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Abstract. We consider the convex-concave saddle point problem minx maxy Φ(x,y), where the
decision variables x and/or y are subject to certain multi-block structure and affine coupling con-
straints, and Φ(x,y) possesses certain separable structure. Although the minimization counterpart
of this problem has been widely studied under the topics of ADMM, this minimax problem is rarely
investigated. In this paper, a convenient notion of ε-saddle point is proposed, under which the con-
vergence rate of several proposed algorithms are analyzed. When only one of x and y has multiple
blocks and affine constraint, several natural extensions of ADMM are proposed to solve the problem.
Depending on the number of blocks and the level of smoothness, O(1/T ) or O(1/

√
T ) convergence

rates are derived for our algorithms. When both x and y have multiple blocks and affine constraints,
a new algorithm called Extra-Gradient Method of Multipliers (EGMM) is proposed. Under desirable
smoothness conditions, an O(1/T ) rate of convergence can be guaranteed regardless of the number
of blocks in x and y. An in-depth comparison between EGMM (fully primal-dual method) and
ADMM (approximate dual method) is made over the multi-block optimization problems to illustrate
the advantage of the EGMM.
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1. Introduction. In this paper, we consider the multi-block convex-concave
minimax saddle point problems with affine coupling constraints:

min
x

max
y

Φ(x,y) :=

N∑
i=1

hi(xi) + Ψ(x,y)−
M∑
j=1

gj(yj)

s.t. x = [x>1 , · · · , x>N ]>, xi ∈ Xi ⊂ Rd
i
x , i = 1, 2, · · · , N,(1.1)

y = [y>1 , · · · , y>M ]>, yj ∈ Yj ⊂ Rd
j
y , j = 1, 2, · · · ,M,

A1x1 + · · ·+ANxN = a, B1y1 + · · ·+BMyM = b.

In problem (1.1), hi and gj are simple convex functions that allow efficient proxi-
mal operator evaluation. The function Ψ is a smooth convex-concave function that
couples the multiple blocks of x and y together. Xi and Yj are compact convex

sets for ∀i, j. Ai ∈ Rn×dix , Bj ∈ Rm×d
j
y ,∀i, j are a group of matrices and a ∈ Rn,

b ∈ Rm are two vectors. The proposed problem lies in the conjunction of the affinely
constrained multi-block optimization problem and the convex-concave saddle point
problems, which are extensively studied in the alternating direction method of multi-
pliers (ADMM) and the monotone variational inequality (VI) literature respectively.
Many works on the saddle point problems do allow convex constraints on the vari-
ables. However, they usually assume an easy access to the projection operator to the
constraint sets, which is hard to evaluate when there are multiple blocks of variables
that are affinely constrained in addition to the convex set constraints. To our best
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knowledge, our paper is the first one to consider the saddle point problems with affine
constraints. Though rarely studied in the literature, this problem has many potential
applications. Several motivating examples ranging from multi-agent Reinforcement
Learning (RL) to game theory are listed below.

Team-collaborative RL. Consider the team-collaborative RL setting, where the
state space S is the nodes in a network and is partitioned into N clusters: S = ∪Ni=1Si.
Each cluster Si has an agent to control its own policy, i.e., π(·|s) for ∀s ∈ Si. Let
A,P and γ ∈ (0, 1) be the action space, transition probability, and discount factor
respectively. Let µπξ ∈ R|S|×|A| be the state-action occupancy measure under some
initial state distribution ξ and policy π, then the goal of the agents is to collaboratively
solve a general utility RL problem: π∗ = argmaxπ

∑
i=1 ri(µ

π
ξ (Si, :)) + ρ(µπξ ), where

ri(·) and ρ(·) are concave functions, see e.g. [40], and µπξ (Si, :) stands for the submatrix
of µπξ that includes the row index s ∈ Si. To avoid the nonconvexity in terms of π,
we reformulate it as a convex-concave minimax occupancy optimization problem:

maximize
µ∈R|S|×|A|+

minimize
z∈R|S|×|A|

N∑
i=1

ri
(
µ(Si, :)

)
+ 〈µ, z〉 − ρ∗(z)(1.2)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈S,a′∈A
µ(s′, a′)P (s|s′, a′) + ξ(s), ∀s ∈ S,

where the conjugate function ρ∗ of ρ is used to decouple the multiple µ(Si, :) blocks
owned by each individual agent respectively.

Resource constrained game. The problem (1.1) can also be interpreted as several
game theory settings, including two-player multi-stage games and multi-player games.

(i) (Two-player multi-stage game). Consider two players playing a sequence of N −
1 games, with their strategies in the i-th stage denoted by xi ∈ Xi and yi ∈ Yi
respectively. The minimax objective function at stage i takes the form hi(xi) +
Ψi(x,y) − gi(yi). After taking the strategies xi and yi, the two players will incur a
resource cost of Aixi and Biyi respectively. The total resource of the two players are
limited by two vectors a and b respectively. Therefore, the problem can be written as

minimize
x∈X1×···×XN

maximize
y∈Y1×···×YN

N−1∑
i=1

(
hi(xi) + Ψi(x,y)− gi(yi)

)
(1.3)

s.t.

N−1∑
i=1

Aixi + xN = a,

N−1∑
i=1

Biyi + yN = b,

where xN , yN are slack variables. Let B(z, r) denote a Euclidean ball centered at z
with radius r. Then we can specify XN := Rn+∩B(0, rx), YN := Rm+ ∩B(0, ry). Simple

choices of rx is rx = ‖a‖+
∑N−1
i=1 ‖Ai‖ ·maxxi∈Xi ‖xi‖, which bounds the magnitude

of all feasible slack variable xN . The radius ry can be constructed similarly.

(ii) (Multi-player game). Instead of two players playing an (N − 1)-stage game, we
can consider the cases where two groups of players play a single-stage game. There
are N − 1 and M − 1 players in the two groups respectively and the players in each
group play collaboratively against the players in the other group. The strategy of
these players are denoted by xi ∈ Xi, 1 ≤ i ≤ N − 1 and yj ∈ Yj , 1 ≤ j ≤ M − 1.
Each player has its own interest represented by hi(xi) or gj(yj) as well as a coupled
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common interest Ψ(x,y). The two groups have their shared resource budget of a
and b respectively. The resource cost of taking strategy xi or yj are Aixi or Bjyj
respectively, for ∀i, j. Therefore, the problem can be formulated in a similar form
of (1.3), with xN and yM being the slack variables, and Φ(x,y) =

∑N−1
i=1 hi(xi) +

Ψ(x,y)−
∑M−1
j=1 gj(yj).

Related works. In this work, the main problem (1.1) is mostly related to the affinely
constrained multi-block optimization problem and the convex-concave minimax saddle
point problem, both of which have long history of research in convex optimization and
variational inequalities. The proposed methods are closely related to the extragradient
(EG) method and the Alternating Direction Method of Multipliers (ADMM).

Multi-block ADMM algorithms. As a special case of (1.1), the affinely con-
strained multi-block convex optimization problem

(1.4) minimize
xi∈Xi,1≤i≤N

N∑
i=1

hi(xi) + Ψ(x) s.t. A1x1 +A2x2 + · · ·+ANxN = a,

has vast applications in statistics, signal processing, and distributed computing, see
e.g. [28, 23, 12, 3]. Despite the popularity of ADMM, its convergence is very subtle.
When there are only two blocks of variables, i.e. N = 2, the convergence of ADMM to
optimal solution is well established, [16, 30, 14, 26, 17]. When N ≥ 3, counterexamples
where ADMM diverges are constructed [8]. Additional assumptions or algorithm
modifications are needed to ensure the convergence. For example, with additional
error bound [17] or the partial strong convexity [9, 26, 25, 21, 4], convergence to
optimal solution can be guaranteed; by making strongly convex ε-perturbations to
the objective function [27] or certain randomization over the update rule [15], the
convergence of multi-block ADMM can still be achieved without additional conditions.
Convex-concave minimax problems. Saddle point problems are beyond the scope
of the pure optimization. Such problems are crucial in many areas including game
theory [36, 34], reinforcement learning [13, 11], and image processing [6], to name a
few. As a special case of the monotone variational inequality problems (VIP), most al-
gorithms derived for monotone VIPs apply directly to the convex-concave saddle point
problems. In terms of first-order algorithms, representative classical works include the
extragradient (EG) method [20, 5], Mirror-Prox method [31, 19], and dual extrapo-
lation methods [33, 32], among others. For problems with bilinear coupling objective
function, optimal first-order algorithms have been derived in [6, 7, 10], which matched
the iteration complexity lower bounds provided by [35, 39]. For general nonlinear cou-
pling problems, near-optimal first-order algorithms [24, 37] are also discovered. More
recent algorithmic development in first-order methods include [1, 22, 29]. Recently,
people also start to consider the saddle point problems with multi-block structure. In
[38], the authors proposed a stochastic variance reduced block coordinate method for
finite-sum saddle point problem with bi-linear coupling. In [18], a randomized block
coordinate algorithm for saddle point problem with nonlinear coupling term is pro-
posed. To our best knowledge, the algorithmic development for affinely constrained
multi-block saddle point problems remains unexplored.

Contributions. We summarize the contributions of the paper as follows.
• We propose a concept of the ε-saddle point for the affinely constrained mini-

max problem and a handy sufficient condition to guarantee a point to be an
ε-saddle point.
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• We consider a simple case of problem (1.1) where only x has N = 2 blocks
coupled through an affine constraint, while y is subject to no multi-block
structure and affine constraint. Under different smoothness assumptions,
we design two algorithms called SSG-ADMM and SEG-ADMM that achieve
O(1/

√
T ) and O(1/T ) convergence rates respectively. The analysis frame-

work for SSG-ADMM and SEG-ADMM is very versatile. We show that it
can easily incorporate classical multi-block (N ≥ 3) ADMM analysis, given
additional conditions or proper algorithm modification.

• We consider the general case of (1.1), where both x and y have multiple
blocks coupled through affine constraints. An EGMM algorithm is proposed
to solve the general problem (1.1) with an O(1/T ) convergence rate. Unlike
the ADMM-type algorithms SSG-ADMM and SEG-ADMM, EGMM is fully
primal-dual and it abandons the augmented Lagrangian terms. EGMM not
only keeps the benefit of SEG-ADMM and SEG-ADMM in solving small
separable subproblems, but also guarantees the convergence regardless of the
number of blocks.

• Under the special case of multi-block minimization problem, we make an ex-
tensive comparison between EGMM (primal-dual method) and ADMM (ap-
proximate dual ascent) to illustrate the benefits of the primal-dual methods.

Organization. In Section 2, we introduce the definition of an ε-saddle point as well
as a convenient sufficient condition. In Section 3, we propose the SSG-ADMM and
SEG-ADMM algorithms and derive their convergence rate for solving a special case of
problem (1.1). In Section 4, we propose and analyze the EGMM algorithm in solving
the general case problem (1.1). In Section 5, we make extensive comparison between
EGMM and ADMM to illustrate the advantage of the primal-dual methods. Part of
the discussion and proof has been moved to the Appendix.

Notations. For the ease of notation, we will often write x = [x>1 , · · · , x>N ]>, and
xi:j = [x>i , · · · , x>j ]> for i ≤ j. Similarly, we write y = [y>1 , · · · , y>M ]>, and yi:j =

[y>i , · · · , y>j ]> for i ≤ j. We denote the dimension of a as n and the dimension
of b as m, i.e. a ∈ Rn and b ∈ Rm. We also define X = X1 × · · · × XN and
A(x) := A1x1 +A2x2 + · · ·+ANxN . Similarly, we also define Y = Y1× · · ·×YM and
B(y) := B1y1 + B2y2 + · · · + BMyM . In some situations, it will be more convenient
to write A = [A1, · · · , AN ], B = [B1, · · · , BN ] and A(x) = Ax, B(y) = By. We

often switch between the two notations. We also write h(x) =
∑N
i=1 hi(xi) and

g(y) =
∑M
j=1 gj(yj). Therefore, we can also write (1.1) in a more compact form:

min
x∈X

max
y∈Y

Φ(x,y) := h(x) + Ψ(x,y)− g(y)(1.5)

s.t. Ax = a,By = b.

For the compact convex sets Xi, i = 1, · · · , N and Yj , j = 1, · · · ,M , we denote their
diameters as DXi = max{‖xi − x′i‖ : xi, x

′
i ∈ Xi} < +∞, DYj = max{‖yj − y′j‖ :

yj , y
′
j ∈ Yj} < +∞. We also denote DX =

√∑N
i=1D

2
Xi and DY =

√∑M
j=1D

2
Yj .

2. The ε-saddle point condition. As the first step of solving problem (1.1),
let us study the definition of an ε-saddle point. For convex-concave minimax saddle
point problems, the classical concept of an ε-saddle point is often defined as a feasible
solution where the duality gap is bounded by ε. That is, a point (x̄, ȳ) such that
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Ax̄ = a,Bȳ = b, x̄ ∈ X , ȳ ∈ Y and

∆(x̄, ȳ) := max
y∈Y
By=b

Φ(x̄,y)−min
x∈X
Ax=a

Φ(x, ȳ) ≤ ε.

By weak-duality theorem, ∆(x̄, ȳ) ≥ 0 always holds as long as (x̄, ȳ) is feasible.
Such definition of ε-saddle point is more suitable for measuring the convergence for
algorithms that keep the iterates feasible throughout the iterations. However, for
problem (1.1), keeping the feasibility of the affine coupling constraints throughout the
iterations can be prohibitively expensive. ∆(x̄, ȳ) may even be negative when x̄ and ȳ
are infeasible, which makes the common definition of an ε-saddle point meaningless.
Therefore, we adopt the following definition of an ε-saddle point that allows an ε
constraint violation.

Definition 2.1 (ε-saddle point). We say (x̄, ȳ) ∈ X ×Y is an ε-saddle point of
the multi-block affinely constrained minimax problem (1.1), if

max
y∈Y
By=b

Φ(x̄,y)−min
x∈X
Ax=a

Φ(x, ȳ) ∈ [−ε, ε] and ‖Ax̄− a‖ ≤ ε, ‖Bȳ − b‖ ≤ ε.

It is worth noting that Definition 2.1 reduces to the commonly used ε-optimal solution
in the convex ADMM literature when problem (1.1) takes the special form of (1.4).
For any x ∈ X and y ∈ Y, let us define the functions py(·) and qx(·) as

py(v) := min
x∈X

Ax−a=v

Φ(x,y) and qx(u) := max
y∈Y

By−b=u

Φ(x,y).(2.1)

Then py(v) is a convex function in v, and qx(u) is a concave function in u, see [2]. To
facilitate the convergence analysis, we require Slater’s condition to hold.

Assumption 2.2 (Slater’s condition). There exists (x̂, ŷ) ∈ int(X )× int(Y) s.t.
Ax̂ = a, Bŷ = b, where int(·) denotes the interior of a set.

As a result of Slater’s condition, we have the following lemma.

Lemma 2.3. Let ∂py(·) denote the subgradient of the convex function py(·) and
let ∂qx(·) denote the supergradient of the concave function qx(·). Suppose Φ(·,y) is
convex and lower semi-continuous in X for ∀y ∈ Y, Φ(x, ·) is concave and upper
semi-continuous in Y for ∀x ∈ X , and Φ(·, ·) is bounded over X × Y. If Assumption
2.2 holds true, then there exists a positive constant ρ∗ > 0 s.t.

sup
y∈Y

inf
ω1∈∂py(0)

‖ω1‖ ≤ ρ∗ and sup
x∈X

inf
ω2∈∂qx(0)

‖ω2‖ ≤ ρ∗.

The proof of this lemma is placed in Appendix A. Next, we introduce a handy
sufficient condition for claiming a point (x̄, ȳ) to be an ε-saddle point.

Lemma 2.4. Let ρ∗ be defined by Lemma 2.3. Then any (x̄, ȳ) ∈ X ×Y satisfying

max
y∈Y
By=b

Φ(x̄,y)−min
x∈X
Ax=a

Φ(x, ȳ) + ρ‖Ax̄− a‖+ ρ‖Bȳ − b‖ ≤ ε(2.2)

for some ρ > ρ∗ will be an O(ε)-saddle point of (1.1).



6 J. ZHANG, M. WANG, M. HONG AND S. ZHANG

Proof. First, by adding and subtracting the term Φ(x̄, ȳ),

max
y∈Y
By=b

Φ(x̄,y)−min
x∈X
Ax=a

Φ(x, ȳ)

=

(
max
y∈Y
By=b

Φ(x̄,y)− Φ(x̄, ȳ)

)
+

(
Φ(x̄, ȳ)− min

x∈X
Ax=a

Φ(x, ȳ)

)
.

Consider the term Φ(x̄, ȳ) −minx∈X ,Ax=a Φ(x, ȳ). Because Ax̄ = a does not neces-
sarily hold, the point x̄ may not be feasible. Therefore, we cannot simply argue that
this term is non-negative. Let pȳ(·) be defined by (2.1) with y = ȳ. Then, by Lemma
2.3, there exists ω1 ∈ ∂pȳ(0) s.t. ‖ω1‖ ≤ ρ∗. Take v̄ = Ax̄− a, we have

Φ(x̄, ȳ)− min
x∈X
Ax=a

Φ(x, ȳ) ≥ min
x∈X

Ax−a=v̄

Φ(x, ȳ)− min
x∈X

Ax−a=0

Φ(x, ȳ)

= pȳ(v̄)− pȳ(0)(2.3)

≥ 〈ω1, v̄ − 0〉
≥ −‖ω1‖ · ‖Ax̄− a‖.

Similarly, there exists ω2 ∈ ∂qx̄(0) satisfying ‖ω2‖ ≤ ρ∗ such that

max
y∈Y
By=b

Φ(x̄,y)− Φ(x̄, ȳ) ≥ −‖ω2‖ · ‖Bȳ − b‖.(2.4)

Combining (2.2), (2.3) and (2.4), we get

ε ≥ (ρ− ‖ω1‖)‖Ax̄− a‖+ (ρ− ‖ω2‖)‖Bȳ − b‖

+

(
max
y∈Y
By=b

Φ(x̄,y)−min
x∈X
Ax=b

Φ(x, z̄) + ‖ω1‖·‖Ax̄− a‖+ ‖ω2‖·‖Bȳ − b‖
)

︸ ︷︷ ︸
≥0

.

Because ρ > ρ∗ and max {‖ω1‖, ‖ω2‖} ≤ ρ∗, we have ρ− ‖ω1‖ > 0 and ρ− ‖ω2‖ > 0,
which further implies that (x̄, ȳ) is an O(ε)-saddle point described by Definition 2.1.

3. One-sided affinely constrained problems. Before solving the general
form problem (1.1), we consider a slightly simpler setting:

(3.1) min
x∈X

max
y∈Y

Φ(x,y) :=

N∑
i=1

hi(xi,y) + Ψ(x,y) s.t. Ax = a,

where only x is subject to the multi-block structure and the affine coupling constraint.
In contrast to the main problem (1.1), we also make (3.1) a bit more general by
allowing hi(xi,y) to depend on y.

For problems with this structure, we develop the SSG-ADMM and SEG-ADMM
algorithms which naturally extend the well-studied ADMM algorithm to the minimax
setting. We will show that the analysis of the proposed methods is very versatile
and can easily incorporate the existing results of ADMM research. On the other
hand, these methods also suffer from the fundamental restrictions of all ADMM-type
algorithms. That is, the methods in general diverge when N ≥ 3. Moreover, such
ADMM-type algorithm is extremely hard to analyze for the general problem (1.1)
which will be solved with a new approach later.
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In this section, we will only discuss the SSG-ADMM and SEG-ADMM algorithms
for solving problem (3.1) with N = 2, while leaving the discussion for N ≥ 3 to the
Appendix. The following assumptions are made for the objective function under
different scenarios.

Assumption 3.1. For ∀x ∈ X , Φ(x, ·) is concave and upper semi-continuous in
Y. For ∀y∈Y, hi(·,y) is convex and lower semi-continuous in Xi, for i = 1, ..., N .
The overall function Φ(·, ·) takes bounded value over X × Y. For ∀y ∈Y, Ψ(·,y) is
smooth and convex in X , and ∇xΨ(·,y) is Lx-Lipschitz continuous:

‖∇xΨ(x,y)−∇xΨ(x′,y)‖ ≤ Lx‖x− x′‖, ∀x,x′ ∈ X ,∀y ∈ Y.

If Φ(x, ·) is nonsmooth, the following assumption is made.

Assumption 3.2. The supergradient of Φ(x, ·) w.r.t. y is upper bounded by some
constant 0 ≤ ` < +∞. Namely, sup

{
‖u‖ : u ∈ ∂yΦ(x,y),x ∈ X ,y ∈ Y

}
≤ `.

If Φ(x, ·) is smooth, we make the following assumption.

Assumption 3.3. The partial gradient ∇yΦ(·, ·) is Ly-Lipschitz continuous:

‖∇yΦ(x,y)−∇yΦ(x′,y′)‖ ≤ Ly

√
‖x− x′‖2 + ‖y − y′‖2, ∀x,x′ ∈ X ,∀y,y′ ∈ Y.

Define the linearized augmented Lagrangian function as

(3.2) Lγ(x, λ; x̃, ỹ) =

N∑
i=1

hi(xi, ỹ) + 〈∇xΨ(x̃, ỹ),x− x̃〉− 〈λ,Ax−a〉+ γ

2
‖Ax−a‖2.

Based on this notation, we introduce the Prox-ADMM module described by Algorithm
1, which is a common ingredient of both SSG-ADMM and SEG-ADMM.

Algorithm 1: Proximal ADMM step (x+, λ+)=Prox-ADMM(x,λ; y;γ,{Hi}Ni=1)

input: x ∈ X , y ∈ Y, λ ∈ Rn, γ > 0, and matrices Hi � 0, i = 1, 2, ..., N.

Update the decision variable x+:

x+
1 = argminw1∈X1

Lγ (w1,x2:N , λ; x,y) + 1
2‖w1 − x1‖2H1

x+
2 = argminw1∈X2

Lγ
(
x+

1 , w2,x3:N , λ; x,y
)

+ 1
2‖w2 − x2‖2H2

...

x+
i = argminwi∈Xi Lγ

(
x+

1:i−1, wi,xi+1:N , λ; x,y
)

+ 1
2‖wi − xi‖

2
Hi

...

x+
N = argminwN∈XN Lγ

(
x+

1:N−1, wN , λ; x,y
)

+ 1
2‖wN − xN‖

2
HN

Update the Lagrangian multipliers: λ+ = λ− γ · (Ax+ − a)
output: (x+, λ+).

We assume the subproblems in Algorithm 1 can be solved efficiently. In particular, if
we set the positive definite matrices as Hi = σI − γA>i Ai, the subproblem becomes

min
wi∈Xi

hi(wi, ỹ)+
σ

2

∥∥∥∥wi−[xi− 1

σ

(
∇xiΨ(x,y)−A>i λ+γ

(∑
j<i

Ajx
+
j +
∑
j≥i

Ajxj−a
))]∥∥∥∥2

,

which can be viewed as linearizing the augmented quadratic penalty term. Next, we
characterize the iteration of the Prox-ADMM module by Lemma 3.4.
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Lemma 3.4. For problem (3.1), suppose Assumption 3.1 holds and N = 2. Let
(xk+1, λk+1) = Prox-ADMM(xk, λk; ỹ; γ, {Hi}Ni=1) for some ỹ ∈ Y. Define the block
diagonal matrix H :=Diag(H1, ...,HN ). Then, for ∀λ and ∀x∈X s.t. Ax=a, we have

Φ(xk+1, ỹ)−Φ(x, ỹ)− 〈λ,Axk+1 − a〉 ≤ 1

2γ

(∥∥λ− λk∥∥2 −
∥∥λ− λk+1

∥∥2
)

≤ γ

2

(∥∥A1x1 +A2x
k
2 − a

∥∥2 −
∥∥A1x1 +A2x

k+1
2 − a

∥∥2
)

+
1

2

(
‖x− xk‖2H − ‖x− xk+1‖2H

)
− 1

2
‖xk − xk+1‖2H−LxI .(3.3)

The analysis of this lemma mainly combines the techniques from [26] and [15]. The
proof is presented in Appendix C.

3.1. The SSG-ADMM for nonsmooth problem. In this section, we con-
sider the setting where Assumptions 3.1 and 3.2 hold. Namely, Φ(x, ·) can be a
nonsmooth function of y. Under these conditions, we propose the following Saddle-
point SuperGradient Alternating Direction Method of Multipliers (SSG-ADMM), see
Algorithm 2, which is able to obtain an O(1/

√
T ) rate of convergence.

Algorithm 2: The SSG-ADMM Algorithm

input: x0 ∈ X ,y0 ∈ Y, λ0 = 0 ∈ Rn, γ > 0. Matrices G � 0 and Hi � 0.
for k = 0, ..., T do

Apply the Prox-ADMM submodule:

(xk+1, λk+1) = Prox-ADMM(xk, λk; yk; γ, {Hi}Ni=1).

Compute uk ∈ ∂yΦ(xk+1,yk) and apply supergradient ascent step:

yk+1 = argmin
y∈Y

1

2

∥∥y − [yk +G−1uk]
∥∥2

G
.

end

output: x̄ = 1
T

∑T
k=1 xk, ȳ = 1

T

∑T−1
k=0 yk.

In the SSG-ADMM algorithm, we apply one Prox-ADMM step to update x and one
supergradient step to update y. While x update is directly characterized by Lemma
3.4, we analyze y update in the following lemma, see proof in Appendix D.

Lemma 3.5. Let yk and yk+1 be generated by Algorithm 2. For ∀y ∈ Y, we have

Φ(xk+1,y)− Φ(xk+1,yk) ≤ 1

2

(
‖y − yk‖2G − ‖y − yk+1‖2G

)
+

1

2
‖uk‖2G−1 .(3.4)

As a result, we have the following convergence rate result.

Theorem 3.6 (Convergence of SSG-ADMM). Consider problem (3.1) with N =
2. Suppose Assumptions 3.1 and 3.2 hold and (x̄, ȳ) is returned by Algorithm 2 after

T iterations. If we choose Hi � Lx · I, ∀i and G �
√
T`
DY
· I, it holds for ∀ρ > 0 that

max
y∈Y

Φ(x̄,y)− min
x∈X ,Ax=a

Φ(x, ȳ) + ρ‖Ax̄−a‖ ≤
ρ2/γ + ‖H‖D2

X + γ‖A2‖2D2
X2

2T
+
`DY√
T
.

In particular, if we set Hi = Lx · I for ∀i and G =
√
T`
DY
· I, by Lemma 2.4, it takes

T = O(ε−2) iterations to reach an ε-saddle point.
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Proof. First, let us sum up (3.3) (with ỹ = yk and {Hi}Ni=1) and (3.4):

Φ(xk+1,y)− Φ(x,yk)− 〈λ,Axk+1 − a〉

≤ 1

2γ

(∥∥λ−λk∥∥2−
∥∥λ− λk+1

∥∥2
)

+
γ

2

(∥∥A1x1+A2x
k
2−a

∥∥2−
∥∥A1x1+A2x

k+1
2 −a

∥∥2
)

+
1

2

(
‖x− xk‖2H − ‖x− xk+1‖2H

)
+

1

2

(
‖y − yk‖2G − ‖y − yk+1‖2G

)
+

1

2

∥∥uk∥∥2

G−1 .

Averaging the above inequality for k = 0, ..., T − 1, then Jensen’s inequality implies

Φ(x̄,y)− Φ(x, ȳ)− 〈λ,Ax̄− a〉

≤ 1

T

T−1∑
k=0

(
Φ(xk+1,y)− Φ(x,yk)− 〈λ,Axk+1 − a〉

)
≤ ‖λ− λ

0‖2

2γ · T
+
γ‖A1x1 +A2x

0
2 − a‖2 + ‖x− x0‖2H + ‖y − y0‖2G

2T
+

∑T−1
k=0 ‖uk‖2G−1

2T

≤ ‖λ− λ
0‖2

2γ · T
+
γ‖A1x1 +A2x

0
2 − a‖2

2T
+
‖H‖D2

X + ‖G‖D2
Y

2T
+

∑T−1
k=0 ‖uk‖2

2‖G‖ · T
.

By setting

λ = −ρ · Ax̄− a
‖Ax̄− a‖

, y = argmax
y′∈Y

Φ(x̄,y′), and x = argmin
x′∈X ,Ax′=a

Φ(x′, ȳ)

and applying the fact that λ0 = 0, ‖λ−λ0‖2 = ρ2, ‖uk‖2 ≤ `2 and ‖A1x1+A2x
0
2−b‖2 =

‖A2(x0
2 − x2)‖2 ≤ ‖A2‖2 ·D2

X2
proves the theorem.

3.2. The SEG-ADMM for smooth problem. Due to the nonsmoothness of
Φ(x, ·), our SSG-ADMM algorithm applies a supergradient ascent step to update y,
resulting in an O(1/

√
T ) convergence rate. In this section, we show that an improved

O(1/T ) convergence can be obtained by replacing the supergradient step with an
extragradient step, given better smoothness condition. Based on this feature, we
call the new algorithm Saddle-point ExtraGradient Alternating Direction Method of
Multipliers (SEG-ADMM), as is decribed by Algorithm 3.

Algorithm 3: The SEG-ADMM Algorithm

input: x0 ∈ X ,y0 ∈ Y, λ0 = 0 ∈ Rn, γ > 0, and matrices G � 0 and Hi � 0.
for k = 0, ..., T do

Apply the gradient ascent step:

ŷk+1 = argmin
y∈Y

1

2

∥∥y − [yk +G−1 · ∇yΦ(xk,yk)]
∥∥2

G
.

Apply the Prox-ADMM submodule:

(xk+1, λk+1) = Prox-ADMM(xk, λk; ŷk+1; γ, {Hi}Ni=1).

Apply the extra-gradient ascent step:

yk+1 = argmin
y∈Y

1

2

∥∥y − [yk +G−1 · ∇yΦ(xk+1, ŷk+1)]
∥∥2

G
.

end

output: x̄ = 1
T

∑T
k=1 xk, ȳ = 1

T

∑T
k=1 ŷk.
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Similar to the analysis of SSG-ADMM, the x update of SEG-ADMM is fully
characterized by Lemma 3.4 by setting ỹ = ŷk+1. We only need to analyze the y
update in the following lemma. See the proof in Appendix E.

Lemma 3.7. Suppose Assumption 3.3 holds. Let yk, ŷk+1 and yk+1 be generated
by Algorithm 3. Then for ∀y ∈ Y, it holds that

Φ(xk+1,y)− Φ(xk+1, ŷk+1) ≤ 1

2

(
‖y − yk‖2G − ‖y − yk+1‖2G

)
+
Ly

2
‖xk − xk+1‖2

−1

2

(
‖ŷk+1 − yk‖2G−LyI + ‖ŷk+1 − yk+1‖2G−LyI

)
.(3.5)

It is worth noting that the error term +
Ly

2 ‖x
k − xk+1‖2 in (3.5) will be canceled by

the descent term − 1
2‖x

k − xk+1‖2H−LxI
in (3.3). This is the reason why choosing the

proximal version of ADMM (Prox-ADMM) for x update is essential. With the Lemma
3.4 and Lemma 3.7, we can prove the following theorem.

Theorem 3.8 (Convergence of SEG-ADMM). Consider the problem 3.1 with
N = 2. Suppose Assumptions 3.1 and 3.3 hold. Suppose the output (x̄, ȳ) is returned
by Algorithm 3 after T iterations. As long as we choose Hi � (Lx + Ly) · I, i =
1, · · · , N, and G � Ly · I, it holds for ∀ρ > 0 that

max
y∈Y

Φ(x̄,y)−min
x∈X
Ax=a

Φ(x, ȳ)+ρ‖Ax̄− a‖ ≤
ρ2/γ + γ‖A2‖2D2

X2
+ ‖H‖D2

X + ‖G‖D2
Y

2T
.

By Lemma 2.4, it takes T = O(ε−1) iterations to reach an ε-saddle point.

The proof of this theorem is similar to that of Theorem 3.6, thus we omit it here.

3.3. Discussion. Given the analysis of the SSG-ADMM and SEG-ADMM al-
gorithms, we can see that the traditional ADMM algorithm can be easily extended to
the multi-block affinely constrained minimax problems of the form (3.1), by applying
a proximal ADMM update on the affinely constrained variable x, while making a
simple supergradient update for y or an extragradient update for y that sandwiches
the x update. Therefore, we would like to make a brief discussion on the pros and
cons of this approach.

Versatility of analysis. Throughout Section 3, and the analysis of the SEG-ADMM
with N ≥ 3 in Appendix B, it can be observed that the analysis of x blocks’ Prox-ADMM
step and the analysis of y block’s supergradient/extragradient step are almost inde-
pendent. This implies that many existing results of ADMM under different conditions
can be incorporated into the analysis of the x update in SSG-ADMM and SEG-
ADMM, making the algorithm framework versatile for many potential extensions.

Restriction in N . Like classical ADMM in convex optimization, the SSG-ADMM
and SEG-ADMM can easily diverge when N ≥ 3, unless additional assumptions or
algorithm adaptation is available. For example, anO(1/T ) convergence can be derived
for SEG-ADMM if we adopt the partial strong convexity condition for problem (3.1).
When such condition does not hold, we can adopt the perturbation strategy to obtain
a worse O(1/

√
T ) convergence rate. We place these results in Appendix B.

Inability against general problem (1.1). In contrast to the versatility of SSG-
ADMM and SEG-ADMM in terms of the simpler problem (3.1), the asymmetry of
ADMM updates makes it very hard to be analyzed when we extend it to the general
problem (1.1), where both x and y have affinely constrained multi-block structure.
This is also the reason why we propose the EGMM algorithm in the next section.
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4. The extra-gradient method of multipliers (EGMM). As discussed in
the last section, it is hard for the ADMM-type methods to handle the general problem
(1.1). To resolve this difficulty, we introduce the Extra-Gradient Method of Multipliers
(EGMM), which takes a strategy that represents a significant departure from the
ADMM-type methods in section 3. Note that problem (1.1) can be compactly written
as (1.5), which is rewritten below for readers’ convenience:

min
x∈X

max
y∈Y

Φ(x,y) := h(x) + Ψ(x,y)− g(y) s.t. Ax = a,By = b.

For this problem, we make the following assumptions.

Assumption 4.1. hi(·) and gj(·) are convex and lower semi-continuous functions,
for i = 1, ..., N and j = 1, ...,M .

Assumption 4.2. We assume Ψ(·,y) is convex in X for ∀y ∈ Y and Ψ(x, ·) is
concave in Y for ∀x ∈ X . The gradient of Ψ is L-Lipschitz continuous, i.e.,

‖∇Ψ(x,y)−∇Ψ(x′,y′)‖ ≤ L
√
‖x− x′‖2 + ‖y − y′‖2, ∀x,x′ ∈ X , ∀y,y′ ∈ Y,

where ∇Ψ(x,y) = (∇xΨ(x,y),∇Ψy(x,y)) is the full gradient of the coupling term.
The overall objective function Φ(·, ·) is bounded over X × Y.

To derive the EGMM algorithm, let us first rewrite (1.5) as a new minimax problem:

min
µ∈Rm
x∈X

max
λ∈Rn
y∈Y

L(x,y;λ,µ) :=h(x)+Ψ(x,y)−g(y)−〈Ax−a,λ〉+〈By−b,µ〉.(4.1)

Then our EGMM algorithm attempts to solve the original problem (1.5) by working
on problem (4.1). However, we should also notice that, as long as (x̄, ȳ; λ̄, µ̄) does not
satisfy Ax̄ = a and Bȳ = b simultaneously, the duality gap of (4.1) is infinity, i.e.,

max
λ∈Rn
y∈Y

L(x̄,y; µ̄, λ) − min
µ∈Rm
x∈X

L(x, ȳ;µ, λ̄) = +∞.

Therefore, one should not simply apply the existing analysis of convex-concave saddle
point problems and try to prove the convergence in terms of the duality gap. Instead,
we should carefully utilize the special structure of the original problem, and try to
analyze the convergence to an ε-saddle point in the sense of Definition 2.1. If we

denote z =
[
x>,y>, λ>, µ>

]> ∈ Z := X × Y × Rn × Rm, R(z) := h(x) + g(y),

F (z) =


∇xΨ(x,y)−A>λ
−∇yΨ(x,y)−B>µ

Ax− a
By − b

 , and H =


σxIdx

σyIdy
σλIn

σµIm


where dx =

∑
i d
i
x, dy =

∑
j d

j
y, Id is a d × d identity matrix, and σx, σy, σλ, σµ > 0

are some positive constants. We can simply write the EGMM algorithm as

(4.2)

{
ẑk+1 = argminz∈Z

1
2

∥∥z − [zk −H−1 · F (zk)]
∥∥2

H
+R(z),

zk+1 = argminz∈Z
1
2

∥∥z − [zk −H−1 · F (ẑk+1)]
∥∥2

H
+R(z).

Without the augmented Lagrangian terms that couple the multiple blocks of x and y
together, i.e. ‖

∑
iAixi − a‖2 and ‖

∑
j Bjyj − b‖2, the above subproblem is a group

of separable small subproblems. Assuming the solvability of these subproblems, we
describe the EGMM method as Algorithm 4.
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Lemma 4.3. Let zk, ẑk+1 and zk+1 be generated by Algorithm 4. Then

R(ẑk+1)−R(z) +
〈
F (ẑk+1), ẑk+1 − z

〉
(4.3)

≤ 1

2
‖zk − z‖2H −

1

2
‖z − zk+1‖2H −

1

2
‖zk − ẑk+1‖2H−G −

1

2
‖ẑk+1 − zk+1‖2H−G

for ∀z∈Z, where G = Diag
{
L+‖A‖

2 Ix,
L+‖B‖

2 Iy,
‖A‖

2 In,
‖B‖

2 Im

}
is a diagonal matrix.

Proof. Consider the compact form of Algorithm 4 summarized in (4.2). The
KKT condition of the two subproblems implies that ∃v̂k+1 ∈ ∂R(ẑk+1) and vk+1 ∈
∂R(zk+1) s.t.

(4.4)
〈
H(ẑk+1 − zk) + F (zk) + v̂k+1, z − ẑk+1

〉
≥ 0, ∀z ∈ Z

(4.5)
〈
H(zk+1 − zk) + F (ẑk+1) + vk+1, z − zk+1

〉
≥ 0, ∀z ∈ Z

Set z = zk+1 in (4.4) yields

〈
F (zk) + v̂k+1, ẑk+1 − zk+1

〉
≤
〈
H(ẑk+1 − zk), zk+1 − ẑk+1

〉
=

1

2
‖zk − zk+1‖2H −

1

2
‖zk − ẑk+1‖2H −

1

2
‖ẑk+1 − zk+1‖2H .

Similarly, (4.5) can be equivalently written as

〈
F (ẑk+1) + vk+1, zk+1 − z

〉
≤ 1

2
‖zk − z‖2H −

1

2
‖zk − zk+1‖2H −

1

2
‖z − zk+1‖2H .

Summing up the above two inequalities yields:

1

2
‖zk − z‖2H −

1

2
‖z − zk+1‖2H −

1

2
‖zk − ẑk+1‖2H −

1

2
‖ẑk+1 − zk+1‖2H(4.6)

≥
〈
F (ẑk+1) + vk+1, zk+1 − z

〉
+
〈
F (zk) + v̂k+1, ẑk+1 − zk+1

〉
(i)

≥
〈
F (ẑk+1), zk+1 − z

〉
+
〈
F (zk), ẑk+1 − zk+1

〉
+R(ẑk+1)−R(z)

= R(ẑk+1)−R(z) +
〈
F (ẑk+1), ẑk+1 − z

〉
+
〈
F (ẑk+1)− F (zk), zk+1 − ẑk+1

〉
(ii)

≥ R(ẑk+1)−R(z) +
〈
F (ẑk+1), ẑk+1 − z

〉
− 1

2
‖zk+1 − ẑk+1‖2G −

1

2
‖zk − ẑk+1‖2G

where (i) is due to the convexity of R:

〈
vk+1, zk+1 − z

〉
+
〈
v̂k+1, ẑk+1 − zk+1

〉
≥ R(zk+1)−R(z) +R(ẑk+1)−R(zk+1)

= R(ẑk+1)−R(z)
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and (ii) is due to the Lipschitz continuity of ∇Ψ and Cauchy inequality:〈
F (ẑk+1)− F (zk), zk+1 − ẑk+1

〉
=
〈
∇xΨ(x̂k+1, ŷk+1)−∇xΨ(xk,yk)−A>(λ̂k+1 − λk),xk+1 − x̂k+1

〉
+
〈
∇yΨ(xk,yk)−∇yΨ(x̂k+1, ŷk+1)−B>(µ̂k+1 − µk),yk+1 − ŷk+1

〉
+
〈
A(x̂k+1 − xk), λk+1 − λ̂k+1

〉
+
〈
B(ŷk+1 − yk), µk+1 − µ̂k+1

〉
≥ − 1

2L
‖∇xΨ(x̂k+1, ŷk+1)−∇xΨ(xk,yk)‖2 − L+ ‖A‖

2
‖x̂k+1 − xk+1‖2 − ‖A‖

2
‖λ̂k+1 − λk‖2

− 1

2L
‖∇yΨ(x̂k+1, ŷk+1)−∇yΨ(xk,yk)‖2 − L+ ‖B‖

2
‖ŷk+1 − yk+1‖2 − ‖B‖

2
‖µ̂k+1 − µk‖2

−‖A‖
2
‖λ̂k+1 − λk+1‖2 − ‖B‖

2
‖µ̂k+1 − µk+1‖2 − ‖A‖

2
‖x̂k+1 − xk‖2 − ‖B‖

2
‖ŷk+1 − yk‖2

≥ −1

2
‖zk+1 − ẑk+1‖2G −

1

2
‖zk − ẑk+1‖2G.

Hence we complete the proof.

Until this point, the analysis of Lemma 4.3 follows that of the extragradient (EG)
method, except for additional effort to deal with the positive definite scaling matrix
H and proxiaml-gradient step of (4.2) instead of the simple gradient step of EG. In the
next step, our analysis diverges from the existing methods by skipping the convergence
analysis of the duality gap as well as that of the multiplier sequence {λ̂k, µ̂k}k=1,2,....
Instead, we utilize the structure of the original problem (1.1) and only focus on the
convergence of {x̂k, ŷk}k=1,2,.... We present the result in the next theorem.

Theorem 4.4 (Convergence of EGMM). For problem (1.1) with general block
numbers N,M ≥ 1, suppose Assumption 4.1 and 4.2 hold. Let (x̄, ȳ) be generated by

Algorithm 4 after T iterations, with σx = L+‖A‖
2 , σy = L+‖B‖

2 , σλ = ‖A‖
2 , σµ = ‖B‖

2 .
Then it holds for any ρ > 0 that

max
y∈Y
By=b

Φ(x̄,y)− min
x∈X
Ax=a

Φ(x, ȳ)+ρ‖Ax̄− a‖+ ρ‖Bȳ − b‖

≤ L+ ‖A‖
4T

·D2
X +

L+ ‖B‖
4T

·D2
Y +
‖A‖+ ‖B‖

2T
· ρ2.

Therefore, it takes T = O(ε−1) iterations to reach an ε-saddle point.

Proof. Consider the LHS of (4.3). By utilizing the detailed form of F (z), we have

R(ẑk+1)−R(z) +
〈
F (ẑk+1), ẑk+1 − z

〉
(4.13)

= R(ẑk+1)−R(z) +
〈
∇xΨ(x̂k+1, ŷk+1)−A>λ̂k+1, x̂k+1 − x

〉
+
〈
Ax̂k+1 − a, λ̂k+1 − λ

〉
+
〈
Bŷk+1 − b, µ̂k+1 − µ

〉
+
〈
−∇yΨ(x̂k+1, ŷk+1)−B>µ̂k+1, ŷk+1 − y

〉
(i)

≥ Φ(x̂k+1,y)− Φ(x, ŷk+1)− 〈A>λ̂k+1, x̂k+1 − x
〉

+ 〈Ax̂k+1 − a, λ̂k+1 − λ〉
−〈B>µ̂k+1, ŷk+1 − y〉+ 〈Bŷk+1 − b, µ̂k+1 − µ〉

where (i) is because of the definition of R and the convex-concave nature of Ψ:

R(ẑk+1)−R(z) =
(
h(x̂k+1)− g(y)

)
−
(
h(x)− g(ŷk+1)

)
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Algorithm 4: The EGMM algorithm

input: x0 ∈ X , y0 ∈ Y, λ0 = 0 ∈ Rn, µ0 = 0 ∈ Rm, matrix H.
for k = 0, ..., T − 1 do

Update the variable blocks by one proximal gradient step:
for i = 1, 2, ..., N , j = 1, 2, ...,M do

Denote

{
Fxi := (∇xiΨ(xk,yk)−A>i λk

Fyj := ∇yjΨ(xk,yk)−B>j µk
for ∀i, j. Then compute

(4.7) x̂k+1
i = argmin

xi∈Xi

σx
2

∥∥xi − [xki − σ−1
x · Fxi ]

∥∥2
+ hi(xi)

(4.8) ŷk+1
j = argmin

yj∈Yj

σy
2

∥∥yj − [yki + σ−1
y · Fyj ]

∥∥2
+ gj(yj)

end

Update the multipliers by one gradient

(4.9)

{
λ̂k+1 = λk − σ−1

λ ·
(∑N

i=1Aix
k
i − a

)
µ̂k+1 = µk − σ−1

µ ·
(∑M

j=1Bjy
k
j − b

)
Update the variable blocks by one proximal gradient step:

for i = 1, 2, ..., N , j = 1, 2, ...,M do

Denote

{
F̂xi := ∇xiΨ(x̂k+1, ŷk+1)−A>i λ̂k+1

Fyj := ∇yjΨ(x̂k+1, ŷk+1)−B>j µ̂k+1
for ∀i, j. Then compute

(4.10) xk+1
i = argmin

xi∈Xi

σx
2

∥∥xi−[xki −σ−1
x · F̂xi ]

∥∥2
+hi(xi)

(4.11) yk+1
j = argmin

yj∈Yj

σy
2

∥∥∥yj−[yki +σ−1
y · F̂yj ]

∥∥∥2

+gj(yj)

end

Update the multipliers by one gradient step:

(4.12)

{
λk+1 = λk − σ−1

λ ·
(∑N

i=1Aix̂
k+1
i − a

)
µk+1 = µk − σ−1

µ ·
(∑M

j=1Bj ŷ
k+1
j − b

)
end

output x̄ = 1
T

∑T
k=1 x̂k and ȳ = 1

T

∑T
k=1 ŷk.

〈
∇xΨ(x̂k+1, ŷk+1), x̂k+1 − x

〉
≥ Ψ(x̂k+1, ŷk+1)−Ψ(x, ŷk+1)

〈
−∇yΨ(x̂k+1, ŷk+1), ŷk+1 − y

〉
≥ Ψ(x̂k+1,y)−Ψ(x̂k+1, ŷk+1)

If we further require (x,y) ∈ X × Y to satisfy Ax = a and By = b, then we have〈
−A>λ̂k+1, x̂k+1 − x

〉
+
〈
Ax̂k+1 − a, λ̂k+1 − λ

〉
=
〈
− λ̂k+1, Ax̂k+1 −Ax

〉
+
〈
Ax̂k+1 − a, λ̂k+1 − λ

〉
= −

〈
Ax̂k+1 − a, λ

〉
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and 〈
−B>µ̂k+1, ŷk+1 − y

〉
+
〈
Bŷk+1 − b, µ̂k+1 − µ

〉
=
〈
− µ̂k+1, Bŷk+1 −By

〉
+
〈
Bŷk+1 − b, µ̂k+1 − µ

〉
= −

〈
Bŷk+1 − b, µ

〉
.

Combined with (4.13) and Lemma 4.3, we have

Φ(x̂k+1,y)− Φ(x, ŷk+1)−
〈
Ax̂k+1 − a, λ

〉
−
〈
Bŷk+1 − b, µ

〉
≤ R(ẑk+1)−R(z) +

〈
F (ẑk+1), ẑk+1 − z

〉
(4.14)

≤ 1

2
‖zk − z‖2H −

1

η
‖z − zk+1‖2H

where the −‖ · ‖2H−G terms in Lemma 4.3 vanish since H = G. Next, similar to the
analysis of Theorem 3.6, we can average (4.14) and use Jensen’s inequality to yield:

Φ(x̄,y)− Φ(x, ȳ)−
〈
Ax̄− a, λ

〉
−
〈
Bȳ − b, µ

〉
≤ ‖z − z

0‖2H
2 · T

.

Since the above inequality holds for ∀(x,y) ∈ X × Y with Ax = a,By = b, we can
set λ = −ρ · Ax̄−a

‖Ax̄−a‖ and µ = −ρ · Bȳ−b
‖Bȳ−b‖ , also notice that µ0 = 0, λ0 = 0, we have

max
y∈Y
By=b

Φ(x̄,y)− min
x∈X
Ax=a

Φ(x, ȳ) + ρ‖Ax̄− a‖+ ρ‖Bȳ − b‖

≤ L+ ‖A‖
4T

·D2
X +

L+ ‖B‖
4T

·D2
Y +
‖A‖+ ‖B‖

2T
· ρ2,

which proves the theorem.

It can be noticed that although the duality gap w.r.t. problem (4.1) is always infinity,
the special structure of the original problem (1.1) allows us to circumvent this issue
and establish a convergence to the ε-saddle point in sense of Definition 2.1, which is
different from the traditional duality measure.

4.1. Extension to conic inequality constrained problem. The EGMM al-
gorithm can also easily adapt to the conic inequality constrained problems:

min
x∈X

max
y∈Y

Φ(x,y) := h(x) + Ψ(x,y)− g(y) s.t. Ax �K1 a, By �K2 b,(4.15)

where K1,K2 are two closed convex cones. The notation a �K b means that b−a ∈ K.
Therefore, we can add two slack variables xN+1 and yM+1 and reformulate (4.15) as

minimize
x∈X ,xN+1∈XN+1

maximize
y∈Y,yM+1∈YM+1

Φ(x,y) := h(x) + Ψ(x,y)− g(y)

s.t. Ax + xN+1 = a, By + yM+1 = b,

XN+1 := {w ∈ Rn : w ∈ K1, ‖w‖ ≤ ‖a‖+ ‖A‖DX }
YM+1 := {w ∈ Rm : w ∈ K2, ‖w‖ ≤ ‖b‖+ ‖B‖DY}

which is a special case of (1.1). Note that EGMM works regardless of the number of
blocks, we can again apply this algorithm to yield an O(1/T ) convergence rate.
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5. Primal-dual vs. approximate dual: a comparison between EGMM
and ADMM. Throughout the previous discussion, it is observed that the EGMM,
SSG-ADMM and SEG-ADMM algorithms share the same advantage of subproblem
separability, while EGMM has much better theoretical guarantees w.r.t. the general
problem (1.1) under various scenarios. In this section, we would like to discuss the
insights of such advantage by inspecting EGMM and ADMM under the classical
affinely constrained multi-block convex optimization problem (1.4).

5.1. EGMM & ADMM for minimization. Consider the special case of our
main problem (1.1) where Φ(x, ·) is a constant for ∀x. Then (1.1) becomes the exten-
sively studied multi-block convex optimization problem with affine constraint (1.4),
which can be written as

min
x∈X

Φ(x) := h(x) + Ψ(x) s.t. Ax = a.

The optimal solution of this problem is denoted as x∗. To formalize the discussion,
we specialize the previous assumptions as follows.

Assumption 5.1. For i = 1, ..., N , hi(·) is convex in Xi and its proximal mapping
can be efficiently evaluated. Ψ(·) is a smooth and convex in X , and ∇xΨ(·) is Lx-
Lipschitz continuous, i.e., ‖∇xΨ(x)−∇xΨ(x′)‖ ≤ Lx‖x− x′‖, ∀x, x′ ∈ X .

Multi-block ADMM algorithm. For problem (1.4), both SSG-ADMM and SEG-
ADMM reduce to the proximal ADMM algorithm:

(5.1) (xk+1, λk+1) = Prox-ADMM(xk, λk; y = null; γ, σ).

For (5.1), both the existing ADMM literature and Theorem 3.6, 3.8 indicate the
following result: Under Assumption 5.1 and N = 2. Set γ > 0, σ = Lx. Then after T
iterations of (5.1), we have for x̄ = 1

T

∑T
k=1 xk and ∀ρ > 0 that

Φ(x̄)− Φ(x∗) + ρ‖Ax̄− a‖ ≤ O
(
ρ2/γ + LxD

2
X + γ‖A2‖2D2

X2

2T

)
.

When N ≥ 3, (5.1) diverges unless additional conditions or proper algorithm adap-
tation is made. E.g., making a strongly convex ε-perturbation to problem (1.4), see
(B.1), yields an O(1/

√
T ) convergence rate.

EGMM algorithm. For the optimization problem (1.4), if we denote

z =

[
x
λ

]
∈X ×Rn, F (z) =

[
∇xΨ(x,y)−A>λ

Ax− a

]
, and H =

[
Lx+‖A‖

2 Idx
‖A‖

2 In

]
.

and R(z) := h(x), then EGMM still takes the form of (4.2). As a corollary of Theorem

4.4, it takes T = O
(
‖A‖ρ2+(Lx+‖A‖)D2

X
ε

)
iterations for EGMM to get an O(ε)-optimal

solution.

5.2. Primal-dual method vs. approximate dual method. To explain the
restriction of the ADMM compared to EGMM, let us investigate the hidden logic
behind these algorithms.

ADMM as an approximate dual method. The traditional interpretation of
ADMM type algorithms is to view them as an approximate gradient ascent of the
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dual function:

Pγ(λ) = min
x∈X

Lγ(x;λ) := h(x) + Ψ(x)− 〈Ax− a, λ〉+
γ

2
‖Ax− a‖2.

If we define x∗(λ) := argminx∈X Lγ(x;λ), then Danskin’s theorem indicates that

∇λPγ(λ) = −(Ax∗(λ)− a),

which is known to be (1/γ)-Lipschitz continuous in λ. Consider the special case
where Ψ(x) ≡ 0, the ADMM update in (5.1) with σ = 0 can be viewed as computing
xk+1 ≈ x∗(λk) by one iteration of block coordinate minimization in Lγ(x;λ), and then
update λk+1 = λk − γ · (Axk+1− a) ≈ λk + γ∇λPγ(λk). When N = 1, xk+1 = x∗(λk)
holds exactly. When N ≥ 3, the approximation xk+1 ≈ x∗(λk) is very inaccurate and
may cause divergence in hard instances. Therefore, instead of a primal-dual method,
it is more appropriate to view ADMM as an approximate dual method.

EGMM as a primal-dual method. In contrast to ADMM, EGMM proposed in
this paper mainly focuses on the minimax formulation of problem (1.4):

min
x∈X

max
λ

h(x) + Ψ(x)− 〈Ax− a, λ〉.

Note that EGMM can actually be viewed as a proximal gradient variant of the extra-
gradient (EG) method, while adopting a positive definite gradient scaling, as well as a
different convergence analysis. Therefore, EGMM experiences no issue of inexact dual
gradient that has long troubled ADMM. Besides, the symmetricity of the primal-dual
update makes it straightforward to be applied to the main problem (1.1). We can
view EGMM as a fully primal-dual method, while avoiding all convergence difficulties,
it preserves the benefit of ADMM in solving small separable subproblems.

6. Numerical Experiments on Team work RL. In this section, we consider
the teamwork RL problem introduced in (1.2). Given any partition of the state space
S = S1 ∪ S2 ∪ · · · ∪ Sn, we consider the following general utility for this MDP:

ρi(µ(Si, :)) :=
〈
r(Si, :), µ(Si, :)

〉
− β

|Si|
∑
s∈Si

(〈
r(s, :), µ(s, :)

〉
−
〈
r(Si, :), µ(Si, :)

〉
|Si|

)2

.

ρ(µ) := min
1≤i≤n

{
ρi(µ(Si, :))

}
.

In this utility, for any s ∈ S, a ∈ A, r(s, a) stands for the reward that node s
receives if it takes the action a when visited by the system. Suppose µ is a state action
occupancy measure under some policy π. Then the first term of ρi(µ(Si, :)) equals
the total discounted cumulative reward received by the cluster Si. The second term
of ρ(µ(Si, :)), if we ignore the −β factor, equals the variance among the cumulative
rewards received by the different nodes in the cluster Si. That is, the agent in charge
of the cluster Si would like to maximize the overall reward of the cluster while using a
variance penalty to impose fairness among the member nodes. For the whole system,
the common goal is to maximize the minimum utility among the n clusters. To solve
this team RL with general utility, we reformulate it as follows

maximize
0|S|×|A|≤µ≤

1|S|×|A|
1−γ

minimize
y≥0n,1>n y=1

Φ(µ, y) :=

n∑
i=1

yi · ρi(µ(Si, :))(6.1)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈S,a′∈A
µ(s′, a′)P (s|s′, a′) + ξ(s), ∀s ∈ S,
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where the upper bound µ ≤ 1|S|×|A|
1−γ is a redundant constraint satisfied by all state

action occupancy measures.
In the experiments, we test our algorithm in two networks illustrated by Figure

6.1a and Figure 6.2a. In particular, the network in Figure 6.2a is generated by a
stochastic block model, with 4 clusters of size |S1| = · · · = |S4| = 60. For any
two nodes from the same cluster, the probability of having a link between them is
p = 0.25; for any two nodes from different clusters, the probability of having a link
between them is q = 0.005. Then a random adjacency matrix is generated accordingly.
For both cases, we set the action space to have size |A| = 3. Once the action space
A, the network structure and nodes clusters are determined, for each (s, a) ∈ S ×A,
the transition probability P (·|s, a) is generated randomly among the neighbourhood
of s in the network, and the reward r(s, a) is also randomly created. For all the
experiment, we randomly generate the initial state distribution ξ and we take the
discount factor to be γ = 0.9. With these generated P, γ and ξ, we can rewrite the
constraint in the form of

∑n
i=1Aiµi = ξ, with µi = µ(Si, :).
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Fig. 6.1: State space partition structure and experiments with β = 0 and β = 0.2.
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Fig. 6.2: State space partition structure and experiments with β = 0 and β = 0.2.

For this problem, we test all three proposed algorithms. In particular, for Algo-
rithm 2 and 3, if we simply set the matrices Hi = σI, then we call them SSG-ADMM
and SEG-ADMM respectively. In this case, due to the box constraint, the subproblems
does not have closed form solution and thus we solve them with the standard Matlab
quadprog function. Let γ0 be the penalty coefficient in the augmented Lagrangian. If
we set Hi = σI − γ0A

>
i Ai to eliminate the quadratic term in the subproblem, we will

call them SSG-ADMM-L and SEG-ADMM-L because choosing this specific proximal
term is equivalent to linearizing the augmented quadratic penalty term. In this case,
the subproblems have closed form solution. And we use EGMM to denote the curve
of Algorithm 4. For all the step size and penalty parameters, they are tuned from
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{1, 10, 100, 1000}. For example, for SSG-ADMM, we select the penalty coefficient γ0,
and the step size σ that have best performance from the above set. For any iteration
(µ̄, ȳ), the reported error measure is chosen as

max

{∣∣∣∣ maximize
0|S|×|A|≤µ≤

1|S|×|A|
1−γ

Φ(µ, ȳ)− minimize
y≥0n,1>n y=1

Φ(µ̄, y)

∣∣∣∣,∥∥∥∥ n∑
i=1

Aiµ̄(Si, :)− ξ
∥∥∥∥
}
.

We report the results in Figure 6.1 and 6.2.
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Appendix A. Proof of Lemma 2.3 .

Proof. First, consider the optimization problem that defines py(0):

py(0) := min
x∈X

Φ(x,y) s.t. Ax− a = 0.

Due to the compactness of the non-empty feasible region, as well as the lower semi-
continuity of Φ(·,y), there exists a minimizer x∗(y) for this problem. Due to the
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convexity of Φ(·,y) and Slater’s condition, there is an optimal Lagrangian multiplier
ω∗y ∈ Span(A) associated with the linear constraint Ax = a and the strong duality
holds. Then the classical Lagrangian multiplier theory and sensitivity analysis for
convex optimization tells us that

x∗(y) = argmin
x∈X

Φ(x,y)− (Ax− a)>ω∗y, Ax∗(y) = a, and ω∗y ∈ ∂py(0)(A.1)

Since we assume Φ(·, ·) is bounded over X × Y, there exist Φ and Φ such that

Φ ≤ Φ(x,y) ≤ Φ, for ∀x ∈ X ,∀y ∈ Y.

Because ω∗y ∈ Span(A), then exists c s.t. Ac = ω∗y. In particular, if we pick a c as the

minimum norm solution to this linear equation, then we know ‖c‖ ≤ ‖ω∗y‖
σmin(A) , where

σmin(A) is the minimum non-zero singular value of A. Overall, there exists c s.t.

Ac = ω∗y with ‖c‖ ≤ ‖ω∗y‖/σmin(A).(A.2)

By Assumption 2.2 (Slater’s condition), there ∃x̂ ∈ int(X ) s.t. Ax̂ = a. Consequently,
there ∃δx̂ > 0 such that B(x̂, δx̂) ⊆ X . Combined with (A.2), we have

x̃ := x̂ +
δx̂ · σmin(A)

‖ω∗y‖
· c ∈ B(x̂, δx̂) ⊆ X .

Finally, by (A.1), we have

Φ(x∗(y),y) = min
x∈X

Φ(x,y)− (Ax− a)>ω∗y

≤ Φ(x̃,y)−
(
A

(
x̂ +

δx̂ · σmin(A)

‖ω∗y‖
· c
)
− a
)>

ω∗y

= Φ(x̃,y)− δx̂ · σmin(A) · ‖ω∗y‖.

That is ‖ω∗y‖ ≤
Φ−Φ

δx̂·σmin(A) for any y ∈ Y. This also indicates that

sup
y∈Y

inf
ω1∈∂py(0)

‖ω1‖ ≤ sup
y∈Y
‖ω∗y‖ ≤

Φ− Φ

δx̂ · σmin(A)
.

Through a completely symmetric analysis, there exists an upper bound

sup
x∈X

inf
ω2∈∂qx(0)

‖ω2‖ ≤
Φ− Φ

δŷ · σmin(B)
,

where δŷ > 0 is a constant s.t. B(ŷ, δŷ) ⊂ Y, which proves the existence of a finite
positive constant ρ∗.

Appendix B. Convergence of multi-block (N ≥ 3) SEG-ADMM. Similar
to convex optimization, the ADMM-based methods SSG-ADMM and SEG-ADMM
in general diverge when N ≥ 3. In this Appendix, we will consider a partial strong
convexity condition [9, 26, 25, 21, 4] for problem (3.1), under which an O(1/T ) con-
vergence can be derived for SEG-ADMM. A perturbation strategy from [27] can be
adopted in case this condition does not hold.

Assumption B.1. hi(·,y) is µi-strongly convex in Xi, for i = 2, ..., N , ∀y ∈ Y.
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Specifically, h1(·,y) is only required to be convex, instead of strongly convex. Note
that Lemma 3.7 is still valid, and we only need to extend Lemma 3.4 as follows.
The analysis mostly comes from the proof of [26], while we apply the linearization
technique from [15] to handle the smooth coupling term Ψ(x,y) in addition. The
analysis is very similar to that of Lemma 3.4, thus we omit the proof of this lemma.

Lemma B.2. Suppose Assumptions 3.1 and B.1 hold. For some fixed ỹ ∈ Y
and Hi � 0, i = 1, ..., N , suppose (xk+1, λk+1) = Prox-ADMM(xk, λk; ỹ; γ, {Hi}Ni=1).
Denote H = Diag(H1, · · · , HN ). For ∀x ∈ X s.t. Ax = a, we have

Φ(xk+1, ỹ)− Φ(x, ỹ)− 〈λ,Axk+1 − a〉

≤ 1

2γ

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
+

1

2

(
‖x− xk‖2H − ‖x− xk+1‖2H

)
+
γ

2

N∑
j=2

(∥∥A(x1:j−1,x
k
j:N

)
−a
∥∥2−

∥∥A(x1:j−1,x
k+1
j:N

)
−a
∥∥2
)
− 1

2
‖xk−xk+1‖2H−LxI

−1

2

N∑
i=2

(µi − γN(N − 1)‖Ai‖2)‖xi − xk+1
i ‖2.

By Lemma 3.7 and setting ỹ = ŷk+1 in Lemma B.2, we have the following theorem
whose proof is omitted.

Theorem B.3. Suppose Assumptions 3.1, B.1 and 3.3 hold, and N ≥ 3. Let
(x̄, ȳ) be the output of Algorithm 3 after T iterations. As long as we choose Hi �
(Lx +Ly)I, i = 1, · · · , N , G � LyI, and γ = 1

N(N−1) min
{

µ2

‖A2‖2 , ...,
µN
‖AN‖2

}
, it holds

for ∀ρ > 0 that

max
y∈Y

Φ(x̄,y)− min
x∈X ,Ax=a

Φ(x, ȳ) + ρ‖Ax̄− a‖

≤O

(
N2ρ2/γ + ‖G‖ ·D2

Y + ‖H‖ ·D2
X + γ

∑N
j=2(2N + j)(j − 1)‖Aj‖2D2

Xj
T

)

By Lemma 2.4, it takes T = O(ε−1) iterations to reach an ε-saddle point.

When Assumption B.1 does not hold, we can apply the strongly convex ε-perturbation
strategy of [27], where problem (3.1) is modified as

(B.1) min
x∈X

max
y∈Y

Φε(x,y) := Φ(x,y) +
ε

2

N∑
i=2

‖xi − x0
i ‖2 s.t. Ax = a.

Therefore, Φε satisfies Assumption B.1. By properly choosing the parameters, we
have the following corollary.

Corollary B.4. Suppose Assumptions 3.1 and 3.3 hold, and N ≥ 3. Suppose
(x̄, ȳ) is generated by applying Algorithm 3 to the perturbed problem (B.1) for T
iterations, with the parameters chosen as ε = O(1/

√
T ), γ = ε

N(N−1)·max2≤i≤N{‖Ai‖2}
and Hi � (Lx + Ly)I, i = 1, · · · , N , and G � LyI. Then for any ρ > 0, we have

max
y∈Y

Φ(x̄,y)− min
x∈X
Ax=a

Φ(x, ȳ) + ρ‖Ax̄− a‖ ≤ O
(

1√
T

)
.

Therefore, it takes T = O(ε−2) iterations to reach an ε-saddle point.



PRIMAL-DUAL METHOD FOR AFFINELY CONSTRAINED MINIMAX PROBLEM 23

Proof. As a direct corollary of Theorem B.3, we have

max
y∈Y

Φε(x̄,y)− min
x∈X
Ax=a

Φε(x, ȳ) + ρ‖Ax̄− a‖ ≤ O
(

1√
T

)
.

Then by the compactness of Xi’s and ε = O(1/
√
T ), we know that∣∣∣∣max

y∈Y
Φε(x̄,y)−max

y∈Y
Φ(x̄,y)

∣∣∣∣ ≤ O
(∑N

i=2D
2
i

2
√
T

)
and ∣∣∣∣∣min

x∈X
Ax=a

Φε(x, ȳ)− min
x∈X
Ax=a

Φ(x, ȳ)

∣∣∣∣∣ ≤ O
(∑N

i=2D
2
i

2
√
T

)
,

combining the above inequalities proves the corollary.

Note that such perturbation significantly deteriorates the convergence rate of the
x variable. Therefore, it is not necessary to apply the extra-gradient step to the
y-update to accelerate the convergence of y variable. We can also directly apply
the SSG-ADMM method to the perturbed problem, which still yields the O(1/

√
T )

convergence rate without requiring the differentiability of Φ(x, ·). We summarize the
result in the following corollary without a proof.

Corollary B.5. Suppose Assumptions 3.1 and 3.2 hold, and N ≥ 3. Suppose
(x̄, ȳ) is generated by running Algorithm 2 to the perturbed problem (B.1) after T
iterations, with the parameters chosen as ε = O(1/

√
T ), γ = ε

N(N−1)·max2≤i≤N{‖Ai‖2}
and Hi � LxI, i = 1, · · · , N , and G � LyI. Then for any ρ > 0, we have

max
y∈Y

Φ(x̄,y)− min
x∈X
Ax=a

Φ(x, ȳ) + ρ‖Ax̄− a‖ ≤ O
(

1√
T

)
.

Therefore, it takes T = O(ε−2) iterations to reach an ε-saddle point.

Appendix C. Proof of Lemma 3.4.

Proof. First, the KKT condition of block xk+1
1 :

xk+1
1 = argmin

x1∈X1

h1(x1, ỹ) + 〈∇x1
Ψ(xk, ỹ), x1 − xk1〉 − 〈λk, A1x1 +A2x

k
2 − a〉

+
γ

2
‖A1x1 +A2x

k
2 − a‖2 +

1

2
‖x1 − xk1‖2H1

gives

〈u1 +∇x1
Ψ(xk, ỹ)−A>1 λk+γA>1 (A1x

k+1
1 +A2x

k
2−a)+H1(xk+1

1 −xk1), x1−xk+1
1 〉 ≥ 0,

for ∀x1 ∈ X1, where u1 ∈ ∂x1
h1(xk+1

1 , ỹ). Applying the update rule of λk+1 and
rearranging the terms indicates for ∀x1 ∈ X1 that

〈u1 +∇x1
Ψ(xk, ỹ), xk+1

1 − x1〉 ≤ 〈γA>1 A2(xk2 − xk+1
2 )−A>1 λk+1, x1 − xk+1

1 〉
+ 〈H1(xk+1

1 − xk1), x1 − xk+1
1 〉.(C.1)

Similarly, the KKT condition of the block xk+1
2 gives

〈u2 +∇x2
Ψ(xk, ỹ), xk+1

2 − x2〉(C.2)

≤ −〈A>2 λk+1, x2−xk+1
2 〉+〈H2(xk+1

2 −xk2), x2−xk+1
2 〉,∀x2 ∈ X2,
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where u2 ∈ ∂x2
h2(xk+1

2 , ỹ). Note that we have assumed that x1 in (C.1) and x2

in (C.2) satisfy A1x1 + A2x2 − a = 0. Summing up the above two inequalities and
applying the convexity of Φ(·, ỹ) yields

Φ
(
xk+1, ỹ

)
− Φ (x, ỹ)

= h1

(
xk+1

1 , ỹ
)
+h2

(
xk+1

2 , ỹ
)
+Ψ(xk+1, ỹ)−h1 (x1, ỹ)−h2 (x2, ỹ)−Ψ(x, ỹ)

(i)

≤
〈
u1, x

k+1
1 −x1

〉
+
〈
u2, x

k+1
2 −x2

〉
+Ψ(xk+1, ỹ)−Ψ(xk, ỹ)+Ψ(xk, ỹ)−Ψ(x, ỹ)

(ii)

≤
〈
u1+∇x1

Ψ(xk, ỹ), xk+1
1 −x1

〉
+
〈
u2+∇x2

Ψ(xk, ỹ), xk+1
2 −x2

〉
+
Lx

2
‖xk+1−xk‖2

≤
〈
γA>1A2

(
xk2−xk+1

2

)
−A>1 λk+1, x1−xk+1

1

〉
−
〈
A>2 λ

k+1, x2−xk+1
2

〉
+
(
xk+1

1 −xk1
)>
H1

(
x1−xk+1

1

)
+
(
xk+1

2 −xk2
)>
H2

(
x2−xk+1

2

)
+
Lx

2
‖xk+1−xk‖2

(iii)
= λ>

(
A1x

k+1
1 +A2x

k+1
2 −b

)
+

1

γ

(
λ−λk+1

)>(
λk+1−λk

)
+
(
xk+1

1 −xk1
)>
H1

(
x1−xk+1

1

)
+γ
(
x1−xk+1

1

)>
A>1A2

(
xk2−xk+1

2

)
+
(
xk+1

2 −xk2
)>
H2

(
x2−xk+1

2

)
,(C.3)

where (i) is due to the convexity of h1(·, ỹ) and h2(·, ỹ), (ii) is because

Ψ(xk+1, ỹ)−Ψ(xk, ỹ) ≤ 〈∇xΨ(xk, ỹ),xk+1 − xk〉+
Lx

2
‖xk+1 − xk‖2

Ψ(xk, ỹ)−Ψ(x, ỹ) ≤ 〈∇xΨ(xk, ỹ),xk − x〉,
and (iii) is because A1x1 + A2x2 = a. Note that for any vectors a, b, c, d, and matrix
H � 0, it holds that

(a− b)>H(c− d) =
(√

Ha−
√
Hb
)> (√

Hc−
√
Hd
)

=
1

2

(
‖a− d‖2H − ‖a− c‖2H

)
+

1

2

(
‖c− b‖2H − ‖d− b‖2H

)
(C.4)

We can bound the terms in (C.3) by(
λ−λk+1

)>(
λk+1 − λk

)
=

1

2

(
‖λ−λk‖2−‖λ−λk+1‖2−‖λk−λk+1‖2

)
=

1

2

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
− γ2

2
‖A1x

k+1
1 +A2x

k+1
2 − a‖2,

〈
H1

(
xk+1

1 − xk1
)
, x1 − xk+1

1

〉
=

1

2

(
‖x1 − xk1‖2H1

− ‖x1 − xk+1
1 ‖2H1

− ‖xk1 − xk+1
1 ‖2H1

)
,

〈
H2(xk+1

2 − xk2), x2 − xk+1
2

〉
=

1

2

(
‖x2 − xk2‖2H2

− ‖x2 − xk+1
2 ‖2H2

− ‖xk2 − xk+1
2 ‖2H2

)
,

and

(x1 − xk+1
1 )>A>1 A2(xk2 − xk+1

2 ) =
[
(A1x1 − a)− (A1x

k+1
1 − a)

]> [−A2x
k+1
2 − (−A2x

k
2)
]

=
1

2
‖A1x1 +A2x

k
2 − a‖2 −

1

2
‖A1x1 +A2x

k+1
2 − a‖2

+
1

2
‖A1x

k+1
1 +A2x

k+1
2 − a‖2 − 1

2
‖A1x

k+1
1 +A2x

k
2 − a‖2.

Substituting the above bounds into (C.3) proves the Lemma.
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Appendix D. Proof of Lemma 3.5.

Proof. First, the KKT condition of miny∈Y
1
2

∥∥y − [yk +G−1 · uk]
∥∥2

G
gives

〈uk,y − yk+1〉 ≤ 〈G(yk+1 − yk),y − yk+1〉,∀y ∈ Y.(D.1)

By the concavity of Φ(xk+1, ·) and the fact that uk ∈ ∂yΦ(xk+1,yk), we have

Φ(xk+1,y)− Φ(xk+1,yk) ≤ 〈uk,y − yk〉(D.2)

=〈uk,y − yk+1〉+ 〈uk,yk+1 − yk〉

≤〈uk,y − yk+1〉+
1

2
‖uk‖2G−1 +

1

2
‖yk+1 − yk‖2G.

We also have the following identity that

(D.3) 〈G(yk+1 − yk),y− yk+1〉 =
1

2

(
‖y − yk‖2G − ‖y − yk+1‖2G − ‖yk − yk+1‖2G

)
.

Combining (D.1), (D.2) and (D.3), we have

Φ(xk+1,y)− Φ(xk+1,yk) ≤ 1

2
‖y − yk‖2G −

1

2
‖y − yk+1‖2G +

1

2
‖uk‖2G−1 ,

which proves the lemma.

Appendix E. Proof of Lemma 3.7.

Proof. The optimality of ŷk+1=argmaxy∈Y〈∇yΦ(xk,yk),y−yk〉−1
2‖y−yk‖2G gives

−〈∇yΦ(xk,yk), ŷk+1 − y〉 ≤ 〈G(ŷk+1 − yk),y − ŷk+1〉, ∀y ∈ Y.

By setting y = yk+1 in the above inequality yields

(E.1) − 〈∇yΦ(xk,yk), ŷk+1 − yk+1〉 ≤ 〈G(ŷk+1 − yk),yk+1 − ŷk+1〉.

The optimality of yk+1 = argmaxy∈Y〈∇yΦ(xk+1, ŷk+1),y− yk〉 − 1
2‖y− yk‖2G gives

−〈∇yΦ(xk+1, ŷk+1),yk+1 − y〉 ≤ 〈G(yk+1 − yk),y − yk+1〉, ∀y ∈ Y.(E.2)

The concavity of Φ(xk+1, ·) indicates that

Φ(xk+1,y)− Φ(xk+1, ŷk+1)

≤ −〈∇yΦ(xk+1, ŷk+1), ŷk+1 − y〉
= −〈∇yΦ(xk+1, ŷk+1),yk+1 − y〉 − 〈∇yΦ(xk,yk), ŷk+1 − yk+1〉

+〈∇yΦ(xk,yk)−∇yΦ(xk+1, ŷk+1), ŷk+1 − yk+1〉
≤ −〈∇yΦ(xk+1, ŷk+1),yk+1 − y〉 − 〈∇yΦ(xk,yk), ŷk+1 − yk+1〉

+
1

2Ly
‖∇yΦ(xk,yk)−∇yΦ(xk+1, ŷk+1)‖2 +

Ly

2
‖ŷk+1 − yk+1‖2

(i)

≤ 〈G(ŷk+1 − yk),yk+1 − ŷk+1〉+ 〈G(yk+1 − yk),y − yk+1〉

+
Ly

2
·
(
‖xk − xk+1‖2 + ‖yk − ŷk+1‖2 + ‖yk+1 − ŷk+1‖2

)
=

1

2

(
‖y − yk‖2G − ‖y − yk+1‖2G

)
+
Ly

2
‖xk+1 − xk‖2

−1

2

(
‖ŷk+1 − yk‖2G−LyI + ‖ŷk+1 − yk+1‖2G−LyI

)
,

where (i) is due to Assumption 3.3, and (E.1) and (E.2). This completes the proof.
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