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Abstract

Let (M, g) be a closed Riemannian manifold, and let F : M → R be a smooth
function on M . We show the following holds generically for the function F : for
each maximum p of F , there exist two minima, denoted by m+(p) and m−(p),
so that the gradient flow initialized at a random point close to p converges to
either m−(p) or m+(p) with high probability. The statement also holds for
F ∈ C∞(M) fixed and a generic metric g on M . We conclude by associating to
a given a generic pair (F, g) what we call its max-min graph, which captures
the relation between minima and maxima derived in the main result.

1 Introduction

A major challenge in non-convex optimization is to understand to which minimum
the gradient flow of a differentiable function converges. Indeed, this minimum
depends on the initialization of the gradient flow, and understanding how this
initialization impacts the gradient trajectory requires a global analysis that is in
general difficult. To sidestep these difficulties, stochastic methods such as simulated
annealing [17] have been put forward, with the goal of using stochasticity to decouple
the initialization of the flow from its convergence point [6, 18]. However, this comes
at the cost of slower convergence times and reliance on heuristics to set the value of
some parameters. Moreover, there are scenarios, e.g. arising in learning theory [4,7],
in which a deterministic initialization is required. In this paper, we study the
qualitative behavior of gradient flows. More precisely, we show that regardless of
the number of minima of F , for each maximum p of F , there exists two minima, not
necessarily distinct, so that the gradient flow initialized near p converges to these
minima with very high probability. Based on this characterization, we can naturally
assign a graph to each generic pair (F, g); we refer to it as a max-min graph and
discuss some of its basic properties in the last section, leaving its complete analysis
to a forthcoming publication.

1.1 Statement of the main result

Let (M, g) be a smooth closed Riemannian manifold and F : M → R be a smooth
function. We denote by ∇gF the gradient vector field of M for the inner product g,
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which is defined by the equation

g(∇gF,X) = dF ·X for all x ∈M,X ∈ TxM,

see [5, 9] for examples. We omit the exponent g when the metric is clear from
the context. Given a differentiable vector field f(x) on M , we denote by etfx the
one-parameter group of diffeomorphisms with infinitesimal generator f . Namely, we
set

e·f · : R×M →M : (t, x) 7→ etfx

to be the solution at time t of the Cauchy problem

ẏ = f(y), y(0) = x. (1)

The gradient flow of F at time t for the metric g is the map x 7→ e−t∇
gFx. We

also write e[−t,t]fx to denote the solution of (1) between time −t and t. For a subset
B ⊂M , we let e[−t,t]fB :=

⋃
x∈B e

[−t,t]fx.
We denote byM the space of smooth Riemannian metrics on M and by C∞(M)

the space of smooth real-valued functions on M . We endow these spaces with the
Whitney Ck-topology, for any k ≥ 3 fixed [10]. Given a topological space X, we
say that a subset Y ⊆ X is residual if it is a countable intersection of open dense
subsets Yi of X, i.e., Y =

⋂∞
i=1 Yi. A subset A ⊆ X is called generic if it contains a

residual set. Finally, we say that X is a Baire space if generic subsets of X are also
dense in X. The sets M and C∞(M), equipped with the Whitney Ck-topology, are
Baire spaces.

We are now in a position to state the main result of this paper. Let d : M×M → R
be a Riemannian distance function and denote by Bδ(p) the ball of radius δ centered
at p for the distance d:

Bδ(p) := {x ∈M | d(x, p) ≤ δ}. (2)

Note that d is not necessarily the distance induced by the metric g. For m1,m2 ∈M ,
let Wδ(p,m1,m2) be the set of points in Bδ(p) belonging to trajectories converging
to either m1 or m2:

Wδ(p,m1,m2) :=
{
x ∈ Bδ(p) | lim

t→∞
e−t∇Fx ∈ {m1,m2}

}
.

In terms of the stable manifolds W s(mi) (see [3] or below for a definition), we have
Wδ(p,m1,m2) = Bδ(p) ∩ (W s(m1) ∪W s(m2)). The main theorem is:

Theorem 1. Let F ∈ C∞(M) a Morse function on a smooth closed Riemannian
manifold (M, g). Let µ be a measure on M induced by a smooth positive density and
let d : M ×M → [0,∞) be any Riemannian distance function. Then generically for
g (resp. generically for F ), the following holds: For any maximum p, there exists
two minima m+(p),m−(p) with the property that for all ε > 0, there is δ > 0 such
that

µ (Wδ(p,m+,m−)) ≥ (1− ε)µ(Bδ(p)). (3)
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We make a few comments on the Theorem. The minima m−(p) and m+(p) are
not necessarily distinct; the gradient flow of the height function on a sphere provides
a simple example of this fact. The proofs below hold for F of class C3 and g of class
C2. The minimal differentiability requirement stem from the use of a linearization
theorem of Hartman, see Th. 2 below. In fact, since we use this theorem locally, one
could even relax the hypotheses to include functions and metrics that are of class
C3 and C2 around local maxima only. The results also hold for Morse functions
F : K ⊂ Rn → R, where K is any compact set so that ∇F evaluated on ∂K points
outside of K (said more precisely, e−t∇FK ⊂ K for t ≥ 0.)

1.2 Overview of the proof

The first step of the proof is to exhibit a necessary condition on the gradient of
F ensuring that (3) holds for a maximum and some pair of minima of F . To this
end, we introduce the notion of principal flow lines of a maximum of F . After
having defined the principal flow lines, we show in Proposition 1 that if they meet
a condition described below, then (3) holds—we will say that a maximum of F
is simple if its principal flow lines meet this condition. Finally, we will show in
Proposition 4 that gradient flows with simple maxima are generic. We will prove
genericity in terms of the choice of g for a fixed Morse function F , and reciprocally
genericity for a smooth F given a metric g.

1.3 Terminology and conventions

We denote by e1, . . . , en the canonical basis of Rn. We let Sn−1
r (p) ⊂ Rn be the unit

sphere of dimension n− 1, radius r and centered at p. We let Dn
r (p) ⊂ Rn be the

closed ball of radius r centered at p and Dn,+
r (p) be the upper “half-ball”

Dn,+
r (p) := {x ∈ Rn | ‖x− p‖ ≤ r and e>1 (x− p) ≥ 0}.

For x = (x1, . . . , xn), we define the projections

π1 : Rn → R : x 7→ x1 and π−1 : Rn → Rn−1 : x 7→ (x2, . . . , xn).

For a Morse function F with a critical point p, we denote by ind(p) the Morse index
of F at p. Given a map ϕ : M → N , we denote by ϕ∗ its pushfoward [12].

Recall that two submanifolds M1,M2 ⊂M intersect transversally at x ∈M1∩M2
in M if TxM1⊕ TxM2 = TxM . For a vector field f on M , we say that M1 and f are
transversal at x ∈ M1 if TxM1 ⊕ span{f(x)} = TxM . We shall use transversality
and appeal to the jet transversality theorem at various places in the proof. We refer
to [10] for an introduction. We will use throughout the paper the letter c to denote
a real constant, with the understanding that the value of c can change during a
derivation.
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2 Preliminaries

We let F ∈ C∞(M); a critical point of F is a point x so that dF (x) = 0. Their set
is denoted by CritF . We say that a critical point is non-degenerate if the symmetric
matrix ∂2F

∂z2 (p), where z are coordinates around p, is invertible. A function with
non-degenerate critical points is called a Morse function [13]. We call the Morse
index or index of a critical point p the number of negative eigenvalues of ∂2F

∂z2 (p). If
F is Morse, it is easy to show that its critical points are isolated (see, e.g., [3, Lemma
3.2]) and thus, since M is compact, they are finite in number. We denote by Criti F
the set of critical points of F of index i. Consequently, the set Critn F is the set of
maxima of F , and Crit0 F the set of minima.

Given a metric g ∈ M (resp. F ∈ C∞(M)) and a property S (e.g. F being
Morse), we say that there exist h ∈ M with property S arbitrarily close to g
if every Whitney open set containing g also contains an element h with property
S. For example, if F is a smooth function, it is well-known that there exist Morse
functions arbitrarily close to F .

The stable manifold W s(p, g) of a critical point p is defined as

W s(p, g) := {x ∈M | lim
t→∞

e−t∇
gF (x) = p};

when the metric is obvious from the context, we omit it and simply write W s(p).
Similarly, we define the unstable manifold of p as

W u(p, g) := {x ∈M | lim
t→−∞

e−t∇
gF (x) = p}.

The stable manifold theorem (for Morse functions) states (e.g., [3, Theorem 4.2])
that W s(p) is a smoothly embedded open-ball of dimension n − ind(p) in M . We
furthermore have the following decomposition ofM afforded by stable (resp. unstable)
manifolds of the critical points of a Morse function F :

M =
∐

p∈CritF
W u(p) =

∐
p∈CritF

W s(p).

We will use a result of Hartman [8, 14] which generalizes the Poincaré-Dulac
theorem on the linearization of analytic vector fields near a singularity [2]. It provides
conditions under which a diffeomorphism is locally C1-conjugate to its linearization
at a fixed point:

Theorem 2 (Hartman). Let U be an open subset of Rn, 0 ∈ U and f : U → Rn be
a C2 vector field with f(0) = 0. Assume that all the eigenvalues of A := ∂f

∂x (0) have
a negative real part. Then there exists open neighborhoods V ⊂ U , and W of the
origin, and a C1 diffeomorphism ψ : V →W so that for z = ψ(x), the differential
equation ẋ = f(x) is conjugate to ż = Az.
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We will rely on the following two simple results, whose proofs are omitted, to
apply Theorem 2 to gradient vector fields.

Lemma 1. Let F be a smooth Morse function and p ∈ CritF . Let (ϕ,U) be a
chart so that ϕ(p) = 0. Denote by Hg

ϕ(x) = d(ϕ∗∇gF ) the Jacobian matrix of ∇gF
expressed in the coordinate chart (ϕ,U). Then Hg

ϕ(0) is diagonalizable and has real
eigenvalues, which are independent from ϕ. Furthermore, the number of negative
eigenvalues of Hg

ϕ(0) is equal to the Morse index of p.

Since the eigenvalues of Hg
ϕ(0) are independent of the chart ϕ, we will simply

refer to the eigenvalues of Hg(0). The following Corollary provides a normal form
for gradient flows around maxima (or minima):

Corollary 3. Let F be a smooth Morse function on the Riemannian manifold (M, g)
and let ∇F be its gradient. For any p ∈ Critn F , there exists a chart (ϕ,U) with
ϕ(p) = 0 so that the gradient flow equation ẋ = −∇F is C1-conjugate to ż = −Λz in
the coordinates z = ϕ(x), where Λ = diag(λ1, . . . , λn), with λ1 ≤ λ2 ≤ · · · ≤ λn < 0.

3 Proof of the main result

We start by describing the intersection of stable manifolds of ∇F with submanifolds
of M . The result is needed for the proofs of Propositions 1 and 4. The topology on
subspaces of M is the usual subspace topology.

Lemma 2. Let (M, g) be a closed Riemannian manifold and F a smooth function.
Let S be an embedded submanifold of codimension one in M that is everywhere
transversal to ∇gF and set M0 :=

⊔
q∈Crit0 F W

s(q). Then MS
0 := M0 ∩ S is open

dense in S.

Proof. Recall the stable manifold decomposition of M :

M =
⊔

q∈CritF
W s(q)

where each stable manifold W s(q) is a smoothly embedded open ball of dimension
n− ind(q). When ind(q) = 0, the embedding is also a submersion and thus an open
map. Hence, for q ∈ Crit0 F , W s(q) is open in M and M0 is also open, since it is a
union of open sets. Set

M1 := M −M0 =
⊔

q∈CritF |ind(q)≥1
W s(q).

Then M = M0 tM1 and M1 is closed. Set MS
1 := M1 ∩ S, then MS

1 is closed in S
and we have S = MS

0 tMS
1 . Hence MS

0 is open in S as claimed.
It remains to show that MS

0 is dense in S or, equivalently, that MS
1 has an empty

interior in S. To see this, first recall that M1 is the disjoint union of embedded
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open balls of dimension at most n− 1, and thus by Sard ’s theorem, M1’s interior in
M is empty. Now assume by contradiction that there exists a non-empty open set
U ⊂MS

1 , and let x0 ∈ U . Let B ⊂ U be an embedded closed ball of dimension n− 1
properly containing x0. Because ∇gF is transversal to S, for ε > 0 small enough,

B1 := e[−ε,ε]∇gF ·B

is diffeomorphic to [−ε, ε]×B. Thus there exists an open neighborhood of x0 in M
contained in B1. But since B ⊂MS

1 ⊂M1 and M1 is invariant under the gradient
flow, then B1 ⊂M1 and M1 has a non-empty interior in M , which is a contradiction.
In conclusion, MS

1 is a closed set with empty interior in S. Its complement MS
0 is

then open dense in S as claimed.

Remark 1. Lemma 2 can be simplified under the additional assumption that ∇gF is
a Morse-Smale vector field, i.e., under the additional assumption that the stable and
unstable manifolds of ∇gF intersect transversally. With this additional assumption,
one can obtain as a consequence of the λ-Lemma [15, Lemma 2.7.1] that the closure
of M0 is equal to M1 (see also [19, Chapter 2]).

3.1 Principal flow lines and simple gradients

A smooth curve γt : R→M is a trajectory of the gradient flow of F (resp. gradient
ascent flow of F ) if it satisfies γ̇(t) = −∇F (γ(t)) (resp. γ̇t = ∇F (γt)) for all t ∈ R.
Since F is Morse, it is well known that limt→±∞ γt ∈ CritF . We introduce the
following definition:

Definition 1. Let (M, g) be a smooth Riemannian manifold and γt a smooth curve
in M . We say that γt reaches p ∈M tangentially to v ∈ TpM if

1. limt→∞ γt = p.

2. limt→∞
γ̇t
‖γ̇t‖ exists and is equal to v

The existence of the limit in condition 2 of Def. 1, under the assumption that
∇F be analytic, is the content of Thom’s generalized gradient conjecture [11]. While
we can construct smooth gradients for which this limit does not exist, we show below
in Lemma 3 that when F is Morse, its existence can easily be shown along what we
call the principal flow lines.

We now define a class of gradient vector fields for which the main inequality (2)
holds. We call them gradients with simple maxima. In order to define them, we first
introduce the notion of principal flow line of a maximum of ∇F .

Definition 2 (Principal flow lines). Let F be a smooth Morse function with gradient
vector field ∇gF and p ∈ Critn F . Denote by Hg(p) the linearization of ∇F at p
and let v ∈ TpM be a vector in the eigenspace of the smallest eigenvalue of Hg(p).
We say that a trajectory is a principal flow line of ∇F at p if it is a trajectory
of the gradient ascent flow that reaches p tangentially to v.
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We have the following result:

Lemma 3. If the algebraic multiplicity of the smallest eigenvalue of Hg(p) is equal
to one, then ∇gF has exactly two principal flow lines at p.

Proof. Let (ϕ,U) be the chart of Corollary 3, and set z = ϕ(x). The gradient ascent
flow is then

d

dt
z = Λz,

for Λ = diag(λ1, . . . , λn) and λ1 < λ2 ≤ · · · ≤ λn < 0. Let r > 0 be so that
Sr(0) ⊂ V ′ := ϕ(U). Note that Sr(0) parametrizes the set of gradient ascent flow
lines that reach p; indeed, every such flow lines intersects Sr(0) at a unique z0 ∈ Sr(0),
and is thus of the form z(t) = exp(Λt)z0.

We can write z0 =
∑n
i=1 ζiei for some coefficients ζi ∈ R, and exp(Λt) =∑n

i=1 e
λiteie

>
i . Since e>i ej = δij , where δij is the Kronecker delta, we have that

z(t) =
∑n
i=1 e

λitζiei and thus

Λz(t) =
n∑
i=1

λiζie
λitei = eλ1t

(
λ1ζ1e1 +

n∑
i=2

λiζie
(λi−λ1)tei

)
.

The norm of the above vector is

‖Λz(t)‖ =
(

n∑
i=1

λ2
i ζ

2
i e

2λit
)1/2

= eλ1t

(
λ2

1ζ
2
1 +

n∑
i=2

λ2
i ζ

2
i e

2(λi−λ1)t
)1/2

.

From the above two equations, we conclude that

lim
t→∞

Λz(t)
‖Λz(t)‖ = lim

t→∞

λ1ζ1e1 +
∑n
i=2 λiζie

(λi−λ1)tei(
λ2

1ζ
2
1 +

∑n
i=2 λ

2
i ζ

2
2e

2(λi−λ1)t)1/2 .
Recall that by assumption, λi − λ1 > 0, 2 ≤ i ≤ n. Since the ei are linearly
independent, we conclude that the above limit is ±e1 if and only if ζi = 0 for
2 ≤ i ≤ n, and thus ζ1 = ±r. This concludes the proof, with the vector v ∈ TpM
obtained by tracing back the changes of variable used.

If the conditions of the Lemma are not met, a maximum of a Morse function
can have more than two principal flow lines. For example, consider F = −x>Qx on
Rn, where Q is a positive definite matrix. Then F has a maximum at the origin. If
Q = I, then every flow line is a principal flow line.

Remark 2 (Intrinsic definition of principal flow lines). In view of Lemma 3, we
can define the tangent vector to a principal flow line v ∈ TpM intrisically as follows.
For vector fields X,Y , denote by LXY the Lie derivative of Y along X. If p
is a zero of X, i.e., X(p) = 0, then (LXY )(p) depends on the value of Y at
p only. Hence, we conclude that if p ∈ CritF , we can define the linear map
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L∇F : TpM → TpM : w 7→ L∇FW where W is any differentiable vector field
with W (p) = w. Then a short calculation shows that L∇F has Hϕ(p) as matrix
representation in the coordinates ϕ. The principal flow lines at p are thus the
trajectories of the gradient ascent flow that reach p tangentially to v ∈ TpM , where
v is an eigenvector of L∇F corresponding to the smallest eigenvalue.

We will denote the principal flow lines of ∇gF at p by γ+
t (p, g) and γ−t (p, g).

Equipped with the above Lemma, we define gradient vector fields with simple
maxima:
Definition 3 (Gradient vector fields with simple maxima). Let (M, g) be a Rie-
mannian manifold and F ∈ C∞(M) be Morse function with a maximum at p. We
say that p is a simple maximum of ∇F if Hg(p) has a unique smallest eigenvalue
and its principal flow lines belong to the stable manifolds of some minima of ∇F . If
all the maxima of ∇F are simple maxima, we say that ∇F is simple.

The above definition can be reformulated as follows. Let p ∈ Critn F and fix
a choice vp of eigenvector spanning the eigenspace of Hg(p) corresponding to the
smallest eigenvalue. Then ∇F is simple if for some (and thus all) t ∈ R,⋃

p∈Critn F
{γ+

t , γ
−
t } ⊂

⋃
q∈Crit0 F

W s(q).

3.2 Proof of the main theorem for simple gradients

We now show that under the condition that ∇F is simple, the inequality (2) holds.
We start with expressing an invariant set of ∇F as the epigraph of a differentiable
function locally around a maximum p. To describe this set, denote by Cr,r0 , for
0 < r0 < r the top cap of Sn−1

r (0), where top cap refer to the first coordinate (i.e.,
along the e1 axis) being greater than r0 (see Fig. 1). Its boundary, which we denote
by Lr,r0 , is a sphere of dimension n− 2 centered at r0e1 given by:

Lr,r0 := {(z1, z2, . . . , zn) | z1 = r0 and
n∑
i=2

z2
i = ρ2} = Sn−2

ρ (r0e1) (4)

where ρ =
√
r2 − r2

0. Let λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn < 0, Λ = diag(λ1, . . . , λn) ∈
Rn×n and define the diagonal system

żi = λizi, for 1 ≤ i ≤ n. (5)

We let Vr,r0 be the image of Cr,x under the flow of Eq. (5):

Vr,r0 := e[0,∞]Λ · Cr,r0 = {z ∈ Rn | z = eΛty for t ∈ [0,∞], y ∈ Cr,r0}. (6)

The boundary of Vr,r0 is then ∂Vr,r0 = eΛt · Lr,r0 . The following result expresses
this boundary as the graph of a function from Rn−1 → R, where by convention the
domain Rn−1 is the space spanned by {e2, . . . , en}, and the codomain is spanned by
e1.

8



Sr

γ−

γ+
e1

e2

Lr,r0 Lr,r0

Cr,r0

∂Vr,r0

Vr,r0

r0

ρWp

Figure 1: The simple maximum p of ∇F for a two-dimensional M has two principal flow
lines, aligned with the e1 axis. The sphere Sr is centered at p and Cr,x is the spherical cap
with the e1 coordinate larger than x. The set Lr,x is the boundary of Cr,x; it is a sphere of
dimension n− 2. Its image via the gradient flow is ∂Vr,x. We express, in Lemma 4, the set
∂Vr.x as a function from W (here, the e2 axis) to R (the e1 axis.)

Lemma 4. Let Vr,r0 ⊂ Rn be as in (6) for the dynamics of (5) and let W :=
{w ∈ Rn−1 | ‖w‖ ≤ ρ}. Then ∂Vr,r0 is the graph of a positive differentiable
function Fl : W → R, i.e., ∂Vr,r0 = {(Fl(w), w) | w ∈ W}. Furthermore, for

Fu : W → R : w 7→
(
‖w‖
ρ

)λ1
λ2 r0, it holds that

Fl(w) ≤ Fu(w).

The case n = 2 is proven: we have that Lr,r0 = {(r0, ρ), (r0,−ρ)} and ∂Vr,r0 =
{(eλ1tr0,±eλ2tρ) | t ∈ [0,∞]}. A short calculation yields that ∂Vr,r0 = (Fl(w), w) for
the function

Fl : w 7→
( |w|
ρ

)λ1
λ2
r0, w ∈ [−ρ, ρ].

We now prove the general case:

Proof of Lemma 4. Denote a point in Rn as z1e1 + z2e2 + · · ·+ znen and recall the
definition of Lr,r0 in Eq. (4).

Set Sn−2
ρ := {(z2, . . . , zn) |

∑n
i=2 z

2
i = ρ2}. From Eq. (5), we obtain

∂Vr,r0 = {(eλ1tz1, e
λ2tz2, . . . , e

λntzn) | (z1, . . . , zn) ∈ Lr,r0 , t ∈ [0,∞]}.

Set W0 := W − {0}. The map

Φ : [0,∞)× Sn−2
ρ →W0 : (t, z2, . . . , zn) 7→ (eλ2tz2, . . . , e

λntzn)

9



is a diffeomorphism onto its image. Recalling that π1 is the projection onto the first
coordinate, we see that ∂Vr,r0 − {0} is the graph of

Fl(w) := exp(λ1π1(Φ−1(w))r0,

which is differentiable and can be differentiably extended by 0 at 0.
We now show that Fu dominates Fl over W0. To see this, it is easier to work

in the coordinates afforded by Φ−1: in these coordinates, w = Φ(t, z2, . . . , zn) and,
recalling that π−1 is the projection (z1, z2, . . . , zn) 7→ (z2, . . . , zn), we have

Fu(w) = Fu(π−1(eΛtz)) =


√∑n

i=2 e
2λitz2

i

ρ

λ1/λ2

r0

=

eλ2t

√
z2

2 +
∑n
i=3 e

2(λi−λ2)tz2
i

ρ

λ1/λ2

r0

≥ eλ1tr0 = Fl(w)

where we used the facts that λ1 < λ2 ≤ λn < 0, 3 ≤ i ≤ n and
∑n
i=2 z

2
i = ρ2 to

obtain the inequality.

We are now ready to prove that inequality (2) holds for simple gradient flows.

Proposition 1. Let M be a closed manifold, and µ and d as in Theorem 1. Let
(F, g) be so that ∇gF is simple, Then for p ∈ Critn(F ), there exists m+(p),m−(p) ∈
Crit0(F ), not necessarily distinct, with the property that for all ε > 0, there is δ > 0
such that

µ

(
x ∈ Bδ(p) | lim

t→∞
e−t∇Fx ∈ {m+(p),m−(p)}

)
≥ (1− ε)µ(Bδ(p)).

Proof. Fix ε > 0. Let (ϕ,U) be a chart as in Corollary 3. The gradient ascent flow
in the coordinates given by z = ϕ(x) has the form

ż = Λz

in ϕ(U), where Λ = diag(λ1, . . . , λn). The principal flow lines γ+ and γ− of p are
aligned with the half-lines {z1e1 | z1 > 0} and {z1e1 | z1 < 0}, respectively.

Because p is simple, the principal flow lines γ+ and γ− of p belong to the stable
manifold of some minima of F ; denote them m+(p),m−(p) ∈ Crit0 F respectively.
Let K ⊂ ψ(U) be a compact, contractible set containing the origin in its interior.
Since the distance d is Riemannian, it is uniformly comparable to the Euclidean
distance in K, i.e., there exists constants β > α > 0 such that

α‖z‖ ≤ d(0, z) ≤ β‖z‖, for all z ∈ K, (7)
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where with a slight abuse of notation, we write d(0, z) for d(p, ϕ−1(z)). Fix r > 0 such
that Sr/α ⊂ K and Sr ⊂ K. For any 0 < δ < r, let Bδ := {z | d(0, z) ≤ δ} be the ball
of radius δ centered at 0 for the distance d, and by Dδ := {z | ‖z‖ ≤ δ} the ball of
radius δ centered at 0 for the Euclidean distance. We also let B+

δ := {z ∈ Bδ | z1 ≥ 0}
(and B−δ is defined in the obvious way), and define the half-balls D±δ for the Euclidean
distance similarly.

Because p is simple, we have re1 ∈ W s(m+(p)), and because W s(m+(p)) is
open in M , there exists r0 ∈ (0, r) such that the closed spherical cap Cr,r0 of Sr is
contained in W s(m+(p)); see Fig. 2-left. Hence Vr,r0 ⊆W s(m+(p)), where we recall
that Vr,r0 is the image of Cr,r0 under the flow as we defined in (6).

We claim that
lim
δ→0

µ(B+
δ ∩ Vr,r0)
µ(B+

δ )
= 1 (8)

and similarly, that limδ→0
µ(B+

δ
∩V −r,r0 )

µ(B+
δ

) = 1, where V −r,r0 is the image of a lower
spherical cap under the flow. Assuming the claim holds, using elementary properties
of measures, we have that (see Lemma 10 in the Appendix for a proof)

lim
δ→0

µ(Bδ ∩ (Vr,r0 ∪ V −r,r0))
µ(Bδ)

= 1

Since
(
Vr,r0 ∪ V −r,r0

)
⊆ (W s(m+(p)) ∪W s(m−(p))), we conclude that for all

ε > 0, there exists δ so that

µ ([W s(m−(p)) ∪W s(m+(p))] ∩Bδ) ≥ (1− ε)µ(Bδ),

as announced.
It now remains to prove the claim, i.e. prove that (8) holds. Let W and

Fu(w), Fl(w) be as in Lemma 4 and define the graph of F : W → R as the set
{(F (w), w) ∈ Rn | w ∈W}. We denote by Epi(f) the epigraph of a function f , and
by Hyp(f) its hypograph. Since Fu ≥ Fl, we have that (see Fig. 2-right)

Epi(Fu) ∩D+
δ ⊆ Epi(Fl) ∩D+

δ = Vr,r0 ∩D+
δ ,

for any 0 < δ < r. Passing to hypographs, we have

Vr,r0 ∩D+
δ = D+

δ − (D+
δ ∩Hyp(Fl)) ⊇ D+

δ − (D+
δ ∩Hyp(Fu)). (9)

From (7), we have the inclusions

Dδ1 ⊆ Bδ ⊆ Dδ2 (10)

for δ1 := δ
β and δ2 := δ

α . Hence,

B+
δ ∩Hyp(Fu) ⊆ D+

δ2
∩Hyp(Fu). (11)
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W s(m)
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r0
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γ−

γ+
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B−
δ
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Fl = ∂Vr,x

γ−

γ+

Dδ2Dδ1

p

Figure 2: Left: In the coordinates of Cor. 3, the local principal flow lines are the positive
and negative e1 (vertical) axis. The spherical cap Cr,x is contained in a stable manifold,
thus so is its image Vr,x under the gradient ascent flow. Right: We can express Vr,x as the
epigraph of Fl(w), which is dominated by Fu(w) and thus Hyp(Fl) ⊂ HypFu. Furthermore,
D+
δ ∩Hyp(Fu) is contained in Bδ2 ∩Hyp(Fu) which is itself contained into the cylinder with

base a ball of radius δ2 and height Fu(δ2) (light shaded rectangle).

From (10) and (11), we have that

µ
(
B+
δ ∩Hyp(Fu)

)
µ(B+

δ )
≤
µ
(
D+
δ2
∩Hyp(Fu)

)
µ(D+

δ1
)

. (12)

Because Fu(w) is rotationally symmetric about e1 and strictly increasing as ‖w‖
increases, we have

µ(D+
δ2
∩Hyp(Fu)) ≤ cδn−1

2 Fu(δ2) ≤ cδn−1+λ1/λ2 ,

whereas µ
(
D+
δ1

)
= cδn. Since λ1/λ2 > 1, we conclude from the previous relation

together with (12) that

0 ≤ lim
δ→0

µ
(
B+
δ ∩Hyp(Fu)

)
µ(B+

δ )
≤ lim

δ→0

µ(D+
δ2
∩Hyp(Fu))
µ(D+

δ1
)

= 0. (13)

From (9), we have that

µ
(
Vr,r0 ∩B+

ρ

)
µ(B+

δ )
≥ 1−

µ
(
B+
δ ∩Hyp(Fu)

)
µ(B+

δ )
.
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Taking the limit as δ → 0, using (13) and recalling that Vr,r0 ⊆W s(m+(p)) we get
that

lim
δ→0

µ
(
W s(m+(p)) ∩B+

δ

)
µ(B+

δ )
= 1,

thus proving (8) as claimed. Applying the same reasoning to the stable manifold of
m−(p) and B−δ , we get that similarly limδ→0

µ(W s(m−(p))∩B−
δ )

µ(B−
δ

) = 1.

3.3 Simple gradients are generic

We now prove that gradient vector fields with simple maxima are generic. There
are two requirements to being simple: (1) the smallest eigenvalue of the linearized
vector field has geometric multiplicity one, and (2) the principal flow lines need to
be contained in stable manifolds of minima of F . We treat the two requirements
separately.

To this end, for F ∈ C∞(M), we denote by M0,F the set of Riemannian metrics
g on M with the property that the smallest eigenvalue of the linearization of ∇gF (p)
has geometric multiplicity one when evaluated at any maximum p ∈ Critn(F ). We
write the requirement simply as λ1(Hg(p)) < λ2(Hg(p)) for all p ∈ Critn F . We
further denote byMF the subset ofM0,F consisting of metrics g for which ∇gF has
simple maxima. Given g ∈ M, we similarly let F0,g be the set of Morse functions
F ∈ C∞(M) on (M, g) so that for each p ∈ Critn F , λ1(Hg(p)) < λ2(Hg(p)) and Fg
the subset of F0,g consisting of functions F for which ∇gF has simple maxima. We
will show that MF is residual in M and that Fg is residual in C∞(M).

3.3.1 Geometric multiplicity of the smallest eigenvalue

We prove that the set of metrics for which the linearization of ∇gF has a smallest
eigenvalue of multiplicity one at each maximum p is open-dense:

Proposition 2. The set M0,F is open and dense in M.

Proof. We first show the set is open. Let F be a Morse function so that for each p ∈
Critn F , λ1(Hg(p)) < λ2(Hg(p)). Since the eigenvalues of Hg(p) depend continuously
on g, there exists an open set Up ⊂ G so that for all h ∈ Up, λ1(Hh(p)) < λ2(Hh(p)).
Since |Critn F | is finite, U :=

⋂
p∈Critn F Up ⊂M is an open set containing g. Hence

M0,F is open.
To show that M0,F is dense, assume that g is so that there exists p ∈ Critn F

with λ1(Hg(p)) = λ2(Hg(p)). We show that we can find, in any open set containing
g, a metric h so that λ1(Hh(p)) < λ2(Hh(p)). Recall that in coordinates around p

sending p to 0 ∈ Rn, we can write Hh(p) = H−1(0)∂2F
∂z2 , where H(x) is a positive

definite matrix defined in a neighborhood of 0. Using a bump function around p, the
fact that the map X 7→ X−1 is a diffeomorphism around X = H−1(0), and Lemma 8
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(which states that if a product AB of two positive definite matrices has repeated
eigenvalues, there exists A′ positive definite and arbitrarily close to A so that A′B
has distinct eigenvalues), we can obtain a metric h arbitrarily close to g and so that
H−1(0) ∂F

∂x2 has distinct eigenvalues.

We now show the equivalent result for a fixed metric g and arbitrary Morse
function F . Just as above, we in fact prove the stronger statement that the set of
Morse function so that Hg(p) has distinct eigenvalues at each of the critical points
of F is open dense. The proof relies on the notion of jet tranversality – we refer
to [10] for an introduction.

Proposition 3. The set F0,g is open dense in C∞(M).

Proof. We know that Morse functions are an open dense subset of C∞(M) [3]. We
show that Morse functions for which Hg(p) has distinct eigenvalues at p ∈ Critn F
form an open dense subset of the set of Morse functions, and thus are open dense in
C∞(M).

Given A ∈ Rn×n, denote by pA(s) its characteristic polynomial in the indeter-
minate s and let p′A(s) = d

dspA(s). Denote by rA ∈ R2n×2n the Sylvester resultant
of pA and p′A. It is well known that det(rA) = 0 if and only if pA has a double
root. Let Z ⊂ Rn×n be the zero set of det(rA). Relying on Whitney’s stratification
theorem [20], we can show that Z is a finite union of closed manifolds.

Denote by J2(M,R) the second jet-space of maps F : M → R and define

C = {(x, y, 0n, H) ∈ J2(M,R) | x ∈M,y ∈ R, G−1(x)H ∈ Z)},

where G(x) is the matrix expression of g. Then C is a finite union of submanifolds
of J2(M,R) of codimension ≥ n+ 1 (since we restrict the first derivative to be zero,
and Z is the union of submanifolds of codimension at least one.) Consequently, the
second jet prolongation of F , j2(F ), and C are transversal only at points at which
they do not intersect. Furthermore, C is easily seen to be closed in J2(M,R). Hence,
from the jet-transversality theorem [10], we conclude that the set of real-valued
functions without critical points for which Hg(p) has repeated eigenvalues is open
and dense in C∞(M).

3.3.2 Continuity of principal flow lines with respect to F/g

We now address the second part of the simplicity of ∇F requirement: the principal
flow lines of each maxima belong to the stable manifolds of minima of F . The first step
is to establish that principal flow lines depend continuously on the metric/function.

Lemma 5. Let (M, g) be a closed Riemannian manifold. Let F be a smooth Morse
function, and p ∈M a simple maximum of ∇gF . Then, there exists a C1-embedded
closed ball Bp 3 p in M and an open set U ⊂ M containing g with the following
properties:
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1. Bp contains no other critical points of F

2. the principal flow line γ+(p, h) (resp. γ−(p, h)) intersect ∂Bp at one point,
and the intersection γ+ ∩ ∂Bp (resp. γ− ∩ ∂Bp) depends continuously on h,
h ∈ U .

3. the boundary ∂Bp is everywhere transversal to ∇hF , h ∈ U

4. Bp is an invariant set for the gradient ascent flow of ∇hF , h ∈ U .

Proof. We work in the chart (ϕ,U) afforded by Corollary 3 sending p to 0 ∈ Rn,
and for which the gradient flow differential equation is ż = Λz, with Λ a diagonal
matrix with diagonal entries λ1 < λ2 ≤ · · · ≤ λn < 0.

Since ∇hF depends continuously on h, from the proof of Hartman’s theorem [8],
we know that there exists a neighborhood V 3 0, a neighborhood U0 ⊂ M of g
and a continuous mapping ψ : U0 → Diff(V,Rn) such that for any metric h ∈ U0,
the diffeomorphism ψh : V → Rn linearizes ∇hF around 0 (see also [14, p. 215],
the author calls the continuous dependence of the linearizing diffeomorphism with
respect to the vector field robust linearization). Note that in the coordinates used,
ψg = Id.

The principal flow lines of ∇gF in the z-coordinates are locally given by the
half-lines starting at the origin and spanned by the vectors ±e1. Let r > 0 be such
that Br := Br(0) ⊂ V . The half-lines intersect ∂Br = Sr at exactly two points,
denote them z+(g), z−(g), and these intersections are clearly transversal.

Taking a subset U1 ⊂ U0, we can ensure that for all h ∈ U1, λ1(Hh(p)) <
λ2(Hh(p)), since the eigenvalues depend continuously on h. Similarly, in the (lin-
earizing) coordinates ψh, the principal flow lines of ∇hF are half-lines starting at
the origin and spanned by an eigenvector v1(Hh

ψ(p)) associated with λ1(Hh
ψ(p)) and,

from Lemma 9, we know that the eigenspace v1(Hh
ψ(p)) depends continuously on

h as well. The principal flow lines of ∇hF in the z-coordinates are given by the
image under ψ−1

h of the half-line starting at zero and parallel to v1(Hh
ψ(p)), and

thus depend continuously on h. Now since the principal flow lines of ∇gF intersect
Sr transversally, by taking a subset U2 ⊂ U1, we can ensure that for all h ∈ U2,
the principal flow lines of ∇hF in z-coordinates intersect Sr transversally and the
intersections z+(h), z−(h) are continuous in h.

Finally, for the last two items, since ∇gF is linearized by ϕ as ż = Λz, with
Λ diagonal and with negative, real eigenvalues, then ∇gF evaluated on Sr points
inward, toward Br: indeed, the inward pointing normal to Sr at z is −z and its
inner product with ∇gF is −z>Λz > 0. Because Sr is compact, the same conclusion
holds for vector fields close enough to ∇gF . Hence Br is invariant for ∇hF , for h
close to g. Setting Bp to be the inverse image under the chart

Bp := ϕ−1(Br(0)), (14)

we obtain a set with the required properties.
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Remark 3. The above result transposes immediately to the case where the Rie-
mannian metric g is fixed, and we consider an open set of function U0 ⊂ C∞(M)
containing F where ∇gF has a simple maximum at p. The continuous dependence
of ∇gF on F is obvious. The only point of demarcation is that when varying F to a
nearby F1, the critical points of ∇gF1 may move. It is easy to see though that for a
U0 small enough, they move continuously and their index remains the same: there
exists a continuous map P : U0 → V ⊂ M so that P (F1) is a critical point of F1.
(See, e.g., [15, Lemma 3.2.1] or [14]).

3.3.3 Genericity of simple gradients

We now prove the second part of the main theorem, namely that simple gradient
flows are generic.

Proposition 4. Let F ∈ C∞(M) be a Morse function. The set MF of Riemannian
metrics for which ∇gF is simple is residual. Similarly, for a Riemannian manifold
(M, g), the set F of smooth functions for which ∇gF is simple is residual.

We prove the first statement, and then indicate the minor changes needed to
obtain the second statement.

Proof. Pick a Morse function F ∈ C∞(M) and metric g ∈ M0,F . We denote by
p1, . . . , pm and by s1, . . . , sl the maxima and saddle points of F , respectively. We
have shown that M0,F is open dense in M, it thus remains to show that metrics g
in M0,F for which the principal flow lines of ∇gF at pi, 1 ≤ i ≤ m, belong to the
stable manifolds of some minima form a generic set. Owing to the stable manifold
decomposition of M and the fact that W s(p) = {p} for p ∈ Critn F , it is equivalent
to show that, generically for g, the principal flow lines of ∇gF at pi do not belong
to the stable manifold of some saddle points.

To this end, we will make use of the following straightforward characterization
of generic sets: given that M0,F is dense in M, the subset MF ⊆M is generic if
and only if for each g ∈ M0,F , there exists a neighborhood Ng of g in M so that
MF

⋂
Ng is generic in Ng. For a proof of this statement, we refer to, e.g., [15, Lemma

3.3.3]. The statement allows us to consider only elements ofM0,F , which is an easier
task than considering any element of MF .

For each si, we let W s
0 (si, g) be a compact neighborhood of si in the stable

manifold W s(si, g). Let Σs
i be a codimension one submanifold of M that is (1)

transversal to ∇gF and to W s
0 (si, g) and (2) meets W s

0 (si, g) at the boundary
∂W s

0 (si, g). The construction of the set Σs
i appears in the proof of the Kupka-Smale

theorem [16], and we refer to, e.g., [15, p.107] for a constructive proof of its existence.
Because ∇hF depends continuously on h, we know from the stable manifold

theorem [15, Th. 2.6.2] that for h in a small enough neighborhood Ng ⊂M0,F , the
maps h 7→W s

0 (si, h), 1 ≤ i ≤ l, are continuous and so that W s
0 (si, h) intersects Σs

i
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transversally at ∂W s
0 (si, h), 1 ≤ i ≤ l. Note that since M0,F is open in M, Ng is

also a neighborhood of g in M.
Let k ≥ 1 be a positive integer. Define

W s
k (si, h) := e−k∇

hF ·W0(si, h),

i.e., the image of W s
0 (si, h) by applying the gradient flow for a time of k (or the

gradient ascent flow for a time −k.) Since e−k∇hF : M →M is a diffeomorphism for
each k, W s

k (si, h) is a compact subset of M that depends continuously on h. Finally,
we have by definition that

W s(si, h) =
⋃
k≥0

W s
k (si, h).

Let Mk,i(Ng) ⊆ M0,F
⋂
Ng be the set of metrics h in Ng for which the local

principal flow lines of ∇hF at pi do not intersect W s
k (sj , h) for all 1 ≤ j ≤ l,

1 ≤ i ≤ m. Let

Mk(Ng) =
m⋂
i=1
Mk,i(Ng).

We will show that for all k ≥ 0, Mk(Ng) is open and dense in Ng. Since
∩∞k=1Mk(Ng) = MF ∩ Ng, this shows that MF ∩ Ng is generic and, using the
characterization of generic sets described above, proves the result.
Mk,i(Ng) is open in Ng: We show that for any h ∈ Mk,i(Ng), there exists an

open neighborhood Uh of h contained in Mk,i(Ng).
To this end, let Bpi ⊂ M and U i ⊂ M0,F be the closed ball and open set,

respectively, from Lemma 5 for the metric h. Since ∇hF is transversal to ∂Bp
and codim ∂Bpi = 1, then Wk(sj , h) and ∂Bpi intersect transversally. Additionally,
because the map h′ 7→ W s

i (sj , h′) is continuous for h′ ∈ Mk,i(Ng), so are the
intersections of W s

i (sj , h′) with Bpi as a function of h′. From the same Lemma,
denoting by γh′i,0 the (positive) local principal flow line of ∇h′F at pi, we know that
the map h′ 7→ γh

′
i,0 ∩ ∂Bpi is continuous as well.

Putting the above two facts together, we conclude that there exists a neighborhood
Uh of h inMk,i(Ng) so that for all h′ ∈ Uh, the principal flow lines γh′i,0 do not intersect
W s
k (si, h′). Hence Mk,i(Ng) is open.

Mk,i(Ng) is dense in Ng: We will show that for any element h ∈ Ng, there
exists an element h′ ∈Mk,i arbitrarily close to h. If h ∈Mk,i, there is nothing to
prove. Hence assume, to fix ideas, that the positive principal flow line γhi,0 intersects
∪lj=1W

s
n(sj , h).

Using the local change of variables ϕh : (U, pi)→ (Rn, 0) afforded by Hartman’s
Theorem (Theorem 2) around the maximum pi, the system follows the dynamics
ż = Λz and after potentially another linear change of variables, we can assume that
Λ = diag(λ1, . . . , λn), with λ1 < λ2 ≤ · · · ≤ λn < 0 the eigenvalues of Hh(p). From
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Eq. (14), we know that Bpi in the z coordinates is a ball Br(0) of given radius r > 0
and centered at 0.

Denote by γ+
0 the segment (te1, 0, . . . , 0) ∈ Rn, 0 ≤ t ≤ r. It is a compact subset

of the (positive) principal flow line of ∇hF at pi. Let z0 = (r/2, 0, . . . , 0). Since z0
is not a critical point of ∇hF , by the flowbox theorem [15, p. 93], we know there
exists a neighborhood U0 of z0, which we take to be included in the ball of radius
r/2 around z0, and a local diffeomorphism ϕ0 : U0 → Rn under which the dynamics
is, in the new variables induced by ϕ0 (which we denote by y) given by

ẏ = (1, 0, . . . , 0).

Without loss of generality, we can assume that ϕ0(z0) = (r/2, 0, . . . , 0) =: y0. See
Fig. 3 for an illustration.

Working in the y-coordinates, let K be a box (unit ball for ‖ · ‖∞ norm) centered
at y0 and of width 0 < r′ < r/2 small enough so that ϕ−1

0 (K) ⊂ Br. For any h̃ ∈M
which agrees with h outside of K, because ∇hF and ∇h̃F then also agree outside of
M −Br and this set is invariant under the flow −∇hF by Lemma 5, we have that

W s
k (sj , h̃) ∩ ∂Br = W s

k (sj , h) ∩ ∂Br.

Let y1 := y0 − (r′/2, 0, . . . , 0) ∈ ∂K. Let θ : M → R be a smooth positive
function with support K and such that∫ r′

0
θ(y1 + te1)dt = 1.

Now define the following smooth vector field with support in K: for v ∈ Rn,

Yv(y) := θ(y)v.

Let φvt (y1) be the solution at time t of the Cauchy problem

ẏ = ∇hF (y) + Yv(y), y(0) = y1, (15)

To proceed, we show that we can always find a metric for which the vector field
in Eq. (15) is the gradient of F :

Lemma 6. For δ > 0 small enough, there exists a metric-valued function hv for all
v ∈ Rn with ‖v‖ < δ, depending continuously on v, agreeing with h outside of K, so
that

∇hvF (y) = ∇hF (y) + Yv(y).

Proof. Because K does not contain any critical points of F , we have that dF ·∇hF >
0. Thus, for δ small enough, we have that dF · (∇hF +Yv) > 0 for all v with ‖v‖ < δ,
y ∈ K. Set Zv := ∇hF + Yv.

18



From the above, we can decompose the tangent space TyM = spanZv(y) ⊕
ker dF (y) for y ∈ K. We now introduce a metric for which this decomposition of
the tangent space is orthogonal. In coordinates, it has the matrix expression

hv :=
(
dF · Zv 0

0 h| ker dF

)
,

where h| ker dF is the restriction of h to the n−1 dimensional subspace ker dF (precisely,
the matrix expression for hv is in the basis {Zv, Z1, . . . , Zn−1} where the Zi are any
independent system spanning ker dF . In particular, note that hv(Zv, Zv) = dF · Zv
and hv(Zv, Zi) = 0, 1 ≤ i ≤ n− 1).

The above construction is such that hv depends continuously on v, h0 = h and
hv = h in M −K. Finally, we show that ∇hvF = Zv. To this end, let W be an
arbitrary vector field; we can decompose it uniquely as W = a1Zv + Wh, where
Wh ∈ ker dF , a1 ∈ R. We then have

dF ·W = dF · (a1Zv +Wh)
= a1dF · Zv = a1hv(Zv, Zv)
= hv(a1Zv +Wh, Zv) = hv(W,Zv),

which concludes the proof.

Now introduce the flow map of (15)

Φ : Rn →M : v 7→ Φ(v) := φvr′(y1). (16)

Then, recalling that ∇hF = (1, 0 . . . 0) in K, we see that Φ(0) = y1 + (r′, 0, . . . , 0) =:
y2 ∈ ∂K. Furthermore, we have the following Lemma:

Lemma 7. The map Φ defined in Eq. (16) is locally surjective around 0.

Proof. We prove the statement by showing that the linearization of Φ around 0 is
surjective. Denote by w(t) = y1 + te1 the solution of (15) with v = 0. It is clear
that w(t) is a segment of the positive principal flow line of ∇hF at pi, and that
w(0) = y1 = ((r − r′)/2, 0, . . . , 0) and w(r′) = ((r + r′)/2, 0, . . . , 0) = y2. Recall the
perturbation formula [1, Sec. 32]

d

dη
|η=0Φ(ηv) =

∫ r′

0
Yv(w(r′ − s))ds.

In particular, the right-hand side depends on the value of Yv along w only and, by
construction, is equal to v. This proves that Φ is locally surjective as claimed.

To conclude the proof, we show for any δ > 0, we we can find v with ‖v‖ < δ so
that the gradient of F for hv is simple. Since h0 = h and hv is continuous in v, this
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x∗(h0) x∗(hv)

Figure 3: The gradient flow inside Br′ goes along vertical lines. The principal flow line for
h, and for any metric agreeing with h outside of K, contains the segment (p, y1). Changing
the metric only inside K, we can make the corresponding principal flow line go through
y2 + u, for any small u. The set of realizable intersections of top face of K and principal
flow lines (by changing the metric to h′ inside K) is denoted by S. Since S is transversal to
∇hF (and thus to ∇h′

F , since h and h′ agree outside of K), its image under the gradient
flow intersects ∂Br to yield S′ containing an open set around x∗(h0).

shows that there exists metric arbitrarily close to h for which the gradient of F is
simple.

As above, let Ui 3 h be the open neighborhood of h from Lemma 5. By perhaps
decreasing δ, we can ensure that hv ∈ Ui for all v with ‖v‖ < δ (since hv depends
continuously on v, and h0 = h.)

Denote by x∗(hv) ∈ ∂Br the point of intersection of ∂Br and γ(pi, hv) (the
intersection is not empty per Lemma 5). Then for each ‖v‖ < δ, x∗(hv) is on the
same flow line as y1 since hv agrees with h outside of K. Because Φ is locally
surjective around 0, appealing to the inverse function theorem, we can find, for δ
and δ1 small enough, a continuous function Φ−1 : u 7→ v so that Φ(v) = u, for all u
with ‖u‖ < δ1. Let S ∈ ∂K be the subset of the ’top face’ defined as

S := {y2 + u | ‖u‖ < δ1 and e>1 u = 0}.

Note that S and ∇hF are transversal by construction.
To make the notation simpler, we set v := Φ−1(u). The principal flow line of ∇hv

intersects S at y2 + u: every point in S can thus be made to belong to a principal
flow line of a ∇hvF for an appropriate v. Using again the fact that hv agrees with
h0 = h outside of K, we see that

e−[0,∞)∇hvF (S) = e−[0,∞)∇hF (S),
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and thus S1 := e−[0,∞)∇hvF (S)
⋂
∂Br contains an open set around x∗(h0). Hence,

for any x∗1 ∈ ∂Br near x∗(h0), we can find a v so that the principal flow line of
∇hvF goes through x∗1. Finally, since Wn(pi, h) = Wn(pi, hv) and Wn(pi, h) ∩ ∂Br
is closed, there exists x∗1 ∈ ∂Br arbitrarily close to x∗(h)—and thus a v arbitrarily
small—so that the principal flow line of ∇hvF does not belong to Wn(pi, hv) ∩ ∂Br
and thus does not belong to Wn(pi, hv). This concludes the proof.

4 Summary and outlook: max-min graphs

4.1 Max-min graphs

From the main result of the paper, we see that given a smooth n-dimensional closed
manifold M , to any generic pair (F, g) ∈ C∞(M)×M, there is a naturally assigned
bipartite graph G = (V,E), which we call max-min graph of (F, g)
Definition 4 (Max-min graph of (F, g)). The max-min graph of a generic pair
(F, g) ∈ C∞(M)×M is the bipartite graph G = (V,E) with V = Crit0(F )∪Critn(F )
and

E = {(pi,m−(pi)), (pi,m+(pi)) | pi Critn(F )}.
The set of possible max-min graphs for generic gradient vector fields for n = 1 is

easily seen to depend on the topology of M , and can be completely characterized:
denote by pi and mj the elements of Critn(F ) and Crit0(F ), respectively. Denote by
H1(M) is the first homology group of M which, since dimM = 1 and M is connected,
has rank either 0 or 1. Recall that if M = Rn, we assume that lim‖x‖→∞ F (x) =∞
and F has a finite number of critical points. We have (see Fig. 4 for an illustration)
Proposition 5 (Max-min graphs for dimM = 1). Assume dimM = 1, then

1. case rankH1(M) = 0: k =: |Crit0(F )| = |Critn(F )| + 1 and there exists an
ordering of pi, mj so that

E = ∪ki=1{(pi,mi), (pi,mi+1)}.

Thus deg(pi) = 2 for pi ∈ Critn(F ).

2. case rankH1(M) = 1: then k =: |Critn(F )| = |Crit0(F )| and there exists an
ordering of pi, mj so that

E = ∪ki=1{(mi, pi), (mi, pi+1 mod k)}.

Thus deg(mi) = deg(pi) = 2 for mi, pi ∈ V .
The proof of the proposition is an immediate consequence of the following facts:

(1) F is generically Morse (and thus does not have saddle points if dimM = 1); (2)
the critical points of F can in this case be given a cyclic (if rankH1(M) = 1) or linear
(if rankH1(M) = 0) order and (3) maxima and minima of F appear alternatively in
this order.
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Figure 4: Top Left: A Morse function on M = R. To each maximum pi, we can assign two
minima m−(p),m+(p) so that gradient descent for F1 initialized in B(p) converges to either
m−(p) or m+(p). Top Right: The flow graph of the gradient of F1. Each minimum has
degree two and maxima have degrees one or two. Bottom Left: A circle is embedded in the
plane with vertical axis z and we consider the Morse function F2(x) = z (height function).
It has three maxima and three minima. Bottom Right: The flow graph of the gradient of F2.
All critical points have degree two.

4.2 Realizable max-min graphs and topology of M

This leads us to the following:
Open problem: what kind of bipartite graphs can be max-min graphs of a pair
(F, g) over M?

To address this problem, we call an abstract max-min graph any simple bipartite
graph G = (V0 ∪ V1, E) where

1. |V0| ≥ 1, |V1| ≥ 1

2. 1 ≤ deg(p) ≤ 2 for all p ∈ V1

We think of V0 as the set of minima and V1 as the set of maxima. We say that a
pair (F, g) realizes G on M with the max-min graph of ∇gF is equal to G.

The set of abstract max-min graphs that can be realized depends on the topology
of M , as was clear in the case dimM = 1 described in Prop. 5. We can also easily
realize max-min graphs with a single node in V0 and an arbitrary number of nodes
in V1, by generalizing the construction of Fig. 5 to add more maxima. These yield
max-min graphs where the degree of elements in V1 is one and the degree of the
element in V0 is unbounded. Reciprocally, we can have functions with a single node
in V1 and an arbitrary number of nodes in V0. For example, it suffices to consider
the negative of the height function for the embedded sphere in Fig. 5. From this
particular example, we also conclude that flow graphs can be disconnected: since
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Figure 5: Top: We consider the height functions of an embedded sphere in R3. The function
has three maxima p1, p2, p3, two saddle points s1, s2 and a minimum m1. Bottom: Max-min
graph of the gradient of the height function of the embedded sphere.

|V0| = 3 and |V1| = 1 and the degree of the node in V1 is at most 2, at least one node
in V0 has no incident edges. Furthermore, we see that reversing the direction of the
gradient flow (i.e., considering the gradient ascent flow of F instead of the gradient
descent flow), does not yield an automorphism of the corresponding flow graphs:
indeed, while the elements of V0 become the elements of V1 and vice-versa, the edge
sets of the two flow graphs do not even necessarily have the same cardinality. Finally,
it should be clear that none of the examples described in the paragraph could be
realized over a state-space M of dimension 1. The above leads to the question of how
can one realize an abstract max-min graph, and what restriction on the topology of
the underlying state-space is imposed. We will address these questions, and others,
in a forthcoming publication.

4.3 Summary

Let M be a smooth closed manifold and (F, g) a generic pair where F is a smooth
function and g a Riemannian metric on M . We have shown in this paper that to
each maximum p of F , we can assign two minima—denoted m−(p),m+(p)—having
the following property: the gradient flow of F initialized close enough to p converges
with high-probability to the set {m−(p),m+(p)}. In order to prove the result, we
introduced the notion of principal flow lines of a maximum. When the linearization
of the gradient flow around p has a smallest eigenvalue of algebraic multiplicity
one, we showed the existence of exactly two flow lines of the gradient ascent flow
that reach p tangentially to the corresponding eigenspace. These are the principal
flow lines of p. If they belong to the stable manifolds of minima of F , we call the
corresponding gradient vector field simple. We then showed in a first part that for
simple gradients, most of the volume of any small ball containing at maximum p
belongs to the union of the two stable manifolds to which principal flow lines belong.
In a second part, we showed that simple gradient vector fields are generic.

The proof of the first part is local in nature, with the exception of the reliance
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on the global stable manifold decomposition theorem. The C1 linearization result
of Hartman [8] plays an important role there, and we note that it holds only if all
eigenvalues of the linearized gradient vector field have real parts of the same sign.
This result thus cannot be used at a saddle point of F . We also point out that the
topological equivalence provided by the Hartman-Grobman theorem, which can be
applied at any hyperbolic fixed point, is not sufficient to obtain our result. The
second part of the proof shows that generically for (F, g), the linearization of the
gradient flow at a maximum has a smallest eigenvalue of multiplicity one, and the
corresponding principal flow lines belong to the stable manifolds of some minima.
The proof that the linearization of the gradient vector field at p has a unique smallest
eigenvalue relies on transversality arguments. The proof that the principal flow lines
belong to stable manifolds of minima goes by showing that the property holds for
an increasing sequence of compact subsets of the stable manifolds, and appealing
to Baire theorem. Finally, we introduced the notion of max-min graph graph of a
generic pair (F, g), and described some of its properties along with open questions.

5 Appendix

Lemma 8. Let A,B ∈ Rn×n be positive definite matrices so that AB has repeated
eigenvalues. Then for any ε > 0, there exists a positive definite Q, with ‖Q‖ < ε
and (A+Q)B has distinct eigenvalues.

Proof. We give a simple, constructive proof. The matrix AB is similar to B1/2AB1/2.
The latter being symmetric, there exists an orthogonal matrix P and a diagonal
matrix D so that P>B1/2AB1/2P = D, where the diagonal entries of D are the
eigenvalues of AB. Denote the pi ∈ Rn the ith column of P . Then p>i pj = δij and
P>pi = ei. Now set vi = B−1/2pi. Then P>B1/2(A+ εiviv

>
i )B1/2P = D + εieiei>.

Since D+εieie>i is diagonal, it contains the eigenvalues of P>B1/2(A+εiviv>i )B1/2P ,
which are the same as the eigenvalues of (A+ εiviv

>
i )B. It now suffices to choose

the εi > 0 small enough and so that D + diag(ε1, . . . , εn) has distinct entries, and
set Q =

∑n
i=1 εiviv

>
i .

Lemma 9. Let A ∈ Rn×n be a real symmetric matrix with eigenvalues λ1 > λ2 ≥
· · · ≥ λn. Let v1 : Sn → RPn−1 : A 7→ v1(A) be a map assigning to A the eigenspace
associated with λ1. Then v1 is differentiable around A.

Proof. Consider the map

V : Sn × Rn × R→ Rn+1 : (X,u, λ) 7→
(

(λI −X)u
u>u− 1

)
.

Let A ∈ Sn be such that λ1 > λ2 and denote by v a unit eigenvector spanning the
eigenspace of λ1. Then V (A, v, λ1) = 0 and the differential of V with respect to u, λ
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evaluated at (A, v, λ1) is

du,λV (A, v, λ1) =
(
λ1I −A v

2v> 0

)
.

Since λ1 is a simple eigenvalue of A, the above map is invertible. Hence, the
implicit function theorem states that there is an open set U ⊂ Sn containing A and
differentiable functions λ(X), u(X) such that (λ(X)I−X)u(X) = 0 and ‖u(X)‖2 = 1
for all X ∈ U , which proves the result.

Lemma 10. Let Bδ = B1
δ ∪B2

δ and V = V 1 ∪ V 2 with

µ(B1
δ ∩B2

δ ) = µ(V 1 ∩ V 2) = µ(B1
δ ∩ V2) = µ(B2

δ ∩ V1) = 0.

Assume that
lim
δ→0

µ(B1
δ ∩ V 1)
µ(B1

δ )
= lim

δ→0

µ(B2
δ ∩ V 2)
µ(B2

δ )
= 1.

Then it holds that
lim
δ→0

µ(Bδ ∩ V )
µ(Bδ)

= 1

Proof. Since Bi
δ ⊆ Bδ, we have

0 = 1− lim
δ→0

µ(B1
δ ∩ V 1)
µ(B1

δ )

= lim
δ→0

µ(B1
δ − (B1

δ ∩ V 1))
µ(B1

δ )
= lim

δ→0

µ(B1
δ − (B1

δ ∩ V 1))
µ(Bδ)

and, similarly, limδ→0
µ(B2

δ−(B2
δ∩V

2))
µ(Bδ) = 0. Summing the above two equalities, we get

in the numerator

µ(B1
δ − (B1

δ ∩ V 1)) + µ(B2
δ − (B2

δ ∩ V 2)) = µ
(
(B1

δ − (B1
δ ∩ V 1)) ∪ (B2

δ − (B2
δ ∩ V 2))

)
= µ

(
(B1

δ − (B1
δ ∩ V )) ∪ (B2

δ − (B2
δ ∩ V ))

)
= µ

(
Bδ − ((B1

δ ∩ V )) ∪ (B2
δ ∩ V ))

)
= µ (Bδ − (Bδ ∩ V )) .

Hence, limδ→0
µ(Bδ−(Bδ∩V ))

µ(Bδ) = 0, which concludes the proof.
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