other methods [9]. Other extensions have led to neural decision forests [10, 11]
which attempt to combine the strengths of neural networks and random forests by
using differentiable functions at split nodes and leaves, leading to trees which can
be learned via backpropagation. Under certain function choices, once learned, these
forests turn out to be equivalent to neural networks with many zeroed weights [11].

Random forests and other machine learning algorithms typically operate in a
tabular setting, viewing an observation x = (x1, . . . , xp)

T ∈ Rp as an unstructured
feature vector. In doing so, they neglect the feature indices in settings where the in-

∗ 1 Department of Biomedical Engineering, 2 Center for Imaging Science, 3 Institute for Com-
putational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, ∗ Indicates
co-first authorship with equal contribution and any ordering of these authors is allowed

1

ar
X

iv
:1

90
9.

11
79

9v
5

 [
cs

.L
G

]
 5

 S
ep

 2
02

2

dices encode additional information. For structured data, e.g. images or time series,
traditional decision forests do not incorporate the known local structure. For decision
forests to utilize known local structure in data, new features encoding this informa-
tion must be manually constructed or new splitting criterion must be implemented.
Prior research has extended random forests to a variety of computer vision tasks
[12, 13, 14, 15] and augmented random forests with structured pixel label information
[16]. The decision tree at the heart of the Microsoft Kinect showed great success by
specializing for image data with depth information [15]. Yet these methods either gen-
erate features a priori from individual pixels (and thus do not take full advantage of
the local topology) or lack the flexibility to learn relevant structure. Other approaches
have circumvented the problem of learning from raw structured data through tabular
feature engineering, notably employed by the aforementioned deep neural decision
forest [10] using a convolutional deep network (ConvNets). Decision forests have also
been used to learn distance metrics on unknown manifold structures [17], but such
manifold forest algorithms are unsupervised.

Inspired by Sporf, we propose a classification algorithm, Manifold Oblique Ran-
dom Forests (Morf). Morf takes a projection distribution that accounts for neigh-
boring features on a manifold, while incorporating enough randomness to learn the
relevant projections. At each node in the decision tree, a set of neighboring fea-
tures are randomly selected using knowledge of the underlying manifold. Weighting
and summing the values of the selected features yields a set of oblique projections
of the data which can then be evaluated to partition the observations. We show
Morf’s effectiveness across simulated and real-data settings as compared to common
classification algorithms. In each case, Morf performs better than non-ConvNet al-
gorithms that lack local feature information, while approaching, or even improving
upon ConvNet performance in certain real data applications. Furthermore, the opti-
mized and parallelizable open source implementation of Morf in Python is available
at https://neurodata.io/code/.

2. Background and Related Work. We will first define the notation and
classification framework needed to describe Morf.

2.1. Classification. Let (X,Y) ∈ X × Y be a random sample from the joint
distribution FXY and Dn := {(xi, yi)}ni=1 be our n observed data points where all
(xi, yi) ∈ X × Y are drawn from FXY . Denote X ⊆ Rp as the space of data vectors,
and Y = {1, . . . ,K} as the space of K class labels. A classifier is a function that assigns
to any unseen data point, X, a class label y ∈ Y. Our goal is to learn a classifier
gn(X;Dn) : X × (X × Y)n → Y from our data Dn that minimizes the expected risk
corresponding to 0-1 loss, equivalently the probability of incorrect classification,

L(g) := E[I[g(X) 6= Y]] = P (g(X) 6= Y),

with respect to the distribution of FXY . The optimal such classifier is the Bayes
classifier

g∗(X) := argmax
y∈{1,...,K}

P (Y = y | X),

which has the lowest attainable risk L∗ := L(g∗(X)).

2

https://neurodata.io/code/

2.2. Random Forests. Originally popularized by Amit and Geman [18] and
subsequently codified by Breiman, the random forest (RF) classifier is empirically
very effective [1] while maintaining strong theoretical guarantees [6]. A random forest
is an ensemble of decision trees whose individual classifications of a data point are
aggregated together using majority vote. Each decision tree recursively partitions the
feature space and then makes separate predictions in each of the final subspaces. A
partition occurs at a split node in the tree on a subset of the data S = {(xi, yi)} ⊆ Dn.
The node is split into two child nodes, each associated with a partition of S based
on the value of a selected feature j ∈ {1, · · · , p}. Let ej ∈ Rp denote a unit vector in
the standard basis (that is, a vector with a single one in the jth entry and the rest
of the entries are zero) and τ ∈ R a threshold value. Then, S is partitioned into the
two subsets, a left node (L), and a right node (R).

SLθ = {(xi, yi) | eTj xi < τ, (xi, yi) ∈ S},
SRθ = {(xi, yi) | eTj xi ≥ τ, (xi, yi) ∈ S}

given the parameter pair θ = {ej , τ}. To choose the partition, θ is sampled d times
(also known as mtry in the literature). Then the locally optimal θ∗ = (e∗j , τ

∗) pair
is greedily selected from among a set of d randomly selected standard basis vectors
as that which maximizes some measure of information gain. A typical measure is
a decrease in impurity, calculated by the Gini impurity score I(S), of the resulting
partitions [3]. Let p̂k(S) = 1

|S|
∑
yi∈S I[yi = k] be the fraction of elements of class k

in partition S and I(S) :=
∑K
k=1 p̂k(1− p̂k) be the Gini impurity. Then the split

θ∗ = argmax
θ
|S|I(S)− |SLθ |I(SLθ)− |SRθ |I(SRθ)

is chosen to maximize the decrease in impurity from the parent node containing
S. A leaf node in the decision tree is created once a partition reaches a stopping
criterion, typically either falling below an impurity score threshold or a minimum
number of samples [3].

To classify a feature vector x, it is evaluated at root node of the tree and split
into one of the two partitions. This process is repeated recursively at subsequent
split nodes until x ”falls into” a leaf, upon which posterior probability estimates of
the class labels can be assigned. Let lb(x) be the set of training examples at the
leaf node in tree b into which x falls. The empirical posterior probability of label
y in b is thus p̂n,b(y | x) = 1

|lb(x)|
∑n
i=1 I[yi = y]I[xi ∈ lb(x)]. The forest composed

of B trees computes the empirical posterior probability for x by averaging over the
trees p̂n(y | x) = 1

B

∑B
b=1 pn,b(y | x) and classifies x per the label with the greatest

empirical posterior probability [3]

gn(x) = argmax
y∈{1,...,K}

p̂n(y|x).

For good performance of the ensemble, the individual decision trees must be
relatively uncorrelated from one another. This is typically done by considering a
random subset of features at each split node and training each tree on a bootstrapped
subsample of the full training data. Applying these techniques reduces the amount
random forests overfit and lowers the upper bound of the generalization error [6].

3

2.3. Oblique Forests. Sparse Projection Oblique Randomer Forests (Sporf),
is a recent modification to random forest that has shown improvement over axis-
aligned random forests and other oblique forests that compute linear combinations of
features [7, 8, 9]. Recall that RF split nodes partition data along the coordinate axes
by comparing the projection eTj x of observation x on standard basis ej to a threshold
value τ . Sporf generalizes the set of possible projections, allowing for the data to
be partitioned along any linear combination of axes specified by the sparse vector
aj ∈ Rp. The partition

SLθ = {(xi, yi) | aTj xi < τ, (xi, yi) ∈ S},
SRθ = {(xi, yi) | aTj xi ≥ τ, (xi, yi) ∈ S}

follows from our choice of θ = {aj , τ}, where the entries of aj vector entries are
defined as follows (here aij is the ith entry of aj):

aij =


1 with prob. 1

2s

0 with prob. 1− 1
s

−1 with prob. 1
2s

Then θ is chosen in the same manner as in axis-aligned Random Forests. All
other aspects of Sporf are the same as RF.

3. Methods.

3.1. Sampling Projections from a Dictionary. To move towards manifold
forests, we observe that random and oblique forests both sample atoms from a dictio-
nary to create their projected feature values, which are compared with threshold τ to
determine the partition. In axis-aligned random forests, the dictionary, A = {ej}pj=1

is the set of points along the p-dimensional hypercube, i.e. standard basis vectors in
Rp. Then at every node, atoms ei ∈ A from the dictionary are sampled d times.

Similarly, in oblique forests, let the dictionary A be the set of vectors (atoms)
{aj}, each atom a p-dimensional vector defining a possible projection aTj x. In Sporf,
the dictionary A can be much larger then that of Random Forests, because it includes,
for example, all 2-sparse vectors. At each split node, Sporf samples d atoms from A
according to a specified distribution. By default, each of the d atoms are randomly
generated with the number of non-zero elements drawn from a Poisson distribution
with a specified rate s. Then, each of the non-zero elements are uniformly randomly
assigned either +1 or −1. Note that although the size of the dictionary for Sporf is
3p (because each of the p elements could be −1, 0, or +1), the atoms are sampled
from a distribution heavily skewed towards sparsity controlled by the s term.

3.2. Random Projection Forests on Manifolds. In the structured data set-
ting, the dictionary of atoms A = {aj} is modified to take advantage of a priori
knowledge of feature locality on the underlying manifold on which the data lie. We
call this ‘Manifold Oblique Random Forest’ (Morf). This modification constrains the
space of random projection decision trees which can be learned in order to better suit
certain classification tasks where relations between features may add information. By
constructing features in this way, Morf learns low-level features in the structured data,
such as corners in images or spikes in time-series.

4

As in Sporf, let A be a dictionary of m, p-dimensional atoms with probability
density or mass function fA over the m atoms. Each atom aj ∈ A projects an
observation xi to a real number aTj xi, where nonzero elements of aj effectively weight
and sum features. At each node in the decision tree, Morf selects the best split
according to the Gini index over each candidate atom and threshold pair. It has the
same partition functions, SLθ and SRθ as SPORF presented in 2.3. What changes when
going from SPORF to MORF? We present two generalizations, selection of the non-
zero indices and weights, which allow one to specify any type of manifold structure
they want.

Selection of Nonzero Indices. While the nonzero indices of each atom in Sporf

were mutually independent of one another, the key aspect of Morf lies in the user-
specified restriction of possible atoms to take advantage of feature locality (e.g. non-
zero indices are dependent). Relations between data features, as in feature locality,
may be abstractly encoded as a sampling graph in which each feature represents a
node and an edge between two features (an adjacency) permits an atom in A with
nonzero weights on both of those features. In Figure 1, if no two features are adjacent
(none related), we recover RF(Fig 1a). If all features are pairwise adjacent (all com-
binations are possible), we recover Sporf(Fig 1b). At a high-level, Morf introduces
user-defined networks in between those of RF and Sporf allowing for some relations
but not others (Fig 1c).

(a) (b) (c)

𝑥!
𝑥"

𝑥#

𝑥$

𝑥%

Fig. 1: Intuition of manifold sampling for non-zero indices shown with a 5-dimensional
data sample, x = [x1, x2, x3, x4, x5]T ∈ R5. Sampling non-zero indices can be ab-
stractly represented as a graph. In axis-aligned random forests (a), at every node,
samples from the dictionary are drawn where only one non-zero weight is drawn (i.e.
the standard basis vector). This is represented by a completely disconnected graph;.
In Sporf (b) any combination of non-zero indices is possible, indicated by a fully-
connected graph; each sample can effectively form a linear combination of potentially
all features. In practice, the sampled projection vector is sparse, which can be repre-
sented by the edge weights being extremely small (1

2s). In Morf (c) prior information
about the structure of x can be leveraged to constrain the dictionary of possible
projection vectors. For example, in natural images, we expect adjacent pixels to be
correlated and x1, x2, x5 may represent adjacent pixels in a vectorized image. Thus,
we would sample non-zero indices from these ”patches” of the image.

Selection of Nonzero Weights. In RF, all non-zero weights have value 1. In Sporf,
all non-zero weights have value 1, or -1. In our settings Morf, all non-zero weights
will have value 1. For the setting of natural images, this is equivalent to taking the
summation operator of a small ”patch”. These weights can be set in a more general
fashion. For example, one can set weights according to a Gaussian kernel, where

5

values are higher in the center of the patch and lower towards the edge of the patch.
We do not consider these cases, but discuss their implications in Section 7.

3.2.1. Examples of Projection Dictionaries for Manifolds. For our ap-
plications, we provide a concrete implementation targeted at translation equivariant
feature locality in 1D and 2D, such as time series and images respectively. Based on
assumptions about the data manifold, one can specify the graph to sample non-zero
indices. Assume there exists a similarity matrix, S, induced by the manifold dictating
how features are related to each other in a data sample, xi. For example, in natural
images, S would be a matrix in RW×H with width, W, and length, H. So randomly
sample i ∈ {1, ...,W} and j ∈ {1, ...,H}. Then Sij is the ijth entry of the similarity
matrix, corresponding to the ijth feature in xi. We would then randomly sample
k-hop neighbors of Sij to form a ”patch”, and then combine these features using the
summation operator (these features can be combined with different weights, which
is considered in the Discussion). This patch vectorized would form our projection
vector, ai. 〈xTi , ai〉 would give us a candidate feature value to split on. In practice
we do not actually know the similarity matrix induced by the manifold, but we can
leverage prior information. For example, in natural images, nearby pixels One can
specify the possible widths and heights of sampled patches based on knowledge of the
data manifold.

In natural images, at each split node, a set of atoms are randomly sampled to
produce candidate features across observations. Morf accepts hyperparameters defin-
ing the minimum and maximum number of patch rows {hmin, hmax} and columns
{wmin, wmax}, respectively. To sample a patch, first the number of rows h and col-
umns w are independently and uniformly sampled between respective minima and
maxima (inclusive). As columns are contiguous, a reference leftmost column in the
unraveled matrix is sampled as u ∼ U{−w + 1,W}. If 2D locality is specified, then
a reference upper row is sampled as v ∼ U{−h + 1, H}. In both cases, the reference
column and row may be outside of the matrix so that each feature has an equally
likely chance of being included in a patch. The region outside of the matrix is ig-
nored, effectively a zero-padded boundary. The algorithm pseudocode is equivalent
to that of Sporf except for the distribution fA described above which can be seen in
Appendix C.

In multivariate time-series, the features of a single observation xi ∈ Rp can also
be viewed as organized into a 2D matrix in RS×T , where S ∗ T = p. Each feature is
indexed by a row and column over the number of sensors (S) and time points (T).
In this case, only 1D locality might be beneficial where contiguous time points are
correlated. However, unless the sensors are ordered in a meaningful manner, there
is no reason to suspect locality along the sensor axis (i.e. columns). Again the
parameters of the patch can be specified according to the data manifold.

In our experiments, the atom weights were limited to values of 1 and 0 to limit
combinatorial complexity but domain-specific atom design may be desired in some
settings along with further task-specific atoms. For graph-valued data, one may con-
sider sampling a collection of neighboring edges or nodes [19]. For spatial related data,
one can consider sampling a colleciton of nearby points in Euclidean or Riemannian
space [20].

3.3. Feature Importance. One of the benefits to decision trees is that their
results are fairly interpretable in that they allow for estimation of the relative im-
portance of each feature. Many approaches have been suggested [6, 21], and here we
introduce a projection forest specific metric which counts the the number of times

6

a given feature was used in projections across the ensemble. Formally, a decision
tree T in the trained forest F contains a set of split nodes, where each node s ∈ T
is associated with an atom a∗s from the dictionary of atoms in the forest AF and a
threshold that partition the feature space according to the projection a∗Ts x. Thus,
the indices corresponding to nonzero elements of a∗s indicate important features used
in the projection. The importance of feature k, denoted πk, is calculated as

πk =
1

|AF|
∑
T

∑
s∈TS

I(a∗sk 6= 0),

the number of times it is used in a projection, across all decision trees and split.
These counts represent the relative importance of each feature in making a correct
classification. Such a method applies to RF,Sporf, and Morf although different results
between them would be expected due to different dictionary distributions.

4. Theoretical Results. Random forest algorithms have been historically diffi-
cult to analyze theoretically, both from a statistical perspectives as well as algorithmic.
However, there is a large body of literature making assumptions and modifications
on top of Breiman’s random forest algorithm [6] from which theoretical analyses are
tractable [5, 22, 23, 24, 25, 26, 27, 28]. Here, we provide insights on oblique forests,
such as Sporf and Morf by expanding upon the axis-aligned forest statistical results
in Athey et al. [29] and algorithmic results in Louppe [30].

4.1. Classifier Consistency. Athey et al. [29] present a seminal paper specify-
ing some minor distributional assumptions and algorithmic conditions for their gen-
eralized random forest algorithm to provide a consistent estimate θ̂(x) of θ(x), where
θ(x) is defined as the solution to some estimating equation E[ψθ(x)(Yi)|Xi = x] = 0
for all x ∈ X and ψθ(x) is a score function. A consistent estimate converges to the
true estimand in probability, as the sample size n approaches infinity.

Fundamentally, the consistency of the generalized random forest comes from each
tree partitioning the feature space into a set of hyper-rectangles (a bijective map
with the set of tree leaves) whose radii go to zero as the sample size grows but slow
enough such that they are populated with sets of sizes approaching infinity. This is
the same logic behind the consistency of the k-nearest neighbors classifier [31] and
indeed random forests are effectively adaptive nearest neighbor classifiers [26].

Although oblique decision trees do not create hyper-rectangular partitions, they
do partition the feature space into a finite number of (possibly unbounded) convex
polytopes (see Appendix D). Each polytope region responds to a leaf node with a
constant classification label per leaf. That oblique trees yield convex polytopes which
are not necessarily hyper-rectangles is the only difference compared to axis-aligned
trees, and the basis as to why the consistency results of Athey et al. [29] can be
extended to the oblique setting.

We show that a main result of Athey et al. [29] holds for oblique random forests,
such as Sporf and Morf. As a corollary, posterior probability estimates are consistent.
Thus, an oblique random forest under appropriate conditions admits a consistent clas-
sification rule and so its error converges to the minimum expected (Bayes) error (see
Appendix A for full proofs). We repeat Specification 1 made by Athey et al. [29]
below for reference. Specification 2 is new and restricts the set of possible dictionar-
ies. The full proofs are detailed in Appendix A along with the technical and minor
distributional Assumptions 1A-6A.

7

Specifications.
1. All trees are symmetric, in that their output is invariant to permuting the

indices of training examples; make balanced splits, in the sense that every
split puts at least a fraction w of the observations in the parent node into
each child, for some w > 0; and are randomized in such a way that, at every
split, the probability that the tree splits on the j-th feature is bounded from
below by some α > 0. The forest is honest and built via subsampling with
subsample size s satisfying s/n→ 0 and s→∞ [29].

2. The oblique dictionary A is finite and contains the set of standard basis
vectors {ei}pi=1, each with a fixed nonzero probability of being selected at
each split node.

Assumptions.
1. There exists a density f over X that is bounded away from zero and infinity.

That is, for all x ∈ X there exists a ε > 0 such that ε < f(x) < 1
ε .

2. For all y ∈ Y, P (Y = y | X = x) is Lipschitz continuous in x ∈ X .
Honesty, introduced in Specification 1, is a mild condition that removes bias

from the leaf estimates by requiring the set of training examples used to learn the
structure of the tree to be independent of the set of examples used at the leaf nodes
for estimation [5, 22, 24, 29]. In practice this is done using a holdout set per tree
and can be beneficial in some cases [28]. Alternatively, this sample splitting can be
performed more naturally using the out-of-bag samples from bootstrapping. With the
addition of Specification 2, the following theorem extends the results of Athey et al.
[29] to oblique regression forests in addition to axis-aligned forests.

Theorem 1. Under Assumption 1 and Assumptions 1A-6A [29], the estimate

θ̂(x) from the generalized random forest of Athey et al. [29] incorporating oblique

splits and built to Specifications 1-2 is consistent, i.e. θ̂n(x)
P→ θ(x) as n→∞.

The conditional mean θ(x) = E[Yi|Xi = x] is a valid estimand for the generalized
random forest algorithm and the empirical estimator coincides with that of Breiman’s
regression forest [29]. So, in the classification setting one may readily estimate the
class-conditional posterior in terms of a conditional mean θ(x, y) = E[I[Yi = y]|Xi =
x] = P (Yi = y|Xi = x) for all y ∈ Y in each leaf node. We note that this choice of esti-
mand satisfies Assumptions 2A-6A, see Appendix A for details, with only Assumption
1A remaining as a true assumption. Thus, from Theorem 1 we obtain the following
corollary and classification Theorem with Assumption 1 incorporated explicitly.

Corollary 2. Under Assumptions 1-2, posterior estimates from an oblique clas-

sification random forest built to Specifications 1-2 are consistent, i.e. p̂n(x; y)
P→

P (Yi = y|Xi = x) as n→∞.

Theorem 3. Under Assumptions 1-2, the classification rule from a oblique clas-

sification random forest built to Specifications 1-2 is consistent, i.e. Ln
P→ L∗ as

n→∞.

Note that these results apply to both oblique forests with unstructured atoms
such as Sporf as well as those with structured atoms such as Morf. This Lipschitz
assumption is a frequent one taken in the literature on random forests [29]. It intu-
itively makes sense a priori that small deviations in x should lead to small deviations
in the class probability. As in Athey et al. [29], however, this theorem is limited to
continuous-valued features which rules out certain classes of data.

8

4.2. Training Time Complexity. Theoretical analyses are difficult without
making assumptions on the data as a tree’s possible structure occupies a combina-
torially large space and the worst case is too large to be helpful in typical scenarios.
We extend the work of Louppe [30] and examine a simplified setting in which the
possible sizes induced at each partition node are equally likely. It has been posited
and supported empirically that this is a lower bound for the true average case in a RF

[30]. One reason that worse-than-average cases may occur is that when none of the
candidate features are informative, edge splits are frequent and lead to deep trees [30].
The candidate features in Sporf and Morf are combinations of individual features
and we expect this greater flexibility to reduce the chance that no candidate features
are informative.

Let a forest have T trees, d candidate features at each split node, and n training
samples. At each split node in RF, the complexity is O(dn log n) to sort observations
along each feature using an optimal sorting algorithm [30]. In the average case, the
time complexity for RF is then O(Tdn log2 n) [30]. Morf, like Sporf, utilizes sparse
matrix multiplication to compute weighted sum while sorting observations at each
split node. Thus, letting H and W denote the maximum height and width of a patch
in Morf, the time complexity for Morf is O(TdHWn log2 n), because for each of the
d features we must make HW multiplication operations. However, as we will show
empirically, Morf can find better partitions and thus learn smaller trees.

It is worth noting that because our analysis is based on the framework devised by
[29]. The assumptions are rather strict and it is not necessary in all cases for example
that the joint density of the explanatory variables is uniformly bounded away from
zero and infinity. Nevertheless, our results show that structured oblique methods,
such as Morf fit into the theory posed by Athey et al. Moreover, the theory posed by
Athey et al. are the basis of the heavily used Generalized Random Forest method and
code. Although the study of Morf ’s convergence behavior is beyond the scope of this
paper, empirically it seems that Morf is able to learn less complex trees compared to
RF.

5. Simulation Experiments. We examine the performance of Morf in terms
of predictive accuracy and runtime in three simulations highlighting 1D and 2D man-
ifolds. In all cases. Morf outperforms methods that do not consider feature locality
as well as ConvNets in some cases.

5.1. Three simulated manifolds. We evaluated Morf in three simulation set-
tings to show its ability to take advantage of structure in data. Morf was compared
to a set of traditional classifiers (and Sporf) that learn from the raw features. For
each experiment, we used our open source implementation of Morf as well as Sporf

and the RF implementation contained in the Sporf, each with 500 trees. Other clas-
sifiers were run from the Scikit-learn Python package [32] and the gradient boosted
tree XGBoost (XGB) was run using its Python implementation [33]. Additionally,
we tested against a Convolutional Deep Network (ConvNet) built using PyTorch [34]
with two convolution layers, ReLU activations, and maxpooling, followed by dropout
and a densely connected hidden layer.

Method hyper-parameters were left as defaults except for the ConvNets and Morf

which are each specific to the structure of the data and so must be changed. Thus, a
well-performing ConvNet architecture was selected and Morf minimum and maximum
patch sizes were optimized using a grid search over a range of potential values as well
as well as the number of features considered per split (mtry) which should vary with
the patch size. See Appendix D for details on the hyperparameters and network

9

architectures across experiments.
Experiment (A) is a non-Euclidean cyclic manifold example inspired by Younes

[35] in which the discriminating information is solely contained in the structure of the
data. Each observation is a discretization of a circle’s perimeter into a one dimensional
feature vector with 100 features and two non-adjacent segments of 1’s in two differing
patterns: class 1 features two segments of length five, while class 2 features one
segment of length four and one of length six. Because features are arranged on a circle,
segments can wrap around the cyclic feature vector. Figure 2(A) shows examples from
the two classes and classification results across various sample sizes.

Experiment (B) is a simple 28×28 binary image classification problem. Images in
class 0 contain randomly sized and spaced horizontal bars while those in class 1 contain
randomly sized and spaced vertical bars. For each sampled image, k ∼ Poisson(λ =
10) bars were distributed among the rows or columns, depending on the class. The
distributions of the two classes are identical if a 90 degree rotation is applied to one
of the classes and so a classifier cannot be learned without learning the structure of
the data. Figure 2(B) shows examples from the two classes and classification results
across various sample sizes.

Experiment (C) is a signal classification problem highlighting the presence of
structure in time series data. One class consists of 100 values of Gaussian noise
independent and identically distributed (iid) while the second class has an added
exponentially decaying unit step (u) beginning at time 20.

X
(0)
t = ε

X
(1)
t = u(t− 20) exp(t−20) +ε, ε

iid∼ N (0, 1)

Figure 2(C) shows examples from the two classes and classification results across
various sample sizes.

In all three simulation settings, Morf outperforms all other classifiers that ignore
the local structure, doing especially better at low sample sizes. As compared with
ConvNets, Morf sometimes does better, and sometimes worse. The variance across
five repeated runs was negligible across sample sizes. The performance of Morf and
ConvNets are particularly good in the discretized circle simulation for which most
other classifiers perform at chance levels. Morf dominates in the signal classification
problem for all sample sizes, most likely because of the ability to learn wide patches
which approaches the Bayes classifier. Results on these experiments using uniformly
distributed atom weights in between 0 and 1 showed no improvement but increased
training time and so were omitted.

We compare the empirical complexity of Morf, Sporf, and RF in Figure 3. Al-
though projection forests required more computations at each partition node during
training, as outlined in Section 4.2, Morf is able to learn less complex trees in all
cases and sample sizes.

Each simulated experiment was run on CPUs and allocated 45 cores for parallel
processing. The resulting train and test times as a function of the number of training
samples are plotted in Figure S1. Morf has train and test times slightly longer than
those of Sporf. This cost comes at the benefit of less complex trees, as show in in
Figure 3. The other method to utilize feature locality, the ConvNet, took noticeably
longer to run across simulations for the majority of sample sizes, as seen in Figure
S1. Thus its strong performance in those settings comes at an added computational
cost, a typical issue for deep learning methods [36].

10

Number of training samples

0.0

0.1

0.2

0.3

0.4

M
is

cl
as

si
fic

at
io

n
R
at

e

(A) Circle Segments (B) Orthogonal Bars

Class 0

Class 1

(C) Noisy Impulse

Signal
Impulse

0.5

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
XGB
SPORF
MORF
ConvNet

101 103102 101 103102 101 103102

Fig. 2: Morf outperforms other algorithms in three two-class classification settings
when considering a small number of samples. Upper row shows examples of simu-
lated data from each setting and class. Lower row shows misclassification rate in each
setting, tested on 10,000 test samples. (A) Two segments in a discretized circle. Seg-
ment lengths vary by class. (B) Image setting with uniformly distributed horizontal
or vertical bars. (C) White noise (class 0) vs. exponentially decaying unit impulse
plus white noise (class 1). We also observe that ConvNets perform generally better
for very large sample sizes (e.g. >> 103), as expected.

Model Misspecification. In the three simulation settings, we explored how Morf

is robust to misspecified manifold structure. For example, in (A) Circle Segments, we
know that the differentiating factor is the length of the segments being five, or not
five. Therefore, one would suspect that the correct patch dimensions should cover
that case sufficiently. In Supplementary Figure S3, we see that Morf is relatively
stable even when the patch dimensions are not fully the same. The important factor
is making sure the information relevant to the task is contained within the possible
patch. For full details of the model misspecification experiment, see Supplementary
Section B.5.

5.2. A simulated multivariate time-series. Experiment (D) here demon-
strates how multivariate data with implicit structure can be learned by Morf. The
simulation is run as in the prior simulations in Section 5.1. We simulate a multivariate
time-series problem, where the signals are governed by a linear dynamical system of
the form

x(t+ 1) = Ax(t) +Biu(t),

where the governing linear state matrix, A ∈ R3×3, is the same, but the class sep-
aration is modeled by the input matrices, Bi ∈ R3×3, defined below. The input to
the system, u(t), is the same for all classes. The system is set up such that the pair

11

0

20

40

M
ax

 t
re

e
he

ig
ht

Circle Segments Orthogonal Bars Noisy Impulse

Algorithm
RF
SPORF
MORF

10

20

M
ea

n
le

af
 d

ep
th

101 102 103

103

104

105

To
ta

l l
ea

ve
s

101 102 103 101 102 103

Number of training samples

Fig. 3: Empirical random forest complexities in each simulation with respect to their
maximum tree height, mean leaf depth, and total number of leaves across training
sample size. Morf is able to learn simpler trees in all cases due to its restricted
projection distribution.

(A,B) is controllable, and that A is marginally stable (i.e. eigenvalues, |λ| ≤ 1 for all
eigenvalues of A.

B0 =

0.5 0 0
0 0.5 0
0 0 0.5


B1 =

0.5 0.1 0.1
0.1 0.5 0.1
0.1 0.1 0.5


An input u(t) was applied at a random time point selected between the 20th

and 40th time point of the simulated time series. A total of 100 time points were
simulated and Morf was compared to a suite of other classification algorithms over
varying sample sizes. Note that the signals have the exact same dynamics encoded
through the A matrix, but the input-output relationships are different. This simulates
a setting common in multivariate time-series classification (e.g. EEG, see Section 6.2)
where there are signals collected over time that one hypothesizes to be relevant to

12

a task, yet the researcher does not know a priori what signals are actually relevant
and so they collect as much data as possible. This results in the standard curse-of-
dimensionality. However, it is assumed that signals relevant to the task live on a
low-dimensional manifold, and the goal is to have a model learn the structure of this
manifold for the sake of classification. Figure 4 shows examples from the two classes
and classification results across various sample sizes.

0 250 500 750 1000 1250 1500 1750 2000
Number of Samples

0.35

0.40

0.45

0.50

0.55

M
ea

n
Te

st
 E

rr
or

Classifier
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
ConvNet
SPORF
XGB
MORF

Fig. 4: Multivariate data embedded in a manifold Algorithm comparisons on
classifying two classes of multivariate data. The data consists of samples from two
classes of a 3-dimensional stable linear dynamical system with input. Samples are con-
structed as Xi ∈ R3×T , where now data points over time are correlated. Morf learns
the structure significantly faster then the other classifiers, with XGBoost requiring
more sample to achieve the same test error rate.

A challenging aspect of experiment (D) is that i) the linear state dynamics gov-
erned by the A matrix are the same and is considerably larger in norm compared
to Bi, and ii) the time at which u(t) is applied is random within a small interval.
This simulation setting motivates settings where there is a dynamical system with
input, such as electroencephalogram (EEG) at rest with dynamics modeled as a lin-
ear system, and then a stimulus is applied in the form of input u(t) [37, 38, 39, 40].
Depending on the stimulus applied, this might affect the system in different ways
through Bi. This is very general setting in where the stimulus can be a flash of light,
or indication of movement, or even a direct stimuli to evoke seizures.

6. Experiments on Real Data. We next evaluated Morf on three real data sets
with varying manifold structure, sample sizes and classification goals. In each dataset,
there is the notion of either a 1D or 2D manifold on which we have a priori knowledge
of feature locality, time and images respectively. We compare results against a suite
of classification algorithms as before.

6.1. 2D Locality: MNIST Digit Classification. Morf’s performance was
evaluated on the MNIST dataset, a collection of handwritten digits stored in 28 by 28
square images [41], and compared to the algorithms used in the simulations. 10,000
images were held out for testing and the remaining 50,000 images were used for train-

13

ing. The results are displayed in Figure 5 (top). Hyperparameters are as described in
the simulations, see Appendix D for details. Morf showed an improvement over the
other algorithms as compared to ConvNets.

102 103 104
0.0

0.1

0.2

0.3

0.4
Algorithm

Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
XGB
SPORF
MORF
ConvNet

Number of training samples

M
is

cl
as

si
fic

at
io

n
R
at

e

Average 3 Average 5

MORF ImportanceSPORF Importance

Absolute Difference

RF Importance

Fig. 5: (Top) Morf performance on the MNIST digit classification problem improves
prediction accuracy over all other non-ConvNet algorithms, notably in small sample
sizes. (Bottom) The averages all images from MNIST labeled 3 and 5, respectively,
and their absolute difference (top row). Feature importance from Morf (bottom right)
shows less noise than Sporf (bottom middle) and is smoother than RF (bottom left).

We then evaluated the ability of Morf to identify important features in manifold-
valued data as compared to Sporf and RF. All methods were run on a subset of the
MNIST dataset: we only used threes and fives, 100 images from each class.

The feature importance of each pixel is shown in Figure 5 (bottom). Morf visibly
results in a smoother pixel importance, a result most likely from the continuity of

14

neighboring pixels in selected projections. Although Tomita et al. [9] demonstrated
empirical improvement of Sporf over RF on the MNIST data, its projection distri-
bution yields scattered importance of unimportant background pixels as compared to
RF. Since projections in Sporf have no continuity constraint, those that select high
importance pixels will also select pixels of low importance by chance. This may be a
nonissue asymptotically, but is a relevant problem in low sample size settings. Morf ,
however, shows little or no importance of these background pixels by virtue of the
modified projection distribution.

6.2. 1D Locality: Multivariate Time-Series EEG. Morf’s performance was
next evaluated on multivariate time-series. Just using raw EEG data, we used Morf to
classify movement direction. Compared to a suite of other classification algorithms,
Morf is able to achieve a superior performance measured by AUC relative to the other
classifiers, as seen in Supplementary Figure S2. We observe that ConvNets have a
0.51 ± 0.04 AUC, indicating that it overfit to the training data. This is most likely
due to the fact that the dataset presented in [37] consists of 100-200 trials of data
(i.e. samples). We next demonstrate that with some structured feature engineering,
one can improve Morf on difficult problems beyond that of any traditional classifier
and is superior to ConvNets in low-sample size settings.

We next look at a 91 epilepsy subject dataset [42, 43, 44] comprised of intracranial
electroencephalogram (iEEG) recordings of multiple seizures. Clinicians annotated a
subset of implanted electrodes as part of the clinically hypothesized epileptogenic zone
(EZ), and then perform subsequent surgery to resect a super set of those regions. The
classification task is to predict surgical outcome of success (seizure free) or failure
(seizure recurrence) after a surgical resection is performed on drug resistant epilepsy
patients conditioned on the clinically hypothesized EZ regions. If a feature is infor-
mative, then it will highly correlate with the clinical EZ when a surgical outcome is
successful and vice versa when not successful. In Li et al. [42], Li et al. [43], a feature
of the data, “neural fragility” was computed from the data, which is represented as a
spatiotemporal heatmap of channels-by-time.

The classification task specifically takes in a data points that are Xi ∈ RH×W
of dimension (20 × 105), where there are 20 quantiles summarizing a distribution of
neural fragility and 105 time points around seizure onset. There are 10 quantiles for
the neural fragility of electrodes in the clinically hypothesized EZ and 10 quantiles
for the neural fragility of electrodes in the rest of the implanted electrodes. The goal
is to take Xi and predict yi ∈ {0, 1}, where 0 stands for failed surgical outcome and
1 stands for successful surgical outcome. The classification is setup this way because
the clinically annotated EZ electrodes are imperfect and not always representative of
the true underlying EZ, which is not observable. Moreover, the multivariate EEG
time-series were transformed in this way in order to faciliate comparisons of predic-
tions among subjects with different number of electrodes (ranging from 3̃0-150). In
the original paper, there is preprocessing of the data in the form of a thresholding
step, which was done to improve the model performance. However, in this setting,
we perform no preprocessing before the classification task to demonstrate fair per-
formance on the ”raw” transformed data. For full details on the dataset and clinical
problem, we refer the readers to Li et al. [42], Li et al. [43].

In Figure 6a, we compare Morf with default hyperparameters, specified in the
Sporf package, against standard classification algorithms as in the simulations. The
sample sizes for training are relatively low with 60% of subjects used for training
and the rest for the held-out test set. The set of subjects in each cross-validation

15

index are the same across all classifiers, thus enabling a fair comparison. In some
folds, it is seen that all the classifiers perform very poorly. This occurs most likely
because the data are noisy, the implanted iEEG electrodes are not perfect and some
subjects are very difficult to treat. Moreover, there are only 91 subjects total used in
this classification task. Even in this challenging classification setting, we observe that
Morf is able to achieve a superior performance measured by AUC (Figure 6b). In
terms of the Cohen’s effect size, Morf is significantly (p-value ≤ 0.05) more accurate
than all other algorithms besides Sporf per a Wilcoxon paired sign test across the 10
cross-validation folds. We observe that ConvNets perform at chance level on the test
set, completely overfitting to the training set in this limited sample size setting.

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

Model (AUC)
MORF (0.71 ± 0.20)
SPORF (0.69 ± 0.21)
RF (0.56 ± 0.13)
XGB (0.55 ± 0.13)
Log. Reg (0.56 ± 0.13)
SVM (0.55 ± 0.10)
ConvNet (0.53 ± 0.08)
MLP (0.57 ± 0.12)
Chance
Clinical Operating Point

MORF
SPORF

MLP
SVM

Log. Reg RF
XGB

ConvNet

Classifier

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

Fig. 6: Morf performance on the epilepsy seizure outcome prediction problem im-
proves prediction accuracy over all other algorithms in 10-fold cross validation (CV).
(Top) Shows a ROC curve with the mean ROC curve plotted AUC for each classi-
fier. (Bottom) Shows a strip plot of the AUC values in 10-fold CV with the median
marked in each setting (solid black line). Note that even the ConvNet and multi-layer
perceptron (MLP) perform poorly, most likely because the sample size is very low.
Compared to the next best non Sporf classifier, Morf improves over the MLP with a
Cohen’s D effect size of 0.83 (95% CI = [2.32, -0.102]).

7. Discussion. The success of sparse oblique projections in decision forests has
opened up many possible ways to improve axis-aligned decision forests (including
random forests and gradient boosting trees) by way of specialized projection distribu-
tions. Traditional decision forests have already been applied to some manifold-valued
data, using predefined features to classify images or pixels, and have shown great
success, but ignore feature continuity and specialize for specific data modalities. We
expand upon sparse oblique projections and introduced manifold-aware projection
distributions that exploits prior knowledge of the local topology of a feature space to
improve learning rates and accuracy for classification. The open source implemen-
tation of Morf subsumes Sporf and provides a flexible classification method for a
variety of data modalities and tailored projection dictionaries. We showed in various
settings that appropriate domain knowledge can improve the projection distribution
and better match ConvNet results (or even outperforming ConvNets significantly)
while maintaining interpretability, fast run time, and theoretical justification.

It is plausible that one could design a loss, or engineer a feature based on the
structure of one’s dataset. Then presumably recent extensions of RF would work
even better than Morf on structured data (e.g. data that is spatially dependent) [20].
However, this explicit structure is often not known in practice and hence incorporating

16

dependence structure directly within the loss function is not as useful for an off-
the-shelf tool. Morf circumvents this issue by sampling projection vectors from a
dictionary and using a recursive surrogate loss instead (i.e. the Gini impurity per leaf).
Moreover, Morf is significantly cheaper in terms of computational cost since we are not
directly performing optimization on a desired loss function (e.g. see Supplementary
Figure S1 on training and testing times).

The flexibility in choices of Morf’s dictionary opens a much larger combinatorial
space to sample from compared to a traditional random forest. More complex pos-
sibilities may lead to improved performance, but potentially at the cost of greater
sampling requirements. Similarly, research into other task-specific projection dictio-
naries may lead to improved results in computer vision tasks, through better texture
quantification for instance, or in other manifold-valued settings such as graphs. Al-
though, unlike ConvNets, Morf is not globally translation equivariant, it can be locally
translation equivariant given atoms reminiscent of Gabor filters, for instance. With-
out local equivariance, discriminative features must be constant in their indices or
the training data must be rich enough to fully encapsulate possible observations [15].
The Morf projection distributions may also be incorporated into other state of the
art Forest algorithms such as XgBoost. Additionally, the fact that oblique decision
forests lead to partitions of convex polytopes is of interest in that it has been shown
that deep nets with Rectified Linear Units (ReLUs) or hard tanh activation layers
also partition the feature space into convex polytopes with different linear functions
on each region [45]. This shared “partition and vote scheme” offers insight into their
relationship with one another as well as the functioning of the brain [46]

References.
[1] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need

hundreds of classifiers to solve real world classification problems?” Journal of
Machine Learning Research, vol. 15, pp. 3133–3181, 2014.

[2] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised
learning algorithms,” in Proc. of the 23rd Int. Conf. on Machine Learning, ser.
ICML ’06. New York, NY, USA: ACM, 2006, pp. 161–168.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning,
ser. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.,
2001.

[4] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5, no. 2,
pp. 197–227, Jul. 1990.

[5] G. Biau, L. Devroye, and G. Lugosi, “Consistency of Random Forests and Other
Averaging Classifiers,” Journal of Machine Learning Research, vol. 9, pp. 2015–
2033, Jun. 2008.

[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct
2001.

[7] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A. Hamprecht,
“On oblique random forests,” in Machine Learning and Knowledge Discovery in
Databases, D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 453–469.

[8] T. M. Tomita, M. Maggioni, and J. T. Vogelstein, “Roflmao: Robust oblique
forests with linear matrix operations,” in Proc. of the 2017 SIAM Int. Conf. on
Data Mining, 2017, pp. 498–506.

[9] T. M. Tomita, J. Browne, C. Shen, J. Chung, J. L. Patsolic, B. Falk, C. E. Priebe,
J. Yim, R. Burns, M. Maggioni, and J. T. Vogelstein, “Sparse projection oblique

17

randomer forests,” Journal of Machine Learning Research, vol. 21, no. 104, pp.
1–39, 2020. [Online]. Available: http://jmlr.org/papers/v21/18-664.html

[10] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, “Deep Neural Decision
Forests,” in 2015 IEEE Int. Conf. on Computer Vision (ICCV). Santiago, Chile:
IEEE, Dec. 2015, pp. 1467–1475.

[11] G. Biau, E. Scornet, and J. Welbl, “Neural Random Forests,” arXiv:1604.07143
[cs, math, stat], Apr. 2018, arXiv: 1604.07143.

[12] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time keypoint
recognition,” in 2005 IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, June 2005, pp. 775–781 vol. 2.

[13] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests
for object detection, tracking, and action recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2188–2202, Nov
2011.

[14] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using random
forests and ferns,” in 2007 IEEE 11th Int. Conf. on Computer Vision, Oct 2007,
pp. 1–8.

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake, “Real-time human pose recognition in parts from single depth
images,” in CVPR 2011, June 2011, pp. 1297–1304.

[16] P. Kontschieder, S. R. Bulò, H. Bischof, and M. Pelillo, “Structured class-labels
in random forests for semantic image labelling,” in 2011 Int. Conf. on Computer
Vision, Nov 2011, pp. 2190–2197.

[17] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A unified frame-
work for classification, regression, density estimation, manifold learning and
semi-supervised learning,” Found. Trends. Comput. Graph. Vis., vol. 7, no.
2–3, pp. 81–227, Feb. 2012.

[18] Y. Amit and D. Geman, “Shape quantization and recognition with randomized
trees,” Neural Comput., vol. 9, no. 7, pp. 1545–1588, Oct. 1997.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, p. 1–21, 2020. [Online]. Available:
http://dx.doi.org/10.1109/TNNLS.2020.2978386

[20] A. Saha, S. Basu, and A. Datta, “Random forests for spatially dependent data,”
Journal of the American Statistical Association, vol. 0, no. 0, pp. 1–19, 2021.
[Online]. Available: https://doi.org/10.1080/01621459.2021.1950003

[21] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” ArXiv, vol. abs/1705.07874, 2017.

[22] S. Wager and G. Walther, “Adaptive Concentration of Regression Trees, with
Application to Random Forests,” arXiv:1503.06388 [math, stat], Apr. 2016,
arXiv: 1503.06388. [Online]. Available: http://arxiv.org/abs/1503.06388

[23] N. Meinshausen, “Quantile Regression Forests,” Journal of Machine Learning
Research, vol. 7, no. 35, pp. 983–999, 2006. [Online]. Available: http:
//jmlr.org/papers/v7/meinshausen06a.html

[24] M. Denil, D. Matheson, and N. D. Freitas, “Narrowing the gap: Random
forests in theory and in practice,” in Proc. of the 31st Int. Conf. on Machine
Learning, ser. Proc. of Machine Learning Research, E. P. Xing and T. Jebara,
Eds., vol. 32. Bejing, China: PMLR, 22–24 Jun 2014, pp. 665–673. [Online].
Available: http://proceedings.mlr.press/v32/denil14.html

[25] G. Biau, “Analysis of a Random Forests Model,” Journal of Machine

18

http://jmlr.org/papers/v21/18-664.html
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1080/01621459.2021.1950003
http://arxiv.org/abs/1503.06388
http://jmlr.org/papers/v7/meinshausen06a.html
http://jmlr.org/papers/v7/meinshausen06a.html
http://proceedings.mlr.press/v32/denil14.html

Learning Research, vol. 13, no. 38, pp. 1063–1095, 2012. [Online]. Available:
http://jmlr.org/papers/v13/biau12a.html

[26] Y. Lin and Y. Jeon, “Random Forests and Adaptive Nearest Neighbors,”
Journal of the American Statistical Association, vol. 101, no. 474, pp. 578–590,
2006, publisher: [American Statistical Association, Taylor & Francis, Ltd.].
[Online]. Available: https://www.jstor.org/stable/27590719

[27] E. Scornet, G. Biau, and J.-P. Vert, “Consistency of random forests,” Ann.
Statist., vol. 43, no. 4, pp. 1716–1741, Aug. 2015, arXiv: 1405.2881. [Online].
Available: http://arxiv.org/abs/1405.2881

[28] S. Wager and S. Athey, “Estimation and Inference of Heterogeneous
Treatment Effects using Random Forests,” Journal of the American Statistical
Association, vol. 113, no. 523, pp. 1228–1242, Jul. 2018. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1319839

[29] S. Athey, J. Tibshirani, and S. Wager, “Generalized random forests,”
Ann. Statist., vol. 47, no. 2, pp. 1148–1178, 04 2019. [Online]. Available:
https://doi.org/10.1214/18-AOS1709

[30] G. Louppe, “Understanding Random Forests: From Theory to Practice,” Jun.
2015, arXiv: 1407.7502.

[31] L. Devroye, L. Györfi, and G. Lugosi, A Probablistic Theory of Pattern Recogni-
tion, 01 1996, vol. 31.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[33] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proc.
of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
ser. KDD ’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-
W, 2017.

[35] L. Younes, “Diffeomorphic Learning,” Journal of Machine Learning Research,
vol. 21, no. 220, pp. 1–28, 2020. [Online]. Available: http://jmlr.org/papers/
v21/18-415.html

[36] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational efficiency of
training neural networks,” in Proc. of the 27th Int. Conf. on Neural Information
Processing Systems - Volume 1, ser. NIPS’14. Cambridge, MA, USA: MIT Press,
2014, pp. 855–863.

[37] M. S. D. Kerr, P. Sacré, K. Kahn, H.-J. Park, M. Johnson, J. Lee, S. Thompson,
J. Bulacio, J. Jones, J. González-Mart́ınez, C. Liégeois-Chauvel, S. V.
Sarma, and J. T. Gale, “The Role of Associative Cortices and Hippocampus
during Movement Perturbations.” Front. Neural Circuits, vol. 11, p. 26,
2017. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/28469563http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5395558

[38] A. Li, Z. Fitzgerald, J. Hopp, E. Johnson, N. Crone, J. Bulacio, J. Martinez-
Gonzalez, S. Inati, K. Zaghloul, and S. V. Sarma, “Virtual Cortical Stimulation
Mapping of Epilepsy Networks to Localize the Epileptogenic Zone,” in Proc.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2019, no. Cc. Institute
of Electrical and Electronics Engineers (IEEE), oct 2019, pp. 2328–2331.

19

http://jmlr.org/papers/v13/biau12a.html
https://www.jstor.org/stable/27590719
http://arxiv.org/abs/1405.2881
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1319839
https://doi.org/10.1214/18-AOS1709
https://doi.org/10.1145/2939672.2939785
http://jmlr.org/papers/v21/18-415.html
http://jmlr.org/papers/v21/18-415.html
http://www.ncbi.nlm.nih.gov/pubmed/28469563 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5395558
http://www.ncbi.nlm.nih.gov/pubmed/28469563 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5395558

[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31946366/
[39] A. Li, K. Gunnarsdottir, S. Inati, K. Zaghloul, J. Gale, J. Bulacio, J. Martinez-

Gonzalez, and S. Sarma, “Linear time-varying model characterizes invasive EEG
signals generated from complex epileptic networks,” in Proc. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. EMBS, 2017.

[40] M. Jones, B. McDermott, B. L. Oliveira, A. O’Brien, D. Coogan, M. Lang,
N. Moriarty, E. Dowd, L. Quinlan, B. Mc Ginley, E. Dunne, D. Newell,
E. Porter, M. A. Elahi, M. O’ Halloran, and A. Shahzad, “Gamma Band Light
Stimulation in Human Case Studies: Groundwork for Potential Alzheimer’s
Disease Treatment,” J. Alzheimers. Dis., vol. 70, no. 1, pp. 171–185,
2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31156180https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC6700637/

[41] Y. Lecun, C. Cortes, and C. J. Burges, The MNIST Database of Handwritten
Digits, 1999.

[42] A. Li, C. Huynh, Z. Fitzgerald, I. Cajigas, D. Brusko, J. Jagid, A. Claudio,
A. Kanner, J. Hopp, S. Chen, J. Haagensen, E. Johnson, W. Anderson, N. Crone,
S. Inati, K. Zaghloul, J. Bulacio, J. Gonzalez-Martinez, and S. V. Sarma,
“Neural fragility as an eeg marker of the seizure onset zone,” bioRxiv, 2021.
[Online]. Available: https://www.biorxiv.org/content/early/2021/02/02/862797

[43] A. Li, S. Inati, K. Zaghloul, and S. Sarma, “Fragility in epileptic networks: The
epileptogenic zone,” in 2017 American Control Conf. (ACC), 2017, pp. 2817–
2822.

[44] A. Li, P. Myers, N. Warsi, K. M. Gunnarsdottir, S. Kim, V. Jirsa,
A. Ochi, H. Otusbo, G. M. Ibrahim, and S. V. Sarma, “Neural
fragility of the intracranial eeg network decreases after surgical resection
of the epileptogenic zone,” medRxiv, 2021. [Online]. Available: https:
//www.medrxiv.org/content/early/2021/07/08/2021.07.07.21259385

[45] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the
Expressive Power of Deep Neural Networks,” arXiv:1606.05336 [cs, stat], Jun.
2017, arXiv: 1606.05336. [Online]. Available: http://arxiv.org/abs/1606.05336

[46] C. E. Priebe, J. T. Vogelstein, F. Engert, and C. M. White, “Modern
Machine Learning: Partition & Vote,” bioRxiv, p. 2020.04.29.068460, Apr. 2020,
publisher: Cold Spring Harbor Laboratory Section: New Results. [Online].
Available: https://www.biorxiv.org/content/10.1101/2020.04.29.068460v1

[47] R. Perry, R. Mehta, R. Guo, J. Arroyo, M. Powell, H. Helm, C. Shen, and
J. T. Vogelstein, “Random Forests for Adaptive Nearest Neighbor Estimation
of Information-Theoretic Quantities,” arXiv:1907.00325 [cs, stat], Sep. 2021,
arXiv: 1907.00325. [Online]. Available: http://arxiv.org/abs/1907.00325

[48] M. S. Breault, Z. B. Fitzgerald, P. Sacré, J. T. Gale, S. V. Sarma, and J. A.
González-Mart́ınez, “Non-motor brain regions in non-dominant hemisphere are
influential in decoding movement speed,” Frontiers in Neuroscience, vol. 13,
p. 715, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/
fnins.2019.00715

20

https://pubmed.ncbi.nlm.nih.gov/31946366/
https://pubmed.ncbi.nlm.nih.gov/31156180 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700637/
https://pubmed.ncbi.nlm.nih.gov/31156180 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700637/
https://www.biorxiv.org/content/early/2021/02/02/862797
https://www.medrxiv.org/content/early/2021/07/08/2021.07.07.21259385
https://www.medrxiv.org/content/early/2021/07/08/2021.07.07.21259385
http://arxiv.org/abs/1606.05336
https://www.biorxiv.org/content/10.1101/2020.04.29.068460v1
http://arxiv.org/abs/1907.00325
https://www.frontiersin.org/article/10.3389/fnins.2019.00715
https://www.frontiersin.org/article/10.3389/fnins.2019.00715

Acknowledgements. This work is supported by the Defense Advanced Research
Projects Agency (DARPA) Lifelong Learning Machines program through contract
FA8650-18-2-7834 and through funding from Microsoft Research. AL is supported by
NIH T32 EB003383, the NSF GRFP (DGE-1746891), the Arcs Chapter Scholarship,
Whitaker Fellowship and the Chateaubriand Fellowship. The authors have no conflicts
of interest to declare.

Appendices.

Appendix A. Proofs.

A.1. Convex Polytope Partition Results. As mentioned in Section 4.1, a
random projection tree partitions the feature space into a finite number of (possibly
unbounded) convex polytopes. The proof of that is as follows.

Proof. A convex polytope in d dimensions can be defined as the union of a finite
number of halfspaces, where a halfspace is a d− 1 dimensional surface defined by the
linear inequality

aTx ≤ b

for fixed a ∈ Rd and b ∈ R. In a random projection tree, each split node i partitions
the set of points at that node according to such an inequality aTi x ≤ bi. Consider
the path of k split nodes, including the root, to a leaf l and the set of corresponding
halfspace defining {(ai, bi}ki=1 terms for each split node. We see that in the feature
space S, the subset that ”falls into” leaf l is the solution set to

Alx ≤ bl

where Al = [a1, . . . , ak]T and bl = [b1, . . . , bk]T .
Thus each leaf node forms a convex polytope. Additionally, note that any x ∈ S

will deterministically end up in a leaf node (by classification of x) as the tree is of finite
depth and that all leaf node convex polytopes are mutually exclusive as the lowest
common ancestor of any two leaves forms mutually exclusive sets. If the feature
space is unbounded, then at least one partition must be unbounded too. Thus, a tree
partitions the feature space into a finite number of possibly infinite convex polytopes.

A.2. Consistency Results. The least we can ask of our classification rule

{gn}∞n=1 is for it to be consistent, Ln
P→ L∗ as n → ∞, where Ln and L∗ are the

expected 0-1 losses of the finite sample rule gn and the Bayes decision rule g∗, re-
spectively. Our results here build upon the results of Athey et al. [29] who prove
under Assumption 1, 1A-6A and Specification 1 that their generalized random forest
(GRF) algorithm, which subsumes Breiman’s regression forest, provides a consistent

estimate θ̂n(x) for some quantity θ(x). The estimand θ(x) is defined as the solution
to the generic estimating equation Mθ(x) := E[ψθ(Yi)|Xi = x] = 0 for all x ∈ X
where ψθ is a score function. We begin by restating Assumptions 1A-6A of the GRF
algorithm as they are relevant to further results but strongly recommend referring to
the original paper [29] for additional details.

Assumptions:.
1A. For fixed values θ(x), we assume that Mθ(x) is Lipschitz continuous in x.
2A. When x is fixed, we assume that Mθ(x) is twice continuously differentiable

in θ with a uniformly bounded second derivative, and that ∂
∂(θ)Mθ(x) |θ 6= 0

for all x ∈ X .

21

3A. The worst-case variogram of ψθ(Y) is Lipschitz-continuous in θ(x).
4A. The ψ-functions can be written as ψθ(Y) = λ(θ(x);Y) + ξθ(g(Y)), such that

λ is Lipschitz-continuous in θ, g : {Y } → R is a univariate summary of Y ,
and ξθ : R→ R is any family of monotone and bounded functions.

5A. For any weights αi(x) such that
∑
i αi(x) = 1, the estimation equation re-

turned a minimizer ˆθ(x) that at least approximately solves the estimating
equation ||

∑n
i=1 αi(x)ψθ̂(Yi)||2 ≤ Cmax{αi(x)} for some constant C ≥ 0.

6A. The score function ψθ(Y) is a negative sub gradient of a convex function,
and the expected score Mθ(x) is the negative gradient of a strongly convex
function.

Proof of Theorem 1: Consistent oblique random forests posterior estimates. Our
Theorem 1 extends Theorem 3 of the GRF paper [29] given the additional Specification
2. Specifically, the GRF Theorem 3 in Athey et al. [29] result relies on the consistency
result of Theorem 1 in Wager and Athey [28]. We need only to verify foundations
of Theorem 1 [28] that take into account the use of axis-aligned splits, those being
Theorems 3 and 5 of Wager and Athey [28]. Thus, it suffices to confirm that those
results are unchanged under oblique splits and given Specification 2 holds.

Theorem 3 [28] proves an asymptotic upper bound on the diameter of a leaf,
diam(L(x)), by applying an asymptotic upper bound result from Lemma 2 [28] on
the diameter of dimension j in the leaf, diamj(L(x)). The leaf L(x) is a polytope
formed from a combination of axis-aligned and oblique splits. Considering only the
axis-aligned conditions forming L(x), by the positive probability of splitting on each
dimension per Specification 2, the upper bound of Lemma 2 Wager and Athey [28]
holds. As the addition of oblique conditions cannot increase the size of the leaf, the
same upper bound holds. Similarly, the diameter diam(L(x)) of the leaf is smaller
than the diameter of the polytope formed from just axis-aligned conditions. By the
diameter bound from Lemma 2 [22] of each feature, the upper bound of Theorem 3
[28] holds for the axis-aligned polytope and so also L(x).

Theorem 5 [28] hinges on Lemma 4 [28] which brings up the concept of a potential
nearest neighbor (PNN) [22, 28].

Definition 1. xi ∈ {x1, . . . , xs} ∈ {Rp}s is a potential nearest neighbor (PNN)
of x ∈ Rp, if there is an axis-aligned hyperrectangle containing only x and xi. A k-
PNN set is a collection of k points and x in an axis-aligned hyperrectangle containing
no other points. A predictor T for x is a k-PNN predictor if given

{z} = {(x1, y1), . . . , (xs, ys)} ∈ {Rp × Y}s,

T outputs the average of the yi among a k-PNN set of x with respect to the xi.

In the case of oblique split decision trees, we have the following result.

Lemma 1. Let T be a decision tree which makes oblique splits (including axis-
aligned splits) at each interior node with finite dictionary A of m vectors encoding the
set of allowable oblique axes. If T has leaves between size k and 2k − 1, then T is a
k-PNN predictor on Rm.

Proof. Let X denote the vector space of possible samples, where x ∈ X ⊂ Rp.
Since A ∈ {Rp}m, let A ∈ Rp×m denote the matrix whose columns are the elements
of A. Then B = ATX ⊂ Rm is a vector space of dimension at most min(p,m) in
a space of dimension m. Bases of B correspond to bases or oblique combinations of
them from X and so every oblique split in X is an axis-aligned split in B. The points
which fall into a leaf of T are the only points which satisfy the linear system formed

22

by the set of splits, which are the only points that fall into the hyperrectangle in B
defined by that system. As any decision tree making axis-aligned splits with leaves of
sizes between k and 2k− 1 is a k-PNN predictor [26], T is thus a k-PNN predictor in
B ⊂ Rm.

In this expanded feature space from which we can view oblique splits as axis-
aligned, as in the above proof, we can scale down the marginals to be within [0, 1].
While this space no longer satisfies the Lipschitz criteria and if m > p may have a
density of 0 at all points outside of the p dimensional subspace, Lemma 4 [28] requires
neither of these conditions from the original assumptions. So it holds, albeit with the
finite constant m instead of p. Thus Theorem 5 [28] holds with simply a modified
constant which doesn’t change the final established asymptotics in Theorem 1 [28].
So Theorem 1 [28] holds in our oblique forest setting and we can extend Theorem 3
of Athey et al. [29] to the oblique setting per our Theorem 1.

Proof of Corollary 2: Consistent posterior probability estimates. In the spirit
of Perry et al. [47], we now prove the corollary of our previous Theorem that the
consistent regression estimate results of Athey et al. [29] extend to classification and
so oblique random forests produce consistent estimation rules {pn(y | x)}∞n=1 of the
posterior P (Y = y | X = x) which we denote as p(y | x). It is important to note that
consistency proof is independent of the splitting mechanism at each leaf node and so
switching to the Gini impurity score and away from the mean squared error score of
the GRF only has the potential to affect convergence rates.

To show that the posterior probability estimates are consistent, we need to show

that pn(y | x)
P→ p(y | x) as n→∞. Let y be the fixed arbitrary class label of interest.

Given our data, we seek to estimate the class-specific posterior probability p(y | x),
equivalent to estimating the conditional mean θ(x) := E[I[Y = y] | X = x] for any
y ∈ Y. For conciseness, in the following proofs we will often drop the notational
dependence of θ on x and y where convenient, letting it implicitly be a function of
any fixed pair (x, y) ∈ X × Y. To follow the notation of Athey et al. [29], we frame
θ(x) as the solution to the estimation equation

Mθ(x) := E[ψθ(Y) | X = x] = 0

where the score function ψθ(Y) is defined as

ψθ(Y) := I[Y = y]− θ(x).

This estimand θ(x) can be estimated by solution θ̂(x) to the empirical estimation
equation

n∑
i=1

αi(x)ψθ̂(Yi) = 0.

It follows that

θ̂(x) =

n∑
i=1

αi(x)I[Yi = y]

23

per the expansion

n∑
i=1

αi(x)ψθ̂(Yi) =

n∑
i=1

αi(x)(I[Yi = y]− θ̂(x))

=

n∑
i=1

αi(x)I[Yi = y]− θ̂(x) = 0.

These weights we learn from a learned random forest. Let a forest be composed
of B trees. In a single tree b, let lb(x) denote the set of training examples at the leaf
node for which X is placed. Define the weights αib(x) for that tree as

αib(x) :=
1

|lb(x)|
I[xi ∈ lb(x)],

the normalized indicator of whether or not x and xi exist in the same leaf. Thus the
forest weights αi(x) = 1

B

∑B
b=1 αib(x) are simply the normalized weights across all

trees.
By Theorem 3 of Athey et al. [29], a random forest built according to Specification

1 and solving an estimation problem satisfying Assumptions 1A-6A yields a consistent
estimator. We enumerate these assumption, defined above, and verify that they hold
for posterior probability estimate θ̂(x).

1A. This remains a true assumption on the distribution and so is restated as
Assumption 2.

2A. This is true, as evident in the derivatives

∂

∂θ
Mθ(x) = −1 and

∂2

∂2θ
Mθ(x) = 0.

3A. This is evident in the worse-case variogram for two solutions θ(x) and θ′(x)

γ(θ(x), θ′(x))

:= sup
x∈X
{V ar(ψθ(Y)− ψθ′(Y) | X = x)}

= sup
x∈X
{V ar(θ′(x)− θ(x)|X = x)} = 0

which is trivially Lipschitz-continuous.
4A. Clearly ψθ(Y) is linear in θ(x) and so is a Lipschitz-continuous function in

θ(x). The other term is 0 in this case.
5A. As shown previously shown, the estimation equation is solved to equal 0.
6A. This holds true by construction of the convex function Ψθ(Y) := 1

2 (I[Y =

y | X = x] − θ(x))2 such that ψθ(Y) = − d
dθΨθ(Y), and the strongly convex

function Mθ(x) := 1
2 (P (Y = y | x)− θ(x))2 where Mθ(x) = − d

dθMθ(x).
This verifies Assumptions 2A-6A from Theorem 1 for the finite-sample estimate

p̂n(y|x) := θ̂(x) of θ(x) := p(y|x). Corollary 2 follows, adding Assumption 1A to the
required Specifications 1-2 from Theorem 1.

Proof of Theorem 3: A consistent classification rule.. Corollary 2 established
consistency for each posterior probability estimate pn(y | x). We now proceed to
show consistency for the classification rule gn(x) = argmaxy pn(y | x). As before,
define p(y | x) := P (Y = y|X = x)

24

Lemma 2. Let x ∈ X with true, but unknown, unique maximum y∗ := argmaxy p(y |
x), and define the finite sample estimate ŷ := argmaxy pn(y | x). If pn(y | x) is a
consistent estimator for p(y | x), then

P [ŷ 6= y∗ | x]→ 0 as n→∞

Proof. We omit the conditional for notational brevity by substituting p(y) :=
p(y | x) and pn(y) := pn(y | x). Then it follows that

P [ŷ 6= y∗ | x] = P [max
y

pn(y) > pn(y∗)]

= P

 ⋃
y 6=y∗

pn(y) > pn(y∗)


≤
∑
y 6=y∗

P [pn(y) > pn(y∗)]

=
∑
y 6=y∗

P [pn(y)− pn(y∗) > 0]

=
∑
y 6=y∗

P [(pn(y)− pn(y∗))−

(p(y)− p(y∗)) > p(y∗)− p(y)]

Let εy := p(y∗)− p(y) and note that εy > 0 for all y ∈ Y \ {y∗} since y∗ is a unique
maximum. Observe that∑

y 6=y∗
P [(pn(y)− pn(y∗))− (p(y)− p(y∗)) > εy]

≤
∑
y 6=y∗

P
[∣∣(pn(y)− pn(y∗))− (p(y)− p(y∗))

∣∣ > εy
]

By the consistency of the individual posteriors, the difference of two is consistent and
so since Y is a finite set,

P [ŷ 6= y∗ | x]

≤
∑
y 6=y∗

P [|(pn(y)− pn(y∗))− (p(y)− p(y∗))| > εy]

→ 0 as n→∞

With Lemma 2, the proof of Theorem 3 follows. Denote the finite samples clas-
sification rule ŷ := argmaxy pn(y | x) as before and let y∗ := argmaxy p(y | x) be a
unique maximum. If y∗ were not unique, we would instead consider the aggregate
of all such maximum classes as a pseudo class, apply the following analyses, and be
confident in both Ln and L∗ up to a factor equal to the reciprocal of the number
aggregated classes due to a chance guess between them.

Otherwise, for any ε > 0, by the law of total probabilities,

P [|Ln − L∗| > ε]

= P [|pn(ŷ | x)− p(y∗ | x)| > ε]

= P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ = y∗]× P [ŷ = y∗]

+ P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ 6= y∗]× P [ŷ 6= y∗] .

25

In the case that ŷ = y∗, by Corollary 2 we have convergence of the posteriors and so

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ = y∗]→ 0 as n→∞.

In the case that ŷ 6= y∗, by Lemma 2 we have that

P [ŷ 6= y∗]→ 0 as n→∞.

Since the probabilities are bounded above by one, it follows that as n→∞,

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ = y∗]× P [ŷ = y∗]→ 0

and

P [|pn(ŷ | x)− p(y∗ | x)| > ε | ŷ 6= y∗]× P [ŷ 6= y∗]→ 0

and thus

P [|Ln − L∗| > ε] = P [|pn(ŷ | x)− p(y∗ | x)| > ε]→ 0

Appendix B. Experiment Extras.

B.1. Mathematical description of sampling manifolds in simulation ex-
amples. In 3.2.1

B.2. Three simulated manifolds: time complexity. Each simulated exper-
iment was run on CPUs and allocated 52 cores for parallel processing. The resulting
train and test times as a function of the number of training samples are plotted in
Figure S1. Morf has train and test times on par with those of Sporf and so is not
particularly more computationally intensive to run. The ConvNet, however, took
noticeably longer to run across simulations for the majority of sample sizes.

10 3

10 2

10 1

100

Tr
ai

n
Ti

m
e

(s
)

Circle Segments Orthogonal Bars Noisy Impulse

Algorithm
Log. Reg
Lin. SVM
SVM
kNN
RF
MLP
XGB
SPORF
MORF
ConvNet

101 102 103

10 3

10 2

10 1

100

Te
st

 T
im

e
(s

)

101 102 103 101 102 103

Number of samples evaluated

Algorithm Runtimes

Fig. S1: Algorithm train times (above) and test times (below) across increasing sample
sizes. Morf runtime is not particularly costly and well below ConvNet runtime in most
examples.

B.3. Intracranial EEG Experiments - Ethics. For the motor control, details
of the experiment are in Kerr et al. [37]. If the patient expressed interest in partic-
ipating, the research staff would verbally review the written, IRB approved consent
form. If agreed upon, the patient would sign the written consent and be enrolled
in the study. A copy of the written consent would also be given to patient to keep.

26

Experimental protocols were approved by the Cleveland Clinic Institutional Review
Board.

For the epilepsy intracranial EEG data, details on the dataset can be found at
[42]. All data were acquired with approval from the local institutional review board
(IRB) at each clinical institution: UMMC by the IRB of the University of Mary-
land School of Medicine; UMH by the University of Miami Human Subject Research
Office—Medical Sciences IRB; NIH by the National Institutes of Health IRB; JHH
by Johns Hopkins IRB; and CClinic by the Cleveland Clinic IRB. Informed consent
was given at each clinical center. The acquisition of data for research purposes was
completed with no impact on the clinical objectives of the patient stay. Digitized data
were stored in an IRB-approved database compliant with Health Insurance Portability
and Accountability Act regulations.

B.4. 1D Locality: Predicting Movement Direction With Intracranial
EEG.

Morf’s performance was next evaluated on stereotactic electroencephalogram (sEEG)
data recorded in epilepsy patients undergoing a motor control task presented in Kerr
et al. [37], Breault et al. [48]. The classification task presented here is to predict
movement direction (up, down, left, or right) based on the sEEG data alone, rather
then performing explicit feature engineering, such as computing power in frequency
bands. We compare Morf to other classification algorithms. The interesting aspect
of this data is that there are no motor regions recorded. Thus, our hypothesis is
that only a subset of the recording electrodes over time are important in decoding
movement directionality. This is analogous to Experiment D mentioned in Section
5.2. Each subject performed the task for several trials, each consisting of a movement
instruction followed by a movement generated by the subject. Using only the sEEG
data, we sought to decode the movement directionality. For full details on the dataset
and clinical problem, we refer the readers to Kerr et al. [37], Breault et al. [48].

Here we perform 5-fold cross validation for each subject including all the sEEG
recording electrodes time-locked to a movement onset marking. Each fold is a priori
generated per subject, where there is a set of testing trials left out. The overall
task is very challenging because there are no motor brain regions being recorded.
Nonetheless, we expect that other brain regions are involved in the motor control
process. Morf is able to achieve a superior performance measured by AUC relative to
the other classifiers, as seen in Figure S2. Notably, Morf and Sporf perform the best
in this setting with a limited set of training samples, whereas the ConvNet performs
slightly better then chance on the test set, overfitting to training set. Across the set
of all folds of all subjects, Morf was never worse than another classifier in terms of the
median pairwise difference in Cohen’s kappa while being significantly (p-value ≤ 0.05)
better than the MLP and ConvNet per a Wilcoxon paired sign test on those same
pairwise differences.

B.5. Three simulated manifolds: model-misspecification. For each simu-
lation problem, we optimized the optimal parameters for Morf on a large dataset of
2000 samples using grid search over a range of valid parameter values for the manifold
structure. Once we arrived at an optimal parametrization, we then proceeded to mod-
ify the parametrizations for each of the experiments to change the dimensions of the
possible patches Morf could sample. For full details, see the online repository, where
the experiment was done (https://github.com/adam2392/morf-demo). We then per-
formed 10-fold stratified cross-validation for each parameter setting, computing accu-
racy on the held-out test set. We randomly produced 500 samples from each simulated

27

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

Model (AUC)
MORF (0.74 ± 0.05)
SPORF (0.73 ± 0.04)
RF (0.72 ± 0.04)
kNN (0.71 ± 0.04)
XGB (0.64 ± 0.06)
MLP (0.62 ± 0.06)
ConvNet (0.51 ± 0.04)
Chance

MORF

SPORF RF
kN

N
XGB

MLP

Con
vN

et

Classifier

0.5

0.6

0.7

0.8

0.9

R
O

C
 A

U
C

 (O
ne

 v
s.

 R
es

t) Subject
efri07
efri13
efri14
efri18
efri20

Fig. S2: Morf performance on decoding movement direction from the raw sEEG data
in non-motor brain regions. Subjects are undergoing a motor-control task. The
naming of subjects is simply derived from their clinical monitoring session and does
not reflect any specific numbering scheme. (Top) Shows ROC curve of moving down
in the motor task decoded with all classifiers on the same set of data and their AUC
scores. (Bottom) Shows a summary AUC stripplot where each dot represents the
held-out trial median AUC score for a certain subject over 5-fold CV, and the median
of the overall AUC for each classifier is shown (solid black line). In almost all subjects,
Morf gains in AUC compared to the other classifiers with fixed hyperparameters and
fixed trials in each of the 5 folds.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Different Parametrizations

15

10

5

0

A
cc

ur
ac

y
R

el
at

iv
e

to
 O

pt
im

al
 P

ar
am

et
riz

at
io

n

(a)

0 1 2 3 4 5 6 7 8 91011121314151617181920212223
Different Parametrizations

0.990

0.992

0.994

0.996

0.998

1.000

A
cc

ur
ac

y

(b)

0 1 2 3 4 5 6 7 8 9 10
Different Parametrizations

2

0

2

A
cc

ur
ac

y
R

el
at

iv
e

to
 O

pt
im

al
 P

ar
am

et
riz

at
io

n

(c)

Fig. S3: Morf performance when model is mis-specified. (a) Circle segments, (b)
Horizontal bars, and (c) a 1D time-series with an impulse. The dashed line in (a) and
(c) indicate a consistent accuracy score relative to the optimal parametrizations. Each
simulation (b) is shown with just accuracy because the relatively low variance in the
optimal parameter classifier made the resulting normalized plot uninterpretable. The
low performance of a few parameterizations in (a) were when the maximum possible
patch size was set to 6. This likely restricts Morf from learning the Circle Segment
structure as fast as when Morf can sample larger patches.

dataset, and kept all other Morf parameters the same. We used a total of 500 trees for
each problem. Each non-optimal parametrization was normalized with respect to the
accuracy scores of the optimal parametrization (subtracting the mean and dividing
by the standard deviation of the optimal scores). The normalized accuracy scores of
each non-optimal parameter setting are then shown in Supplementary Figure S3.

28

Appendix C. Pseudocode.

Algorithm 1 Learning a Manifold Oblique decision tree, modified from Tomita et al.
[9].

Input: (1) Dn: training data (2) d: dimensionality of the projected space, (3) fA:
distribution of the atoms, (4) Θ: set of split eligibility criteria

Output: A Morf decision tree T
1: function T = growtree(X,y, fA,Θ)
2: c = 1 . c is the current node index
3: M = 1 . M is the number of nodes currently existing
4: S(c) = bootstrap({1, ..., n}) . S(c) is the indices of the observations at node c
5: while c < M + 1 do . visit each of the existing nodes
6: (X′,y′) = (xi, yi)i∈S(c) . data at the current node

7: for k = 1, . . . ,K do n
(c)
k =

∑
i∈S(c) I[yi = k] end for . class counts (for

classification)
8: if Θ satisfied then . do we split this node?
9: A = [a1 · · ·ad] ∼ fA . sample random p× d matrix of atoms

10: X̃ = ATX′ = (x̃i)i∈S(c) . random projection into new feature space

11: (j∗, t∗) = findbestsplit(X̃,y′) . Algorithm 2
12: S(M+1) = {i : aj∗ · x̃i ≤ t∗ ∀i ∈ S(c)} . assign to left child node
13: S(M+2) = {i : aj∗ · x̃i > t∗ ∀i ∈ S(c)} . assign to right child node
14: a∗(c) = aj∗ . store best projection for current node
15: τ∗(c) = t∗ . store best split threshold for current node
16: κ(c) = {M + 1,M + 2} . node indices of children of current node
17: M = M + 2 . update the number of nodes that exist
18: else
19: (a∗(c), τ∗(c), κ∗(c)) = NULL
20: end if
21: c = c+ 1 . move to next node
22: end while
23: return (S(1), {a∗(c), τ∗(c), κ(c), {n(c)k }k∈Y}

m−1
c=1)

24: end function

29

Algorithm 2 As in Tomita et al. [9]. Finding the best node split. This function
is called by growtree (Alg 1) at every split node. For each of the p dimensions in
X ∈ Rp×n, a binary split is assessed at each location between adjacent observations.
The dimension j∗ and split value τ∗ in j∗ that best split the data are selected. The
notion of “best” means maximizing some choice in scoring function. In classification,
the scoring function is typically the reduction in Gini impurity or entropy. The
increment function called within this function updates the counts in the left and
right partitions as the split is incrementally moved to the right.

Input: (1) (X,y) ∈ Rp×n × Yn, where Y = {1, . . . ,K}
Output: (1) dimension j∗, (2) split value τ∗

1: function (j∗, τ∗) = findbestsplit(X,y)
2: for j = 1, . . . , p do

3: Let x(j) = (x
(j)
1 , . . . , x

(j)
n) be the jth row of X.

4: {mj
i}i∈[n] = sort(x(j)) . mj

i is the index of the ith smallest value in x(j)

5: t = 0 . initialize split to the left of all observations
6: n′ = 0 . number of observations left of the current split
7: n′′ = n . number of observations right of the current split
8: if (task is classification) then
9: for k = 1, . . . ,K do

10: nk =
∑n
i=1 I[yi = k] . total number of observations in class k

11: n′k = 0 . number of observations in class k left of the current split
12: n′′k = nk . number of observations in class k right of the current

split
13: end for
14: end if
15: for t = 1, . . . , n− 1 do . assess split location, moving right one at a time
16: ({(n′k, n′′k)}, n′, n′′, ymj

t
) = increment({(n′k, n′′k)}, n′, n′′, ymj

t
)

17: Q(j,t) = score({(n′k, n′′k)}, n′, n′′) . measure of split quality
18: end for
19: end for
20: (j∗, t∗) = argmax

j,t
Q(j,t)

21: for i = 0, 1 do ci = mj∗

t∗+i end for

22: τ∗ = 1
2 (x

(j∗)
c0 + x

(j∗)
c1) . compute the actual split location from the index j∗

23: return (j∗, τ∗)
24: end function

30

Appendix D. Hyperparameters.

31

Table S1: ConvNet hyperparameters for each experiment.

Experiment Classifier Architecture Sequence
Circle ConvNet Conv1d(32, window=6, stride=1)

MaxPool1d(window=2, stride=2)
Conv1d(64, window=10, stride=1)
MaxPool1d(window=2, stride=2)
Dropout(p=0.5), Linear(500, 2)

H/V Bars ConvNet Conv2d(32, window=5, stride=1)
MaxPool1d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool1d(window=2, stride=2)
Dropout(p=0.5), Linear(200, 2)

Impulse ConvNet Conv1d(32, window=10, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Dropout(p=0.5), Linear(200, 2)

Experiments D, E ConvNet Conv2d(32, window=2, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(32, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Linear(64), Linear(n classes)

MNIST ConvNet Conv2d(32, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Dropout(p=0.5), Linear(200, 10)

Surgical Outcome ConvNet Conv2d(32, window=2, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(32, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=5, stride=1)
MaxPool2d(window=2, stride=2)
Linear(64), Linear(n classes)

Predicting Movement ConvNet Conv2d(32, window=3, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=3, stride=1)
MaxPool2d(window=2, stride=2)
Conv2d(64, window=3, stride=1)
MaxPool2d(window=2, stride=2)
Linear(64), Linear(n classes)

32

T
ab

le
S

2:
sc

ik
it

-l
ea

rn
,
S
p
o
r
f
,

a
n

d
M
o
r
f

h
y
p

er
p

a
ra

m
et

er
s

fo
r

ea
ch

ex
p

er
im

en
t.

E
x
p

er
im

en
t

C
la

ss
ifi

er
H

y
p

er
p
a
ra

m
et

er
s

A
ll

L
in

.
S
V

M
C

=
1
,

p
en

a
lt

y
=

”
l2

”
;k

er
n
el

=
”
li
n
ea

r”
;l
o
ss

=
”
sq

u
a
re

d
h
in

g
e”

A
ll

L
o
g
.

R
eg

C
=

1
,

p
en

a
lt

y
=

”
l2

”
A

ll
M

L
P

a
ct

iv
a
ti

o
n
=

”
re

lu
”
;

a
lp

h
a
=

0
.0

0
0
1
;

h
id

d
en

la
y
er

si
ze

s=
(1

0
0
,)

;
so

lv
er

=
”
a
d
a
m

”
A

ll
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’
A

ll
X

G
B

n
b

o
o
st

in
g

ro
u
n
d
s

=
1
0
;

le
a
rn

in
g

ra
te

=
0
.3

;
m

a
x

d
ep

th
=

6
;

su
b
sa

m
p
le

=
1
;

tr
ee

m
et

h
o
d
=

’a
u
to

’
(a

ll
d
ef

a
u
lt

)
A

ll
S
P

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’
A

ll
S
V

M
C

=
1
;

g
a
m

m
a
=

1
/
(n

fe
a
tu

re
s*

V
a
r(

X
))

;
k
er

n
el

=
”
rb

f”
A

ll
k
N

N
n

n
ei

g
h
b

o
rs

=
5
;

p
=

2
C

ir
cl

e
M

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

0
.5

;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

1
;

p
a
tc

h
h
ei

g
h
t

m
in

=
1
;

p
a
tc

h
w

id
th

m
a
x
=

1
2
;

p
a
tc

h
w

id
th

m
in

=
3

H
/
V

B
a
rs

M
O

R
F

n
tr

ee
s=

5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

2
;

p
a
tc

h
h
ei

g
h
t

m
in

=
2
;

p
a
tc

h
w

id
th

m
a
x
=

9
;

p
a
tc

h
w

id
th

m
in

=
2

Im
p
u
ls

e
M

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

0
.3

;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

1
;

p
a
tc

h
h
ei

g
h
t

m
in

=
1
;

p
a
tc

h
w

id
th

m
a
x
=

1
2
;

p
a
tc

h
w

id
th

m
in

=
2

E
x
p

er
im

en
t

D
M

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

2
;

p
a
tc

h
h
ei

g
h
t

m
in

=
2
;

p
a
tc

h
w

id
th

m
a
x
=

1
0
;

p
a
tc

h
w

id
th

m
in

=
5
;

E
x
p

er
im

en
t

E
M

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

2
;

p
a
tc

h
h
ei

g
h
t

m
in

=
1
;

p
a
tc

h
w

id
th

m
a
x
=

2
0
;

p
a
tc

h
w

id
th

m
in

=
5
;

M
N

IS
T

M
O

R
F

n
tr

ee
s=

5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’
p
a
tc

h
h
ei

g
h
t

m
a
x
=

2
;

p
a
tc

h
h
ei

g
h
t

m
in

=
2
;

p
a
tc

h
w

id
th

m
a
x
=

5
;

p
a
tc

h
w

id
th

m
in

=
2
;

S
u
rg

ic
a
l

O
u
tc

o
m

e
M

O
R

F
n

tr
ee

s=
5
0
0
,

m
a
x

fe
a
tu

re
s=

’s
q
rt

’;
p
a
tc

h
h
ei

g
h
t

m
a
x
=

sq
rt

(h
ei

g
h
t)

;
p
a
tc

h
h
ei

g
h
t

m
in

=
1
;

p
a
tc

h
w

id
th

m
a
x
=

sq
rt

(w
id

th
);

p
a
tc

h
w

id
th

m
in

=
1
;

33

	1 Introduction
	2 Background and Related Work
	2.1 Classification
	2.2 Random Forests
	2.3 Oblique Forests

	3 Methods
	3.1 Sampling Projections from a Dictionary
	3.2 Random Projection Forests on Manifolds
	3.2.1 Examples of Projection Dictionaries for Manifolds

	3.3 Feature Importance

	4 Theoretical Results
	4.1 Classifier Consistency
	4.2 Training Time Complexity

	5 Simulation Experiments
	5.1 Three simulated manifolds
	5.2 A simulated multivariate time-series

	6 Experiments on Real Data
	6.1 2D Locality: MNIST Digit Classification
	6.2 1D Locality: Multivariate Time-Series EEG

	7 Discussion
	Acknowledgements
	Appendices
	Appendix A. Proofs
	A.1 Convex Polytope Partition Results
	A.2 Consistency Results

	Appendix B. Experiment Extras
	B.1 Mathematical description of sampling manifolds in simulation examples
	B.2 Three simulated manifolds: time complexity
	B.3 Intracranial EEG Experiments - Ethics
	B.4 1D Locality: Predicting Movement Direction With Intracranial EEG
	B.5 Three simulated manifolds: model-misspecification

	Appendix C. Pseudocode
	Appendix D. Hyperparameters

