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Abstract

The problem of interest is the minimization of a nonlinear function subject to
nonlinear equality constraints using a sequential quadratic programming (SQP) method.
The minimization must be performed while observing only noisy evaluations of the
objective and constraint functions. In order to obtain stability, the classical SQP
method is modified by relaxing the standard Armijo line search based on the noise
level in the functions, which is assumed to be known. Convergence theory is presented
giving conditions under which the iterates converge to a neighborhood of the solution
characterized by the noise level and the problem conditioning. The analysis assumes
that the SQP algorithm does not require regularization or trust regions. Numerical
experiments indicate that the relaxed line search improves the practical performance of
the method on problems involving uniformly distributed noise. One important application
of this work is in the field of derivative-free optimization, when finite differences are
employed to estimate gradients.

1 Introduction
Let us consider the equality constrained nonlinear optimization problem

min
x
f(x) s.t. c(x) = 0, (1.1)

where f : Rn → R and c(x) : Rn → Rm are smooth functions. We assume that the
minimization must be performed while observing approximate evaluations f̃(x), c̃(x) of the
functions f, c and their derivatives.

We consider the application of a sequential quadratic programming (SQP) algorithm
that employs an `1 merit function to control the stepsize. The goal of the paper is to study
the effect of noise on the behavior of the SQP algorithm, particularly the achievable accuracy
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in the solution, and to highlight the aspects of the algorithm that are most susceptible to
errors (or noise)—and redesign them. This work was motivated by applications in which
the derivatives of f and c are approximated by finite differences [15], and thus contain
errors, but the algorithm and analysis apply to the more general setting when stochastic or
deterministic noise are present in both the function and derivative evaluations.

Let us define

g(x) = ∇f(x), J(x) = ∇c(x) ∈ Rm×n, m < n, (1.2)

and let g̃(x), J̃(x) be the corresponding noisy evaluations. The iteration of the SQP algorithm
is given by

xk+1 = xk + αkdk, (1.3)

where dk is the solution of the quadratic subproblem

min
d∈Rn

1
2d

THkd+ g̃Tk d (1.4)

s.t. c̃k + J̃kd = 0, (1.5)

and the steplength αk > 0 is chosen so as to ensure sufficient decrease in the merit function

φ̃(x) = f̃(x) + π‖c̃(x)‖1 (1.6)

when the iterates are far away from a solution. Here π > 0 is a penalty parameter that
is adjusted during the course of the optimization. The symmetric matrix Hk is generally
chosen as an approximation to the Hessian of the Lagrangian. However, in this paper we
assume that Hk is a multiple of the identity matrix,

Hk = βkI βk > 0, (1.7)

because allowing more general choices introduces more constants in the analysis without
contributing to the main goals of this investigation.

As in the noiseless case, the control of the penalty parameter in (1.6) is of critical
importance in the SQP algorithm. π should be chosen so that the SQP direction dk is a
descent direction for φ̃ at xk, and it should provide adequate control on the size of αk. The
proposed algorithm has the general form of a classical SQP method [7], specialized to the
case when Hk is a multiple of the identity matrix, and introduces a modification in the line
search designed to handle noise.

We assume throughout that the noise in the function and gradient evaluations is bounded
by some constants εf and εc. This is not always the case in practice (e.g. when noise is
Gaussian) but it covers many important practical settings, including computational noise
[11]. Furthermore, we assume that εf , εc are known, or can be estimated, and that the
algorithm has access to them.

This study was motivated by some practical computations performed by the authors using
the knitro software package [5]. They selected a few challenging nonlinear optimization
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problems involving equality and inequality constraints, injected noise in the objective and
constraints, and computed derivatives using noise-aware finite difference formula; see e.g.,
Moré and Wild [11] and Berahas et al. [1]. They observed that, for low levels of noise,
knitro returned acceptable answers, even though one might suspect the default algorithm
to be brittle in this setting. As the noise level was increased, the quality of the solution
deteriorated markedly, suggesting that classical optimization methods should be redesigned
to handle noise. To guide this investigation, it is essential to develop a convergence theory.
In this paper, we focus on the case when noise cannot be diminished, and characterize the
accuracy of a noise tolerant optimization algorithm.

As a first step in this investigation, we find it convenient to consider equality constrained
optimization, and study the performance of a sequential quadratic optimization method,
which is a simple method in this setting and must yet confront some important challenges
raised by the presence of noise.

1.1 Contributions of this work

The main contribution of this paper is the development of a convergence theory for a classical
sequential quadratic programming (SQP) algorithm for equality constrained optimization
in the presence of noise. It is shown that, by introducing a relaxation in the line search
procedure while keeping all other components of the SQP method unchanged, the iterates of
the algorithm reach an acceptable neighborhood C1 of the solution defined by a stationarity
measure for the problem. Furthermore, once the iterates enter C1 they cannot escape a
larger neighborhood C2 and must revisit C1 an infinite number of times. The analysis gives
a detailed characterization of these neighborhoods in terms of the noise level and problem
characteristics. Numerical experiments show that the relaxed line search is, in fact, beneficial
in practice.

Our convergence results assume that errors in function and gradients are bounded, and
the analysis is deterministic, yielding somewhat pessimistic bounds. We believe, however,
that the results can be useful in the design of robust constrained optimization methods.
Specifically, our analysis suggests that only slight modifications are needed so that a classical
SQP method is able to handle bounded noise.

1.2 Literature Review

Early work on constrained optimization in the presence of noise is reviewed by Poljak
(a.k.a. Polyak) [13]. His study includes penalty, Lagrange, or extended Lagrange functions,
and establishes probabilistic convergence theorems provided the steplength is chosen small
enough from the start. Hintermueller [10] studies a penalty SQP method in which equality
constraints are replaced with upper and lower bounding surrogates. Assuming that the noise
level in the function is known, it is shown that in the limit the bounds contain a solution.
Schittkowski [14] uses a non-monotone line search to handle errors due to approximate
function and derivative evaluations. His algorithm was implemented in the NLPQLP software,
which is reported to be successful in practice, but no convergence theory were presented.
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The work that is most closely related to this study is [2, 3, 6]. In [3], an SQP method for
equality constrained optimization is presented to handle the case when the objective function
is stochastic and the constraints are deterministic. The stepsize is obtained by adaptively
estimating Lipschitz constants in place of a line search. Conditions for convergence in
expectation are established. [2] considers the case when Jacobians can be rank deficient,
proposes a step decomposition approach, and presents compelling numerical results. [6]
studies an SQP algorithm with an inexact step computation for the same problem setting.
These three papers give careful attention to the behavior of the penalty parameter. For
example, in [3] the penalty parameter is chosen in a way that provides sufficient descent in the
quadratic model of the merit function in the deterministic setting. In the stochastic setting,
they employ the stochastic gradient of the objective in the same formulae for updating the
penalty parameter, but they can no longer guarantee that the resulting penalty parameter
will be large enough and bounded. They prove their convergence results assuming that the
penalty parameter is well behaved. Then, they discuss the probability of having small penalty
values, and note that the boundedness issue is resolved by making the same assumption as
in this paper, namely that noise is always bounded.
Notation. We let ‖ · ‖ denote the `2 norm, unless otherwise stated. As is the convention,
fk stands for f(xk) and similarly for other functions. The terms error and noise in the
functions is used interchangeably. Since we assume absolute bounds on these quantities, the
distinction between them is not important in this study.

2 The Algorithm
Before presenting the algorithm, we introduce some notation. We model the first-order
change in the merit function φ at an iterate xk as

˜̀(xk; dk) = g̃Tk dk + πk‖c̃k + J̃kdk‖1 − πk‖c̃k‖1. (2.1)

We also define
λ̂k = (J̃kJ̃Tk )−1J̃kg̃k, (2.2)

which is the standard least squares multiplier estimate [12, eqn(18.21)], accounting for noisy
function evaluations. We assume that J̃k is full rank for all k, hence λ̂k is well defined.

The penalty parameter will be updated using the following classical formula [12, eqn(18.32)].
Given a (fixed) parameter τ ∈ (0, 1), we set at every iteration

πk =
{

πk−1 if πk−1 ≥ 1
1−τ ‖λ̂k‖∞

2
1−τ ‖λ̂k‖∞ otherwise.

(2.3)

The factor 2 in the second line of (2.3) is introduced so that when πk is increased, it is
increased substantially. We will see that this rule ensures that πk is eventually fixed. (In
general, SQP methods do not set Hk = βkI. In that case, using the least squares multiplier
estimate in (2.3) will not lead to a convergent method.)

The algorithm for solving problem (1.1), when only noisy evaluations of the functions
f̃ , c̃, g̃, J̃ are available, is as follows.
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Algorithm 1 Noise Tolerant SQP Algorithm
Input: Initial iterate x0, initial merit parameter π−1 > 0, bounds εf , εc on the noise (3.1),
and constants τ, ν ∈ (0, 1).
Set k ← 0
Repeat until a termination test is satisfied:

1: Compute βk > 0 and set Hk = βkI in (1.4)
2: Compute dk by solving (1.4)-(1.5)
3: Compute λ̂k via (2.2)
4: Update penalty parameter πk by (2.3)
5: Compute ˜̀(xk; dk) as in (2.1)
6: Set εR = 2(εf + πkεc)
7: Choose steplength αk > 0 such that

φ̃(xk + αkdk) ≤ φ̃(xk) + ναk ˜̀(xk; dk) + εR, (2.4)

8: Compute new iterate: xk+1 = xk + αkdk
9: Set k ← k + 1

The steplength αk is computed in Step 7 using a backtracking line search. We refer to
(2.4) as the relaxed Armijo condition. The term εR introduces a margin that facilitates the
convergence analysis in the presence of noise, and as discussed in Section 4, is also useful in
practice. Note that the line search cannot fail since (2.4) is satisfied for sufficiently small αk,
by definition of εR. In this paper, we assume that the quadratic subproblem (1.4)-(1.5) has
a unique solution at every iteration—admittedly a strong assumption, but one that helps us
focus on the effect of noise without the complicating effects of regularization parameters or
trust regions. The study of a practical algorithm that employs those globalization strategies
will be the subject of future work.

3 Global Convergence
In this section we show that the iterates generated by Algorithm 1 converge to a neighborhood
of the solution determined by the noise level and certain characteristics of the problem. We
also show that once the iterates reach this neighborhood they cannot stray away from it
(under normal circumstances). We start by stating the assumptions upon which our analysis
is built.

Assumptions 3.1. The function f has a Lipschitz continuous gradient with constant Lf .
The functions ∇ci are Lipschitz continuous for i = 1, . . . ,m with the corresponding constants
held in the vector Lc.

We also assume that the error (or noise) in the evaluation of the functions is bounded.
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Assumptions 3.2. There exist positive constants εf , εc, εg, εJ such that for all x ∈ Rn,

|f̃(x)− f(x)| ≤ εf , ‖c̃(x)− c(x)‖1 ≤ εc, (3.1)
‖g̃(x)− g(x)‖ ≤ εg, ‖J̃(x)− J(x)‖1,2 ≤ εJ . (3.2)

Here, ‖ · ‖ denotes the Euclidean norm and ‖ · ‖1,2 denotes the matrix norm induced by the

`1 norm on Rm and the Euclidean norm on Rn.

As already mentioned, we assume that, for all k, the matrices J̃k have full rank so that
the quadratic problem (1.4)-(1.5) has a unique solution. To state this precisely, we let
σmin(A) denote the smallest singular value of a matrix A.

Assumptions 3.3. For all k, the scalar βk in (1.7) satisfies

0 < bl ≤ βk ≤ bu, (3.3)

for some constants bl, bu, and there is a constant γ > 0 such that

σmin(Jk) ≥ γ, with γ > εJ , ∀k. (3.4)

Furthermore, the sequences {fk}, {‖ck‖}, {‖gk‖}, {‖Jk‖} generated by the algorithm are
bounded.

By the matrix inversion lemma [8] and (3.2), if Jk has full rank and γ > εJ , then J̃k is
also full rank and

‖J̃Tk (J̃kJ̃Tk )−1‖ ≤ 1
γ − εJ

≡ δ, ∀k. (3.5)

The assumption that the sequences {fk}, {‖ck‖}, {‖gk‖}, {‖Jk‖} generated by the
algorithm are bounded is fairly standard in the literature and is designed to avoid pathological
situations. For example, the merit function φ may be unbounded below away from the
solution if π is not large enough. Although there are strategies to avoid these situations (see
e.g. [12, §18.5], we do not include them in our algorithm, for simplicity.

Given these three sets of assumptions, we are ready to study the convergence properties
of Algorithm 1. Let us apply the well known descent lemma (see e.g.[4]) to the true (noiseless)
merit function

φ(x) = f(x) + π‖c(x)‖1. (3.6)

We have that for any (x, d)

φ(x+ αd) ≤ φ(x) + αg(x)Td+ π
[
‖c(x) + αJ(x)d‖1 − ‖c(x)‖1

]
+ 1

2
(
Lf + π‖Lc‖1

)
α2‖d‖2.

(3.7)

Thus, we can write

φ(x+ αd)− φ(x) ≤ `(x;αd) + 1
2
(
Lf + π‖Lc‖1

)
α2‖d‖2, (3.8)
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where
`(x; s) = g(x)T s+ π‖c(x) + J(x)s‖1 − π‖c(x)‖1. (3.9)

When function and derivatives are exact, it is easy to show that for π sufficiently large and
α sufficiently small we can guarantee a reduction in φ; see [12]. We must establish that this
is also the case in the noisy setting—before the iterates approach the region around the
solution where noise dominates. We begin by establishing bounds on the step dk.

3.1 Preliminary results

The optimality conditions of the quadratic problem (1.4)-(1.5) are given by(
Hk J̃Tk
J̃k 0

)(
dk
dy

)
= −

(
g̃k + J̃Tk y

c̃k

)
, (3.10)

for some Lagrange multiplier y ∈ Rm. The step dk can be written as the sum of two
orthogonal components,

dk = vk + uk, (3.11)

where vk is in the range space of J̃Tk and uk is in the null space of Jk. A simple computation
from (3.10) shows that

vk = −J̃Tk (J̃kJ̃Tk )−1c̃k, uk = − 1
βk
P̃kg̃k, (3.12)

where
P̃k = I − J̃Tk

(
J̃kJ̃

T
k

)−1
J̃k (3.13)

is an orthogonal projection matrix onto the tangent space of the constraints. We now
establish bounds on uk, vk. In what follows, we let J† denote the Moore-Penrose generalized
inverse of a matrix J , and define Pk = I − JTk

(
JkJ

T
k

)−1
Jk. Since P̃k and Pk are orthogonal

projections, we have that ‖P̃k‖ = ‖Pk‖ = 1.

Lemma 3.4. Under Assumptions 3.1 and 3.2 we have both

‖vk‖1 ≤ δ‖c̃k‖1 ≤ δ(‖ck‖1 + εc) (3.14)

‖uk‖ ≤
1
βk

(
‖Pkgk‖+ ‖gk‖ηεJ + εg

)
, (3.15)

where δ is defined in (3.5) and
η = 1/γ. (3.16)

Therefore,

‖dk‖ ≤ δ(‖ck‖1 + εc) + 1
βk

(
‖Pkgk‖+ ‖gk‖ηεJ + εg

)
. (3.17)
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Proof. The bounds (3.14) follow directly from (3.12), (3.5), and (3.1). By (3.2), we can
bound the norm of the tangential component as follows

‖uk‖ = 1
βk
‖P̃kg̃k‖

≤ 1
βk

(
‖Pkgk‖+ ‖(P̃k − Pk)gk‖+ ‖P̃k‖‖gk − g̃k‖

)
≤ 1
βk

(
‖Pkgk‖+ ‖(P̃k − Pk)‖‖gk‖+ εg

)
. (3.18)

Moreover, by the bounds on perturbed projection matrices [16, Theorems 2.3 and 2.4] we
have that

‖P̃k − Pk‖ ≤
εJ
γ
≡ ηεJ . (3.19)

This yields (3.15).

3.2 Penalty Parameter and Model Decrease

We note from (3.8) that in order to obtain a decrease in the true merit function φ, we must
ensure that `(xk;αkdk) is negative. We will see that this can be achieved for αk = 1 by
choosing a sufficiently large penalty parameter π, and provided noise does not dominate.

Lemma 3.5. If at every iteration k the penalty parameter satisfies

πk ≥
1

1− τ ‖(J̃kJ̃
T
k )−1J̃kg̃k‖∞, τ ∈ (0, 1), (3.20)

then

`(xk; dk) ≤−
1
βk
gTk Pkgk + 1

βk
(‖gk‖2ηεJ + εg‖gk‖)− τπk‖ck‖1 + εgδ(‖ck‖1 + εc) (3.21)

+ πk

(
(2− τ)εc + εJ

(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

))
.

Proof. Since dk = − 1
βk
P̃kg̃k − J̃Tk (J̃kJ̃Tk )−1c̃k, we have from (3.9), (1.5), (3.5), (3.1), (3.2),

and the definition of the ‖ · ‖1,2 norm in (3.2), that

`(xk; dk) = gTk dk + πk‖ck + Jkdk‖1 − πk‖ck‖1 (3.22)

≤− 1
βk
gTk P̃kg̃k − gTk J̃Tk (J̃kJ̃Tk )−1c̃k + πk‖ck + Jkdk‖1 − πk‖ck‖1

≤− 1
βk
gTk P̃kg̃k − gTk J̃Tk (J̃kJ̃Tk )−1c̃k + πk‖(ck − c̃k) + (Jk − J̃k)dk)‖1 − πk‖ck‖1

≤− 1
βk
gTk P̃kg̃k − g̃Tk J̃Tk (J̃kJ̃Tk )−1c̃k + εgδ‖c̃k‖1 + πk(εc + εJ‖dk‖)− πk‖ck‖1

≤− 1
βk
gTk P̃kg̃k − g̃Tk J̃Tk (J̃kJ̃Tk )−1c̃k + εgδ(‖ck‖1 + εc)

+ πk

[
εc + εJ

(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

)]
− πk‖ck‖1,
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the last line following by (3.17). Next, since ‖P̃k‖ = 1 and recalling (3.19), we obtain

−gTk P̃kg̃k ≤ −gTk Pkgk + ‖gk‖‖Pkgk − P̃kg̃k‖
≤ −gTk Pkgk + ‖gk‖‖Pkgk − P̃kgk + P̃kgk − P̃kg̃k‖
≤ −gTk Pkgk + ‖gk‖2‖Pk − P̃k‖+ ‖gk‖‖gk − g̃k‖
≤ −gTk Pkgk + ‖gk‖2ηεJ + ‖gk‖εg.

Therefore,

`(xk; dk) ≤ −
1
βk
gTk Pkgk + 1

βk
(‖gk‖2ηεJ + εg‖gk‖)− g̃Tk J̃Tk (J̃kJ̃Tk )−1c̃k + εgδ(‖ck‖1 + εc)

+ πk

[
εc + εJ

(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

)]
− πk‖ck‖1.

Now suppose that we choose the parameter πk so that (3.20) holds. Then

−g̃Tk J̃Tk (J̃kJ̃Tk )−1c̃k ≤ ‖g̃Tk J̃Tk (J̃kJ̃Tk )−1‖∞‖c̃k‖1 ≤ (1− τ)πk(‖ck‖1 + εc),

and it follows that

`(xk; dk) ≤−
1
βk
gTk Pkgk + 1

βk
(‖gk‖2ηεJ + εg‖gk‖)− τπk‖ck‖1 + εgδ(‖ck‖1 + εc)

+ πk

[
(2− τ)εc + εJ

(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

)]
.

Lemma 3.5 implies that for any xk such that the right hand side of (3.21) is negative, we
have `(xk; dk) < 0.We now provide conditions under which the decrease in ` is proportional to
the optimality conditions of the nonlinear problem (1.1). Specifically, since gTk Pkgk = ‖Pkgk‖2
is the norm squared of the projected gradient, a combination of gTk Pkgk and ‖ck‖1 can be
regarded as a measure of stationarity of the constrained optimization problem. The following
result assumes that the optimality measure is not small compared to the errors (or noise).

Corollary 3.6. Choose any θ1 ∈ [0, 1). For any xk sufficiently far from the solution such
that

(1− θ1)
( 1
βk
gTk Pkgk+τπk‖ck‖1

)
≥ E(xk, βk, πk), (3.23)

where

E(x, β, π) = 1
β

(‖g(x)‖2ηεJ + εg‖g(x)‖) + εgδ(‖c(x)‖1 + εc)

+π
[
(2− τ)εc + εJ

(
δ(‖c(x)‖1 + εc) + 1

β
(‖P (x)g(x)‖+ ‖g(x)‖ηεJ + εg)

)]
,

(3.24)

we have
`(xk; dk) ≤ −θ1

( 1
βk
gTk Pkgk + τπk‖ck‖1

)
. (3.25)
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Proof. For any θ1 ∈ [0, 1), we can rewrite (3.21) as

`(xk; dk) ≤− θ1( 1
βk
gTk Pkgk + τπk‖ck‖1)− (1− θ1)( 1

βk
gTk Pkgk + τπk‖ck‖1)

+ 1
βk

(‖gk‖2ηεJ + εg‖gk‖) + εgδ‖(‖ck‖1 + εc)

+ πk

(
(2− τ)εc + εJ

(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

))
,

from which (3.25) follows by condition (3.23).

In order to make this result, and similar results to be proved later, more understandable
and more convenient to use, we recall that g(x)TP (x)g(x) = ‖P (x)g(x)‖2, and define the
function

ψπ(x) = 1
bu
‖P (x)g(x)‖2 + πτ‖c(x)‖1, (3.26)

where bu is given in (3.3). Clearly, ψπ may be viewed as a measure of non-stationarity since
ψπ(x∗) = 0 when x∗ is a stationary point of the problem (1.1). Given this notation we can
restate a slightly weaker version of Corollary 3.6.

Corollary 3.7. Choose any θ1 ∈ [0, 1). For any xk sufficiently far from the solution such
that

ψπk
(xk) ≥ E(xk, βk, πk)/(1− θ1), (3.27)

we have
`(xk; dk) ≤ −θ1

( 1
βk
gTk Pkgk + τπk‖ck‖1

)
≤ −θ1ψπk

(xk). (3.28)

Proof. The result follows from the fact that

ψπk
(xk) ≤

( 1
βk
gTk Pkgk + τπk‖ck‖1

)
.

3.3 Line search

Since πk is defined by (2.3) and (2.2), and by Assumptions 3.3, we have that {‖λ̂k‖} is
bounded. Moreover, since {πk} is monotone and since πk − πk−1 is either zero or greater
than πk−1, there exists values k0 and π̄ such that:

πk = π̄, ∀k ≥ k0, (3.29)

and (3.20) is satisfied. The rest of the analysis assumes that the penalty parameter has
attained that fixed value π̄. Thus, for the rest of the section

φ̃(xk) ≡ f̃(xk) + π̄‖c̃(xk)‖1, φ(xk) ≡ f(xk) + π̄‖c(xk)‖1, ∀k ≥ k0. (3.30)
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Algorithm 1 sets xk+1 = xk + αkdk, where αk is chosen by repeated halving until the
relaxed Armijo condition is satisfied:

φ̃(xk + αkdk) ≤ φ̃(xk) + ναk ˜̀(xk; dk) + εR,

for some constants ν ∈ (0, 1) and εR≥ 2(εf + π̄εc), where ˜̀(xk; dk) is defined in (2.1). In
other words, we require that the decrease in the noisy merit function be a fraction of the
decrease of the noisy first-order model ˜̀, plus a relaxation term.

To ensure that the line search yields significant progress toward a solution, we need to
show that αk is bounded away from zero and that ˜̀(xk; dk) is sufficiently negative. To do so,
we recall that we have established in (3.28) that the noiseless first-order model `(xk; d)k is
sufficiently negative when condition (3.27) is satisfied. To relate `(xk; dk) to ˜̀(xk; dk), we
recall (3.9) and (2.1), and measure the difference between these two quantities. By (3.17)

|˜̀(xk; dk)− `(xk; dk)| ≤ εg‖dk‖+ 2π̄εc + π̄εJ‖dk‖

≤ (εg + π̄εJ)
(
δ(‖ck‖1 + εc) + 1

βk
(‖Pkgk‖+ ‖gk‖ηεJ + εg)

)
+ 2π̄εc

(3.31)

≤ (εg + π̄εJ)
(
δ(Cc + εc) + 1

bl
(Cg + CgηεJ + εg)

)
+ 2π̄εc

≡ ε`, (3.32)

where Cg, Cc are constants such that

‖g(xk)‖ ≤ Cg, ‖c(xk)‖1 ≤ Cc ∀k > k0. (3.33)

We know that these constants exist because of Assumption 3.3. We now describe
conditions under which one can characterize the size of the steplength αk. Let

L = Lf + π̄‖Lc‖1, (3.34)

where Lf , Lc are defined in Assumptions 3.1.

Theorem 3.8. Let θ1 be defined as in Corollary 3.6, choose constants θ2 < θ1, ν ∈ (0, 1)
and

εR≥ 2(εf + π̄εc) ≡ 2εφ. (3.35)
Then, for all iterates xk with k ≥ k0 that satisfy both (3.27) and

(1− ν)(θ1 − θ2)
( 1
βk
‖Pkgk‖2 + π̄τ‖ck‖1

)
> 2νε`, (3.36)

if the steplength satisfies

αk <
(1− ν)θ2

(
1
βk
‖Pkgk‖2 + π̄τ‖ck‖1

)
L
2 [δ2(‖ck‖1 + εc)2 + 1

β2
k
(‖Pkgk‖+ ‖gk‖ηεJ + εg)2]

≡ α̂k, (3.37)

then
φ̃(xk + αkdk) ≤ φ̃(xk) + ναk ˜̀(xk; dk) + εR. (3.38)
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Proof. By the definition (3.35) of εφ, (3.8), (3.34), the convexity of `(xk; ·), (3.32), (3.28),
the fact that P 2

k = Pk, and (3.17), we get

φ̃(xk + αdk)− φ̃(xk) ≤φ(xk + αdk)− φ(xk) + 2εφ
≤ `(xk;αdk) + 2εφ + L

2α
2‖dk‖2

≤α`(xk; dk) + 2εφ + L
2α

2‖dk‖2

= να`(xk; dk) + 2εφ + (1− ν)α`(xk; dk) + L
2α

2‖dk‖2

≤ να˜̀(xk; dk) + ναε` + 2εφ + (1− ν)α`(xk; dk) + L
2α

2‖dk‖2

≤ να˜̀(xk; dk) + 2εφ + 2ναε` − (1− ν)θ1α
( 1
βk
gTk Pkgk + π̄τ‖ck‖1

)
+ L

2α
2‖dk‖2

≤ να˜̀(xk; dk) + 2εφ + 2ναε` − (1− ν)θ1α
( 1
βk
‖Pkgk‖2 + π̄τ‖ck‖1

)
+ L

2α
2
[
δ2(‖ck‖1 + εc)2 + 1

β2
k

(
‖Pkgk‖+ ‖gk‖ηεJ + εg

)2]
,

the last line following from the orthogonality of the components (3.11) of dk.
Now we choose a constant θ2 < θ1, and consider iterates xk such that (3.36) holds. For

such iterates we have,

φ̃(xk + αdk)−φ̃(xk) ≤να˜̀(xk; dk) + 2εφ − (1− ν)θ2α
( 1
βk
‖Pkgk‖2 + π̄τ‖ck‖1

)
+ L

2α
2
[
δ2(‖ck‖1 + εc)2 + 1

β2
k

(
‖Pkgk‖+ ‖gk‖ηεJ + εg

)2
]
.

Then, for any steplength satisfying (3.37) where xk satisfies the (3.23) and (3.36), we
have

φ̃(xk + αdk)− φ̃(xk) ≤ ναl̃(xk; dk) + 2εφ,

and thus (3.38) holds since εR≥ 2εφ.

Note that condition (3.36) is implied by the slightly weaker inequality

(1− ν)(θ1 − θ2)ψπ̄(xk) > 2νε`. (3.39)

Since the numerator in (3.37) is bounded away from zero by (3.36), and the denominator
is bounded above given the assumed global upper bounds on ck, gk, and lower bound on βk
stated in Assumptions 3.3, it follows that there is a constant ᾱ such that α̂k > 2ᾱ for all
k ≥ k0. The algorithm employs a backtracking line search that halves each trial step, hence
we can conclude that

ᾱ ≤ αk, for k ≥ k0. (3.40)

This will allow us to show that, when the conditions in Theorem 3.8 are satisfied, the
algorithm will make non-negligible progress.
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3.4 The Main Convergence Result

Now we show that Algorithm 1 will eventually generate iterates close to a stationary point
of the problem, as measured by the function ψπ̄(x) defined in (3.26). To do so, we note
that condition (3.27) implies that the linear model decrease ` is sufficiently negative in
the sense of (3.28), and we have established a bound in (3.32) for the distance between `
and ˜̀. Furthermore, we have shown that condition (3.39) ensures that the relaxed Armijo
condition (3.38) is satisfied for steplengths αk that are bounded away from zero. Those
two conditions—(3.27), (3.39)—are necessary to ensure that the algorithm makes significant
progress, but they are not sufficient. To control the effect of noise in testing (2.4) as well as
the effect of the relaxation factor, we impose one additional condition,

ψπ̄(xk) ≥
2εR + 4εφ
νᾱθ2

, (3.41)

to help define the region where Algorithm 1 progresses toward stationarity.
One more refinement is needed. The definition of the term E(xk, βk, πk) defined in (3.24)

involves c(xk) and g(xk), which makes the region defined by (3.27) difficult to interpret.
Therefore, we compute an upper bound for E. If we define

E = 1
bl

(C2
gηεJ + εgCg) + εgδ(Cc + εc)

+π̄
[
(2− τ)εc + εJ

(
δ(Cc + εc) + 1

bl
(Cg + CgηεJ + εg)

)]
, (3.42)

where Cg, Cc are given in (3.33), then we have that E(xk, βk, π̄) ≤ E for all k ≥ k0. We can
thus state a condition that implies (3.27):

ψπ̄(xk) ≥
E

(1− θ1) , ∀k ≥ k0. (3.43)

In summary, the analysis presented above holds if conditions (3.43), (3.39) are satisfied
and we also impose condition (3.41). This allows us to characterize a region, which we denote
by C1, where errors dominate and improvement in the merit function φ cannot be guaranteed.
In other words, C1 is the region where at least one of the three conditions—(3.43), (3.39),
(3.41)—is not satisfied.

Definition 3.9. The critical region C1 is defined as the set of x ∈ Rn satisfying

ψπ̄(x) ≤max
{ E

(1− θ1) ,
2νε`

(1− ν)(θ1 − θ2) ,
2εR + 4εφ
νᾱθ2

}
, (3.44)

where E and ε` are defined by (3.42) and (3.32), respectively, and θ1, θ2 are constants such
that 0 < θ2 < θ1 < 1.

We also define the following set.
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Definition 3.10. Let w = sup{φ(x) : x ∈ C1}, and define the level set

C2 = {x : φ(x) ≤ w + 2εφ + εR}.

Note that by construction C1 ⊆ C2. We are now ready to state the main convergence
result.

Theorem 3.11. Suppose that Algorithm 1 generates a sequence {xk} from x0 satisfying
Assumptions 3.1-3.3. There is an iteration k1 at which {xk} enters the critical region C1,
and for all k > k1 the iterates remain in the critical level set C2. The iterates may leave C1,
but there must be infinitely many iterates in C1.

Proof. Recall that the index k0 is defined in (3.29). If k 6∈ C1 and k ≥ k0, then the
assumptions of Theorem 3.8 are satisfied and (3.38) holds. Therefore, by (3.40), (3.32),
(3.25), (3.28), (3.26), (3.36)

φ(xk + αkdk)− φ(xk) ≤ φ̃(xk + αkdk)− φ̃(xk) + 2εφ (3.45)
≤ νᾱ˜̀

φ(xk; dk) + 2εφ + εR (3.46)
≤ νᾱ`φ(xk; dk) + νᾱε` + 2εφ + εR

≤− νᾱθ1
( 1
βk
gTk Pkgk + τ π̄‖ck‖1

)
+ νᾱε` + 2εφ + εR

≤− νᾱθ1ψπ̄(xk) + νᾱε` + 2εφ + εR

=− [νᾱθ2 + α̂ν(θ1 − θ2)]ψπ̄(xk) + νᾱε` + 2εφ + εR

≤− νᾱθ2ψπ̄(xk) + 2εφ + εR. (3.47)

Combining this bound with (3.41), we have that if xk /∈ C1 then

φ(xk+1)− φ(xk) ≤ −
νᾱθ2

2 ψπ̄(xk). (3.48)

Since the sequence {φ(xk)} is bounded below by Assumptions 3.3, ψπ̄(xk) converges to zero
and thus it follows that Algorithm 1 eventually generates an iterate in C1.

Now if xk ∈ C1, then by Step 6 in Algorithm 1, φ(xk+1) ≤ φ(xk)+2εφ+εR ≤ w+2εφ+εR,
so that xk+1 ∈ C2.

On the other hand, if xk ∈ C2 \ C1, then by (3.48)

φ(xk+1)− φ(xk) ≤ 0,

which implies xk+1 ∈ C2. Thus the rest of the sequence lies in C2, with infinitely many
iterates in C1.

We should note that since we are not assuming that the objective function is strongly
convex or satisfies a quadratic growth condition, it is possible that the supremum in
Definition 3.10 is w =∞. This is, however, an unlikely scenario.
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3.5 Discussion

Let us take a closer look the main result of this paper, Theorem 3.11, since the critical
region C1 defined in (3.44) is complex.

By the definitions (3.42) and (3.32), we have that E and ε` are both of order O(εc, εg, εJ),
and so is the right hand side in (3.44). This is as desired. The constants in these orders of
magnitude matter, so we must characterize them.

First note that the critical region C1, the set C2 and π̄ depend on the starting point x0.
It is then possible that π̄ could be very large in some cases, although in practice this does
not seem to be a major concern. The constants Cg, Cc, which also enter in the definition
of E and ε` could be quite large. One can, however, give a tighter definition of C1 by not
introducing these constants. In this case, we would define ε` by (3.31) and employ (3.27),
rather than (3.43). This makes the main theorem more precise, albeit more difficult to
interpret.

Returning to the constants in (3.42) and (3.32), we have that

ε`, E ∼
[
δ,

1
bl
,
η

bl

]
,

and from (3.4), (3.5), (3.16) we observe that

σmin(J̃k) ≥ γ, δ = 1
γ − εJ

≥ 1
σmin(J̃k)− εJ

, and η = 1
γ

= 1
σmin(J̃k)

.

The effect of a near rank-deficient Jacobian and Hessian approximations βkI are now
apparent.

It is interesting to compare C1 with the region obtained by Berahas et al. [1] for
unconstrained strongly convex optimization. When constraints are not present, i.e., m = 0,
conditions (3.23) and (3.36) defining C1 reduce to requirements of form ‖gk‖ ≥ c1εg and
‖gk‖2 ≥ c2(εg‖gk‖ + ε2g) for some constants c1 and c2, respectively. That corresponds to
Case 1 in the analysis of [1], in which case εg is small as compared to ‖gk‖ by some factor
β ∈ (0, 1), so that the line search ensures an improvement in the exact objective function –
f(x) in our notation. Similar to the setting in this paper, [1] employs a relaxed line search
which does not fail even in the critical region; that is, when ‖gk‖ ≤ βεg. Their analysis then
provides a level set that the iterates cannot leave, which depends on the relaxation term εR
as well as εφ (i.e. εf in the unconstrained case) as in the definition of C2 in our analysis.
Since strong convexity is assumed in [1], they can define this level set in terms of a strong
convexity parameter rather than a bound such as w in Definition 3.10.

4 Numerical Experiments
We implemented Algorithm 1 in Python. We set ν = 0.1, τ = 0.9, and βk = 50, for all k.
The purpose of the numerical experiments is to supplement the theoretical results, which are
stated in terms of the merit function φ, by reporting the distance to the solution ‖xk − x∗‖
as the iteration progresses. In order to gain an idea of this behavior, it suffices to test only
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problem classification objective constraints
HS7 OOR2-AN-2-1 ln(1 + x2

1)− x2 (1 + x2
1)2 + x2

2 = 4

BT11 OOR2-AN-4-3 −x1x2x3x4

x3
1 + x2

2 = 1
x2

1x4 − x3 = 0
x2

4 − x2 = 0

HS40 OOR2-AY-5-3
(x1 − 1)2 + (x1 − x2)2 + (x2 − x3)2

+(x3 − x4)4 + (x4 − x5)4

x1 + x2
2 + x3

3 = −2 +
√

18
x2 + x4 + x2

3 = −2 +
√

8
x1 − x5 = 2

a few examples. We selected the following three small-scale equality-constrained problems
from the CUTEst set [9].

We add uniformly distributed random noise to the exact function values and to each
component of the exact gradients; i.e., for ξi ∼ U(−ε1, ε1), and ψij ∼ U(−ε2, ε2) we set

f̃(x) = f(x) + ξ0, c̃i(x) = ci(x) + ξi

g̃i(x) = gi(x) + ψ0j , J̃ij(x) = Jij(x) + ψij .

In our tests, we vary ε1, ε2, and report ‖xk − x∗‖, where x∗ is a locally optimal solution
obtained by using exact gradients in the algorithm. For each of these problems, x∗ is a a
nondegenerate stationary point.

Asymptotic Behavior. In Figure 4.1, we plot ‖xk − x∗‖ for 1000 iterations, for ε1 =
ε2 = 10−3 in the definitions of ξi, and ψij We also display the values of εf , εc, εg, εJ defined in
(3.1)-(3.2) We should note that in each of the runs the penalty parameter πk became fixed
within the first 15 iterations. We observe that {‖xk − x∗‖} is contained in a band whose
upper bound is frequently visited by the algorithm, whereas the lower bound is defined
by large irregular spikes. These results suggest that if one desires the highest accuracy
in the solution, the algorithm should continue beyond the point where oscillations in the
merit function occur, since there is little risk that the iterates will stray away from the
neighborhood of the solution, and there is a chance that significantly higher accuracy is
achieved at some iterates.
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Figure 4.1: Distance to optimality (log2(‖xk − x∗‖)) vs iteration number for ε1 = ε2 = 10−3

(a) HS7. εf = 10−3, εc = 10−3, εg = 1.41× 10−3, εJ = 1.41× 10−3

(b) BT11. εf = 10−3, εc = 3× 10−3, εg = 2.24× 10−3, εJ = 6.71× 10−3

(c) HS40. εf = 10−3, εc = 3× 10−3, εg = 2× 10−3, εJ = 6× 10−317



Benefits of the relaxed line search. The only unconventional part of Algorithm 1 is
the relaxed line search (2.4). To observe the effect of the relaxation, we solved the test
problems with and without it; the results are reported in Tables 4.1–4.3. We observe that
when the relaxation is disabled, the line search often fails in a neighborhood of x∗ (we
terminate the algorithm as soon as there is a line search failure). When the relaxation is
enabled, the line search is always successful. In this case, we let the algorithm run for 100,
500, and 1000 iterations. It is apparent that the relaxed line search allows the algorithm to
continue iterating past the point where the traditional line search would fail, yielding much
better accuracy in the solution.

Table 4.1: mink{‖xk − x∗‖} when ε1 = ε2 = 10−5

relaxation disabled relaxation enabled
problem iter. of failure mink{‖xk − x∗‖} kmax = 100 kmax = 500 kmax = 1000

HS7 77 7.8260E-3 1.0234E-3 4.9413E-8 4.9413E-8
BT11 64 4.8346E-2 3.9258E-3 1.9791E-6 1.4133E-6
HS40 26 3.4728E-2 2.1251E-3 1.09888E-6 1.0988E-6

Table 4.2: mink{‖xk − x∗‖} when ε1 = ε2 = 10−3

relaxation disabled relaxation enabled
problem iter. of failure mink{‖xk − x∗‖} kmax = 100 kmax = 500 kmax = 1000

HS7 42 8.0390E-2 1.0401E-3 4.9328E-6 4.9328E-6
BT11 18 9.3324E-1 4.0003E-3 1.9804E-4 1.4060E-4
HS40 6 6.4144E-2 2.2293E-3 1.1183E-4 4.9328E-6

Table 4.3: mink{‖xk − x∗‖} when ε1 = ε2 = 10−1

relaxation disabled relaxation enabled
problem iter. of failure mink{‖xk − x∗‖} kmax = 100 kmax = 500 kmax = 1000

HS7 10 3.7404E-1 1.3113E-3 4.5607E-4 2.5422E-4
BT11 8 1.7108 2.0598E-2 2.0598E-2 1.9451E-2
HS40 2 1.1817E-1 5.8202E-2 3.8673E-2 3.8673E-2

Effect of incorrect noise level estimations. In Algorithm 1, estimations of εf and εc
are needed to set the relaxation bound εR in (2.4). It is clear that underestimating the
noise level can cause failure of the relaxed line search, which never fails when the true level
(or an overestimation) is provided. On the other hand, overestimation can lead to large
oscillations. The precise behavior of the algorithm will depend on the stop test, and there is
no universally adopted stopping criterion in the noisy setting, to our knowledge.

Nevertheless, we performed the following experiments using a stop test that that could
be considered as a naive modification of termination tests in standard packages. We simply
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terminate the algorithm when the observed (noisy) feasibility and optimality errors are
smaller than the (estimated) noise provided for these quantities, i.e.,

‖c̃(xk)‖1 ≤ εestc and ‖g̃(xk) + J̃(xk)Tλk‖ ≤ εestg + ‖λk‖∞εestJ . (4.1)

Figures 4.6–4.4 report the quantity mink{‖xk − x∗‖} when the algorithm employs estimated
noise levels εest1 and εest2 that are 10, 100 and 1000 times larger or smaller than the correct
values. We perform this experiment for εi = 10−1, 10−3, 10−5. A termination due to the
satisfaction of the condition (4.1) is marked with (opt), and a line search failure is marked
with (ls).

Table 4.4: mink{‖xk − x∗‖} when true εi = 10−5; i = 1, 2

εesti = εi εesti = 0.001εi εesti = 1000εi
problem iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖}

HS7 188 (opt) 3.2017E-6 69 (ls) 8.8000E-3 74 (opt) 5.5704E-3
BT11 233 (opt) 2.4010E-6 64 (ls) 4.8346E-2 64 (opt) 4.0112E-2
HS40 2703 (opt) 8.0766E-7 26 (ls) 3.4728E-2 27 (opt) 2.8305E-2

Table 4.5: mink{‖xk − x∗‖} when true εi = 10−3; i = 1, 2

εesti = εi εesti = 0.01εi εesti = 100εi
problem iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖}

HS7 117 (opt) 3.5750E-4 42 (ls) 8.0390E-2 39 (opt) 5.4414E-2
BT11 149 (opt) 2.7466E-4 29 (ls) 5.3925E-1 22 (opt) 5.9597E-1
HS40 154 (opt) 4.2653E-4 7 (ls) 6.4142E-2 2 (opt) 6.9002E-2

Table 4.6: mink{‖xk − x∗‖} when true εi = 10−1; i = 1, 2

εesti = εi εesti = 0.1εi εesti = 10εi
problem iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖} iter. mink{‖xk − x∗‖}

HS7 51 (opt) 2.6752E-2 556 (ls) 2.5682E-4 5 (opt) 4.2796E-1
BT11 20 (opt) 6.6650E-1 3233 (ls) 6.8738E-3 2 (opt) 2.4045
HS40 210 (opt) 5.82E-2 982 (ls) 1.4785E-2 0 (opt) 2.8877E-1

As expected, underestimations cause line search failures while overestimations cause
(4.1) to be triggered at earlier iterations. Another consequence of underestimating ε2 is
that the algorithm might never be able to satisfy (4.1), even if a line search failure occurs
sufficiently late in the run; see for example the entry corresponding to εi = 10−1, εesti = 0.1εi.
In summary, over-and underestimation of the noise levels can be harmful in ways that are
dependent on the implementation.

We must point out that an optimization algorithm may provide an indication that the
noise estimates must be re-computed. For example, the recovery procedure described by
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Berahas et al. [1] uses information from the line search to request a better estimate (e.g.
through sampling or finite difference tables), and can take precautions to avoid harmful
iterations. Robust implementations of methods for constrained optimization in the presence
of noise should include such features.

5 Final Remarks
Two questions guided this research. What is the best behavior one can expect of a constrained
optimization method when functions and constraints contain a moderate amount of bounded
noise that cannot be diminished at will? What are the minimal modifications of a classical
optimization algorithm that allow it to tolerate noise, when the noise level can be estimated?

In this paper, we focused on a classical sequential quadratic programming method applied
to equality constrained problems. We showed that a modification (relaxation) of the line
search allows the iterates to approach a region around the solution where noise dominates—
and that the iterates remain in a vicinity of this region, under normal circumstances. The
analysis is presented under benign assumptions, for example that the Jacobian of the
constraints is never close to singular, which facilitates the choice of the penalty parameter.
Nevertheless, we believe that the essence of the analysis captures some of the main challenges
to be confronted when functions and derivatives contain noise. The accuracy bounds
presented in this paper will be sharpened in a forthcoming paper that studies the local
behavior of the method near a well behaved minimizer.

The thorny issue of how to design a proper stop test that reflects the desires of the users
has not been addressed in this paper and is worthy of research. The treatment of singularity
and the use of a nondiagonal Hessian also requires attention, as well as the very important
question of how to handle noisy inequality constraints.

Acknowledgement. We thank Shigeng Sun for his careful reading of the paper and useful
suggestions.
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