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IMPROVED UNIFORM ERROR BOUNDS ON TIME-SPLITTING

METHODS FOR LONG-TIME DYNAMICS OF THE NONLINEAR

KLEIN–GORDON EQUATION WITH WEAK NONLINEARITY∗

WEIZHU BAO† , YONGYONG CAI‡ , AND YUE FENG§

Abstract. We establish improved uniform error bounds on time-splitting methods for the long-
time dynamics of the nonlinear Klein–Gordon equation (NKGE) with weak cubic nonlinearity, whose
strength is characterized by ε2 with 0 < ε ≤ 1 a dimensionless parameter. Actually, when 0 < ε ≪ 1,
the NKGE with O(ε2) nonlinearity and O(1) initial data is equivalent to that with O(1) nonlinearity
and small initial data of which the amplitude is at O(ε). We begin with a semi-discretization of the
NKGE by the second-order time-splitting method, and followed by a full-discretization via the Fourier
spectral method in space. Employing the regularity compensation oscillation (RCO) technique which
controls the high frequency modes by the regularity of the exact solution and analyzes the low
frequency modes by phase cancellation and energy method, we carry out the improved uniform error
bounds at O(ε2τ2) and O(hm+ ε2τ2) for the second-order semi-discretization and full-discretization
up to the long time Tε = T/ε2 with T fixed, respectively. Extensions to higher order time-splitting
methods and the case of an oscillatory complex NKGE are also discussed. Finally, numerical results
are provided to confirm the improved error bounds and to demonstrate that they are sharp.
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improved uniform error bounds, regularity compensation oscillation (RCO)
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1. Introduction. In this paper, we consider the following nonlinear Klein–
Gordon equation (NKGE) [12, 28, 29, 31, 42]

(1.1)

{
∂ttu(x, t)−∆u(x, t) + u(x, t) + ε2u3(x, t) = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω.

Here, t is time, x is the spatial coordinate, ∆ is the Laplace operator, u := u(x, t) is a
real-valued scalar field, ε ∈ (0, 1] is a dimensionless parameter used to characterize the

nonlinearity strength and Ω =
∏d

i=1(ai, bi) ⊂ Rd (d = 1, 2, 3) is a bounded domain
equipped with periodic boundary conditions. The initial data u0(x) and u1(x) are
two given real-valued functions independent of ε.

When 0 < ε ≪ 1, by introducing w(x, t) = εu(x, t), the NKGE (1.1) with weak
nonlinearity and O(1) initial data could be reformulated into the following NKGE
with small initial data and O(1) nonlinearity as

(1.2)

{
∂ttw(x, t)−∆w(x, t) + w(x, t) + w3(x, t) = 0, x ∈ Ω, t > 0,

w(x, 0) = εu0(x), ∂tw(x, 0) = εu1(x), x ∈ Ω.
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In fact, the long-time dynamics of the NKGE (1.2) with small initial data and O(1)
nonlinearity is equivalent to that of the NKGE (1.1) with weak nonlinearity and O(1)
initial data.

The nonlinear Klein–Gordon equation as a fundamental physical equation describ-
ing the motion of the spinless particle has been extensively investigated from both
analytical and numerical perspectives [2,3,6,10,15,19,30,38,41,43]. Recently, the long-
time dynamics of the NKGE (1.1) in the weak nonlinearity strength regime (or (1.2)
with small initial data) have attracted much attention. According to the analytical
results, the life-span of a smooth solution to the NKGE (1.1) (or (1.2)) is at least up
to the time at O(ε−2) [8,16–18,20,31]. For the long-time dynamics, near-conservation
(or approximate preservation) of energy, momentum and harmonic actions has been
established for the semi-discretization and full-discretization of the NKGE (1.2) with
small initial data via the technique of modulated Fourier expansions [13,14,27]. In our
recent work, long-time error bounds have been rigorously established for the finite dif-
ference time domain (FDTD) methods [4,22], the exponential wave integrator Fourier
pseudospectral (EWI-FP) method [24] and the time-splitting Fourier pseudospectral
(TSFP) method [5]. In the numerical simulations, we surprisingly found the improved
uniform error bounds for the TSFP method which are better than the analytical re-
sults [5]. For the long-time dynamics of the Schrödinger/nonlinear Schrödinger equa-
tion, a new technique of the regularity compensation oscillation (RCO) has been
introduced to establish the improved uniform error bounds for the TSFP method in
the long-time regime [1]. The aim of this paper is to analyze the errors of the time-
splitting methods carefully and carry out the improved uniform error bounds on the
semi-discretization and full-discretization for the long-time dynamics of the NKGE
with the help of the RCO technique. For the refined analysis, we first reformulate
the NKGE into a relativistic nonlinear Schrödinger equation (NLSE). According to
the RCO approach, we choose a frequency cut-off parameter τ0 and control the high
frequency modes (> 1/τ0) by the smoothness of the exact solution and analyze the
low frequency modes (≤ 1/τ0) by phase cancellation and energy method.

The rest of the paper is organized as follows. In section 2, we adopt the time-
splitting method to discretize the NKGE in time and establish the improved uniform
error bounds for the semi-discretization up to the time at O(1/ε2). In section 3, the
full-discretization by the Fourier spectral method in space is shown with the proof
of improved uniform error bounds. Extensions to the complex NKGE with a general
power nonlinearity and an oscillatory complex NKGE are presented in section 4.
Numerical results for the long-time dynamics and the oscillatory complex NKGE are
shown in section 5. Finally, some conclusions are drawn in section 6. Throughout this
paper, the notation A . B is used to represent that there exists a generic constant
C > 0 independent of the mesh size h, time step τ , ε and τ0 such that |A| ≤ CB.

2. Semi-discretization and improved uniform error bounds. In this sec-
tion, we utilize the time-splitting method to discretize the NKGE (1.1) in time and
establish the improved uniform error bounds up to the time at O(1/ε2). For the
simplicity of presentation, we only present the numerical schemes and corresponding
results in one dimension (1D). Generalization to higher dimensions is straightforward
and results remain valid without modifications. In 1D, the NKGE (1.1) with periodic
boundary conditions on the domain Ω = (a, b) collapses to

(2.1)

{
∂ttu(x, t)− ∂xxu(x, t) + u(x, t) + ε2u3(x, t) = 0, a < x < b, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω = [a, b],
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with boundary conditions as u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t) for t > 0.
For an integer m ≥ 0, we denote Hm(Ω) as the set of functions u(x) ∈ L2(Ω)

with finite Hm-norm ‖ · ‖m given by

(2.2) ‖u‖2m =
∑

l∈Z

(1 + µ2
l )

m|ûl|2, for u(x) =
∑

l∈Z

ûle
iµl(x−a), µl =

2πl

b− a
,

where ûl(l ∈ Z) are the Fourier coefficients of the function u(x) [2, 5]. In fact, the
Hm(Ω) space is the subspace of classical Sobolev space Wm,2(Ω), which consists of
functions with derivatives of order up tom−1 being (b−a)-periodic. Since we consider
the periodic boundary conditions, the above space Hm(Ω) is suitable. In addition,
the space is L2(Ω) for m = 0 and the corresponding norm is denoted as ‖·‖. Here, the
space Hs(Ω) with s ∈ R is also well-defined consisting of functions with finite norm
‖ · ‖s [39].

Denote XN := {u = (u0, u1, . . . , uN )T ∈ CN+1 | u0 = uN}, Cper(Ω) = {u ∈
C(Ω) | u(a) = u(b)} and

YN := span
{
eiµl(x−a), x ∈ Ω, l ∈ TN

}
, TN =

{
l | l = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1

}
.

For any u(x) ∈ Cper(Ω) and a vector u ∈ XN , let PN : L2(Ω) → YN be the standard
L2-projection operator onto YN , IN : Cper(Ω) → YN or IN : XN → YN be the
trigonometric interpolation operator [39], i.e.,

(2.3) PNu(x) =
∑

l∈TN

ûle
iµl(x−a), INu(x) =

∑

l∈TN

ũle
iµl(x−a), x ∈ Ω,

where

(2.4) ûl =
1

b− a

∫ b

a

u(x)e−iµl(x−a)dx, ũl =
1

N

N−1∑

j=0

uje
−iµl(xj−a), l ∈ TN ,

with uj interpreted as u(xj) when involved.
Define the operator 〈∇〉 =

√
1−∆ through its action in the Fourier space by

[5, 7, 21]:

〈∇〉u(x) =
∑

l∈Z

√
1 + µ2

l ûle
iµl(x−a), for u(x) =

∑

l∈Z

ûle
iµl(x−a), x ∈ Ω,

and the inverse operator 〈∇〉−1 as 〈∇〉−1u(x) =
∑
l∈Z

ûl√
1+µ2

l

eiµl(x−a), which leads to

‖〈∇〉−1u‖s = ‖u‖s−1 ≤ ‖u‖s.
Introduce v(x, t) = ∂tu(x, t) and

(2.5) ψ(x, t) = u(x, t)− i〈∇〉−1v(x, t), x ∈ Ω, t ≥ 0,

then the NKGE (2.1) could be reformulated into the following relativistic NLSE for
ψ := ψ(t) = ψ(x, t) (spatial variable x may be omitted for brevity) as

(2.6)





i∂tψ(x, t) + 〈∇〉ψ(x, t) + ε2

8
〈∇〉−1

(
ψ + ψ

)3
(x, t) = 0, x ∈ Ω, t > 0,

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0,

ψ(x, 0) = ψ0(x) := u0(x)− i〈∇〉−1u1(x), x ∈ Ω,



4 Weizhu Bao, Yongyong Cai and Yue Feng

where ψ denotes the complex conjugate of ψ. According to (2.5), the solution of the
NKGE (2.1) could be recovered by

(2.7) u(x, t) =
1

2

(
ψ(x, t) + ψ(x, t)

)
, v(x, t) =

i

2
〈∇〉

(
ψ(x, t)− ψ(x, t)

)
.

2.1. The time-splitting method. By the splitting technique [32, 33], the rel-
ativistic NLSE (2.6) is split to the linear part and nonlinear part. The evolution
operator for the linear part ∂tψ(x, t) = i〈∇〉ψ(x, t) with initial data ψ(x, 0) = ψ0(x)
is given by

(2.8) ψ(·, t) = ϕt
T (ψ0) := eit〈∇〉ψ0, t ≥ 0,

and the nonlinear part ∂tψ(x, t) = F (ψ(x, t)) with initial data ψ(x, 0) = ψ0(x) can be
integrated exactly in time as

(2.9) ψ(x, t) = ϕt
V (ψ0) := ψ0 + ε2tF (ψ0), t ≥ 0,

where the nonlinear operator F is given by

(2.10) F (φ) = i〈∇〉−1G(φ), G(φ) =
1

8

(
φ+ φ

)3
.

Let τ > 0 be the time step size and tn = nτ (n = 0, 1, . . .) as the time steps. De-
note ψ[n] := ψ[n](x) as the approximation of ψ(x, tn), then the second-order discrete-
in-time splitting method via the Strang splitting for the relativistic NLSE (2.6) could
be written as [40]

(2.11) ψ[n+1] = Sτ (ψ
[n]) = ϕ

τ
2

T ◦ϕτ
V ◦ϕ

τ
2

T (ψ
[n]) = eiτ〈∇〉ψ[n]+ε2τei

τ〈∇〉
2 F (ei

τ〈∇〉
2 ψ[n]),

with ψ[0] = ψ0 = u0 − i〈∇〉−1u1. Noticing (2.7), the semi-discretization of the NKGE
(2.1) is given by

(2.12) u[n] =
1

2

(
ψ[n] + ψ[n]

)
, v[n] =

i

2
〈∇〉

(
ψ[n] − ψ[n]

)
, n = 0, 1, . . . ,

where u[n] := u[n](x) and v[n] := v[n] are the approximations of u(x, tn) and ∂tu(x, tn),
respectively.

Remark 2.1. The split-steps (2.8) and (2.9) are equivalent to the splitting of
NKGE (2.1) (in terms of u and v = ∂tu), respectively as

(2.13) ∂t

[
u
v

]
=

[
0 1

∂xx − 1 0

] [
u
v

]
, ∂t

[
u
v

]
=

[
0 0

−ε2u2 0

] [
u
v

]
.

2.2. Improved uniform error bounds. By discussions in [5,17,20] and refer-
ences therein, we make the following assumptions on the exact solution u := u(x, t)
of the NKGE (2.1) up to the time at Tε = T/ε2 with T > 0 fixed:

(A) ‖u‖L∞([0,Tε];Hm+1) . 1, ‖∂tu‖L∞([0,Tε];Hm) . 1, m ≥ 1.

Let u[n] and v[n] be the numerical approximations obtained from the Strang splitting
method (2.11) with (2.12). According to the analysis in [5], under the assumption
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(A), for sufficiently small 0 < τ ≤ τc (τc is a constant), there exists a constantM > 0
depending on T , ‖u0‖m+1, ‖u1‖m, ‖u‖L∞([0,Tε];Hm) and ‖∂tu‖L∞([0,Tε];Hm) such that

(2.14) ‖u[n]‖2m+1 + ‖v[n]‖2m ≤M, or equivalently ‖ψ[n]‖2m+1 ≤M, 0 ≤ n ≤ T/ε2

τ
.

The main result of this work is to establish the following improved uniform error
bounds for the Strang splitting method up to the long time Tε.

Theorem 2.1. Under the assumption (A), for 0 < τ0 ≤ 1 sufficiently small and

independent of ε such that, when 0 < τ < α π(b−a)τ0

2
√

τ2
0
(b−a)2+4π2(1+τ2

0
)
for a fixed constant

α ∈ (0, 1), we have the following improved uniform error bounds

(2.15) ‖u(·, tn)− u[n]‖1 + ‖∂tu(·, tn)− v[n]‖ . ε2τ2 + τm+1
0 , 0 ≤ n ≤ T/ε2

τ
.

In particular, if the exact solution is sufficiently smooth, e.g. u, ∂tu ∈ H∞, the last
term τm+1

0 decays exponentially fast (∼ e−c/τ0) and could be ignored practically for
small enough τ0 , where the improved uniform error bounds for sufficiently small τ
could be

(2.16) ‖u(·, tn)− u[n]‖1 + ‖∂tu(·, tn)− v[n]‖ . ε2τ2, 0 ≤ n ≤ T/ε2

τ
.

Remark 2.2. τ0 ∈ (0, 1) is a parameter introduced in analysis and the require-
ment on τ (essentially τ . τ0) enables the improved estimates on the low Fourier
modes |l| ≤ 1/τ0, where the constant in front of ε2τ2 depend on α. τ0 can be arbitrary
as long as the assumed relation between τ and τ0 holds, i.e. τ0 could be fixed, or

depending on τ , e.g. τ0 =
2
√

8π2+(b−a)2

α(b−a)π τ .

Remark 2.3. Compared to the previous uniform estimates ‖u(·, tn) − u[n]‖1 +
‖∂tu(·, tn)−v[n]‖ . τ2 established in [5], our estimates are improved in the sense that
the leading error term as τ → 0+ is now ε2τ2, which was numerically observed in [5].
The estimates in Theorem 2.1 hold for higher order norms ‖·‖s (s ≤ m) and the proof
remains the same. The results are valid in higher dimensions d = 2, 3, independent
of the aspect ratio of the rectangular domain Ω.

Remark 2.4. The second-order Strang splitting method is used to discretize the
NKGE (2.1) and it is straightforward to design the first-order Lie-Trotter splitting
method [44] and fourth-order partitioned Runge-Kutta (PRK) splitting method [9,25].
Under appropriate assumptions of the exact solution, the improved uniform error
bounds could be extended to the first-order Lie-Trotter splitting and the fourth-order
PRK splitting method with improved uniform error bounds at ε2τ and ε2τ4, respec-
tively.

2.3. Proof for Theorem 2.1. The assumption (A) is equivalent to the regu-
larity of ψ(x, t) as ‖ψ‖L∞([0,Tε];Hm+1) . 1. Denote

(2.17) Ft : φ 7→ e−it〈∇〉F
(
eit〈∇〉φ

)
, t ∈ R,

and we have the following estimates by the standard analysis for the local truncation
error [1, 5].

Lemma 2.2. For 0 < ε ≤ 1, the local error of the Strang splitting (2.11) can be
written as

(2.18) En := Sτ (ψ(tn))− ψ(tn+1) = F(ψ(tn)) +Rn, n = 0, 1, · · · ,
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where

(2.19) F(ψ(tn)) = ε2eiτ〈∇〉

(
τFτ/2(ψ(tn))−

∫ τ

0

Fθ(ψ(tn))dθ

)
,

and the following error bounds hold under the assumption (A) with m ≥ 1,

(2.20) ‖F(ψ(tn))‖1 . ε2τ3, ‖Rn‖1 . ε4τ3.

Under the assumption (A), for 0 < τ ≤ τc, we have the estimates (2.14) on
the numerical solution ψ[n], which provide the control on the nonlinearity. Thus, we
focus on the refined estimates in Theorem 2.1. Introduce the numerical error function
e[n] := e[n](x) (n = 0, 1, · · · ) as

(2.21) e[n] := ψ[n] − ψ(tn),

and we have the error equation from (2.11) and (2.18) as

e[n+1] = Sτ (ψ
[n])− Sτ (ψ(tn)) + En = eiτ〈∇〉e[n] +Wn + En, n ≥ 0,(2.22)

where Wn :=Wn(x) (n = 0, 1, · · · ) is given by

Wn(x) = ε2τei
τ
2
〈∇〉

(
F
(
ei

τ
2
〈∇〉ψ[n]

)
− F

(
ei

τ
2
〈∇〉ψ(tn)

))
.

Under the assumption (A), we have from (2.10) and the estimates on ψ[n] in (2.14)
that

(2.23) ‖Wn(x)‖1 . ε2τ
∥∥∥F

(
ei

τ
2
〈∇〉ψ[n]

)
− F

(
ei

τ
2
〈∇〉ψ(tn)

)∥∥∥
1
. ε2τ

∥∥∥e[n]
∥∥∥
1
.

Based on (2.22), we obtain

(2.24) e[n+1] = ei(n+1)τ〈∇〉e[0] +

n∑

k=0

ei(n−k)τ〈∇〉
(
W k(x) + Ek

)
, 0 ≤ n ≤ Tε/τ − 1.

Noticing e[0] = 0, (2.18), (2.20) and (2.23), we have the estimates for 0 ≤ n ≤ Tε/τ−1,

(2.25) ‖e[n+1]‖1 . ε2τ2 + ε2τ

n∑

k=0

‖e[k]‖1 + ‖
n∑

k=0

ei(n−k)τ〈∇〉F(ψ(tk))‖1.

Direct applications of (2.20) and Gronwall’s inequality lead to the uniform error es-
timates ‖e[n+1]‖1 . τ2 (0 ≤ n ≤ Tε/τ − 1) as shown in [7]. To analyze the error
more carefully, we shall employ the regularity compensation oscillation (RCO)
technique [1] to deal with the last term on the RHS of (2.25). The key idea is a
summation-by-parts procedure combined with spectrum cut-off and phase cancella-
tion.

The first step is a spectral projection on ψ(tk) such that only finite Fourier modes
of ψ(tk) need to be considered and the projection error could be controlled by the
regularity of ψ(tk). The second step is to apply the summation-by-parts formula for
the low Fourier modes in a proper way, such that the phase can be cancelled for small
τ (the terms of the type

∑n
k=0 e

i(n−k)τ〈∇〉) and an extra order of ε2 could be gained
from the terms like F(ψ(tk))−F(ψ(tk+1)).
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Now, we demonstrate our strategy in detail. From the relativistic NLSE (2.6),
we find that ∂tψ(x, t) − i〈∇〉ψ(x, t) = iε2F (ψ(x, t)) = O(ε2). Thus, in order to gain
an extra order of ε2, instead of ψ(x, t), it is nature to consider the ‘twisted variable’
given by

(2.26) φ(x, t) = e−it〈∇〉ψ(x, t), t ≥ 0,

which satisfies the equation ∂tφ(x, t) = ε2e−it〈∇〉F (eit〈∇〉φ(x, t)). Under the assump-
tion (A), we have ‖φ‖L∞([0,Tε];Hm+1) . 1 and ‖∂tφ‖L∞([0,Tε];Hm+1) . ε2 with

(2.27) ‖φ(tn+1)− φ(tn)‖m+1 . ε2τ, 0 ≤ n ≤ Tε/τ − 1.

The RCO technique will be used to force ∂tφ(t) to appear with a gain of order O(ε2)
for the summation-by-parts procedure in

∑n
k=0 e

i(n−k)τ〈∇〉F(ψ(tk)). Then small τ is
required to control the accumulation of the frequency of the type ei(n−k)τ〈∇〉.

Step 1. As introduced in [1], we start with the choice of the cut-off parameter on
the Fourier modes. Let τ0 ∈ (0, 1) and choose N0 = 2⌈1/τ0⌉ ∈ Z+ (⌈·⌉ is the ceiling
function) with 1/τ0 ≤ N0/2 < 1+1/τ0. Under the assumption (A), recalling Ft (2.17)
and the operator 〈∇〉−1, we have

(2.28) ‖Ft(e
itk〈∇〉φ(tk))‖m+2 . ‖φ(tk)‖3m+1 . 1, t ∈ R, 0 ≤ k ≤ Tε

τ
,

and the following estimates hold by the standard Fourier projection properties for
s ∈ [0,m+ 1],

(2.29) ‖Ft(φ(tk))− PNFt(φ(tk))‖s + τ0‖φ(x, tk)− PN0
φ(x, tk)‖s . τm+2−s

0 .

Combing the above estimates, (2.10), (2.19) and assumption (A), we derive for 0 ≤
k ≤ Tε/τ ,

‖PN0
F(eitn〈∇〉(PN0

φ(tk)))−F(eitk〈∇〉φ(tk))‖1
. ε2ττm+1

0 + ε2τ‖PN0
φ(tk)− φ(tk)‖ . ε2ττm+1

0 ,(2.30)

and (2.25) would imply for 0 ≤ n ≤ Tε/τ − 1,

(2.31)
∥∥∥e[n+1]

∥∥∥
1
. τm+1

0 + ε2τ2 + ε2τ

n∑

k=0

∥∥∥e[k]
∥∥∥
1
+ ‖Ln‖1 ,

where

(2.32) Ln =
n∑

k=0

e−i(k+1)τ〈∇〉PN0
F(eitk〈∇〉(PN0

φ(tk))).

Step 2. Now, we concentrate on the low Fourier modes term Ln. Recalling the
nonlinear function F (·), we have the decomposition

(2.33) F (φ) =

4∑

q=1

F q(φ), F q(φ) = i〈∇〉−1Gq(φ), q = 1, 2, 3, 4,

with

(2.34) G1(φ) =
1

8
φ̄3, G2(φ) =

3

8
φφ̄2, G3(φ) =

3

8
φ2φ̄, G4(φ) =

1

8
φ3.
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For θ ∈ R and q = 1, 2, 3, 4, introducing F q
θ (ψ(tk)) = e−iθ〈∇〉F q(eiθ〈∇〉ψ(tk)) and

(2.35) Fq(ψ(tk)) = ε2eiτ〈∇〉

(
τF q

τ/2(ψ(tn))−
∫ τ

0

F q
θ (ψ(tn))dθ

)
,

recalling (2.17) and (2.19), we have

(2.36) Ln =

4∑

q=1

Ln
q , Ln

q =

n∑

k=0

e−i(k+1)τ〈∇〉PN0
Fq(eitk〈∇〉(PN0

φ(tk))), 1 ≤ q ≤ 4.

Since the estimates on Ln
q (q = 1, 2, 3, 4) are the same, we only present the case for

Ln
1 (0 ≤ n ≤ Tε/τ − 1). For l ∈ TN0

, define the index set IN0

l associated to l as

(2.37) IN0

l = {(l1, l2, l3) | l1 + l2 + l3 = l, l1, l2, l3 ∈ TN0
} ,

and the following expansion holds in view of PN0
φ(tk) =

∑
l∈TN0

φ̂l(tk)e
iµl(x−a),

e−itk+1〈∇〉PN0
(eiτ〈∇〉F 1

θ (e
itk〈∇〉PN0

φ(tk)))

=
∑

l∈TN0

∑

(l1,l2,l3)∈I
N0
l

i

8δl
Gk
l,l1,l2,l3(θ)e

iµl(x−a),

where the coefficients Gk
l,l1,l2,l3

(θ) are functions of θ ∈ R defined as

(2.38) Gk
l,l1,l2,l3(θ) = e−i(tk+θ)δl,l1,l2,l3 φ̂l1(tk)φ̂l2 (tk)φ̂l3(tk)

with δl,l1,l2,l3 = δl + δl1 + δl2 + δl3 and δl =
√
1 + µ2

l for l ∈ TN0
. Thus, we have

(2.39) Ln
1 =

iε2

8

n∑

k=0

∑

l∈TN0

∑

(l1,l2,l3)∈I
N0
l

1

δl
Λk
l,l1,l2,l3e

iµl(x−a),

where

Λk
l,l1,l2,l3 = −τGk

l,l1,l2,l3(τ/2) +

∫ τ

0

Gk
l,l1,l2,l3(θ) dθ

= rl,l1,l2,l3e
−itkδl,l1,l2,l3 ckl,l1,l2,l3 ,(2.40)

with coefficients ckl,l1,l2,l3 and rl,l1,l2,l3 given by

ckl,l1,l2,l3 = φ̂l1(tk)φ̂l2(tk)φ̂l3(tk),(2.41)

rl,l1,l2,l3 = − τe−iτδl,l1,l2,l3
/2 +

∫ τ

0

e−iθδl,l1,l2,l3 dθ = O
(
τ3(δl,l1,l2,l3)

2
)
.(2.42)

We only need consider the case δl,l1,l2,l3 6= 0 as rl,l1,l2,l3 = 0 if δl,l1,l2,l3 = 0. For

l ∈ TN0
and (l1, l2, l3) ∈ IN0

l , we have

(2.43) |δl,l1,l2,l3 | ≤ 4δN0/2 = 4
√
1 + µ2

N0/2
< 4

√
1 +

4π2(1 + τ0)2

τ20 (b− a)2
,
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which implies when 0 < τ ≤ α π(b−a)τ0

2
√

τ2
0
(b−a)2+4π2(1+τ0)2

:= τα0 (0 < τ0, α < 1), there

holds

(2.44)
τ

2
|δl,l1,l2,l3 | ≤ απ.

Denoting Sn
l,l1,l2,l3

=
∑n

k=0 e
−itkδl,l1,l2,l3 (n ≥ 0), for 0 < τ ≤ τα0 , we then obtain from

(2.44) that

(2.45) |Sn
l,l1,l2,l3 | ≤

1

| sin(τδl,l1,l2,l3/2)|
≤ C

τ |δl,l1,l2,l3 |
, C =

2απ

sin(απ)
∀n ≥ 0.

Using summation by parts, we find from (2.40) that

(2.46)

n∑

k=0

Λk
l,l1,l2,l3 = rl,l1,l2,l3

[ n−1∑

k=0

Sk
l,l1,l2,l3(c

k
l,l1,l2,l3 − ck+1

l,l1,l2,l3
) + Sn

l,l1,l2,l3c
n
l,l1,l2,l3

]
,

with

ckl,l1,l2,l3 − ck+1
l,l1,l2,l3

= (φ̂l1 (tk)− φ̂l1(tk+1))φ̂l2(tk)φ̂l3 (tk) + φ̂l1(tk+1)(φ̂l2(tk)− φ̂l2(tk+1))φ̂l3 (tk)

+ φ̂l1(tk+1)φ̂l2(tk+1)(φ̂l3 (tk)− φ̂l3(tk+1)).(2.47)

Combining (2.42), (2.45), (2.46) and (2.47), we have

∣∣∣∣∣

n∑

k=0

Λk
l,l1,l2,l3

∣∣∣∣∣ . τ2|δl,l1,l2,l3 |
n−1∑

k=0

( ∣∣∣φ̂l1(tk)− φ̂l1(tk+1)
∣∣∣
∣∣∣φ̂l2(tk)

∣∣∣
∣∣∣φ̂l3(tk)

∣∣∣

+
∣∣∣φ̂l1(tk+1)

∣∣∣
∣∣∣φ̂l2(tk)− φ̂l2(tk+1)

∣∣∣
∣∣∣φ̂l3(tk)

∣∣∣

+
∣∣∣φ̂l1(tk+1)

∣∣∣
∣∣∣φ̂l2(tk+1)

∣∣∣
∣∣∣φ̂l3(tk)− φ̂l3(tk+1)

∣∣∣
)

+ τ2|δl,l1,l2,l3 |
∣∣∣φ̂l1(tn)

∣∣∣
∣∣∣φ̂l2(tn)

∣∣∣
∣∣∣φ̂l3(tn)

∣∣∣ .(2.48)

For l ∈ TN0
and (l1, l2, l3) ∈ IN0

l , there holds

(2.49) |δl,l1,l2,l3 | ≤
(
1 + (

3∑

j=1

µlj )
2
)1/2

+

3∑

j=1

√
1 + µ2

lj
.

3∏

j=1

√
1 + µ2

lj
,
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Based on (2.39), (2.48) and (2.49), noticing δl =
√

1 + µ2
l , we have

‖Ln
1 ‖21

= ε4
∑

l∈TN0

∣∣∣∣∣∣∣

∑

(l1,l2,l3)∈I
N0
l

n∑

k=0

Λk
l,l1,l2,l3

∣∣∣∣∣∣∣

2

. ε4τ4
{ ∑

l∈TN0

( ∑

(l1,l2,l3)∈I
N0
l

∣∣∣φ̂l1(tn)
∣∣∣
∣∣∣φ̂l2(tn)

∣∣∣
∣∣∣φ̂l3(tn)

∣∣∣
3∏

j=1

√
1 + µ2

lj

)2

+ n

n−1∑

k=0

∑

l∈TN0

[( ∑

(l1,l2,l3)∈I
N0
l

∣∣∣φ̂l1(tk)− φ̂l1(tk+1)
∣∣∣
∣∣∣φ̂l2(tk)

∣∣∣
∣∣∣φ̂l3(tk)

∣∣∣
3∏

j=1

√
1 + µ2

lj

)2

+

( ∑

(l1,l2,l3)∈I
N0
l

∣∣∣φ̂l1(tk+1)
∣∣∣
∣∣∣φ̂l2(tk)− φ̂l2(tk+1)

∣∣∣
∣∣∣φ̂l3(tk)

∣∣∣
3∏

j=1

√
1 + µ2

lj

)2

+

( ∑

(l1,l2,l3)∈I
N0
l

∣∣∣φ̂l1(tk+1)
∣∣∣
∣∣∣φ̂l2(tk+1)

∣∣∣
∣∣∣φ̂l3(tk)− φ̂l3(tk+1)

∣∣∣
3∏

j=1

√
1 + µ2

lj

)2]}
.

(2.50)

In order to estimate the sum on the RHS of above inequality, e.g. for the first term

on the RHS, we use the auxiliary function ξ(x) =
∑

l∈Z

√
1 + µ2

lj

∣∣∣φ̂l(tn)
∣∣∣ eiµl(x−a),

where ξ(x) ∈ Hm(Ω) implied by assumption (A) and ‖ξ‖Hs . ‖φ(tn)‖Hs+1 (s ≤
m). Expanding |ξ(x)|2ξ(x) =

∑
l∈Z

∑
l1−l2+l3=l,lj∈Z

∏3
j=1

(√
1 + µ2

lj

∣∣∣φ̂lj (tn)
∣∣∣
)
eiµl(x−a),

we could obtain

∑

l∈TN0

( ∑

(l1,l2,l3)∈I
N0
l

∣∣∣φ̂l1(tn)
∣∣∣
∣∣∣φ̂l2(tn)

∣∣∣
∣∣∣φ̂l3(tn)

∣∣∣
3∏

j=1

√
1 + µ2

lj

)2

≤
∥∥|ξ(x)|2ξ(x)

∥∥2
. ‖ξ(x)‖61 . ‖φ(tn)‖62 . 1.(2.51)

Thus, in light of (2.27), we could estimate each term in (2.50) similarly as

‖Ln
1‖1 . ε4τ4

[
‖φ(tn)‖62 + n

n−1∑

k=0

‖φ(tk)− φ(tk+1)‖22 (‖φ(tk)‖2 + ‖φ(tk+1)‖2)4
]

. ε4τ4 + n2ε4τ4(ε2τ)2 . ε4τ4, 0 ≤ n ≤ Tε/τ − 1.(2.52)

The same estimates could be established for Ln
q (q = 2, 3, 4) and (2.31) together with

(2.36) implies

(2.53)
∥∥∥e[n+1]

∥∥∥
1
. τm+1

0 + ε2τ2 + ε2τ

n∑

k=0

∥∥∥e[k]
∥∥∥
1
, 0 ≤ n ≤ Tε/τ − 1.

Discrete Gronwall’s inequality yields

(2.54)
∥∥∥e[n+1]

∥∥∥
1
. ε2τ2 + τm+1

0 , 0 ≤ n ≤ Tε/τ − 1,
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and the error bound (2.15) follows in view of (2.7) and (2.12).
Remark 2.5. Similar results in Theorem 2.1 have been previously obtained for

the time-splitting method applied to the long-time dynamics of nonlinear Schrödinger
equation with weak nonlinearity [11], where the periodicity of the free Schrödinger
operator plays an important role and the time step size has to be an integer fraction of
the period. Thus, the results and analysis in [11] are difficult to extend to the higher
dimensional rectangular domain with irrational aspect ratio, and/or the general time
step sizes. The presented RCO based approach does not depend on the periodicity of
the free relativistic Schrödinger operator. It is easy to check our analysis works for
the higher dimensional cases and allows general time step sizes.

3. Full-discretization and improved uniform error bounds. In this sec-
tion, we present the practical full-discretization for the NKGE (2.1) by the Fourier
pseudospectral method in space and establish the improved uniform error bounds.

3.1. Full-discretization by Fourier pseudospectral method. Let N be an
even positive integer and define the spatial mesh size h = (b − a)/N , then the grid
points are chosen as

(3.1) xj := a+ jh, j ∈ T 0
N = {j | j = 0, 1, . . . , N}.

Let ψn
j be the numerical approximation of ψ(xj , tn) for j ∈ T 0

N and n ≥ 0 and

denote ψn = (ψn
0 , ψ

n
1 , . . . , ψ

n
N )T ∈ CN+1 for n = 0, 1, . . .. Then a time-splitting

Fourier pseudospectral (TSFP) method for discretizing the relativistic NLSE (2.6)
via (2.11) with a Fourier pseudospectral discretization in space is given as

ψ
(1)
j =

∑

l∈TN

ei
τδl
2 (̃ψn)l e

iµl(xj−a),

ψ
(2)
j = ψ

(1)
j + ε2τ Fn

j , Fn
j = i

∑

l∈TN

1

δl
˜(
G(ψ(1))

)
l
eiµl(xj−a),

ψn+1
j =

∑

l∈TN

ei
τδl
2

(̃
ψ(2)

)
l
eiµl(xj−a), j ∈ T 0

N , n = 0, 1, . . . ,

(3.2)

where δl =
√
1 + µ2

l for l ∈ TN , ψ(k) = (ψ
(k)
0 , ψ

(k)
1 , . . ., ψ

(k)
N )T ∈ CN+1 for k = 1, 2,

G(ψ(1)) := (G(ψ
(1)
0 ), G(ψ

(1)
2 ), . . . , G(ψ

(1)
N ))T ∈ RN+1 and

ψ0
j = u0(xj)− i

∑

l∈TN

(̃u1)l
δl

eiµl(xj−a), j ∈ T 0
N .

Let unj and vnj be the approximations of u(xj , tn) and v(xj , tn), respectively,

for j ∈ T 0
N and n ≥ 0, and denote un = (un0 , u

n
1 , . . . , u

n
N)T ∈ RN+1 and vn =

(vn0 , v
n
1 , . . . , v

n
N )T ∈ RN+1 for n = 0, 1, . . .. Combining (2.12) and (3.2), we could

obtain the full-discretization of the NKGE (2.1) by the TSFP method as

un+1
j =

1

2

(
ψn+1
j + ψn+1

j

)
,

vn+1
j =

i

2

∑

l∈TN

δl
[
˜(ψn+1)l −

˜(ψn+1)l
]
eiµl(xj−a),

j ∈ T 0
N , n ≥ 0,(3.3)

with u0j = u0(xj) and v
0
j = u1(xj) for j ∈ T 0

N .
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3.2. Improved uniform error bounds. Let un and vn be the numerical ap-
proximations obtained from the TSFP (3.2)–(3.3). From the analysis in [5], under
the assumption (A), for 0 < τ ≤ τc, 0 < h ≤ hc (τc, hc are constants independent of
ε), there exists a constantM > 0 depending on T , ‖u0‖m+1, ‖u1‖m, ‖u‖L∞([0,Tε];Hm)

and ‖∂tu‖L∞([0,Tε];Hm) such that the numerical solution satisfies

(3.4) ‖INun‖2m+1+‖INvn‖2m ≤M, or equivalently ‖INψn‖2m+1 ≤M 0 ≤ n ≤ Tε
τ
.

Then we have the improved uniform error bounds for the full-discretization.
Theorem 3.1. Under the assumption (A), there exist h0 > 0 and 0 < τ0 < 1

sufficiently small and independent of ε such that, for any 0 < ε ≤ 1, when 0 < h ≤ h0
and 0 < τ < α π(b−a)τ0

2
√

τ2
0
(b−a)2+4π2(1+τ2

0
)
for a fixed constant α ∈ (0, 1), we have the

following improved uniform error estimates

(3.5) ‖u(·, tn)− INu
n‖1 + ‖∂tu(·, tn)− INv

n‖ . hm + ε2τ2 + τm+1
0 , 0 ≤ n ≤ T/ε2

τ
.

In particular, if the exact solution is sufficiently smooth, e.g. u, ∂tu ∈ H∞, the
improved uniform error bounds for sufficiently small τ could be

(3.6) ‖u(·, tn)− INu
n‖1 + ‖∂tu(·, tn)− INv

n‖ . hm + ε2τ2, 0 ≤ n ≤ T/ε2

τ
.

Proof. It suffices to consider the numerical approximation ψn to the solution of
the relativistic NLSE (2.6). Recalling the semi-discrete-in-time approximation ψ[n]

(0 ≤ n ≤ T/ε2

τ ) given by the scheme (2.11)-(2.12), under the assumptions of Theorem
3.1, we have the estimates in Theorem 2.1, (2.14) and (3.4), which directly yield

(3.7)
∥∥∥ψ[n] − PNψ

[n]
∥∥∥
1
. hm,

∥∥∥ψ(·, tn)− ψ[n]
∥∥∥
1
. ε2τ2 + τm+1

0 , 0 ≤ n ≤ Tε
τ
.

Since ψ(·, tn) − INψ
n = ψ(·, tn) − ψ[n] + ψ[n] − PNψ

[n] + PNψ
[n] − INψ

n, we derive
that

(3.8) ‖ψ(·, tn)− INψ
n‖1 ≤ ‖PNψ

[n] − INψ
n‖1 + C1(ε

2τ2 + τm+1
0 + hm).

As a result, it remains to establish the estimates on the error function en := en(x) ∈
YN given as

en := PNψ
[n] − INψ

n, 0 ≤ n ≤ T/ε2

τ
.

From (2.11) and (3.2), we get

INψ
n+1 = eiτ〈∇〉INψ

n + iε2τ〈∇〉−1eiτ〈∇〉/2IN (G(eiτ〈∇〉/2INψ
n)),

PNψ
[n+1] = eiτ〈∇〉PNψ

[n] + iε2τ〈∇〉−1eiτ〈∇〉/2PN (G(eiτ〈∇〉/2ψ[n])),

which lead to

en+1 = eiτ〈∇〉en + iε2τ〈∇〉−1eiτ〈∇〉/2
(
PNG(ψ

〈1〉)− ING(ψ
(1))

)
,(3.9)
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with ψ〈1〉 = eiτ〈∇〉/2ψ[n] and ψ(1) = eiτ〈∇〉/2INψ
n. Hence, combining the bounds

(2.14) and (3.4), we have ‖G(ψ〈1〉)‖m+1 + ‖G(ψ(1))‖m+1 . 1 and

(3.10) ‖G(ψ〈1〉)−G(ψ(1))‖ . ‖ψ〈1〉 − ψ(1)‖ . ‖ψ[n] − INψ
n‖ . hm+1 + ‖en‖.

To summarize, noticing ‖PNG(ψ
〈1〉)− ING(ψ

(1))‖ ≤ ‖PN (G(ψ(1)))− IN (G(ψ(1)))‖+
‖PN (G(ψ〈1〉))− PN (G(ψ(1)))‖ . hm+1 + ‖G(ψ〈1〉)−G(ψ(1))‖, we could obtain from
(3.9) that

‖en+1‖1 ≤‖en‖1 + ε2τ‖PNG(ψ
〈1〉)− ING(ψ

(1))‖
≤‖en‖1 + C1ε

2τhm+1 + C2ε
2τ‖en‖, 0 ≤ n ≤ Tε/τ − 1,

where C1, C2 are constants independent of ε, h, τ, n, τ0. Since e0 = PNu0 − INu0 −
i〈∇〉−1(PNu1−INu1), we have ‖e0‖1 . hm and discrete Gronwall’s inequality implies
‖en+1‖ . hm+1 (0 ≤ n ≤ Tε/τ − 1). Combining the above estimtates with (3.8), we
derive

‖ψ(·, tn)− INψ
n‖1 . hm + ε2τ2 + τm+1

0 , 0 ≤ n ≤ Tε/τ.

Recalling (3.3), we obtain error bounds for un and vn (0 ≤ n ≤ Tε/τ) as

‖u(·, tn)− INu
n‖1 =

1

2

∥∥∥ψ(·, tn) + ψ(·, tn)− INψ
n − INψn

∥∥∥
1

≤ ‖ψ(·, tn)− INψ
n‖1 . hm + ε2τ2 + τm+1

0 ,

‖v(·, tn)− INv
n‖ =

1

2
‖〈∇〉(ψ(·, tn)− ψ(·, tn))− 〈∇〉(INψn − INψn)‖

≤ ‖ψ(·, tn)− INψ
n‖1 . hm + ε2τ2 + τm+1

0 ,

which show (3.5) and the proof for Theorem 3.1 is completed. �

Remark 3.1. Through the proof of Theorem 3.1, it is not difficult to see the
spatial error estimates of u(·, tn)− INu

n in L2 norm can be improved to hm+1.

4. Extensions. In this section, we discuss the extensions of the time-splitting
method and corresponding error estimates to the complex NKGE with a general
power nonlinearity and an oscillatory complex NKGE which propagates waves with
wavelength at O(ε2p) in time.

4.1. To the complex NKGE with a general power nonlinearity. Consider
the following complex NKGE with a general power nonlinearity

(4.1)

{
∂ttu(x, t)−∆u(x, t) + u(x, t) + ε2p|u(x, t)|2pu(x, t) = 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω.

Here, u := u(x, t) is a complex-valued scalar field, p ∈ N+ is the power index, and
the initial data u0(x) and u1(x) are two given complex-valued functions which are
independent of ε. The domain Ω and periodic boundary conditions are given the
same as those in (1.1). The local/global well-posedness and scattering properties of
the Cauchy problem (4.1) have been widely studied in the literature and references
therein [26,29,34–37,43]. From the analytical results, the life-span of a smooth solution
to the complex NKGE (4.1) is at least O(ε−2p).
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For simplicity of notations, we only show the numerical scheme in 1D under the
periodic boundary condtions. Similarly, introducing v(x, t) = ∂tu(x, t) and

(4.2) η±(x, t) = u(x, t)∓ i 〈∇〉−1v(x, t), a ≤ x ≤ b, t ≥ 0,

and denoting f(ϕ) = |ϕ|2pϕ, then the complex NKGE (4.1) can be reformulated into
the following coupled relativistic NLSEs:

(4.3)




i∂tη± ± 〈∇〉η± ± ε2p〈∇〉−1f

(
1

2
η+ +

1

2
η−

)
= 0,

η±(t = 0) = u0 ∓ i 〈∇〉−1v0.

Let ηn±,j be the approximations of η±(xj , tn) for j ∈ T 0
N and n ≥ 0, and denote

ηn± = (ηn±,0, η
n
±,1, . . . , η

n
±,N )T ∈ Cn+1 as the solution at tn = nτ . Similar to the

NKGE with cubic nonlinearity, the second-order time-splitting Fourier pseudospectral
(TSFP) discretization for the relativistic NLSE (4.3) is given by

η
(1)
±,j =

∑

l∈TN

e± i
τδl
2 (̃ηn±)l e

iµl(xj−a),

η
(2)
±,j = η

(1)
±,j ± ε2pτfn

j ,

ηn+1
±,j =

∑

l∈TN

e± i
τδl
2

˜
(η

(2)
± )

l
eiµl(xj−a),

j ∈ T 0
N , n ≥ 0,(4.4)

with

η0±,j = u0(xj)∓ i
∑

l∈TN

1

δl
(̃v0)le

iµl(xj−a), fn
j = i

∑

l∈TN

1

δl
˜(

f((ηn+ + ηn−)/2)
)
l
eiµl(xj−a).

Then un+1
j and vn+1

j (j ∈ T 0
N , n ≥ 0) which are approximations of u(xj , tn+1) and

v(xj , tn+1), respectively, can be recovered by

(4.5) un+1
j =

1

2

(
ηn+1
+,j + ηn+1

−,j

)
, vn+1

j =
i

2

∑

l∈TN

δl

(
(̃ηn+1

+ )
l
− (̃ηn+1

− )
l

)
eiµl(xj−a).

We assume the exact solution u := u(x, t) of the NKGE (4.1) up to the time
Tε,p = T/ε2p (T > 0 fixed):

(B) ‖u‖L∞([0,Tε,p];Hm+1) . 1, ‖∂tu‖L∞([0,Tε,p];Hm) . 1, m ≥ 1,

then the following improved uniform error bounds for the TSFP method (4.4)–(4.5)
could be established up to the time Tε,p.

Theorem 4.1. Let un and vn be the numerical approximations obtained from
the TSFP (4.4)–(4.5). Under the assumption (B), there exist h0 > 0 and 0 < τ0 < 1
sufficiently small and independent of ε such that, for any 0 < ε ≤ 1, when 0 < h ≤ h0
and 0 < τ ≤ ατ0 for some fixed constant α > 0, we have the following improved
uniform error estimates

(4.6) ‖u(·, tn)− INun‖1+‖∂tu(·, tn)− INvn‖ . hm+ε2pτ2+ τm+1
0 , 0 ≤ n ≤ T/ε2p

τ
.

In particular, if the exact solution is sufficiently smooth, e.g. u, ∂tu ∈ H∞, the
uniform improved error bounds for sufficiently small τ could be

(4.7) ‖u(·, tn)− INu
n‖1 + ‖∂tu(·, tn)− INv

n‖ . hm + ε2pτ2, 0 ≤ n ≤ T/ε2p

τ
.



Improved estimates of time splitting methods for NKGE 15

4.2. To an oscillatory complex NKGE. Introducing a re-scale in time

(4.8) t =
r

ε2p
⇔ r = ε2pt, ν(x, r) = u(x, t),

the NKGE (4.1) could be reformulated into the following oscillatory complex NKGE
(4.9)



ε2p∂rrν(x, r)−
1

ε2p
∆ν(x, r) +

1

ε2p
ν(x, r) + |ν(x, r)|2pν(x, r) = 0, x ∈ Ω, r > 0,

ν(x, 0) = u0(x), ∂rν(x, 0) =
1

ε2p
u1(x), x ∈ Ω.

The solution of the oscillatory NKGE (4.9) propagates waves with amplitude at O(1),
wavelength at O(1) and O(ε2p) in space and time, respectively, and wave velocity at
O(ε−2p). Denote µ(x, r) = ∂rν(x, r), by taking the time step κ = ε2pτ , then the
improved error bounds on the time-splitting methods (see Remark 2.1) for the long-
time problem could be extended to the oscillatory complex NKGE (4.9) up to the
fixed time T .

Theorem 4.2. Let νn and µn be the numerical approximations obtained from the
TSFP method. Assume the exact solution ν of the oscillatory complex NKGE (4.9)
satisfies for some m ≥ 1:

ν ∈ L∞
(
[0, T ];Hm+1

)
, ∂rν ∈ L∞ ([0, T ];Hm) ,

‖ν‖L∞([0,T ];Hm+1) . 1, ‖∂rν‖L∞([0,T ];Hm) .
1

ε2p
,

there exist h0 > 0 and 0 < κ0 < 1 sufficiently small and independent of ε such that,
for any 0 < ε ≤ 1, when the mesh size 0 < h ≤ h0 and the time step 0 < κ ≤ ακ0ε

2p

for some fixed constant α > 0, we have the following improved error estimates

(4.10) ‖ν(·, rn)− INν
n‖1 + ε2p‖∂rν(·, rn)− INµ

n‖ . hm +
κ2

ε2p
+ κm+1

0 , 0 ≤ n ≤ T

κ
.

In particular, if the exact solution is sufficiently smooth, e.g. ν, ∂rν ∈ H∞, the
improved error bounds for sufficiently small κ could be

(4.11) ‖ν(·, rn)− INν
n‖1 + ε2p‖∂rν(·, rn)− INµ

n‖ . hm + κ2/ε2p, 0 ≤ n ≤ T

κ
.

Remark 4.1. Under the assumption of Theorem 4.2, direct error analysis for
time-splitting schemes [5,32] would lead to the error estimates as ‖ν(·, rn)−INνn‖1+
ε2p‖∂rν(·, rn) − INµ

n‖ . hm + κ2

ε4p . Our results are improved in the sense that the

error bound κ2

ε4p is now κ2

ε2p .
Remark 4.2. The proof of the improved error bounds for the oscillatory complex

NKGE in Theorem 4.2 is similar to the long-time problem and we omit the details
for brevity. We will provide an example in section 5 to confirm the improved error
bounds for the oscillatory complex NKGE and to demonstrate that they are sharp.

5. Numerical results. In this section, we present some numerical examples
in 1D and 2D to validate our improved uniform error bounds on the time-splitting
methods for the long-time dynamics of the NKGE with weak nonlinearity and the
improved error bounds for the oscillatory complex NKGE.
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5.1. The long-time dynamics in 1D. First, we test the long-time errors of
the TSFP (4.4)–(4.5) for the NKGE (4.1) in 1D with p = 2 and real-valued initial
data as

(5.1) u0(x) =
3

2 + cos2(x)
, u1(x) =

3

4 + cos2(x)
, x ∈ Ω = (0, 2π).

The numerical ‘exact’ solution is computed by the TSFP (4.4)–(4.5) with a very fine
mesh size he = π/60 and time step τe = 10−4. To quantify the error, we introduce
the following error functions:

(5.2) e1(tn) = ‖u(x, tn)− INu
n‖1 , e1,max(tn) = max

0≤q≤n
e1(tq).

In the rest of the paper, the spatial mesh size is always chosen sufficiently small such
that the spatial errors can be neglected when considering the long-time temporal
errors.

0 20 40 60 80 100 120 140

0

2

4

6

8

10
10-3

Fig. 5.1. Long-time temporal errors of the TSFP (4.4)–(4.5) for the NKGE (4.1) with p = 2
and different ε in 1D.
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Fig. 5.2. Long-time spatial errors of the TSFP (4.4)–(4.5) for the NKGE (4.1) with p = 2 in
1D at t = 1/ε4.
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Fig. 5.3. Long-time temporal errors of the TSFP (4.4)–(4.5) for the NKGE (4.1) with p = 2
in 1D at t = 1/ε4.

Fig. 5.1 displays the long-time errors of the TSFP (4.4)–(4.5) for the NKGE (4.1)
with p = 2, the fixed time step τ and different ε, which confirms the improved uniform
error bounds in H1-norm at O(ε4τ2) up to time at O(1/ε4). Fig. 5.2 and Fig. 5.3
depict the spatial and temporal errors of the TSFP (4.4)–(4.5) for the NKGE (4.1)
with p = 2 at t = 1/ε4, respectively. Fig. 5.2 indicates the spectral accuracy of the
TSFP (4.4)–(4.5) for the NKGE (4.1) in space and the spatial errors are independent
of the small parameter ε. Each line in Fig. 5.3 (a) corresponds to a fixed ε and shows
the global errors in H1-norm versus the time step τ , which confirms the second-order
convergence of the TSFP (4.4)–(4.5) for the NKGE (4.1) in time. Fig. 5.3 (b) again
validates that the global errors in H1- norm behave like O(ε4τ2) up to the time at
O(1/ε4).

For comparisons, we present the temporal errors of the first, second and fourth
order splitting methods. In space, we use the Fourier pseudospectral method with a
very fine mesh size such that the spatial errors are negligible.
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10-15

10-10

10-5

100
(a)

0.2 0.4 0.6 0.8 1

10-10

10-5

100 (b)

Fig. 5.4. Comparisons of the first, second and fourth order splitting methods for the NKGE (2.1).

Fig. 5.4 (a) depicts the temporal errors of three splitting methods with ε = 1/2,
which indicates that the higher order splitting method not only has higher order
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convergence rate but also achieves better accuracy under the same time step size. Fig.
5.4 (b) shows the temporal errors of three splitting methods for the fixed time step
and confirms the improved uniform error bounds for all the three splitting methods
up to the time at O(1/ε4).

5.2. The long-time dynamics in 2D. In this subsection, we show an example
in 2D with the irrational aspect ratio of the domain (x, y) ∈ Ω = (0, 1)× (0, 2π). In
the numerical experiment, we choose p = 1 and the initial data as

u0(x, y) =
2

1 + cos2(2πx+ y)
, u1(x) =

3

2 + 2 cos2(2πx+ y)
.

0 20 40 60 80 100 120 140

0

5

10

15

10-3

Fig. 5.5. Long-time temporal errors of the TSFP method for the NKGE in 2D with different ε.
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Fig. 5.6. Long-time temporal errors of the TSFP method for the NKGE in 2D at t = 1/ε2.

Fig. 5.5 presents the long-time errors of the TSFP method for the NKGE in 2D
with a fixed time step τ and different ε, which confirms that the improved uniform
error bounds at O(ε2τ2) up to the time at O(1/ε2) are also suitable for the domain
with irrational aspect ratio. Fig. 5.6 depicts the temporal errors for the TSFP method
for the NKGE in 2D at t = 1/ε2, which again indicates that the TSFP method is
second-order in time and validates the improved uniform error bounds up to the time
at O(1/ε2).
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Table 5.1

Temporal errors of the TSFP method for the oscillatory complex NKGE (4.9) in 1D.

e1(r = 1) κ0 = 0.05 κ0/4 κ0/4
2 κ0/4

3 κ0/4
4

ε0 = 1 1.11E-2 6.90E-4 4.31E-5 2.69E-6 1.68E-7

order - 2.00 2.00 2.00 2.00

ε0/2 6.25E-2 3.45E-3 2.14E-4 1.34E-5 8.35E-7

order - 2.09 2.01 2.00 2.00

ε0/2
2 8.26E-1 1.89E-2 1.11E-3 6.93E-5 4.33E-6

order - 2.72 2.04 2.00 2.00

ε0/2
3 1.54 3.19E-1 1.62E-2 1.01E-3 6.29E-5

order - 1.14 2.15 2.00 2.00

ε0/2
4 2.09 3.82 7.90E-2 4.26E-3 2.64E-4

order - -0.44 2.80 2.11 2.01

5.3. The oscillatory complex NKGE. In this subsection, we present the nu-
merical result for the oscillatory complex NKGE (4.10) in 1D to confirm the improved
error bound (4.9). We choose p = 1 and the complex-valued initial data as

u0(x) = x2(x− 1)2 + 3, u1(x) = x(x− 1)(2x− 1) + 3i cos(2πx), x ∈ Ω = (0, 1).

The regularity is enough to ensure the improved error bound in H1-norm.

Table 5.1 lists the temporal errors of the TSFP method for the oscillatory NKGE
(4.9) in 1D, which indicates that the second-order convergence can only be observed
when κ . ε2 (cf. the upper triangle above the diagonal with bold letters) and the
temporal errors inH1-norm behave like O(κ2/ε2) to confirm the improved error bound
(4.10) and to demonstrate that they are sharp.

6. Conclusions. Improved uniform error bounds on the time-splitting methods
for the long-time dynamics of the nonlinear Klein–Gordon equation (NKGE) with
weak cubic nonlinearity were rigorously established. By employing the technique of
regularity compensation oscillation (RCO), the improved uniform error bounds for the
second-order semi-discretization and full-discretization up to the time at O(1/ε2) were
carried out at O(ε2τ2) and O(hm + ε2τ2), respectively. The improved error bounds
are extended to the complex NKGE with a general power nonlinearity in the long-
time regime and the oscillatory complex NKGE up to the fixed time T . Numerical
results in 1D and 2D were presented to confirm the improved error bounds and to
demonstrate that they are sharp.
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schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations, Numer.
Math., 129 (2015), pp. 211–250.
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