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PARAMETRIC RESONANCE FOR ENHANCING THE RATE OF
METASTABLE TRANSITION∗

YING CHAO† AND MOLEI TAO‡

Abstract. This work is devoted to quantifying how periodic perturbation can change the
rate of metastable transition in stochastic mechanical systems with weak noises. A closed-form
explicit expression for approximating the rate change is provided, and the corresponding transition
mechanism can also be approximated. Unlike the majority of existing relevant works, these results
apply to kinetic Langevin equations with high-dimensional potentials and nonlinear perturbations.
They are obtained based on a higher-order Hamiltonian formalism and perturbation analysis for
the Freidlin-Wentzell action functional. This tool allowed us to show that parametric excitation
at a resonant frequency can significantly enhance the rate of metastable transitions. Numerical
experiments for both low-dimensional toy models and a molecular cluster are also provided. For
the latter, we show that vibrating a material appropriately can help heal its defect, and our theory
provides the appropriate vibration.

Key words. metastable transition; Freidlin-Wentzell action functional; non-autonomous rare
event; parametric resonance; material defect
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1. Introduction. Rare but reactive dynamical events induced by small noise un-
derlie many physical, chemical and biological problems. Examples of such rare events
include climate changes (e.g., [42]), nucleation in phase transitions (e.g., [26]), acti-
vated chemical reactions and conformation switching of macromolecules (e.g., [55]).
To explore the mechanism of rare transition in stochastic dynamical systems is a
challenging task. In the limit of weak noise, Freidlin–Wentzell large deviation theory
[19, 13] provides a framework for assessing the likelihoods of those rare events.

This paper considers a specific case of non-autonomously forced stochastic me-
chanical system, modeled as a second-order1 and underdamped kinetic Langevin sys-
tem, perturbed by a τf -periodic in t force f(x, t):

dx = vdt,

dv = −Γvdt−∇V (x)dt + εf(x, t)dt+
√
µΓ

1
2 dW.

(1.1)

Here variables x, v ∈ R
nd denotes the configuration and velocity of n particles in R

d,
respectively, V : Rnd → R is the potential, Γ ∈ R

nd×nd is a symmetric positive definite
damping coefficient matrix, and W is an nd-dimensional Wiener process.

In Eq. (1.1), the perturbation parameter ε controls the intensity of the periodic
forcing and is assumed without loss of generality to be positive. We assume µ is smaller
than ε so that we first have large deviation principle and then asymptotic analysis of
the Maximum Likelihood Path (which will be clarified in the next paragraph). We also
assume ε > 0 is small enough, so that in the absence of noise, i.e. µ = 0, there exists
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1
2 ξ(t), which should be compared with the 1st-order system of perturbed overdamped Langevin,

i.e., ẋ = −∇V (x) + εf(x, t) +
√
µξ(t). Here, ξ(t) is a standard white noise in R

nd.
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2 Y. CHAO AND M. TAO

at least two stable periodic states xεa(t) and x
ε
b(t), separated by an unstable one xεu(t),

bifurcated out of two local minima and a saddle of V (·) in the no-forcing case (i.e.,
ε = 0), for which we also assume the saddle is an attractor on the separatrix between
the basins of attraction of the two minima. Note the existence of such periodic orbits
is guaranteed for small enough ε due to implicit function theorem (e.g., [38]).

It is known that the presence of noise (i.e. µ 6= 0) introduces a mechanism
of transition between periodic solutions of the noiseless system; see e.g., [19, 50,
34] for autonomous problems. This article considers how a time-dependent forcing
f(x, t) can change the transition rate, which could be understood intuitively as the
likelihood of jumping from one basin of attraction to another, and this likelihood
is characterized by the transition between the stable periodic states xεa(t) → xεb(t),
which is impossible without the noise and thus termed as ‘metastable transition’. To
quantify such transitions, which involve infinite loopings around xεa(t) and xεb(t) as
t → ±∞, it is important to specify the boundary conditions of the transition x(t).
Based on knowledge of infinite-time metastable transition in autonomous systems, it
might be tempting to consider boundary conditions limt→−∞ x(t) − xεa(t) = 0 and
limt→+∞ x(t) − xεb(t) = 0, but we will actually allow an additional phase difference,
whose ramification will be detailed later on.

More precisely, let ‖·‖B denote a weighted norm, ‖x‖B =
√
xTBx, where x ∈ R

nd

and B ∈ R
nd×nd is a positive definite matrix. Given an autonomous problem

dx = vdt,

dv = −Γvdt−∇V (x)dt +
√
µΓ

1
2 dW,

(1.2)

equipped with boundary condition x(T1) = x1 and x(T2) = x2, Freidlin-Wentzell large
deviation theory gives that, as µ → 0, the probability density of having a solution
x(·) is formally asymptotically equivalent to exp{−ST1,T2 [x]/µ}, where the associated
action functional ST1,T2 [x] is given by

ST1,T2 [x] =

{

1
2

∫ T2

T1
‖ẍ+ Γẋ+∇V (x)‖2Γ−1dt, x ∈ C̄x2

x1
(T1, T2),

∞, otherwise,

where C̄x2
x1
(T1, T2) denotes the space of absolutely continuous functions in [T1, T2] that

satisfy x(T1) = x1 and x(T2) = x2.
The non-autonomy of (1.1) creates extra challenges, but it was established in [16]

that in the µ → 0 limit, the transition rate (this time between metastable periodic
orbits in system (1.1) instead of metastable fixed points in system (1.2)) can be
essentially characterised by exp(−Sε/µ), where the quantity Sε is described as follows:

Sε = inf
x∈C̄

x2
x1

(R),limt→−∞ x(t)−xε
a(t)=0,limt→+∞ x(t)−xε

b
(t)=0

Sε[x(t)],(1.3)

Sε[x(t)] =
1

2

∫ +∞

−∞

‖ẍ+ Γẋ+∇V (x)− εf(x, t)‖2Γ−1dt.

Here the minimization in (1.3) is performed in the space of absolutely continuous
functions in R. We remark that the usage of boundary conditions at ±∞ is reason-
able as the minimum in (1.3) is generally achieved when T2 − T1 → ∞. In other
words, maximum likelihood transition time between two metastable periodic states is
infinite (e.g., [24]). In the most parts of this article, we will be only concerned with
local minimizers of Sε[x(t)]. The reason is convexity is not guaranteed and global
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minimization might be too difficult. We call these minimizers maximum likelihood
paths (MLPs) throughout this paper (they are also called instantons in the physical
literature). Since we will be considering just local minimizers, assume without loss
of generality that there is only one xεu(t) as we will be just considering transitions
through its neighborhood.

In the absence of a non-autonomous forcing (ε = 0), hopping between metastable
states of kinetic Langevin equation has been studied in detail, including the char-
acterization of MLPs and the corresponding action value. For example, Souza and
Tao [47] analysed minimisers of the Freidlin–Wentzell action for the kinetic Langevin
equation with respect to various types of friction coefficients for illustrating features
in kinetic Langevin metastable transitions that markedly differ from the familiar over-
damped picture. The idea studied in this paper is to use specific periodic perturba-
tions (ε 6= 0) to facilitate metastable transitions. This idea is inspired, for example,
by the investigation of periodically-perturbed Markov jump processes in chemical and
epidemiological applications [17, 2, 4], by stochastic resonance [41, 28, 20, 36], by the
use of non-gradient forcing (which can be interpreted as an irreversible component,
just like how time-dependent perturbation can also be interpreted so) for changing
transition rate [26], and by many successes in controlling deterministic systems using
periodic perturbations [29, 40, 44, 45, 27, 3, 12, 6, 32, 31, 52, 49, 57]. To quantify how
periodic perturbation can change the rate of metastable transition, a key practical
question then becomes how to compute the minimum of the Freidlin-Wentzell action
functional (1.3).

Continuous and significant efforts have already been made to understand noise
induced transitions or escapes in the presence of a periodic driving. Smelyanskiy et
al. [46] and Dykman et al. [15] proved that the escape probabilities can be changed
very strongly even by a comparatively weak force. Agudov et al. [1, 14] studied the
effect of noise-enhanced stability of periodically driven metastable states. Chen et
al. [9] identified a most likely noise-induced transition path under periodic forcing
in the framework of finite noise. However, these works mainly have been focused
on first-order systems, many of which may be viewed as the overdamped limits of
second-order systems2. Meanwhile, seminal results on noise activated escape rate
of a second-order and under-damped dynamical system exist [16, 37], although they
mostly considered only the case of a single particle and linear additive driving forcing,
i.e. f(x, t) = f(t). It is our goal to extend the existent approaches and study the
rate of metastable transition in the multi-particle / higher-dimensional systems (1.1),
which have potential applications in, for instance, molecules dynamics (an example of
healing material defeat, which is important in material sciences, will be provided in
section 4). We also consider more general nonlinear forcings; of particular interest is
when f is a parametric perturbation, e.g. f(x, t) = A cos(ωt+ θ)x, where parameters
A, ω, θ represent the amplitude, frequency, and phase of the forcing respectively.
We will show explicitly that a specific choice of ω will lead to a parametric resonant
enhancement of the transition rate. We remark that the terminology ‘resonance’
here means that the quasi-potential / transition rate peaks at specific perturbation
frequencies [16, 46], which is different from stochastic resonance [36] whereby the noise
can lead to the amplification of the input signal.

2We also note overdamped Langevin (without time-dependence) is a reversible Markov process,
while kinetic Langevin considered here is irreversible, and its rare event quantification, even without
the time-dependent perturbation, can be much more challenging; see e.g., [56, 25, 60, 54, 35, 21, 22,
18, 11, 10, 50, 47, 59, 7, 34, 33]).
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To accomplish these goals, our point of departure is a higher-order Euler-Lagrange
equation [43] characterization of the MLPs associated with 2nd-order SDEs (which
can be converted to a 1st-order system, however with degenerate noise). Then we
utilize a linear-theory calculation inspired by [16, 37, 2, 46] to approximate the min-
imum of Freidlin-Wentzell action (1.3) to the first order of ε. Specifically, our main
contributions are (i) to develop a higher-order Hamiltonian formalism to reformulate
time-dependent Freidlin-Wentzell action functional; (ii) to approximate the hopping
rate between metastable periodic orbits of system (1.1) in terms of the unperturbed
MLP explicitly, based on heteroclinic perturbation analysis; and (iii) to explicitly
identify parametric resonant frequency in the context of metastable transition, and
uncover the impact of such resonance to the metastable transition rate in systems of
practical relevance.

Several facts have to be mentioned: (i) To quantify the effect of external forc-
ing on transition rate, we need to understand how MLPs in (1.1) change under the
perturbation. After casting the rare event problem in 2nd-order systems as a Hamil-
tonian formalism (for this formalism for 1st-order systems, see e.g., [24, 30, 22, 9]),
we will convert the transition rate quantification problem to the persistence of het-
eroclinic connections between periodic orbits after a nonautonomous Hamiltonian
perturbation (similar problems have been considered in [17, 2], however only for 1
Degree-Of-Freedom (DOF)). Such persistence is a classical question in dynamical sys-
tems and has been answered by Melnikov [39, 23] for 1 DOF. One key issue with
kinetic Langevin systems considered here is, Melnikov’s approach is no longer directly
applicable even in the single particle situation, because it corresponds to a Hamilton-
ian system with 4 variables (2 DOF). Unfortunately, Melnikov’s method was devised
initially to compute the distance between stable and unstable manifolds only for pla-
nar Hamiltonian vector fields. Nevertheless, the perturbed heteroclinic connection as
intersections of stable/unstable manifolds [58] can still be investigated. An inspiring
article [8] for instance extends Melnikov’s method to give a condition under which
the stable/unstable manifolds intersect transversely in multidimensional setting. In
essence, our approach is related to Melnikov’s method, but at the same time a gener-
alization as we worked out the 1st-order perturbative expansion in higher-dimensions;
(ii) Unlike in the autonomous kinetic Langevin case considered in [47], one can no
longer relate the perturbed MLPs to a 2nd-order deterministic equation due to the
loss of delicate statistical mechanical structure (which is, roughly speaking, a trans-
verse decomposition [5] and consequent detailed balance after momentum reversible);
instead, 4nd-order Euler-Lagrange equation is necessary. To analyze it, we adopt a
perturbation analysis for approximating the rate change along perturbed MLPs di-
rectly, which is independent of specific form of perturbed MLPs. (iii) There have been
previous studies on linear resonance, but our investigation in parametric resonance is,
to the best of our knowledge, new.

The paper is organized as follows. Our general theory is in section 2. After
reformulating the variational problem as a higher order Hamiltonian formalism in
subsection 2.1, we obtain an equivalent description of Freidlin-Wentzell action in sub-
section 2.2 and further characterize the transition rate in subsection 2.3. We then dis-
cuss the characterization of resonant frequency for parametric resonance in section 3.
Numerical experiments of parametric resonance are in section 4, and conclusions fol-
low in section 5.

2. General theory. (To simplify the notation, throughout the paper, we use
symbols without superscript ε to represent quantities in the case of the unperturbed
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system, i.e., ε = 0).

2.1. Higher-order Lagrange and Hamiltonian formulation. To better un-
derstand the minimizer x(t) (i.e., MLP) of Freidlin-Wentzell action functional Sε[x(t)],
we start with the Euler-Lagrange equation of the higher-order variational principle
[43] (see also Appendix A), given by

(2.1)
δSε[x]

δx
=
∂L
∂x

− d

dt

∂L
∂ẋ

+
d2

dt2
∂L
∂ẍ

= 0,

equipped with boundary conditions

lim
t→−∞

x(t)− xεa(t) = 0, lim
t→+∞

x(t)− xεb(t) = 0,

where the Lagrangian L(t;x, ẋ, ẍ) is given by

(2.2) L(t;x, ẋ, ẍ) = 1

2
‖ẍ+ Γẋ+∇V (x)− εf(x, t)‖2Γ−1 .

Note that this differs from traditional Lagrangian mechanics where L depends only
on t, x and ẋ, and the root of this difference lies in that noise is degenerate if we
rewrite the kinetic Langevin equation as a first-order system. Consequently, the Euler-
Lagrange equations (2.1) is a system of fourth-order differential equations for variable
x(t). Another remark is that although each MLP solves the Euler-Lagrange equation,
its solutions are not unique; later on we will establish a family of approximate solutions
indexed by a parameter t0.

We now convert this high-order Lagrangian problem to the Hamiltonian picture.
For this purpose, let q1 = x, q2 = ẋ and introduce new variables p1, p2 via

(2.3) p1 =
∂L
∂ẋ

− d

dt

∂L
∂ẍ

, p2 =
∂L
∂ẍ

respectively, which are called generalized momentum of the prescribed system [43].
Then x solves Euler-Lagrange equations (2.1) if and only if

(2.4) ṗ1 =
dp1
dt

=
d

dt

∂L
∂ẋ

− d2

dt2
∂L
∂ẍ

=
∂L
∂x

=
∂L
∂q1

.

Since our Lagrangian L(t;x, ẋ, ẍ) satisfies the following non-degeneracy condition

det(
∂2L
∂ẍ∂ẍ

)nd×nd 6= 0,

it follows from implicit function theorem that ẍ could be locally expressed as a function
of t, q1, q2, p2; denote it by

ẍ = G(t; q1, q2, p2).

Define the Hamiltonian

H : = H(t, q1, q2, p1, p2)

= p1 · ẋ+ p2 · ẍ− L(t;x, ẋ, ẍ)
= p1 · q̇1 + p2 ·G(t; q1, q2, p2)− L(t; q1, q2,G(t; q1, q2, p2)),(2.5)
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where “ · ” represents the scalar product of vectors. It follows that

∂H

∂q1
= (Dq1G(t; q1, q2, p2))

T p2 −
∂L
∂q1

− (Dq1G(t; q1, q2, p2))
T ∂L
∂ẍ

= − ∂L
∂q1

∂H

∂q2
= p1 + (Dq2G(t; q1, q2, p2))

T p2 −
∂L
∂q2

− (Dq2G(t; q1, q2, p2))
T ∂L
∂ẍ

= p1 −
∂L
∂q2

∂H

∂p1
= q̇1

∂H

∂p2
= G(t; q1, q2, p2),

(2.6)

where Dq1G (resp. Dq2G) denotes the gradient matrix of G with respect to variable
q1 (resp. q2), and superscript ‘T ’ refers to transposition. Hence, the Euler-Lagrange
equations (2.1) transform into the Hamiltonian differential equations

q̇1 =
∂H

∂p1
, q̇2 =

∂H

∂p2
,

ṗ1 = −∂H
∂q1

, ṗ2 = −∂H
∂q2

,

(2.7)

where we use the (2.4) and the fact that ṗ2 = p1 − ∂L
∂ẋ

by (2.3). In fact, the above
process can be reversed under the following condition

det(
∂2H

∂p2∂p2
)nd×nd 6= 0.

For the specific Lagrangian in (2.2), simplifications can be made, and the corre-
sponding Euler-Lagrange equation can be written in the equivalent Hamiltonian form
as

q̇1 = q2, q̇2 = Γp2 − Γq2 −∇V (q1) + εf(q1, t),

ṗ1 = (Dq1∇V (q1))
T p2 − ε(Dq1f(q1, t))

T p2, ṗ2 = Γp2 − p1,
(2.8)

with Hamiltonian function

Hε(t, q1, q2, p1, p2) =p
T
1 q̇1 + pT2 q̇2 −

1

2
‖q̇2 + Γq̇1 +∇V (q1)− εf(q1, t)‖2Γ−1

=pT1 q2 + pT2 [Γp2 − Γq̇1 −∇V (q1) + ǫf(q1, t)]−
1

2
pT2 Γp2

=
1

2
pT2 Γp2 + pT1 q2 − pT2 [Γq2 +∇V (q1)] + εpT2 f(q1, t)(2.9)

:=H0(q1, q2, p1, p2) + εH1(t, q1, q2, p1, p2).(2.10)

Therefore, each MLP in (1.1) corresponds to a solution of Hamilton’s equations
(2.8) (subject to boundary conditions). When ε = 0, the Hamiltonian system admits
at least three hyperbolic fixed points A(q1 = xa, q2 = p1 = p2 = 0), B(q1 = xb, q2 =
p1 = p2 = 0) and O(q1 = xu, q2 = p1 = p2 = 0) of the phase space (q1, q2, p1, p2),
originated from the stable fixed points (xa, 0), (xb, 0) and saddle point (xu, 0) of
the (1.1), respectively. Based on this higher-order Hamiltonian formalism, we now
investigate how MLPs in (1.1) change under perturbation via understanding how
heteroclinic connections in (2.8) change under perturbation.
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Let us first consider the system (1.1) in the absence of perturbation, i.e., with
ε = 0. It is known that MLPs among two local minima xa, xb of V (x) correspond

to the concatenation between the uphill heteroclinic orbits parametrized by x
(1)
h (t)

and downhill heteroclinic orbits x
(2)
h (t) (e.g., [19, 48]) as long as they exist, which are

described by

ẍ
(1)
h − Γẋ

(1)
h +∇V (x

(1)
h ) = 0, x

(1)
h (−∞) = xa, x

(1)
h (+∞) = xu,(2.11)

ẍ
(2)
h + Γẋ

(2)
h +∇V (x

(2)
h ) = 0, x

(2)
h (−∞) = xu, x

(2)
h (+∞) = xb(2.12)

respectively, where xu is a saddle of V (x) and it serves as the transition from ‘uphill’
to ‘downhill’. The uphill (resp. downhill) heteroclinic orbit will be assumed to exist
in this paper (the nonexistence is considered in [48] and not our focus).

To prepare for later treatments where ε is no longer zero, we note that x
(1)
h (t− t0)

and x
(2)
h (t − t0) are also uphill and downhill heteroclinic orbits for any fixed phase

parameter t0. A direct calculation shows they also satisfy (2.1) or (2.8) in the case of
ε = 0, and thus we have the correspondence in (2.8), i.e.,

q
(1)
1,h(t− t0) = x

(1)
h (t− t0), q

(1)
2,h(t− t0) = ẋ

(1)
h (t− t0),

p
(1)
2,h(t− t0) = 2q

(1)
2,h(t− t0), ṗ

(1)
1,h =

(

D
q
(1)
1,h

∇V
(

q
(1)
1,h

))T

p
(1)
2,h,

(2.13)

and

q
(2)
1,h(t− t0) = x

(2)
h (t− t0), q

(2)
2,h(t− t0) = ẋ

(2)
h (t− t0),

p
(2)
2,h(t− t0) = 0, ṗ

(2)
1,h(t− t0) = 0,

(2.14)

respectively. Indeed, these action-minimising trajectories (2.13) (resp. (2.14)) are
heteroclinic connections among two hyperbolic fixed points A (resp. O) and O (resp.
B) of the forceless (ε = 0) Hamiltonian system (2.8). Note the motion from A (resp.
O) to O (resp. B) is the intersection of the unstable manifold of A (resp. O) and the
stable manifold of O (resp. B) in their respective systems.

Now we return to the non-autonomously perturbed Hamiltonian system, i.e. (2.8)
with ε 6= 0. Equivalently, we have the suspended system:

q̇1 = q2, q̇2 = Γp2 − Γq2 −∇V (q1) + εf(q1, θ),

ṗ1 = (Dq1∇V (q1))
T p2 − ε(Dq1f(q1, t))

T p2, ṗ2 = Γp2 − p1,

θ̇ = 1,

(2.15)

where (q1, q2, p1, p2, θ) ∈ R
4nd × S1 (S1 = R/τf ). For ε sufficiently small, (2.15)

possesses a Poincaré map Pt0ε :
∑

t0
→
∑

t0
, where

∑

t0
= {(q1, q2, p1, p2, θ)|θ =

t0 ∈ [0, τf ]} ⊂ R
4nd × S1 is the global cross section 3 at time t0 of the suspended

autonomous flow.
In the perturbed system (2.15) γa = A × S1, γb = B × S1 and γu = O × S1,

as periodic orbits of suspended system with ε = 0, are also perturbed. We will de-
note the perturbed (unique) periodic orbits by γεa, γ

ε
b and γεu, respectively, the first

3If the orbit of every point (q1, q2, p1, p2, t) ∈ R
4nd+1 eventually crosses an 4nd dimensional

surface
∑

t0
and then returns to

∑
t0

at a later time, then
∑

t0
is a global section [38].



8 Y. CHAO AND M. TAO

component (q1 component) of which give periodic orbits xεa(t), x
ε
b(t), x

ε
u(t) of noise-

less system (1.1). For generic Hamiltonians, the existence of the perturbed periodic
orbits is guaranteed, by implicit function theorem, at least for sufficiently small ε.
We further assume that the heteroclinic trajectory connecting the unstable mani-
fold of γεa (resp. γεu) and the stable manifold of γεu (resp. γεb ) based on

∑

t0
in

system (2.8) survives after the non-autonomous forcing is switched on (i.e., ε 6= 0)
(see Remark 2.1 for more details). Let us denote the perturbed instanton connec-

tion by the pair q
(i),ε
1,h (t; t0), q

(i),ε
2,h (t; t0), p

(i),ε
1,h (t; t0), p

(i),ε
2,h (t; t0), i = 1, 2. Then, by the

equivalence of Hamiltonian (2.8) and Largangian Mechanics (2.1), we also obtain the

existence of heteroclinic connection x
(1),ε
h (t; t0) from xεa(t) to xεu(t), and heteroclinic

orbit x
(2),ε
h (t; t0) from xεu(t) to x

ε
b(t) in (2.1). Note that the initial time, t0, appears

explicitly, since solutions of the (2.1) are not invariant under arbitrary translations in
time (Eq. (2.1) is nonautonomous for ε 6= 0).

If ε = 0, the heteroclinic connections x
(1),ε
h (t; t0), x

(2),ε
h (t; t0) degenerate to the

uphill and downhill heteroclinic orbit x
(1)
h (t− t0), x

(2)
h (t− t0), respectively. Different

from the autonomous case described above (where the unperturbed action is invariant
to the specific choice of t0, e.g., [50, 48]), different t0 gives different local minimum

as the concatenation of x
(1),ε
h (t; t0) and x

(2),ε
h (t; t0) (for each fixed t0 value) gives a

critical point of the action for system (1.1).The reason of this difference lies in that
the energy in (2.8) is not conserved, and the action along the perturbed instanton now
includes an integral of Hε over time (see subsection 2.2 for the equivalence of Fredlin-
Wentzell action functional and Hamiltonian action). Consequently, we optimize over
t0 to obtain an MLP and the optimal transition rate of system (1.1). Thus (1.3) can
be formally rewritten as follows [51]:

(2.16) Sε = min
t0

{Sε[x(1),εh (t; t0)] + Sε[x
(2),ε
h (t; t0)]}.

To compute (2.16), we will focus on the calculation of Sε[x
(1),ε
h (t; t0)], since

Sε[x
(2),ε
h (t; t0)] will be, to the first order of ε, 0. This is because x

(2),ε
h (t; t0) is mov-

ing along the perturbed downhill heteroclinic orbit as we will show in subsection 2.3
(similar result originated from autonomous kinetic Langevin has been verified in [48]).

From a physical point of view, the reason for such a result is that x
(2),ε
h (t; t0) is a re-

laxation trajectory, i.e. once the system has approached the vicinity of an unstable
periodic state xεu(t), it will eventually be attracted to another stable periodic state
xεb(t) with a probability ∼ 1/N (which goes into the prefactor; N is the number of
attraction basins whose boundaries include xεu), without requiring extra noise. Thus,
in order to quantify the metastable transition rate between xεa(t) and xεb(t) in this
case, we convert it to an escape problem from the vicinity of the stable periodic state
xεa(t) to that of unstable one xεu(t).

Remark 2.1. The perturbed system (2.8) will not, in general, maintain the in-
tersection between the unstable and stable manifolds of A (resp. O) and O (resp.
B) [17]: these manifolds might intersect, preserving the existence of the heteroclinic
connection, but they also might not, in which case the heteroclinic is destroyed. Inter-
estingly, Capinski [8] proposed a Melnikov type approach for establishing transversal
intersections of stable/unstable manifolds in multidimensional setting. This result
could ensure the existence of heteroclinic connections in system (2.8) if appropriate
conditions are imposed. Nevertheless, for simplicity we just assume ε is small enough
so that a heteroclinic connection in the perturbed system exists.
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2.2. Reformulation of Fredlin-Wentzell action functional. As described
above, to obtain the minimum of the Freidlin-Wentzell action functional, the core of
this calculation is the transition from the stable periodic orbit xεa(t) to the unstable one
xεu(t). And our strategy will be to calculate the action along the perturbed instanton,
which is the heteroclinic connection of the perturbed, time-dependent Hamiltonian
system (2.8). More concretely, we start by reformulating the action functional Sε[·]
in (1.3) in a form convenient in this subsection, and then conduct a derivation on
correction of the action in subsequently subsection 2.3. For simplicity of exposition,

we drop the superscript ‘(1)’ in notation x
(1)
h (t), x

(1).ε
h (t; t0).

Let us now consider a Hamiltonian action

Aε[γ] =

∫

γ

pT1 dq1 + pT2 dq2 −Hεdt

=

∫ ∞

−∞

pT1 (t)
dq1
dt

+ pT2 (t)
dq2
dt

−Hε(t, q1(t), q2(t), p1(t), p2(t))dt,(2.17)

where γ is a path in phase space. To be more precise, γ : (−∞,∞) → R
4nd and is

denoted by γ = {(qT1 (t), qT2 (t), pT1 (t), pT2 (t)),−∞ < t < ∞}. Hε takes the form of
(2.9). We remark that variables q1, q2, p1, p2 in (2.17) are mutually independent. It
is well known (e.g., [38]) that the curve of stationary action (2.17) is the Hamiltonian
trajectory (2.8). We further have the following result.

Proposition 2.2. Sε[x] = Aε[γ] along the instanton solutions of (2.1) or (2.8).
That is

(2.18) Sε [xεh(t; t0)] = Aε
[(

qε1,h(t; t0), q
ε
2,h(t; t0), p

ε
1,h(t; t0), p

ε
2,h(t; t0)

)]

,

which is dependent of t0 with t0 ∈ [0, τf ] when ε 6= 0. Here xεh(t; t0) = qε1,h(t; t0)
is heteroclinic connection connecting xεa(t) and xεu(t) in system (2.1), and a relation
between xεh(t; t0) and q

ε
2,h(t; t0), p

ε
1,h(t; t0), p

ε
2,h(t; t0) is given by (2.3).

Proposition 2.2 holds as a result of equivalence of Hamiltonian and Lagrangian
Mechanics under Legendre condition. For more details on proof of Proposition 2.2,
the reader is referred to [38].

Served for the next subsection, we further calculate the minimum of the Freidlin-
Wentzell action functional for system (1.1) in the absence of ε. In view of (2.17),
(2.9), (2.11), we get

A0 =
∫∞

−∞[pT1,hq̇1,h + pT2,hq̇2,h −H0(q1,h, q2,h, p1,h, p2,h)]dt

=
∫∞

−∞
pT1,hq2,h + 2qT2,hq̇2,h − pT1,hq2,h + 2q̇T1,h∇V (q1,h)dt

= 2[V (xu)− V (xa)],

S0 = S[xh] = 1
2

∫∞

−∞ ‖ẍh + Γẋh +∇V (xh)‖2Γ−1dt

= 1
2

∫∞

−∞ ‖ẍh − Γẋh +∇V (xh)‖2Γ−1 + 4ẋTh (ẍh +∇V (xh))dt

= 2[V (xu)− V (xa)],

if we choose homogeneous velocity boundary conditions, ẋh(−∞) = 0, ẋh(−∞) = 0,
where xh(t) is uphill heteroclinic orbit given in (2.11). Again we get S0 = A0.

Remark 2.3. Proposition 2.2 also holds for the case of xεu(t) to xεb(t) transition,
with the corresponding value of action S0 being 0 [48] when ε = 0 (Because down-

hill heteroclinic orbit x
(2)
h (t) by definition (2.12) is the zero of 1

2

∫ +∞

−∞
‖ẍ + Γẋ +

∇V (x)‖2Γ−1dt).
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2.3. Relating the minimizers of Sε and S. In the following, we will use the
reformulation (2.18) to study the relationship between Sε[·] and S[·]. To do so, it is
equivalent to deal with the relationship between Aε[·] and A[·].

In light of Proposition 2.2, we provide a linear-theory calculation of the action
Sε inspired by [2] and approximate the rate of the metastable transition. Assume
ε≪ 1 so that the term H1(t, q1, q2, p1, p2) in (2.9) can be treated perturbatively. Let
us expand the perturbed instanton of Hε(t, qε1,h(t; t0), q

ε
2,h(t; t0), p

ε
1,h(t; t0), p

ε
2,h(t; t0))

to the first order in ε:

qε1,h(t; t0) = q1,h(t− t0) + εQ1,h(t; t0) +O(ε2),

qε2,h(t; t0) = q2,h(t− t0) + εQ2,h(t; t0) +O(ε2),

pε1,h(t; t0) = p1,h(t− t0) + εP1,h(t; t0) +O(ε2),

pε2,h(t; t0) = p2,h(t− t0) + εP2,h(t; t0) +O(ε2),

(2.19)

where q1,h(t− t0) = xh(t− t0) satisfies uphill dynamics (2.11), and it’s combined with
q2,h(t − t0), p1,h(t − t0), p2,h(t − t0) to stand for the (known) instanton solution of
(2.8) in the absence of ε. To calculate the action Aε[·] given in (2.17), we expand the
integrand in ε by a Taylor theorem and obtain, in the first order,

(p1,h + εP1,h)
T (q̇1,h + εQ̇1,h) + (p2,h + εP2,h)

T (q̇2,h + εQ̇2,h)

−H0(q1,h, q2,h, p1,h, p2,h)− εQT1,h
∂H0

∂q1,h
− εQT2,h

∂H0

∂q2,h
− εPT1,h

∂H0

∂p1,h
− εPT2,h

∂H0

∂p2,h

− εH1(q1,h, q2,h, p1,h, p2,h)

≃pT1,hq̇1,h + pT2,hq̇2,h −H0(q1,h, q2,h, p1,h, p2,h) + εpT1,hQ̇1,h + εPT1,hq̇1,h + εpT2,hQ̇2,h

+ εPT2,hq̇2,h + εQT1,hṗ1,h + εQT2,hṗ2,h − εPT1,hq̇1,h − εPT2,hq̇2,h

− εH1(q1,h, q2,h, p1,h, p2,h)

=pT1,hq̇1,h + pT2,hq̇2,h −H0(q1,h, q2,h, p1,h, p2,h) + εpT1,hQ̇1,h + εQT1,hṗ1,h + εpT2,hQ̇2,h

+ εQT2,hṗ2,h − εH1(q1,h, q2,h, p1,h, p2,h).

After the integration, the first three terms yield the unperturbed action S0. And
the fourth term and sixth term cancel out with the fifth term and seventh term,
respectively, via integration by parts. The result is Sε(t0) = S0 + εδS(t0), where

δS(t0) = −
∫ +∞

−∞

H1(t, q1,h(t− t0), q2,h(t− t0), p1,h(t− t0), p2,h(t− t0)dt

= −
∫ +∞

−∞

p2,h(t− t0)
T f(q1,h(t− t0), t)dt(2.20)

= −2

∫ +∞

−∞

ẋTh (t− t0)f(xh(t− t0), t)dt.(2.21)

The last step is based on relation (2.13). To find the optimal 1st-order correction to
the minimum action’s value, we have to minimize Sε(t0) with respect to t0, which
thus yields the equation for optimal t0:

∫ +∞

−∞

[

ẋTh (t− t0)∇f(xh(t− t0), t)ẋh(t− t0) + ẍTh (t− t0)f(xh(t− t0), t)
]

dt = 0.

We now summarize the above results in a concise form as follows:
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Theorem 2.4. Consider non-autonomous kinetic Langevin system (1.1). As-
sume a heteroclinic connection from xa to xu exists in the noiseless (µ = 0) and force-
less (ε = 0) backward in time system, and ε is small enough such that a heteroclinic
connection from xεa(t) to x

ε
u(t) exists in Euler-Lagrange equation (2.1). Then the es-

cape rate from stable periodic orbit xεa(t) to unstable (hyperbolic) periodic orbit xεu(t) is
asymptotically equivalent to exp(−Sε/µ), where Sε = 2[V (xu)−V (xa)]+εδSe+O(ε2),
and δSe characterizes the leading order effect of external driving on metastable tran-
sition. δSe is given by

(2.22) δSe = min
t0

δS(t0), δS(t0) = −2

∫ +∞

−∞

ẋTh (t− t0)f(xh(t− t0), t)dt,

where xh(t) satisfies equation

(2.23) ẍh − Γẋh +∇V (xh) = 0, xh(−∞) = xa, xh(+∞) = xu.

Here, xa, xu are local minimum and saddle point of potential V (x), respectively.

Remark 2.5. Theorem 2.4 is consistent with the results of [16] which considered
the n = d = 1, Γ = γ and f(x, t) = f(t) case. Different from [16], our method is
also applicable to high-dimensional Langevin systems with general (time-dependent,
nonlinear) perturbation, while [16] focused on 1-dimensional Langevin equations with
additive periodic perturbation based on the idea of path integral.

Remark 2.6. For the general case where Γ depends on position and velocity, i.e.
Γ(x, ẋ), Theorem 2.4 still holds with slight modification i.e. replacing Γ by Γ(x, ẋ).

A similar procedure can be used to understand the xεu(t) to x
ε
b(t) transition, and

δS(t0) given in (2.20) will vanish in this case due to Eq. (2.14). Together with

Remark 2.3, we verify that Sε[x
(2),ε
h (t; t0)] in (2.16) is zero, to the first order of ε.

Consequently, combining with Theorem 2.4, a natural result on metastable transition
rate is that:

Theorem 2.7. Under the same conditions as stated in Theorem 2.4, further as-
sume that xu is the only attractor on the separatrix between the basins of attraction
of xa and xb, a heteroclinic connection from xu to xb exists in the noiseless (µ = 0)
and forceless (ε = 0) system, and ε is small enough such that a heteroclinic con-
nection from xεu(t) to xεb(t) exists in Euler-Lagrange (2.1). Then the transition rate
from stable periodic orbit xεa(t) to another stable periodic orbit xεb(t) is asymptotically
equivalent to exp(−Sε/µ), where Sε = 2[V (xu) − V (xa)] + εδSe +O(ε2), and δSe is
described in Theorem 2.4.

Example 2.8. Let us consider two special forms of forcing f(x, t), the first being
the linear forcing already considered in the literature, and the second being a para-
metric forcing (see e.g., [40, 31, 52, 49, 57] for existing applications to deterministic
systems). They will be used later to demonstrate the resonant enhancement of tran-
sition rate. For a simple illustration, each component of f(x, t) is chosen to be of
the same type (although one can treat arbitrary components of general forcing f(x, t)
simply by substituting it into the expression (2.22) in Theorem 2.4, and calculate
integral δS(t0) in (2.22)).

(i). For a sinusoidal field (f(t))j = Aj cos(ωjt+ θj), j = 1, ..., nd, where parame-
ters Aj , ωj , θj represent the amplitude, frequency, phase of jth component of forcing
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respectively, the correction δSe becomes

δSe = −2min
t0

δS(t0) = −2min
t0







nd
∑

j=1

cos(ωjt0 + θj + φj)|
∫ ∞

−∞

Aj ẋ
j
h(t)e

iωj tdt|







.

Here, ẋjh(t) denotes the jth component of xh(t), the calculation of δS(t0) is as follows:

δS(t0)

=− 2

∫ +∞

−∞

[
nd
∑

j=1

Aj ẋ
j

h(t) cos(ωj(t+ t0) + θj)]dt

=
nd
∑

j=1

{

−e
i(ωjt0+θj)

∫ +∞

−∞

Aj ẋ
j

h(t)e
iωjtdt+ e

−i(ωjt0+θj)

∫ +∞

−∞

Aj ẋ
j

h(t)e
−iωjtdt

}

=− 2
nd
∑

j=1

[cos(ωjt0 + θj)ℜ(

∫ +∞

−∞

Aj ẋ
j

h(t)e
iωjtdt)− sin(ωjt0 + θj)ℑ(Aj

∫ +∞

−∞

ẋ
j

h(t)e
iωjtdt)]

=− 2
nd
∑

j=1

cos(ωjt0 + θj + φj)

∣

∣

∣

∣

Aj

∫ ∞

−∞

ẋ
j

h(t)e
iωjtdt

∣

∣

∣

∣

,

where sinφj =
ℑ
(

∑nd
j=1

∫

∞

−∞
ẋ
j

h
(t)eiωjtdt

)

|
∑

nd
j=1

∫

∞

−∞
ẋ
j

h
(t)eiωjtdt|

. Note that for a special homogeneous case

where ωj = ω, θj = θ for j = 1, ..., nd, the optimal t0 can be determined explicitly

and thus simplification occurs. Specifically, δSe = −2
∣

∣

∣

∑nd
j=1 Aj

∫∞

−∞
ẋjh(t)e

iωtdt
∣

∣

∣
.

This is because

δS(t0) =− 2

∫ +∞

−∞

[

nd
∑

j=1

Aj ẋ
j
h(t)] cos(ω(t+ t0) + θ)dt

=− ei(ωt0+θ)
∫ +∞

−∞

nd
∑

j=1

Aj ẋ
j
h(t)e

iωtdt+ e−i(ωt0+θ)
∫ +∞

−∞

nd
∑

j=1

Aj ẋ
j
h(t)e

−iωtdt

=− 2 cos(ωt0 + θ + φ)

∣

∣

∣

∣

∣

∣

nd
∑

j=1

Aj

∫ ∞

−∞

ẋjh(t)e
iωtdt

∣

∣

∣

∣

∣

∣

,

where sinφ =
ℑ
(

∑nd
j=1

∫

∞

−∞
ẋ
j

h
(t)eiωtdt

)

|
∑

nd
j=1

∫

∞

−∞
ẋ
j

h
(t)eiωtdt|

. Thus δSe = −2|∑nd
j=1 Aj

∫∞

−∞ ẋjh(t)e
iωtdt|. We

see that the initial phase θ doesn’t affect δSe.
(ii). For forcing in the form of (f(x, t))j = Aj cos(ωjt + θj)xj , j = 1, ..., nd, the

corrections δSe takes form of

δSe = −2min
t0

δS(t0) = −2min
t0

{
nd
∑

j=1

cos(ωjt0 + θj + φj)|
∫ ∞

−∞

Aj ẋ
j
h(t)x

j
h(t)e

iωjtdt|},

where sinφj =
ℑ
(

∑nd
j=1

∫

∞

−∞
ẋ
j

h
(t)xj

h
(t)eiωjtdt

)

|
∑

nd
j=1

∫

∞

−∞
ẋ
j

h
(t)xj

h
(t)eiωjtdt|

. Again, δSe takes a more simple form,

when homogeneous case where ωj = ω, θj = θ for j = 1, ..., nd is considered. That is
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δSe = −2|∑nd
j=1 Aj

∫∞

−∞
ẋjh(t)x

j
h(t)e

iωjtdt|. This is because

δS(t0) =− 2

∫ +∞

−∞

[

nd
∑

j=1

Aj ẋ
j
h(t)x

j
h(t)] cos(ω(t+ t0) + θ)dt

=− 2 cos(ωt0 + θ + φ)

∣

∣

∣

∣

∣

∣

nd
∑

j=1

Aj

∫ ∞

−∞

ẋjh(t)x
j
h(t)e

iωtdt

∣

∣

∣

∣

∣

∣

,

where the last step is based on Euler formula and operation of complex numbers,

sinφ =
ℑ
(

∑nd
j=1

∫

∞

−∞
ẋ
j

h
(t)xj

h
(t)eiωtdt

)

|
∑

nd
j=1

∫

∞

−∞
ẋ
j

h
(t)xj

h
(t)eiωtdt|

. Hence δSe = −2|∑nd
j=1Aj

∫∞

−∞
ẋjh(t)x

j
h(t)e

iωtdt|.
In both cases, δSe is dependent on the input frequencies ωj. In certain applica-

tions such as molecular systems, one may not have enough resolution to force each
degree of freedom at a different frequency, and we thus can consider for simplicity
a special homogeneous case where ω1 = · · · = ωn = ω, θ1 = · · · = θn = θ. Even
in this case, there exist special value(s) of ω that make the action δSe vary greatly
as we will show in section 3, and each such ω will be called a resonant frequency.
Consistent with physical intuitions, resonant frequencies are related to the intrinsic
frequencies of the unperturbed system (2.23). Thanks to Theorem 2.4, we will show
that if the heteroclinic connection of the unperturbed system (2.23) can be found, we
can determine the resonant frequencies, without any rare event simulation which is
computationally very costly, no matter that how high-dimensional and how nonlinear
the original system (1.1) is.

3. Parameteric resonance: Characterization of the resonant frequency.
As the general effect of time-dependent forcing on metastable transition has been
discussed in the previous section, we now move on to focus on specific forcings. One
observation is that when the forcing takes the form of f(x, t) = A cos(ωt + θ)x,
a resonance-like mechanism will prevail, namely that there exists a special input
frequency that leads to a significantly stronger reduction of quasi-potential (and hence
enhanced transition rate). This phenomenon is referred to as parametric resonance4.

We will use the tool of stationary phase method to estimate the resonant frequency
of parametric resonance based on Example 2.8. For the sake of simplicity, we will
detail the method on single particle cases, i.e. n = 1, d = 1,Γ = γ. Then we will
outline the idea of a generalization to higher dimensions in Remark 3.2.

The heteroclinic of the forceless deterministic system. To understand why there
is a resonant frequency and what it is, we will utilize the assumption that the system
is underdamped (i.e., γ small) and perform asymptotic estimations (approximation
sign ‘≈’ in the following presentation means equal sign ‘=’ in the γ → 0 limit). More
precisely, letting q = x, p = ẋ, Hamiltonian H(q, p) = p2/2+V (q), and energy E(t) =
H(q(t), p(t)), the forceless heteroclinic connection corresponds to fast oscillation along
the Hamiltonian level set and slow change of the energy value (as the heteroclinic
goes up-hill). Following [16], we express the configuration and velocity variables of

4We call it parametric resonance because the forcing is a parametric perturbation. If f(x, t) =
A cos(ωt + θ) instead, a similar phenomenon will be called linear resonance.
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the heterclinic connection by:

q(t) =

+∞
∑

n=−∞

qn(E(t)) exp(−inϕ(t)),

p(t) = q̇(t) =

+∞
∑

n=−∞

pn(E(t)) exp(−inϕ(t)),

Ė(t) ≈ γω(E)I(E), ϕ̇ = ω(E(t)),

(3.1)

where I and ϕ are action and angle variables, ω(E(t)) is the frequency of oscillation
in Hamiltonian system H at energy E(t), qn(E(t)), pn(E(t)) are respectively the
amplitude of the nth overtone of the configuration q(t) and the momentum p(t), and
the last line of (3.1) is obtained via averaging Ė = γp2 over the oscillations.

Parametric resonant frequency. For the case of parametric perturbation f(q, t) =
A cos(Ωt + θ)q, by applying Theorem 2.7 and Example 2.8, the change of transition
rate is characterized by:

(3.2) δSe = −2A

∣

∣

∣

∣

∫ ∞

−∞

q̇h(t)qh(t)e
iΩtdt

∣

∣

∣

∣

.

For convenience, denote |
∫∞

−∞ q̇h(t)qh(t)e
iΩtdt| by |I(Ω)|. Substitution of (3.1) into

(3.2) gives

I(Ω) =

∫ +∞

−∞

(

+∞
∑

n=−∞

pn[E(t)]e−inϕ(t)

)(

+∞
∑

m=−∞

qm[E(t)]e−imϕ(t)

)

eiΩtdt

=

∫ +∞

−∞

+∞
∑

l=−∞

e−ilϕ(t)

(

+∞
∑

m=−∞

pl−m[E(t)]qm[E(t)]

)

eiΩtdt

=
1

γ

∫ +∞

−∞

+∞
∑

l=−∞

al[E(τ)] exp

[

i
1

γ

(

Ωτ − lψ(τ)
)

]

dτ.(3.3)

Here we use al to denote
∑+∞

m=−∞ pl−m[E(t)]qm[E(t)] for simplicity. Note that the

last step in (3.3) is based on the change of variable t = 1
γ
τ , because of which we

further obtain that dϕ
dτ

= 1
γ
ω(E), dE

dτ
≈ ω(E)I(E), and the function ψ(τ) = γϕ(τ)

satisfies dψ
dτ

= ω(E).
For smooth heteroclinic induced by smooth potential V , al decays exponentially

and the integral and infinite sum can be exchanged. We thus consider each term and
denote it by

(3.4) Il(Ω) =
1

γ

∫ +∞

−∞

al[E(τ)] exp

[

i
1

γ

(

Ωτ − lψ(τ)
)

]

dτ.

Also because al typically decays very fast as |l| increases, in the presentation below we
focus on Ω value that resonates with the dominating mode, denoted also by l under
slightly abused notation (unless confusion arises, which will be clarified then). Usually
the fundamental frequency is the dominating mode, i.e., l = 1. In less common cases
when a1 = a−1 = 0 (e.g., if q̈h + ω2(1 + ǫ cos(Ωt))qh = 0 then this happens and the
resonant frequency is actually Ω = 2ω instead of Ω = ω, i.e. l = 2 instead; this toy qh
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is not a heteroclinic connection though) or when multiple overtones have comparable
amplitudes, there is one resonant frequency associated with each dominating mode.

Away from a stationary phase, the integrand in (3.4) has a slowly varying ampli-
tude but a fast oscillating phase, and it thus mostly cancels out after the integration.
If τ has a stationary phase, however, the integral will have a much larger value due
to the contribution in the proximity of this stationary phase. This is the intuition
behind the choice of a resonant Ω. More precisely, the phase becomes stationary when

d

dτ

(

Ωτ − lψ(τ)
)

= 0, i.e., Ω = lω(E(τ∗)),

where τ∗ is a stationary point of phase. This gives the value of resonant Ω. We now
further understand its details.

To do so, we first define a notion of intrinsic frequency. Consider the uphill
hetericlinic orbit equation:

(3.5) q̈h − γq̇h + V ′(qh) = 0, qh(−∞) = xa, qh(+∞) = xu.

By linearizing V ′(q) around q = xst, we obtain

q̈h − γq̇h + V ′′(xa)qh = 0,

whose characteristic equation has eigenvalues r = γ
2 ± i

√

V ′′(xa)− γ2

4 . Note that

there are two eigenvalues as long as the imaginary part is nonzero (note γ is small),
corresponding to the general solutions

qh(t) ≈Me
γ
2 tei

√

V ′′(xa)−
γ2

4 +Ne
γ
2 te−i

√

V ′′(xa)−
γ2

4 ,

in which M,N are arbitrary constants. These solutions in general describe oscillation

at frequency ω =
√

V ′′(xa)− γ2

4 . We call ω0 =
√

V ′′(xa) the intrinsic frequency as

we’re using γ → 0 asymptotics, although denoting the intrinsic frequency by ω0 =
√

V ′′(xa)− γ2

4 will not affect the results either.

In (3.5), the heteroclinic orbit qh(t) circles around the metastable state xa (cor-
responding to minimal Em = V (xa)) with intrinsic frequency ω0 for infinite amount
of time (see Figure 1 for an illustration). In this phase, the slowly changing energy
E(t) is E(τ∗) = Em. We thus obtain resonant frequency Ω = lω(E(τ∗)) = lω0.

We then estimate |I1(Ω)|. Let ψ̄(τ) = Ωτ − ψ(τ) which has a stationary point at
τ = τ∗ with

ψ̄′(τ∗) = 0, ψ̄′′(τ∗) = −dω(E)

dE

dE

dτ
|τ=τ∗ ≈ −dω(E)

dE
I(E)ω(E)|τ=τ∗ 6= 0.

Evaluating the integral I1(Ω) by the method of stationary phase (see e.g., [53]; see
also Appendix B), we get

(3.6) |I1(Ω)| ∼







1√
γ
|a1(E)|

√

√

√

√

2π
∣

∣

∣

dω(E)
dE

I(E)ω(E)
∣

∣

∣







τ=τ∗

.

The symbol ‘∼’ means that the left and right hand sides agree at the leading order
in an asymptotic expansion in γ. This quantitative result shows that, for example,
smaller friction coefficient corresponds to a bigger change of transition rate induced
by the parametric excitation.
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Remark 3.1. Similar to linear resonance already considered in literature (see, e.g.
[16]), the parametric resonant frequency also corresponds to intrinsic frequency ω0.
This may sound inconsistent with the parametric resonant frequency of linear (e.g.,
q̈h+ω

2
0(1+ ǫ cos(Ωt))qh = 0) or weakly nonlinear systems (e.g., [49, 51]) which is Ω =

2ω0, but the latter is in fact, as discussed above, a special case where a1 = a−1 = 0.
As the potential of our system is in general arbitrarily nonlinear, all harmonics could
exist (i.e., none of qn’s vanishes). For example, if qh(t) = cos(t) + cos(2t), then this
happens and the fundamental frequency of q̇hqh is in fact 1, not 2, just like that of
q̇h (which corresponds to linear resonance). However, parametric resonance is often
more prominent than linear resonance, measured in terms of peak sharpness (defined
in subsection 4.2) for some special models, and we will see this numerically.

Remark 3.2. For multi-dimensional case (e.g. f(q, t)j = Aj cos(Ωt)qj), by apply-
ing Theorem 2.7 and Example 2.8, the change of transition rate is expressed by

δSe = −2

∣

∣

∣

∣

∣

∣

nd
∑

j=1

Aj

∫ ∞

−∞

q̇jh(t)q
j
h(t)e

iΩtdt

∣

∣

∣

∣

∣

∣

,

where qjh(t) (resp. q̇jh(t)) denotes the jth component of qh(t) (resp. q̇h(t)). As

in (3.1), we further express qjh(t) and q̇jh(t) as modulated Fourier series, for j =
1, ..., nd. After substitution into δSe, we can conduct estimation on integral δSe to
understand resonant frequency of parametric resonance. Different from single particle
case, i.e. n = d = 1, HessV (xa) will have multiple eigenvalues, and each will give a
possible resonant frequency (the strength of each depends on the detailed interactions
of coefficients, which is problem dependent, and hence no general claim will be stated).
This will be verified numerically.

4. Experimental results. We now perform numerical experiments on specific
models to illustrate our theoretical results.

4.1. Example 1: Double-well potential. As a first test, consider a single
particle q moving in a one dimension potential

V (q) =
(1− q2)2

4
.

For this example, n = d = 1,Γ = γ. The potential V (q) has two wells of equal depth,
situated at qa = −1, qb = 1. Saddle point exists at qu = 0. We use this example to
explore the effect of parametric forcing f(q, t) = A cos(Ωt)q on metastable transition
rate from qa to qb in light of Example 2.8.

Parametric resonance. We first approximate the heteroclinic orbit of the forceless
system by numerically solving the uphill equation (2.23). More precisely, we take the
time-reversed uphill equation with a sign flip on velocity, and simulate the ODE.
Since this is a second order boundary value problem and the boundary points at
t = ±∞ incur numerical difficulty, we make an approximation by choosing an initial
q, p infinitesimally away from the saddle point, in the direction of the stable eigenvector
of the uphill vector field linearized at the saddle qu = 0, then simulate an initial value
problem using 4th-order Runge-Kutta (RK4) for long enough with sufficiently small
time step, and finally collect the result backward in time. Figure 1 shows an obtained
heteroclinic connection from qa = −1 to qu = 0 with friction coefficient γ = 0.1 in
phase space. Since qa is a fixed point, the path circles around it for arbitrarily long
time.
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Fig. 1. (Color online) A heteroclinic connection (or maximum likelihood path ) from −1 to 0
in phase space: γ = 0.1, p = q̇ denotes momentum of particle.
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Fig. 2. (Color online) δS = −2Aǫ|I(Ω)|: damping γ = 0.1. The dependence of action correction
|I(Ω)| of the double-well system on frequency Ω in the case of parametric forcing.

With the unforced heteroclinic orbit, now we can examine the dependence of δSe
on input frequency Ω. For convenience, denote |

∫∞

−∞
q̇h(t)qh(t)e

iΩtdt| by |I(Ω)|. For
each Ω, we compute |I(Ω)| by numerically approximating the integral via piecewise
trapezoidal quadrature with high enough resolution. Figure 2 shows the relationship
between the leading order correction to action |I(Ω)| and Ω for parameter γ = 0.1.
We observe that, there exists special ω∗ at which |I(Ω)| peaks, corresponding to the
resonant frequency in our theoretical discussion. More details now follow:

Parametric resonant frequency. By the theoretical analysis conducted in sec-
tion 3, the exact parametric resonant frequency is intrinsic frequency ω0 =

√

V ′′(qa) ≈
1.4142, with which heteroclinic orbit qh(t) oscillates around metastable state qa. Con-
sistent with it, as shown in Figure 2, the function |I(Ω)| displays a sharp peak near
ω0, and sequentially weaker peaks near its integer multiples. This is numerical ev-
idence that the resonant frequencies are related to the intrinsic frequenct ω0 of the
unperturbed system (2.23).
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Fig. 3. (Color online) δS = −2Aǫ|I(Ω)|. The dependence of action correction |I(Ω)| of the
stochastic double-well system on frequency Ω for different damping γ = 0.1, 0.01, 0.001, respectively.

Estimation of I(Ω) near a resonant frequency. We proceed to depict the depen-
dence of |I(Ω)| on Ω with γ fixed as γ = 0.1, 0.01, 0.001, which is shown in Figure 3.
As we can see, smaller values of γ lead to more prominent peaks, i.e. near resonant
frequency ω∗ = ω0, the value of |I(ω∗)| is larger when γ decreases. One can further
find that |I(ω∗)| increases by a factor of 3.2160 when γ varies from 0.1 to 0.01 or a
factor of 3.33 from 0.01 to 0.001, by comparing values of |I(ω∗)| (marked in Figure 3
with arrows) corresponding to γ = 0.1, 0.01, 0.001. Interestingly, such numerical rela-

tion between |I(ω∗)| and γ satisfies I(ω∗) ∼
√

1
γ
K approximately. This scaling with

γ well agrees with our stationary phase estimate (3.6).

4.2. Example 2: Nonlinear pendulum (periodic potential). To further
test our theoretical results, we now consider an even more nonlinear potential,

V (q) = sin q.

Here n = d = 1. We will also use this example to illustrate the differences between
linear resonance and parametric resonance.

Focusing on a compact neighborhood in which this potential has two local minima
located in qa = −π

2 , qb =
3
2π, a saddle point located in qu = π

2 separates their basins of
attraction. Consider the two special forms of forcing f(q, t) discussed in Example 2.8,
the first being a linear forcing f(t) = A cos(Ωt), and the second being a parametric
forcing f(q, t) = A cos(Ωt)q.

In order to compare quantitatively, let us introduce the notion of peak sharpness,
which is defined as the change ratio of Se(Ω) in Ω, namely,

(4.1) ρp(Ω) =

∣

∣

∣

∫∞

−∞
q̇h(t)qh(t)e

iΩtdt
∣

∣

∣

∣

∣

∣

∫∞

−∞ q̇h(t)qh(t)ei(Ω+dΩ)tdt
∣

∣

∣

, ρl(Ω) =

∣

∣

∣

∫∞

−∞
q̇h(t)e

iΩtdt
∣

∣

∣

∣

∣

∣

∫∞

−∞ q̇h(t)ei(Ω+dΩ)tdt
∣

∣

∣

,

where dΩ is an infinitesimal increment. If ρp(ω
∗) > ρl(ω

∗) holds, it means that
parametric excitation at a resonant frequency lead to a sharper peak than that of
linear excitation, and we utilize it as a basis to check if parametric resonance is more
apparent than linear resonance.
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Fig. 4. (Color online) δS = −2Aǫ|I(Ω)|. The dependence of action correction |I(Ω)| of system
on frequency Ω in two special cases, respectively. (a) damping γ = 0.1, (b) damping γ = 0.01.

Table 1

Values of peak sharpness

Infinitesimal increment Cases ρp(ω
∗) ρl(ω

∗)

dΩ=0.01
γ = 0.1 1.0118 1.0094
γ = 0.01 2.0212 1.2706

dΩ = −0.01
γ=0.1 1.0077 1.0060
γ=0.01 1.3957 1.0657

As in subsection 4.1, numerically computed |I(Ω)| for γ = 0.1, 0.01 is plotted
in Figure 4, respectively. Again, the main peaks of |I(Ω)| correspond to intrinsic
frequency ω∗ ≈ ω0 ≈ 1, both in the case of additive and parametric forcing. In
terms of (4.1), we can compute the ρl(ω

∗), ρp(ω
∗) both for dΩ = 0.01, −0.01 and

γ = 0.1, 0.001, and list them in Table 1. According to these data, it is interesting to
see that the peak of parametric resonance is sharper. One can further find that ρp(ω

∗)
varies more greater than that of ρl(ω

∗), as γ decreases from 0.1 to 0.01. The results
in this example seems to suggest parametric resonance is often more prominent than
linear resonance in terms of peak sharpness.

4.3. Example 3: Lennard-Jones molecular cluster. Finally, let us consider
a practical application, for which we apply our techniques to a multi-particle molecular
system. Based on Theorem 2.7, Example 2.8 and Remark 3.2, we now characterize
the parametric resonant frequency in higher dimension case numerically.

We consider n = 36 molecules in a d = 2-dimensional periodic box (with box sizes
sx = 3

√
3, sy = 6 in x-, y- directions respectively). The jth molecule’s location is

denoted by q(j) = (x(j), y(j))T ∈ (R/sx)× (R/sy). The governing dynamics is

ẍ(j) + γẋ(j) = − ∂

∂x(j)
VLJ(·) + εA1 cos(ωt)x

(j) +
√
µγ

1
2 ξ(j)x (t),

ÿ(j) + γẏ(j) = − ∂

∂y(j)
VLJ (·) + εA2 cos(ωt)y

(j) +
√
µγ

1
2 ξ(j)y (t),

(4.2)

for j = 1, · · · , 36. We use the notation

rij =

(

∣

∣

∣
mod

(

x(i) − x(j) +
sx
2
, sx

)

− sx
2

∣

∣

∣

2

+
∣

∣

∣
mod

(

y(i) − y(j) +
sy
2
, sy

)

− sy
2

∣

∣

∣

2
)

1
2
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Fig. 5. (Color online) Configurations and corresponding potential values: r0 = 1. (a) Initial
configuration, (b) Saddle configuration, (c) Final configuration.

to denote the distance between the ith and jth molecules under periodic boundary
condition (i.e., geodesic distance on the 2-torus). VLJ is Lennard-Jones potential
which is widely used in molecular modeling, and it is the sum of pairwise interactions,

VLJ(r) =

n
∑

i6=j,i,j=1

[

(

r0
rij

)12

− 2

(

r0
rij

)6
]

,

where r0 is a constant parameter denoting the characteristic distance of particles,
taken as r0 = 1 here. This potential has a lot of local minima, and for an important
material sciences application, we consider a global minimum qb corresponding to a
perfect lattice configuration, and a local minimum qa corresponding to material with
a local defect, and we are interested in how to turn the material from the defective
state qa to the perfect state qb. In addition, there is a saddle point at qs on their
separatrix between qa and qb, and these fixed points are depicted in Figure 5. At the
minima V (qa) ≈ −109.7064, V (qb) ≈ −120.4712, and at saddle V (qs) ≈ −106.8218.
In this case, increasing the metastable transition rate from qa to qb is of particular
importance, as it corresponds to healing the defect of the material. This transition
is still a rare event, but we will see its likelihood can be significantly increased by an
appropriate homogeneous external vibration (i.e., shaking the material to perfect its
lattice).

For the case of parametric perturbation discussed here, by applying Theorem 2.7
and Example 2.8, the change of the transition rate from qa to qb is given by a more
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Fig. 6. (Color online) δSe = −2A|F (ω)|: damping γ = 1. The dependence of action correction
|F (ω)| of (4.2) on frequency ω in three special cases, respectively.

simple form:

δSe =



























































− 2A1

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

ẋ(j)(t)x(j)(t)eiωtdt

∣

∣

∣

∣

∣

∣

if A1 6= 0, A2 = 0;

− 2A2

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

ẏ(j)(t)y(j)(t)eiωtdt

∣

∣

∣

∣

∣

∣

if A1 = 0, A2 6= 0;

− 2A

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

(

ẋ(j)(t)x(j)(t) + ẏ(j)(t)y(j)(t)
)

eiωtdt

∣

∣

∣

∣

∣

∣

if A1 = A2 = A 6= 0.

As in subsection 4.1, let us first compute the heteroclinic connection (2.23) from qa to
qs numerically. Then the application we need to do is to find the optimal frequency
ω∗, vibrating qa into qb through qs, to achieve the purpose of heal defect.

Parametric resonant frequency. For simplicity, let |F (ω)| denote the | · | part in
above formula. We numerically computed the heteroclinic orbit in the unforced sys-
tem, which gives x, y, ẋ, ẏ, and then evaluate |F (ω)| via quadrature over a range of ω
values. The results of the three different parametric forcing cases, respectively corre-
sponding to vibrating in the x-, y-, and both directions, are plotted in Figure 6 for
damping coefficient γ = 1. We again see that |F (ω)| displays clear peaks. Different
from the problems of single particle in one dimension, HessV (qa) is now a 72 × 72
matrix with multiple eigenvalues instead of just one. By examining the list of eigen-
values, we see that resonant frequencies again coincide with eigenvalues of the matrix
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HessV (qa). The strongest resonant frequency is marked in each plot. Therefore, to
heal a defective material, one possibility is to use our theory and compute the reso-
nant frequencies, and then try vibrations at those frequencies. Of course, given this
is a high dimensional system, there are many different ways to combine vibrations at
each dimension; if one wants to optimize the combination, our theory can also help
and one no longer has to conduct computationally expensive rare event simulations,
but this becomes an optimization problem which deserves an adequate investigation
in a different study.

Comparison to linear forcing. The rest of this subsection is devoted to a compar-
ison to the case of linear perturbation; a clear advantage of parametric forcing will be
illustrated. Specifically, the governing dynamics for the case of linear perturbation is

ẍ(j) + γẋ(j) = − ∂

∂x(j)
VLJ(·) + εA1 cos(ωt) +

√
µγ

1
2 ξ(j)x (t),

ÿ(j) + γẏ(j) = − ∂

∂y(j)
VLJ(·) + εA2 cos(ωt) +

√
µγ

1
2 ξ(j)y (t),

(4.3)

for j = 1, · · · , 36. Again, based on Theorem 2.7 and Example 2.8, the change of the
transition rate from qa to qb is written in a more simple form :

δSe =



























































− 2A1

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

ẋ(j)(t)eiωtdt

∣

∣

∣

∣

∣

∣

if A1 6= 0, A2 = 0;

− 2A2

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

ẏ(j)(t)eiωtdt

∣

∣

∣

∣

∣

∣

if A1 = 0, A2 6= 0;

− 2A

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ ∞

−∞

(

ẋ(j)(t) + ẏ(j)(t)
)

eiωtdt

∣

∣

∣

∣

∣

∣

if A1 = A2 = A 6= 0.

Let |F (ω)| still denote the | · | part in above formula. The frequency response results
of the three different linear forcing cases, respectively corresponding to vibrations in
the x-, y-, and both directions, are plotted in Figure 7(a) for damping coefficient
γ = 1. One may again try to identify special w∗ values at which |F (ω)| peaks, but
these peaks are not as well-defined as that in the parametric resonance case. In fact,
note the drastic difference between |F | values in the parametric case (∼ 1) and this
(linear) case (∼ 10−14). We feel there is no strong resonance in this case any more,
and integrals cancel out so that the computed δSe is dominated by (small) numerical
errors. To illustrate this cancellation, the plots of Re[

∫∞

−∞
ẋ(j)(t)eiωtdt] (denoted by

H(ω)) as functions of ω for several different j’s are also provided in Figure 7(b).
This is empirical evidence of the advantage of parametric excitation, at least it

leads to resonant enhancement of the recovery of material defect.

5. Conclusion. In this work, we derived a closed-form explicit expression that
characterizes how a small, generic nonlinear periodic forcing affects the metastable
transition rate in kinetic Langevin systems of arbitrary dimensions. This is done
by viewing the high-order Euler-Lagrange equations associated with the Freidlin-
Wentzell action minimization in the perspective of perturbed Hamiltonian dynamics.
Perturbation analysis allows the MLP and its rate to be approximated from the het-
eroclinic connection in the unperturbed, noiseless system. Furthermore, we showed
that parametric periodic perturbation facilitates metastable transitions by theoret-
ically characterizing the resonant frequency of parametric excitation via stationary
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Fig. 7. (Color online) Damping γ = 1. (a) δSe = −2Aǫ|F (ω)|. The dependence of action
correction |F (ω)| on frequency ω in three special linear forcing cases, respectively. (b) The depen-
dence of components Re[

∫∞
−∞

ẋ(j)(t)eiωtdt] denoted by H(ω) on frequency ω, for j = 1, 2, 3. Note
we zoomed-in the x-axis for improved readability. This is reasonable since we just need to show the
cancellation here and the plots need not to be very complete.

phase asymptotics. Numerical experiments for both low-dimensional toy models and
a 144-dimensional molecular cluster validated our theory. The method we developed
here could offer insights to the interaction between periodic force and noise in rather
general systems.

Appendix A. Euler-Lagrangian Equations. Consider the variational prob-
lem of minimizing the action functional

S[x] =

∫ tf

t0

L(t, x, ẋ, ẍ)dt

over the set of paths x ∈ C1([t0, tf ],R
n) satisfying the boundary conditions

x(t0) = xt0 , x(tf ) = xtf .
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A path x ∈ C1([t0, tf ],R
n) from xt0 to xtf is said to be minimal if S[x] ≤ S[x+ ξ] for

every variation ξ ∈ C1([t0, tf ],R
n) such that ξ(t0) = ξ(tf ) = 0, ξ̇(t0) = ξ̇(tf ) = 0.

Lemma A.1. A minimal path x: [t0, tf ] → R
n is a solution to the Euler-Lagrange

equations

(A.1)
∂L
∂x

− d

dt

∂L
∂ẋ

+
d2

dt2
∂L
∂ẍ

= 0.

Proof. Assume that x is minimal. Thus all directional derivatives of S at x vanish,
i.e.,

0 =
d

dη
|η=0S(x+ ηξ) =

d

dη
|η=0

∫ tf

t0

L(t, x+ ηξ, ẋ+ ηξ̇, ẍ+ ηξ̈)dt

=

∫ tf

t0

(

n
∑

i=1

∂L

∂xi
(t, x, ẋ, ẍ)ξi +

n
∑

i=1

∂L

∂ẋi
(t, x, ẋ, ẍ)ξ̇i +

n
∑

i=1

∂L

∂ẍi
(t, x, ẋ, ẍ)ξ̈i)dt

=

∫ tf

t0

(

n
∑

i=1

∂L

∂xi
− d

dt

∂L

∂ẋi
+
d2

dt2
∂L

∂ẍi
)ξidt(A.2)

for all variations ξ ∈ C1([t0, tf ],R
n) with ξ(t0) = ξ(tf ) = 0, ξ̇(t0) = ξ̇(tf ) = 0. Here

the last equality is based on integration by parts and the boundary conditions for ξ.

Appendix B. Brief review of the method of stationary phase. The
method of stationary phase [53] established integral asymptotics (3.6) and proposed
to determine the leading-order behavior of the integral

(B.1) I(ν) =

∫ b

a

f(t)eiνg(t)dt

for ν ≫ 1, where functions f and g are smooth enough to admit Taylor approximations
near some appropriate point in [a, b], and g is real-valued.

We assume that g′(c) = 0 at some point c ∈ (a, b), and that g′(t) 6= 0 everywhere
else in the closed interval. Assume further that g′′(c) 6= 0 and f(c) 6= 0. Let σ be the
sign of g′′(c). Then

σg′′(c) = |g′′(c)|.
Thus, to leading order,

(B.2) I(ν) ∼ f(c)eiνg(c)

√

2π

ν|g′′(c)|e
πiσ
4 , as ν → ∞.

The symbol ‘∼’ is used to mean that the right-hand side is the first term in an
asymptotic expansion of the left-hand side. Equation (B.2) is called the stationary
phase approximation, due to the fact that the main contribution to the integral comes
form a region of a point c at which the phase g(t) is stationary. For more details on
derivation of (B.2), see [53].
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