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ON THE POWER OF CHOICE FOR BOOLEAN FUNCTIONS∗

NICOLAS FRAIMAN† , LYUBEN LICHEV‡ , AND DIETER MITSCHE‡

Abstract. In this paper we consider a variant of the well-known Achlioptas process for graphs
adapted to monotone Boolean functions. Fix a number of choices r ∈ N and a sequence of increasing
functions (fn)n≥1 such that, for every n ≥ 1, fn : {0, 1}n 7→ {0, 1}. Given n bits which are all
initially equal to 0, at each step r 0-bits are sampled uniformly at random and are proposed to an
agent. Then, the agent selects one of the proposed bits and turns it from 0 to 1 with the goal to
reach the preimage of 1 as quickly as possible. We nearly characterize the conditions under which an
acceleration by a factor of r(1 + o(1)) is possible, and underline the wide applicability of our results
by giving examples from the fields of Boolean functions and graph theory.
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1. Introduction. The “power of two choices” was introduced by Azar, Broder,
Karlin and Upfal [2] in the context of load balancing. They showed that, when
randomly allocating n balls into n bins, a dramatic decrease in the maximum load is
achieved by sequentially selecting the less full bin among two random options. Many
variations on this basic model have been analyzed. Berenbrink, Czumaj, Steger and
Vöcking [4] studied the case when a much larger number of balls is placed. Kenthapadi
and Panigrahy [11] restricted the options by placing balls in an endpoint of a random
edge from a graph. More recently, Redlich [16] studied the case where you want to
“unbalance” and select the fullest bin.

A classical and well-studied setting is the Erdős-Rényi graph process where the
edges of the complete graph Kn arrive one by one according to a uniform random
permutation. The power of choice in this context was introduced by Achlioptas: he
was interested in the question of delaying certain monotone graph properties with
respect to the original process if at each step, r ≥ 2 edges instead of one are proposed
and an agent may choose the one they need more for their purposes (we call this
variation the r–choice process)1. In two related papers Bohman and Frieze [6] and
Spencer and Wormald [20] studied the problem of delaying the appearance of a giant
component by the r–choice process. Krivelevich, Loh and Sudakov [12] studied rules
to avoid small subgraphs. Achlioptas, D’Souza and Spencer [1] claimed that certain
rules could make the giant transition discontinuous but Riordan and Wernke [17]
proved that was not the case. A more restrictive version where the agent’s decisions
cannot depend on the previous history and only one vertex from the random edges
is revealed was studied by Beveridge, Bohman, Frieze, and Pikhurko [5]. A similar
restrictive model is the so called semi-random graph process, where one vertex is
chosen randomly and the agent can choose the second vertex arbitrarily, see the
paper of Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [3].
When the goal is to expedite rather than delay certain properties, Krivelevich and
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Spöhel [14] proved general upper and lower bounds on the threshold to create a copy of
some fixed graph H in the r–choice process. Recently, the question of acceleration of
the appearance of a Hamilton Cycle or a Perfect Matching was treated by Krivelevich,
Lubetzky and Sudakov [13] who proved that there exist strategies that accelerate both
properties by a factor of r+o(1). Furthermore, outside of the graph setup, Sinclair and
Vilenchik [19] turned particular attention to delaying the satisfiability of the random
2-SAT formula, and Perkins [15] considered a k-SAT version of the problem.

In their seminal work, Erdős and Rényi [9] showed that many interesting graph
properties exhibit sharp thresholds, that is, the probability that a random graph with
n vertices and m edges has the property increases from values very close to 0 to
values close to 1 in a very small interval around a certain critical value of the number
of edges m (often called a critical window). Later, Bollobás and Thomason [8] proved
the existence of threshold functions for all monotone graph properties. A more careful
analysis of the size of the critical window was performed by Friedgut and Kalai [10].

Their arguments generalize in a straightforward way to thresholds of monotone
Boolean functions. More precisely, for any n ≥ 1, consider the hypercube {0, 1}n with
the probability measure µp(x1, . . . , xn) = pk(1 − p)n−k where k = x1 + · · ·+ xn. Let
(An)n≥1 be a sequence of monotone sets such that, for every n ≥ 1, An ⊆ {0, 1}n and
An is invariant under a transitive permutation group of {1, 2, . . . , n}. If µp(An) > ǫ,
then Bollobás and Thomason [8] showed that there is c(ε) > 0 such that µq(An) > 1−ǫ
for q = c(ǫ)p. This result was improved by Friedgut and Kalai [10] to µq(An) > 1− ǫ
for q = p+ c log(1/2ǫ)/ logn, where c is an absolute constant. We say that a function
is a sharp threshold function for the sequence of monotone subsets (An)n≥1 if, for
every ε > 0, the probability pn such that µpn

(An) = ε and the probability qn such
that µqn(An) = 1 − ε satisfy pn = (1 + o(1))qn. Then, the threshold function is
given only up to a (1 + o(1)) factor by both (pn)n≥1 and (qn)n≥1 for any fixed ε > 0.
Equivalently, the hitting time of the event An by the process that turns from 0 to
1 the n given bits one by one in an order, chosen uniformly at random, is of order
(1+o(1))pn asymptotically almost surely. Sharp thresholds appear in various systems
in combinatorics, computer science and statistical physics (where they are more widely
known as phase transitions).

Motivated by all these questions, we embark in the study of the power of choice for
Boolean functions. Our goal is to characterize Boolean functions whose thresholds can
be maximally accelerated. More precisely, we study the r–choice process for Boolean
functions where at each step an agent is presented with r zero coordinates and selects
one to flip (here and below, r ≥ 1 is a fixed positive integer). Our objective is to
understand which monotone Boolean functions can be accelerated by a factor of r
by the r–choice process (as we shall see in a bit, the factor r is optimal). For that
purpose, we compare the hitting probabilities for the function to reach the value 1
under two increasing random walks on the hypercube.

The paper is organized as follows. In Section 2 we introduce the model of interest,
state the assumptions and present the main results of the paper, which are then proved
in Section 3. Section 4 contains concrete applications of our results.

2. Statements of results. We use the following standard asymptotic notation:
for two sequences of functions (an)n≥1 and (bn)n≥1 we say that an = O(bn) if there
exists C > 0 and n0 ∈ N such that, for all n ≥ n0, |an| ≤ C|bn|; an = Ω(bn) if
bn = O(An); an = Θ(bn) if an = O(bn) and bn = Ω(an); an = o(bn) or equivalently

an ≪ bn if limn→∞
|an|
|bn|

= 0; and an = ω(bn) if bn = o(an). In case the limit is taken

with respect to a different variable k, we use the notation ok(bn), Ωk(bn), etc. to point
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this out. We also say that a sequence of events (En)n≥1 holds a.a.s. (or asymptotically
almost surely), if limn→∞ P(En) = 1.

Fix any n ∈ N. A Boolean function f maps elements from the hypercube {0, 1}n

to {0, 1}. We denote the vectors in {0, 1}n by lower case letters in bold such as u,v,w,
etc. For a vector x, we denote by |x| the number of coordinates of x. We denote by
0 the all zeroes vector and by 1 the all ones vector.

We will see the hypercube as a partially ordered set equipped with the order
relation ≤ defined by x ≤ y if xi ≤ yi for every i ∈ [n]. At the same time, construct
an oriented edge between every pair of vectors x,y ∈ {0, 1}n such that x ≤ y, and x

and y differ in exactly one coordinate - this allows us in turn to see the hypercube as
a directed graph.

A Boolean function is monotone if x ≤ y implies f(x) ≤ f(y).

Definition 2.1. A variable i is relevant for f if there exist inputs x,y ∈ {0, 1}n

which differ only in coordinate i and f(x) 6= f(y); in this case we also say that f
depends on the i-th variable. The relevant set of f , denoted by R(f), is the set of

variables relevant for f .

Definition 2.2. The relevant contraction of a Boolean function f , denoted by

f̃ , is the function obtained by restricting f to its relevant set. In other words, if

f : {0, 1}n → {0, 1} and R(f) = {i1, . . . , im}, then f̃ : {0, 1}m → {0, 1} is defined as

f̃(x) = f(y) where yij = xj for j = 1, . . . ,m, and for every i ∈ [n] \ {i1, . . . , im},yi

is an arbitrary bit.

We will be interested in two random walks on the (directed) hypercube {0, 1}n.
The simple random walk (Xt)

n
t=0 starts at X0 = 0 and evolves by choosing a directed

edge uniformly at random and moves in its direction at each step. In the r–choice
walk (Yt)

n
t=0 starting from Y0 = 0, an agent is presented with r zero bits chosen

uniformly at random, selects one of them and moves in its direction (in the end when
there are fewer than r possible edges, we assume that all zero bits are proposed).
Formally, for every integer t ∈ [0, n − r], let Zt be the set of zero coordinates in Yt,
and let Ct be the random subset of Zt of size r, presented to the agent at step t.
Then, the agent selects ct ∈ Ct according to some policy and updates the set of zero
coordinates Zt+1 = Zt \ {ct}. Given a monotone Boolean function f , we will study
the hitting times of the preimage f−1(1) ⊂ {0, 1}n by the two processes (Xt)

n
t=0 and

(Yt)
n
t=0 (at this moment we say that the function f is activated).

Definition 2.3. The solo and the r–choice thresholds are given by

T1(f) = min
{

t : P(f(Xt) = 1) ≥ 1/2
}

,

Tr(f) = min
{

t : P(f(Yt) = 1) ≥ 1/2
}

.

In this paper, when we are talking about a sequence of Boolean functions (fn)n≥1,
we will always assume that fn : {0, 1}n → {0, 1} is monotone unless explicitly men-
tioned otherwise. The main question we consider is if one may asymptotically ac-
celerate by a factor r the threshold values for the r–choice process (unless explicitly
stated otherwise, all asymptotics refer to the regime n → +∞).

Definition 2.4. A sequence of functions (fn)n≥1 is fast if

Tr(fn) = (1 + o(1))
T1(fn)

r
.

A sequence is slow if it is not fast.
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Notice that the constant r is best possible: indeed, define the r–complete process
to be the process, in which one changes all r uniformly chosen remaining zeros to 1
at the same time. This process performs only a 1/r-fraction of the time steps of the
single choice process, and is at least as fast as the r–choice process.

We need one more definition that allows us to formalize the concept that relevant
sets of variables might change over the process. For every n ≥ 1, the sequence of
functions (f s

n)s≥0 is defined conditionally on the sequence of updated bits (bs)s≥1 as
follows. Order the first s bits in increasing order bi1 < · · · < bis . For every integer
s ∈ [0, n] and a vector v ∈ {0, 1}n−s, define

v↑
s = (v1, . . . ,vbi1−1, 1,vbi1

, . . . ,vbi2−2, 1,vbi2−1, . . . ,vbis−s, 1,vbis−s+1, . . . ,vn−s).

Define f s
n : v ∈ {0, 1}n−s → fn(v

↑
s ) ∈ {0, 1}. In particular, f0

n = fn. Observe that
(|R(f s

n)|)
n
s=0 is a non-increasing sequence since for any fixed integer s ∈ [0, n− 1], if

a position i is not in the set R(f s
n), then it remains outside the set R(f s+1

n ) as well.
We now present our main results. Throughout we fix an integer r ≥ 2. We first

state two sufficient conditions for a sequence (fn)n≥1 to be slow.

Theorem 2.5. If there is ε > 0 such that T1(fn) ≥ εn for every n ≥ 1. Then,

there exists a constant C = C(r) > 0 such that, for every n ≥ 1, Tr(fn) ≥ Cn +
T1(fn)/r.

Corollary 2.6. If |R(fn)| = ω(1), and there is δ > 0 such that T1(f̃n) ≥
δ|R(fn)| for every n ≥ 1. Then, there exists a constant C = C(r) > 0 such that,

for every n ≥ 1, Tr(fn) ≥ Cn+ T1(fn)/r.

Now, we state two sufficient conditions for a sequence (fn)n≥1 to be fast.

Theorem 2.7. If 1 ≪ T1(f̃n) ≪ |R(fn)| ≪ n, then Tr(fn) = (1 + o(1))T1(fn)/r.

Corollary 2.8. Suppose that a.a.s. for every ε > 0 there is s = s(n) such that:

1. s ≤ εT1(fn),
2. |R(f s

n)| ≤ εn,

3.
1

ε
≤ T1(f̃

s
n) ≤ ε|R(f s

n)|.

Then, Tr(fn) = (1 + o(1))T1(fn)/r.

In the following sections, we often omit upper and lower integer parts when rounding
does not matter in the corresponding computation.

3. Proofs of the main results. We split this section into two parts with the
results characterizing slow and fast sequences respectively.

3.1. Slow sequences. We present the proofs of Theorem 2.5 and Corollary 2.6.

Lemma 3.1. Fix any ε ∈ (0, 1) and c ∈ (0, (1 − ε)r). Then, in εn steps of the

r–choice process there are at least cn elements that have been proposed at least twice

a.a.s.

Proof. The probability that a given element i ∈ [n] has never been proposed by
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the r–choice process up to step εn is given by

∏

0≤i≤εn−1

∏

0≤j≤r−1

(

1−
1

n− i− j

)

= (1 + o(1))
∏

0≤i≤εn−1

(

1−
r

n− i

)

= (1 + o(1)) exp

(

−r log

(

n

n− εn

))

= (1 + o(1)) (1− ε)
r
.

Also, the probability that two different elements have both not been proposed after
εn steps is

∏

0≤i≤εn−1

∏

0≤j≤r−1

(

1−
2

n− i− j

)

=(1 + o(1))
∏

0≤i≤εn−1

(

1−
2r

n− i

)

=(1 + o(1)) exp

(

−2r log

(

n

n− εn

))

=(1 + o(1)) (1− ε)
2r

=((1 + o(1)) (1− ε)
r
)2.

We conclude by a direct application of the second moment method that the num-
ber of vertices not yet proposed during any of the first εn steps, is a.a.s. at least cn,
which proves the proposition.

Proof of Theorem 2.5. We argue by contradiction. In this case there is an in-
creasing sequence (nk)k≥1 such that rTr(fnk

) = (1 + ok(1))T1(fnk
). Since Tr(fn) ≥

T1(fn)/r ≥ εn/r for every n ≥ 1, by Lemma 3.1 there is c > 0 such that a.a.s. at
least cn elements have been proposed at least twice by the r–choice process until step
Tr(fn). Hence, for every n ≥ 1, the number of all elements that have been proposed
at least once up to time Tr(fn) in the r–choice process is a.a.s. at most rTr(fn)− cn.
Thus, for all k ≥ 1, the number of bits proposed by the r–choice process up to step
Tr(fnk

) (out of all nk bits) is at most T1(fnk
)− cnk + ok(nk) a.a.s. and, conditionally

on their number, these are chosen uniformly at random. Therefore, the probability
that fnk

is activated by the above set of elements is less than 1/2 for every large
enough k, which is in contradiction with our assumption.

Proof of Corollary 2.6. Fix n ≥ 1. If |R(fn)| ≥ n/8, then T1(fn) ≥ T1(f̃n) ≥
δ|R(fn)| ≥ δn/8, and the lemma follows in this case. Suppose that |R(fn)| < n/8.
We prove that during the first δn/8 steps of the 1–choice process, at most δ|R(fn)|/2
elements from R(fn) have been selected a.a.s. Indeed, for every positive integer t ≤
δn/8, the 1-choice process selects an element from R(fn) with probability at most

|R(fn)|

n− t+ 1
≤

|R(fn)|

(1− δ/8)n
≤

2|R(fn)|

n
.

Since any step is made independently of all previous steps conditionally on the set of al-
ready selected bits, the number of elements in R(fn) selected after the first δn/8 steps
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is stochastically dominated by a binomial random variable Bin(δn/8, 2|R(fn)|/n).
Thus, since |R(fn)| = ω(1), by Chernoff’s bound a.a.s. there are at most δ|R(fn)|/2
elements of R(fn) selected after the first δn/8 steps. Hence, since by assumption
T1(f̃n) ≥ δ|R(fn)|, f̃n (and therefore fn as well) is activated with probability less
than 1/2 after the first δn/8 steps, which proves the hypothesis of Theorem 2.5, and
the corollary follows.

3.2. Fast sequences. We present the proofs of Theorem 2.7 and Corollary 2.8.

Lemma 3.2. Fix an integer r ≥ 1 and a sequence of monotone Boolean functions

(fn)n≥1 satisfying 1 ≪ T1(f̃n) ≪ |R(fn)| ≪ n. Then, for every δ > 0,

(1 − δ)T1(f̃n)n

r|R(fn)|
≤ Tr(fn) ≤

(1 + δ)T1(f̃n)n

r|R(fn)|
.

Proof. First, we prove the lower bound. Define

k− = k−(n) =
(1 − δ)T1(f̃n)n

r|R(fn)|
,

and let (Zi)i≥1 be an infinite sequence of independent Bernoulli random variables with

parameter px = |R(fn)|
n−rk− . Let Ar(t, fn) be the number of activated bits in R(fn) after

t steps of the r-complete process and A1(t, fn) be the same quantity for the 1-choice
process. We have

P

(

Ar(k
−, fn) ≥

(

1−
δ

2

)

T1(f̃n)

)

≤ P

(

A1(rk
−, fn) ≥

(

1−
δ

2

)

T1(f̃n)

)

≤ P





rk−
∑

i=1

Zi ≥

(

1−
δ

2

)

T1(f̃n)





= exp(−Ωδ(T1(f̃n)) = o(1),

where the penultimate equality follows from Chernoff’s bound and uses that rk−px =
(1− δ + o(1))T1(f̃n), which follows from our assumption that T1(f̃n) = o(|R(fn)|).

Thus, a.a.s. there are at most (1 − δ/2)T1(f̃n) bits in R(fn) selected during the
first rk− steps by the 1–choice process, so

rk− ≤ T1(fn) ≤ rTr(fn),

which proves the lower bound.
For the upper bound, define

k+ = k+(n) =
(1 + δ)T1(f̃n)n

r|R(fn)|
.

We prove that, out of the first k+ steps, there are a.a.s. at least (1+ δ/2)T1(f̃n) steps
such that at least one element in R(fn) is proposed. Denote by T the hitting time of
the above event. Also, recall that C1, C2, . . . , Ck+ are the sets of size r of elements,
proposed during the first k+ steps of the r–choice process. Now, let (Yi)i≥1 be an
infinite sequence of Bernoulli random variables with parameter

py = 1−

(

1−
|R(fn)| − (1 + δ)T1(f̃n)

n

)r

.
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Note that py bounds from below the probability that Ct contains an element of R(fn)

for every t ≤ T , and since |R(fn)| = o(n), py = (1 + o(1)) r|R(fn)|−(1+δ)T1(f̃n)
n . Thus,

P
(

T ≥ k+
)

≤ P
(

|{t ≤ k+ : Ct ∩R(fn) 6= ∅}| < (1 + δ/2)T1(f̃n)
)

≤ P





k+

∑

i=1

Yi < (1 + δ/2)T1(f̃n)



 = exp(−Ωδ(T1(f̃n))) = o(1),

where the penultimate equality follows from Chernoff’s bound and uses that k+py =

(1 + δ + o(1))T1(f̃n), which follows from our assumption that T1(f̃n) = o(|R(fn)|).
We conclude that after k+ steps in the r–choice process, at least (1 + δ/2)T1(f̃n)

elements of R(fn) have been selected. Moreover, if at every step t ≤ k+ we impose on
the agent to select an element from Ct∩R(fn) uniformly at random if |Ct∩R(fn)| ≥ 2,
the set of selected elements in R(fn) after k+ steps is uniform conditionally on its
size. This proves the upper bound.

Proof of Theorem 2.7. By Lemma 3.2 applied with r = 1 we have that for every
δ > 0,

(1− δ)T1(f̃n)n

|R(fn)|
≤ T1(fn) ≤

(1 + δ)T1(f̃n)n

|R(fn)|

and for every δ > 0 and r ≥ 2, once again by Lemma 3.2,

(1 − δ)T1(f̃n)n

r|R(fn)|
≤ Tr(fn) ≤

(1 + δ)T1(f̃n)n

r|R(fn)|
.

We deduce that for every δ > 0 and r ≥ 2,

T1(fn)

r
≤

(1 + δ)T1(f̃n)n

r|R(fn)|
=

1 + δ

1− δ

(1− δ)T1(f̃n)n

r|R(fn)|
≤

1 + δ

1− δ
Tr(fn)

and

Tr(fn) ≤
(1 + δ)T1(f̃n)n

r|R(fn)|
=

1 + δ

1− δ

(1− δ)T1(f̃n)n

r|R(fn)|
≤

1 + δ

1− δ

T1(fn)

r
.

Since the above two chains of inequalities hold for every δ > 0, this proves the theo-
rem.

Remark 3.3. The hypothesis |R(fn)| = o(n) in the first point of the theorem
cannot be spared. We show this by a counterexample. Fix ε ∈ (0, 1] and let J = [⌊εn⌋].
Let fn be activated when ⌊logn⌋ of the elements in J are activated, that is,

f(v) =





∑

1≤i1<...<ir<...<i⌊log n⌋≤⌊εn⌋

1∀j∈[⌊log n⌋],vij=1



 ∧ 1.

Instead of presenting the (rather direct) computation in this particular case, we choose
to explain the logic behind the phenomenon. At any step in the process, there is a
positive probability (which is 1−(1−ε)r−rε(1−ε)r−1+o(1)) that two or more of the
randomly proposed r elements are in J . Since one may select only one element at a
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time, one may roughly think that “one possibility of selecting an element in R(fn) is
missed” on the above event. Since the number of steps is a.a.s. Θ(logn), in a constant
proportion of all steps (which is 1− (1−ε)r− rε(1−ε)r−1+o(1)) at least one element
of R(fn) is “missed” a.a.s., which causes a delay in the r–choice process.

Remark 3.4. In general, the hypothesis T1(fn) = ω(1) cannot be spared either.
If there is a constant M > 0 such that for infinitely many n ∈ N one has T1(fn) ≤ M ,
then clearly there cannot be acceleration by a factor of r + o(1) for any r > M .

Proof of Corollary 2.8. Fix a sequence of positive real numbers (εk)k≥1 that tends
to zero. By assumption, a.a.s., for every k ≥ 1 there is a sequence of positive integers
(γk,n)n≥1 such that, for every k ≥ 1 and every large enough n, with probability at
least 1− εk the sequence of functions (f

γk,n

n )n≥1 satisfies:
(i) γk,n ≤ εkT1(f

γk,n
n ) = ok(T1(f

γk,n
n )),

(ii) |R(f
γk,n
n )| ≤ εkn = ok(n),

(iii) T1(f̃
γk,n

n ) ≤ εk|R(f
γk,n

n )| = ok(|R(f
γk,n

n )|) and T1(f̃
γk,n

n ) = ωk(1).
Thus, a.a.s. one may find a sequence (k(n))n≥1 satisfying k(n) = ω(1) such that, for
every large enough n ≥ 1, the sequence (γn)n≥1 = (γk(n),n)n≥1 satisfies

1. γn ≤ εk(n)T1(f
γn
n ) = o(T1(f

γn
n )),

2. |R(fγn
n )| ≤ εk(n)n = o(n),

3. T1(f̃
γn
n ) ≤ εk(n)|R(fγn

n )| = o(|R(fγn
n )|) and T1(f̃

γn
n ) = ω(1).

By using conditions (2) and (3), a direct application of Theorem 2.7 for the
sequence of Boolean functions (fγn

n )n≥1 shows that Tr(f
γn
n ) = (1 + o(1))T1(f

γn
n )/r

a.a.s. On the other hand, E[T1(fn) − T1(f
γn
n )] = γn (note that since the γn bits

are chosen uniformly at random, the expected number of additional rounds needed
to obtain probability at least 1/2 for fn to evaluate to 1 is T1(fn) − γn), so since
γn = o(T1(f

γn
n )), one may conclude by Markov’s inequality for T1(fn)− T1(f

γn
n ) that

T1(fn) = (1 + o(1))T1(f
γn
n ) a.a.s., and similarly Tr(fn) = (1 + o(1))Tr(f

γn
n ) a.a.s.,

which concludes the proof of the corollary.

4. Applications. In this section we give several examples of application of The-
orems 2.5 and 2.7 and the corresponding corollaries.

4.1. Juntas. A Boolean function f is an M -junta if |R(f)| ≤ M . Fix a sequence
(fn)n≥1 of monotone Boolean functions such that there is M ∈ N satisfying

max
n∈N

|R(fn)| ≤ M.

Fix also a positive constant c = c(M) satisfying M log((1 − c)−1) ≤ 1/2. Under
the above assumption for every sufficiently large n ≥ 1 we deduce that T1(fn) ≥ cn:
indeed, the probability not to encounter any element of R(fn) during the first cn steps
of the 1-choice process is bounded from below by

cn−1
∏

i=0

(

1−
|R(fn)|

n− i

)

≥
cn−1
∏

i=0

(

1−
M

n− i

)

= exp

(

−M log

(

1

1− c

)

+ o(1)

)

≥ exp

(

−
1

2
+ o(1)

)

,
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which is larger than 1/2 for every large enough n. We conclude by Theorem 2.5 that
there is C = C(r, (fn)n≥1) > 0 such that, for every sufficiently large n,

Tr(fn) ≥ Cn+
T1(fn)

r
,

and hence sequences of M–juntas are slow for any M ∈ N.

4.2. Recursive Majority. Consider two positive integer sequences (kn)n≥1 and
(tn)n≥1 such that, for every n ≥ 1, kn is odd and kn ≥ 3, and (ktnn )n≥1 is an increasing
sequence that tends to infinity as n → +∞. Fix n ∈ N and denote k = kn, t = tn and
N = kt. Now, define the sets (Sj

i )j∈{0,...,t},i∈kt−j where, for every j ∈ {0, . . . , t} and

i ∈ kt−j , Sj
i = {ikj − (kj − 1), . . . , ikj}. Note that, for every j ∈ [t] and i ∈ [kt−j],

Sj−1
ki−(k−1)

·∪ . . . ·∪ Sj−1
ki .

Now, for i ∈ [kt], we say that the set S0
i is activated if the bit i is turned from

0 to 1, and for every j ∈ [t] and i ∈ [kt−j ], Sj
i is activated if at least k+1

2 of the sets

Sj−1
ki−(k−1), . . . , S

j−1
ki are activated. Define fN : x ∈ {0, 1}N 7→ 1St

1 is activated by x
, that

is, if only the 1-bits of x have been activated, then St
1 is activated as well.

The following lemma shows that, for any s < N/2, evaluating fN at a uniformly
chosen vector conditioned to have exactly s 1-bits yields 1 with probability strictly
smaller than 1/2.

Lemma 4.1. Fix a random variable X distributed uniformly over {0, 1}N . Then,

P(fN (X) = 1) ≤ 1/2. Moreover, P(fN(X) = 1 | ||X ||1 = s) < 1/2 for s < N/2.

Proof. Note that if x ∈ {0, 1}N satisfies fN (x) = 1, then fN(1 − x) = 0, which
shows the first statement. For the second statement, we will need the following
theorem, which is a special case of a more general result that one may trace back to
Sperner [21], see also [18].

Theorem 4.2 (Special case of the local LYM inequality). Fix A ⊆
( [N ]
⌊N/2⌋

)

and

denote

∂A =

{

S ∈

(

[N ]

⌈N/2⌉

)

∣

∣

∣

∣

∣

∃S′ ∈ A,S′ ⊆ S

}

.

Then, |A| ≤ |∂A|. Moreover, equality holds if and only if A = ∅ or A =
( [N ]
⌊N/2⌋

)

.

Denote by A the set of vectors x ∈ {0, 1}N containing ⌊N/2⌋ 1-bits and satisfying
fN(x) = 1. SinceA is neither empty nor contains all vectors with exactly ⌊N/2⌋ 1-bits,
by Theorem 4.2 |A| < |∂A|. On the other hand, by the same symmetry considerations
as above, the number of vectors x ∈ {0, 1}N with either ⌊N/2⌋ or ⌈N/2⌉ 1-bits such
that fN (x) = 1 is

(

N
⌊N/2⌋

)

. We conclude that

P(fN(X) = 1 | ||X ||1 = s) ≤ P(fN (X) = 1 | ||X ||1 = ⌊N/2⌋)

= |A|

(

N

⌊N/2⌋

)−1

<
|A|+ |∂A|

2

(

N

⌊N/2⌋

)−1

≤ P(fN (X) = 1 | ⌊N/2⌋ ≤ ||X ||1 ≥ ⌈N/2⌉) =
1

2
,
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which finishes the proof of the second statement.

By Lemma 4.1 we conclude that for every n ≥ 1 one has T1(fN ) ≥ N/2, so by
Theorem 2.5 we deduce that there exists C = C((fN )) such that, for every n ≥ 1,
fN = fN(n) satisfies

Tr(fN ) ≥ CN +
T1(fN)

r
,

and hence recursive majorities is slow.

4.3. Tribes. Let (sn)n≥1 be a sequence of positive integers such that, for every
n ∈ N, sn ∈ [1, n]. For every n ∈ N, write n = sntn + rn, where rn ∈ {0, . . . , sn − 1}
is the remainder of the division of n by sn. Then, for every n ∈ N, given sn, a tribe

partition of [n] is a tn-tuple of sets (S1, S2 . . . , Stn) such that S1 ·∪ S2 ·∪ · · · ·∪ Stn = n
and for every i ∈ [tn], |Si| ∈ {sn, sn + 1}. For every n ∈ N, a tribe function of tribe

size sn associated to the tribe partition (S1, S2 . . . , Stn) is a function

fn : x ∈ {0, 1}n 7→ 1∃1≤i≤tn,all bits in positions Si in x are 1.

Lemma 4.3. Fix any δ > 0 and a sequence of tribe functions (fn)n≥1 of tribe

sizes (sn)n≥1 satisfying that for all n ∈ N, sn ≥ δ logn. Then, there is a constant

C = C(δ, (fn)) > 0 such that Tr(fn) ≥ Cn+ T1(fn)/r.

Proof. Fix p = exp(−1/δ). We first show that a.a.s. fn is not activated if every bit
is put to 1 with probability p independently of all other bits. Indeed, the probability
of the above event is bounded from below by

(1− psn)tn = exp(−(1 + o(1))psnn/sn) ≥ exp(−(1 + o(1))/sn) = 1 + o(1).

Moreover, by Chernoff’s inequality a.a.s. at least pn/2 bits are put to 1. We
conclude that T1(fn) ≥ pn/2 for every large enough n, which allows us to conclude
by Theorem 2.5.

4.4. Connectivity and k–connectivity. For every n ≥ 1, consider an ordering

In of the set of pairs of vertices of Kn. Let gn be a function from {0, 1}(
n

2) to the set

of graphs on n vertices such that, for every v ∈ {0, 1}(
n

2), the i–th pair of vertices of
In is an edge in gn(v) if vi = 1, and is not an edge if vi = 0. Define

fn : v ∈ {0, 1}(
n

2) 7→ 1gn(v) is connected.

Clearly, for every n ≥ 1, the function fn is monotone and all
(

n
2

)

vertex pairs of

Kn belong to R(fn) (note that any set of
(

n
2

)

− 1 edges does not decide if a graph is
connected or not in general). It is well known that for the binomial random graph
G(n, p) connectivity undergoes a sharp threshold at p = (1+ o(1)) log n/n, coinciding
with the moment when the last isolated vertex becomes incident to an edge. We now
show that the sequence (fn)n≥1 fixed above is accelerated by a factor of r + o(1) in
the r–choice process (note that this also holds for the threshold of disappearance of
the last isolated vertex):

Lemma 4.4. The sequence (fn)n≥1 defined above is fast.

Proof. Fix any r ∈ N. Consider the following strategy for the r–choice process:
at each of the first s = n log logn steps, select an arbitrary edge among the r proposed
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ones. Then, at any step, select an edge that contains at most one vertex in the largest
connected component if possible, and select an arbitrary edge otherwise. It is well
known (see e.g. [7]) that, after s steps, a.a.s. the graph consists of a giant component
that contains all but o(n)∩ω(n1/2) of all n vertices as well as ω(n1/2) isolated vertices.
Hence, after s steps, a.a.s. only o(n2) ∩ ω(n3/2) of the remaining 0-bits may change
the connectivity (namely the bits corresponding to the edges incident to at least one
vertex outside the giant component). We condition on this event. Suppose that the
first s activated bits have indices i1 < i2 < · · · < is (which is a uniform random set
of s out of all

(

n
2

)

bits). Denote by f s
n the (random) restriction of fn over the set

of vectors in {0, 1}(
n

2) such that each of the bits with indices i1 < i2 < · · · < is is
turned to 1. Hence |R(f s

n)| = o(n2) ∩ ω(n3/2). Since T1(f̃
s
n) ≤ T1(fn) = Θ(n logn)

(for the sharp threshold for connectivity ensuring the last equality, see again [7]) and
T1(f̃

s
n) ≥ n1/2/2 = ω(1) by our conditioning, we have 1 ≪ T1(f̃

s
n) ≪ |R(f s

n)| ≪ n2, so
by Theorem 2.7 Tr(f

s
n) = (1 + o(1))T1(f

s
n)/r. Moreover, before the conditioning we

have E[T1(fn)−T1(f
s
n)] = s = o(n log n) = o(T1(fn)), and the same holds for Tr(fn)−

Tr(f
s
n). By Markov’s inequality we conclude that both T1(fn) = (1+ o(1))T1(f

s
n) and

Tr(fn) = (1 + o(1))Tr(f
s
n) a.a.s., so Tr(fn) = (1 + o(1))T1(fn)/r, which proves the

lemma.

Remark 4.5. For any k ≥ 2, a graph is said to be k–connected if the deletion
of any k − 1 vertices leaves a connected graph. Also, the k–core of a graph G is the
largest subgraph of G with minimum degree k. It is well-known that a sharp threshold
for k–connectivity occurs at p = (log n+ (k − 1) log logn)/n (see Theorem 7.7 of [7])
as well as the fact that after n log logn steps of the 1-choice process the k–core of
the resulting random graph contains n+ o(n) vertices and is k–connected a.a.s. (see
again [7]). Hence, a straightforward modification of the proof of Lemma 4.4 shows
that, for every r ≥ 2, k–connectivity is accelerated by a factor of r(1 + o(1)) by the
r–choice process.

Remark 4.6. The appearance of both Perfect matching and Hamilton cycle on n
vertices fall into the category of monotone functions fn satisfying |R(fn)| =

(

n
2

)

for
which the r–choice process therefore gives a r(1+o(1))–factor acceleration, see [13] for
Hamilton cycle (and as they remark in Section 5, Point 4, their result also applies to
Perfect matching). Unfortunately our results do not lead to a significant simplification
of their argument.
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