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1 An elliptic local problem with exponential decay

of the resonance error for numerical

homogenization

Assyr Abdulle∗ Doghonay Arjmand∗ Edoardo Paganoni∗

Abstract

Numerical multiscale methods usually rely on some coupling between
a macroscopic and a microscopic model. The macroscopic model is in-
complete as effective quantities, such as the homogenized material coef-
ficients or fluxes, are missing in the model. These effective data need to
be computed by running local microscale simulations followed by a lo-
cal averaging of the microscopic information. Motivated by the classical
homogenization theory, it is a common practice to use local elliptic cell
problems for computing the missing homogenized coefficients in the macro
model. Such a consideration results in a first order error O(ε/δ), where
ε represents the wavelength of the microscale variations and δ is the size
of the microscopic simulation boxes. This error, called “resonance error”,
originates from the boundary conditions used in the micro-problem and
typically dominates all other errors in a multiscale numerical method.
Optimal decay of the resonance error remains an open problem, although
several interesting approaches reducing the effect of the boundary have
been proposed over the last two decades. In this paper, as an attempt to
resolve this problem, we propose a computationally efficient, fully elliptic
approach with exponential decay of the resonance error.

Key words. multiscale methods, homogenization, resonance error
AMS subject classification. 35B27, 65L12, 74Q10

1 Introduction

This paper concerns the numerical homogenization of multiscale elliptic partial
differential equations (PDEs) of the form

−∇ · (aε(x)∇uε(x)) = f(x) in Ω ⊂ R
d

uε(x) = 0 on ∂Ω,
(1)

where aε characterises a microscopically non-homogeneous medium, which has
small scale variations of size ε ≪ |Ω| = O(1). The multiscale elliptic PDE
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(1) is chosen to simplify the exposition, but the discussion is equally valid also
for homogenization problems of parabolic and second-order hyperbolic types.
Approximating the solution uε via a direct numerical simulation is prohibitively
expensive as accurate approximations require resolutions down to the finest
scales of the problem. Sub-linear scaling multiscale numerical methods can be
designed at the expense of targeting only a local average behaviour of the full
solution uε. This local average behaviour is associated with the homogenized
limit as ε→ 0, where the following homogenized PDE describes the coarse scale
response of the system.

−∇ ·
(
a0(x)∇u0(x)

)
= f(x) in Ω

u0(x) = 0 on ∂Ω.
(2)

The existence of the homogenized solution u0 is guaranteed by the homogeniza-
tion theory, see e.g., [9, 24, 35] for a few well-known monographs, in which the
theoretical details of the subject are discussed. Here the homogenized coefficient
a0 is no longer oscillatory, and the problem (2) may be approximated by a stan-
dard numerical method once a0 is determined. Note that, apart from computing
the homogenized solution u0, the very goal of determining the homogenized co-
efficient a0 is also important and practically relevant in many applied disciplines,
e.g., mechanics and material sciences.

Explicit representations for the homogenized coefficient a0 exist only in
limited cases of interests, namely for periodic or stationary ergodic random
coefficients. For example, if the coefficient aε(x) = a(x/ε), where a is a
K := (− 1

2 ,
1
2 )

d-periodic function, then the homogenized coefficient is given by1

ei · a0ej =
 

K

(

aij(x) + aik(x)∂xk
χj(x)

)

dx, (3)

where {ei}di=1 are the canonical basis vectors in R
d, and {χj}dj=1 are the solu-

tions of the following cell-problems posed over the unit cube K:

−∇ ·
(
a(x)∇χj(x)

)
= ∇ · aej , in K,

χj(x) is K-periodic.
(4)

From a practical point of view, the heterogeneous coefficient aε is often not
fully periodic and it includes more complex non-periodic variations, for which
the formula (3) would either break down or be simply inaccurate. This has
triggered the birth and development of a number of multiscale methodologies
which target the coarse scale behaviour of the solution uε, without assuming an
a priori knowledge about the homogenized coefficient a0 or the precise nature
of aε.

Two frameworks, which address the numerical homogenization problems
among other multiscale and multiphysics problems, are the Heterogeneous Mul-
tiscale Method (HMM) [5, 12], and the equation free approaches [25], which

1Einstein summation is used in this formula. Namely, the repeated index k is to mean
summation over k = 1, . . . , d.
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rely on a micro-macro coupling to approximate the homogenized solution u0.
In these two approaches, the scale separation in (1), ε ≪ |Ω|, is exploited to
design sub-linear scaling algorithms, in which unknown homogenized quantities
are computed by upscaling microscopic information obtained by running local
simulations over microscopic boxes of size δd, where δ = O(ε). A pre-selected
macro model is supplied with these microscopic information and an approxima-
tion to u0 is computed by inverting/evolving the macroscopic problem. Other
approaches, including the Multiscale Finite Element Method (MsFEM) [23] and
the Localized Orthogonal Decomposition (LOD) [20, 29], address the problem
in a slightly different way and aim at directly computing the oscillatory re-
sponse uε. A common ingredient of these methods is the need for solving a set
of local microscale problems which would then imply artificial boundary condi-
tions on the boundaries of the microscopic domains. These boundary conditions
degrade the overall accuracy of multiscale methods and improved methodolo-
gies with reduced boundary errors are needed. The issue of localization is also
relevant for other classes of multiscale methods suited for problems with con-
tinuum of scales and rough coefficients with high contrast. Advances in this
direction include Gamblets [31, 33], flux-transfer transformation [32], polyhar-
monic homogenization [34], and variational multiscale (VMS) based methods
such as [26,37]. As these methods do not exploit the scale separation (for prob-
lems with scale separation), they become computationally more expensive (in
comparison to HMM or equation free approaches) when applied to problems
with scale separation. In what follows, we return back to our discussion on
problems with scale separation and focus on coefficients with moderate contrast
ratios, which are very typical in many applications, e.g., structural mechanics.
To put the discussion in a mathematical framework, we give a motivation of the
boundary error by considering an example of purely periodic tensors. However,
it should be kept in mind that this error is present also for more complicated
non-periodic coefficients.

1.1 Motivation - source of the boundary error

The generality of the multiscale algorithms, such as HMM, originates from the
fact they do not suffer from the structural assumptions (other than the scale
separation), that the classical analytical homogenization theory uses to derive
formulas for the homogenized tensor, e.g. note the periodicity requirement in the
formula (4). When the period of the coefficient is not known or the medium is
non-periodic, e.g., a random stationary ergodic medium, a widely used approach
is to pose the cell problem (4) over a larger computational domain, say KR with
R > 1, and compute the approximate homogenized coefficient by an averaging
over KR, i.e.,

ei · a0Rej =
 

KR

(

aij(x) + aik(x)∂xk
χj
R(x)

)

dx, (5)
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where

−∇ ·
(

a(x)∇χj
R(x)

)

= ∇ · aej, in KR := (−R/2, R/2)d,

χj
R(x) is periodic in KR.

(6)

Assuming for a moment that a is K-periodic, and R is an integer, it readily
follows by periodically extending χ to KR that χR = χ, and hence a0R = a0. In
general, when R is non-integer, there is a mismatch between the values of χR

and χ on the boundary ∂KR (the so-called resonance or cell-boundary error),
which yields [13]

‖a0R − a0‖F ≤ C
1

R
, (7)

where ‖ · ‖F is the Frobenius norm. This first order resonance error, first men-
tioned in the context of multiscale finite element methods in [23], is a common
drawback of modern multiscale methods as very large values for R are needed
to bring down this error to practical degrees of interests. For moderate values
of R, say R ≈ 10, this error will dominate all other errors in typical multiscale
algorithms and deteriorate the overall accuracy. Hence, more efficient strategies,
leading to high order rates in 1/R, are needed. For similar results in random
media see also [11].

1.2 Existing approaches to reduce the resonance error

In the past, several approaches have been proposed to reduce the boundary
error. The effect of using different boundary conditions (BCs), e.g., Dirichlet,
Neumann, or periodic BCs for the cell-problem (6) is studied in [39]. It is found
that using different BCs does not improve the first order convergence rate in
general, but periodic BCs result in a smaller prefactor compared to the Dirichlet
and Neumann counterparts. There are other promising approaches which are
based on modifying the cell-problem (6) so that the effect of the boundary is
reduced over the interior of the domain KR, while still retaining a good approxi-
mation of the homogenized coefficient a0. In [10] a filtered cell-problem together
with an integral constraint for the gradient of the cell solution is used to obtain
second order convergence rates in 1

R . In [15], a zero-th order term is added to
the cell-problem so that the Green’s function of the modified problem decays
exponentially and the effect of mismatching BCs is significantly reduced in the
interior of the domain KR. The asymptotic convergence rate for this strategy is
fourth order, but large values for R, e.g., R ≈ 100 are needed to observe this rate
in simulations [15]. The (fixed) convergence rate of this approach can be im-
proved even to higher (arbitrary) orders by a Richardson extrapolation, [16,17]
at the cost of iteratively solving the microscale problem. Using Richardson
extrapolation for improving the convergence rate of the method analysed in
this paper would not be useful, as we can reach arbitrary rates of convergence
without any additional cost, except the one of solving the corrector equations.
Another approach leading to arbitrarily high orders in 1

R is proposed in [7, 8],
where a second-order wave equation is used instead of the cell-problem (6). Due

4



to the finite speed of propagation of waves, the errors committed on the bound-
ary of the proposed cell problems do not influence the interior solution if the
computational domain is chosen sufficiently large. Although this wave approach
results in a removal of the boundary error, there are a few computational chal-
lenges with this method: i) the spatial domain size increases linearly with the
wave speed, ii) the solution of the wave equation depends on time, and therefore
additional degrees of freedom are needed to approximate the cell-solution, iii)
practically, accurate approximations of solutions of the wave equation require
high resolutions per-wavelength, which makes the method less efficient (when
compared to solving an elliptic cell-problem).

The shortcomings of the existing approaches motivate the need for designing
better/alternative methodologies with improved convergence rates. In the cur-
rent study, we propose an elliptic cell-problem which has exponentially decaying
boundary errors. The strategy is linked to parabolic cell-problems, which was
proposed in [4] and analysed in [1], see also [18,30]. It is shown, in [1], that us-
ing parabolic cell-problems one can approximate the homogenized coefficient a0

with exponential accuracies. From a computational point of view, the parabolic
approach requires efficient stiff time-stepping methods, which can be a numeri-
cal challenge, see the numerical results section for a cost vs tolerance comparison
with the parabolic approach. The strategy proposed in this paper aims at by-
passing this problem by exploiting the properties of the parabolic cell problems
in [1] and reformulating elliptic cell-problems that mimic the behaviour of the
parabolic cell-solutions with similar (but not the same) exponentially decaying
convergence rates. Krylov subspace iteration is exploited to make the computa-
tional cost comparable to the cost of solving the elliptic PDE (6). The analysis
in this paper, whose results were announced in [4], is done for periodic coef-
ficients but the method itself is not limited by such a structural assumption.
The convergence analysis for non-periodic coefficients is not addressed in the
present work, however numerical results for quasi-periodic and random media
are depicted to investigate the decay rates as R gets larger (see Examples 3 and
4 in Section 5).

1.3 Notations and definitions

Throughout the exposition, we will use the following notations:

• The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {f : Dγf ∈ Lp(Ω) for all multi-index γ with |γ| ≤ k}.

The norm of a function f ∈W k,p(Ω) is given by

‖f‖Wk,p(Ω) :=







(
∑

|γ|≤k

´

Ω |Dγf(x)|p dx
)1/p

(1 ≤ p <∞)
∑

|γ|≤k ess supΩ|Dγf | (p = ∞).

• The space H1
0 (Ω) is the closure in the W 1,2-norm of C∞

c (Ω), the space of
infinitely differentiable functions with compact support in Ω. The norm
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associated with H1
0 (Ω) is

‖f‖2H1
0(Ω) := ‖f‖2L2(Ω) + ‖∇f‖2L2(Ω),

but an equivalent norm is

‖f‖H1
0(Ω) := ‖∇f‖L2(Ω).

We will use this second notation for the H1
0 -norm.

• We use the notation 〈f, g〉L2(Ω) :=
´

Ω
fg dx to denote the L2 inner product

over Ω.

• The space Hdiv is

Hdiv(Ω) := {f : f ∈ [L2(Ω)]d and ∇ · f ∈ L2(Ω)}.

The norm associated with Hdiv is

‖f‖2Hdiv(Ω) := ‖f‖2L2(Ω) + ‖∇ · f‖2L2(Ω).

• Cubes in R
d are denoted by KL := (−L/2, L/2)d. In particular, K is the

unit cube.

• The space W 1
per(K) is defined as the closure of

{

f ∈ C∞
per(K) :

ˆ

K

f = 0

}

with respect to the W 1,2-norm. Thanks to the Poincaré-Wirtinger in-
equality, we can also have the following equivalent norm

‖f‖W 1
per(K) := ‖∇f‖L2(K).

• Let f belong to the Bochner space Lp(0, T ;X), whereX is a Banach space.
Then the norm associated with this space is defined as

‖f‖Lp(0,T ;X) :=

(
ˆ T

0

‖f‖pX dt

) 1
p

.

• By writing C, we mean a generic constant independent of R,L, T,N which
may change in every subsequent occurrence.

• Boldface letters in arguments of functions are to distinguish functions
in multi-dimensions, e.g., f(x) is to mean a function of several variable
(x ∈ R

d, d ≥ 2), while f(x) will be a function of one variable (x ∈ R).

• We will use the notation
ffl

D f(x) dx to denote the average 1
D

´

D f(x) dx
over a domain D.
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Definition 1.1 (Filter as in [15]). We say that a function

µ : [−1/2, 1/2]→ R
+

belongs to the space K
q with q > 0 if

i) µ ∈ Cq([−1/2, 1/2])∩W q+1,∞((−1/2, 1/2))

ii)
´ 1/2

−1/2 µ(x) dx = 1,

iii) µk(−1/2) = µk(1/2) = 0 for all k ∈ {0, . . . , q − 1}.

In multi-dimensions a q-th order filter µL : KL → R
+ with L > 0 is defined by

µL(x) := L−d
d∏

i=1

µ
(xi
L

)

,

where µ is a one dimensional q-th order filter and x = (x1, x2, . . . , xd) ∈ R
d.

In this case, we will say that µL ∈ K
q(KL). Note that filters µL are considered

extended to 0 outside of KL.

Filters have the property of approximating the average of periodic functions
with arbitrary rate of accuracy, as state in the following Lemma 1.2 (see [15] for
a proof).

Lemma 1.2. Let µL ∈ K
q(KL). Then, for any K-periodic function f ∈ Lp(K)

with 1 < p ≤ 2, we have

∣
∣
∣
∣

ˆ

KL

f(x)µL(x) dx −
ˆ

K

f(x) dx

∣
∣
∣
∣
≤ Cµ ‖f‖Lp(K) L

−(q+1),

where Cµ is the Lipschitz constant of q-th derivative of the filter µ.

Definition 1.3. We say that a ∈ M(α, β,Ω) if aij = aji, a ∈ [L∞(Ω)]d×d and
there are constants 0 < α ≤ β such that

α|ζ|2 ≤ a(x)ζ · ζ ≤ β|ζ|2, for a.e. x ∈ Ω, ∀ζ ∈ R
d.

We write a ∈ Mper(α, β,Ω) if in addition a is a Ω-periodic function.

This paper is structured as follows. In section 2, we propose a fully elliptic
approach with exponentially decaying resonance errors. In section 3, we present
the main results and provide an analysis of the exponential convergence rates.
A numerical strategy, based on the Arnoldi decomposition, to approximate the
solution of the proposed cell problem is discussed in section 4. Finally, section 5
includes numerical tests supporting the theoretical findings.
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2 A modified elliptic approach

The approach proposed here is based on adding a correction term to the ellip-
tic cell problem (6) so that the effect of the boundary values are significantly
reduced. For j = 1, . . . , d, the new cell-problems read as

−∇ ·
(

a(x)∇χj
T,R(x)

)

= gj(x) − [e−ATgj ](x) in KR

χj
T,R(x) = 0 on ∂KR.

(8)

Here A and gj are defined as

A := −∇ · (a∇) , and gj := ∇ · (aej),

where we implicitly assume that A is equipped with the homogeneous Dirichlet
boundary conditions. Note that aε(x) := a(x/ε) does not need to be periodic,
but the periodicity of a will be assumed later for the analysis. The evolution
operator e−AT is the semigroup generated by the operator −A, i.e., e−ATgj

is the solution at time T of the corresponding parabolic problem (∂tu − ∇ ·
(a(x)∇u) = 0) over KR with homogeneous Dirichlet boundary conditions and
initial data gj . In a nutshell, we will present algorithms based on spectral
truncation as well as a Krylov subspace iteration to approximate the correction
term e−AT gj without solving the parabolic PDE. The homogenized coefficient
can then be approximated by

ei · a0T,R,Lej =

ˆ

KL

(

aij(x) + aik(x)∂xk
χj
T,R(x)

)

µL(x) dx. (9)

To get optimal rates, the parameters T and L should be chosen as a function of
R and the coercivity and boundedness constants α, β. The precise choice will
be clarified later in the sequel. The choice of the Dirichlet boundary conditions
is only for theoretical purposes, but a periodic BC similar to (5) would also
work equally well in practice. The main difference between (8) and the cell-
problem (5) is the addition of a correction term of the form e−AT gj, which
is crucial to obtain exponentially decaying convergence rates for the boundary
error. One other important component of the proposed method is the presence of
the filter µL in (9). Clearly, one can see from formula (9) that the computation of
homogenized coefficients is associated with the averages of oscillatory functions.
Such filters are typically used to accelerate the convergence even for general
non-periodic variations, and therefore their presence is vital for improving the
accuracy in the present context too.

Integrating the cell-problem (8) in FE-HMM. Incorporating the cell-
problem (8) into existing finite element/finite difference heterogeneous multi-
scale methods (FE/FD-HMM) follows the by now classical methodology, see
[2, 3]. For example, the main component of FE-HMM is the approximation of
the bilinear form B0(u0, v) =

´

Ω
a0(x)∇u0 · ∇v(x) dx, where a0(x) is an un-

known homogenized coefficient, and u0 is the homogenized solution. If a0(x)
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were to be known, then the bilinear form B0(u0, v) could be approximated by
summing the following contributions over all triangles K in a macro triangula-
tion TH as B0

H(u0H , v) =
∑

K∈TH
ωK,Ja

0(xK,J )∇u0H(xK,J ) · ∇vH(xK,J ), where
ωK,J are appropriate weight functions and xK,J are the corresponding quadra-
ture nodes in the macroscopic mesh. In order to compute a0(xK,J ), one can
then rescale the problem (8), and the upscaling formula (9) to KεR, and center
it at xK,J . The rescaled problem reads as

−∇ ·
(

aε(x)∇χj
ε2T,εR(x)

)

= gj,ε(x)− [e−Aεε2T gj,ε](x) in xK,J +KεR

χj
ε2T,εR(x) = 0 on ∂KεR,

where Aε := −∇ · (aε(x)∇) , and gj,ε = −∇ · aε(x)ej . Moreover, the upscaling
formula will be given by

ei · a0(xK,J )ej =

ˆ

xK,J+KεL

(

aεij(x) + aεik(x)∂xk
χj
ε2T,εR(x)

)

µεL(x) dx.

By computing the above cell problem using a micro triangulation τh, an approx-
imation a0h(xK,J ) of a0(xK,J ) is obtained and the overall algorithm relying on
a macro and micro triangulation can be readily implemented. The overall com-
putational cost of such multiscale algorithms with respect to the macro-micro
mesh sizes are well-known, see e.g., [2, 3], but in this paper, we also discuss the
computational complexity of the cell-problem (8) in Section 4.3.

Lemma 2.1 (Well-posedness of (8)). Let a ∈ M(α, β,KR) and aej ∈ Hdiv(KR).
Then there exists a unique weak solution of (8) in H1

0 (KR) satisfying the esti-
mate

‖χj
T,R‖H1

0(KR) ≤ C‖aej‖Hdiv(KR), (10)

where C2 =
1+C2

p

α2 , Cp is the Poincaré constant and α is the coercivity constant.

Proof. The operator A generates the contraction semigroup (i.e. a family of
bounded linear operators) e−AT : L2(KR) → L2(KR) which satisfies

‖e−AT‖L2(KR)→L2(KR) ≤ 1.

Since gj := ∇ · aej ∈ L2(KR), we have

‖e−ATgj‖L2(KR) ≤ ‖gj‖L2(KR) ∀T ≥ 0.

To see this, we recall that the eigenvalues of A are positive and satisfy

0 < λ0 ≤ λ1 ≤ λ2, . . . ,

and the eigenfunctions {ϕk}∞k=0 form an orthonormal basis for L2(KR). Next,
we write

e−AT gj(x) =

∞∑

k=0

e−λkT gjkϕk(x), with gjk := 〈gj , ϕk〉L2(KR).

9



Since the eigenfunctions are orthonormal in L2(KR), it follows that

‖e−AT gj‖2L2(KR) =

∞∑

k=0

e−2λkT |gjk|2 ≤
∞∑

k=0

|gjk|2 = ‖gj‖2L2(KR). (11)

The Lax-Milgram theorem guarantees the existence and uniqueness of χT,R in
the space H1

0 (KR). By uniform ellipticity of the coefficients a(x) and Hölder
inequality we derive that

α‖∇χj
T,R‖2L2(KR) ≤ ‖aej‖L2(KR)‖∇χj

T,R‖L2(KR)+‖e−ATgj‖L2(KR)‖χj
T,R‖L2(KR),

that, by application of (11) and the Poincaré inequality for χT,R and Young
inequality, leads to the final bound

‖χj
T,R‖H1

0 (KR) ≤
√

1 + C2
p

α2
‖aej‖H1

div(KR),

where α is the ellipticity constant and Cp is the Poincaré constant.

Remark 1. Note that periodicity of a is not necessary for the well-posedness
of χj

T,R. The constant in the estimate (10) depends on the Poincaré constant
hence, implicitly, on the size of the domain R. The dependency on R is not
stated explicitly because the convergence result stated in Theorem 3.1 does not
rely on (10), but only on the well-posedness of (10).

2.1 Relation with parabolic cell problems

The use of parabolic cell problems, that results in exponential decay of the
boundary error, has been recently proposed in [4] and analysed in [1]. This
theory is based on an idea developed earlier in [30]. The main idea behind this
exponential decay is that, over sufficiently small time frames, the solutions of
parabolic PDEs over a bounded domain “do not feel the boundary”. In fact, the
proposed elliptic cell problems (8) are closely related to the solution of parabolic
PDEs and this relation will be used in the subsequent analysis. In this section,
we present a theorem which states that the time integration of parabolic cell
problems solve the elliptic cell problem (8).

Theorem 2.2. Assume that a ∈ M(α, β,KR) and aej ∈ Hdiv(KR) and let uj

be the solution of the following parabolic PDE

∂tu
j(t,x)−∇ ·

(
a(x)∇uj(t,x)

)
= 0, in KR × (0, T ],

uj(t,x) = 0, on ∂KR × (0, T ]

uj(0,x) = gj(x), in KR,

(12)

where gj(x) := ∇ · (a(x)ej). Then, the time integral

χj
T,R(x) =

ˆ T

0

uj(t,x) dt

10



solves the PDE

−∇ ·
(

a(x)∇χj
T,R(x)

)

= gj(x) − [e−ATgj ](x), in KR

χj
T,R(x) = 0 on ∂KR,

(13)

where A := −∇ · (a∇).

Proof. Let {ϕR,k}∞k=0 be the eigenfunctions of the operator A. The subscript
R is used to highlight the dependency of the eigenfunctions (and eigenvalues)
on the size of the domain, R. The expansion of the solution uj in terms of
{ϕR,k}∞k=0 gives

uj(t,x) =

∞∑

k=0

ujk(t)ϕR,k(x), uj(0,x) =

∞∑

k=0

gjkϕR,k(x),

where gjk := 〈gj , ϕk〉L2(KR) and ujk := 〈uj , ϕk〉L2(KR). Plugging this expansion
into the equation (12), we obtain

∞∑

k=0

(
d

dt
ujk(t)ϕR,k(x) + ujk(t)λR,kϕR,k(x)

)

= 0, for j = 1, . . . , d,

where {λk}∞k=0 are the eigenvalues of A. Since the eigenfunctions are orthonor-
mal in L2(KR), we arrive at

ujk(t) = e−λR,ktujk(0) = e−λR,ktgjk.

Now, integrating in time, we obtain

χj
T,R(x) :=

ˆ T

0

uj(t,x) dt

=

∞∑

k=0

gjkϕj(x)

ˆ T

0

e−λR,kt dt

=

∞∑

k=0

1

λR,k
gjkϕR,k(x) −

∞∑

k=0

1

λR,k
e−λR,kT gjkϕR,k(x)

Moreover, evaluating AχT,R(x) we obtain

Aχj
T,R(x) =

∞∑

k=0

gjkϕR,k(x) −
∞∑

k=0

e−λR,kT gjkϕ
j
R,k(x)

= gj(x)− e−AT gj(x).

By integrating equation (12) in time from t = 0 to t = ∞, and using the fact
that uj → 0 as t→ ∞, it is easy to see that the correction term vanishes, and the
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standard elliptic cell-problems with Dirichlet boundary conditions are recovered;
i.e., the cell-problem (6) but with homogeneous Dirichlet conditions. Therefore,
no improvement in terms of the overall convergence rate for the resonance error
will be observed if the parameter T “is chosen too large”. Similarly, by studying
the limiting equation as T → ∞ of parabolic PDEs with periodic solutions over
the unit cell K, one can recover the periodic cell-problem (4). This result is
stated as a theorem here and will be used later in the analysis.

Theorem 2.3. Assume that a ∈ Mper(α, β,K) and aej ∈ Hdiv(K). Moreover,
let vj be the solution of the following parabolic PDE

∂tv
j(t,x)−∇ ·

(
a(x)∇vj(t,x)

)
= 0, in K × (0, T ],

vj(t,x) is periodic in K

vj(0,x) = ∇ · (a(x)ej) , in K.

(14)

Then the time integral

χj(x) =

ˆ ∞

0

vj(t,x) dt

solves the PDE

−∇ ·
(
a(x)∇χj(x)

)
= ∇ · (a(x)ej) , in K

χj(x) is periodic in K.

We now give an a-priori estimate on ∇vj , which will be used in the sub-
sequent analysis of the resonance error. The proof is based on the spectral
properties of the periodic cell-problem.

Lemma 2.4. Let us assume that the hypothesis of Theorem 2.3 hold true and
let gj(x) := ∇ · (a(x)ej). Then, the solution vj of (14) satisfies

‖∇vj‖L2(0,T ;L2(K)) ≤ C1(α)‖gj‖L2(K). (15)

Moreover, if gj ∈W 1
per(K), then

‖∇vj‖L1(0,T ;L2(K)) ≤ C2(α, β)‖∇gj‖L2(K), (16)

where C1(α) =
1
2α , and C2(α, β) =

d
√
β

π2α3/2 .

Proof. Let us define the bilinear form B : W 1
per(K)×W 1

per(K) 7→ R as

B[w, ŵ] :=

ˆ

K

∇ŵ(x) · a(x)∇w(x) dx, w, ŵ ∈ W 1
per(K).

With a slight abuse of notation, we denote the eigenvalues and eigenfunctions of
B[·, ·] by {λk}∞k=0 and {ϕk}∞k=0, respectively. It is well known that the sequence
of eigenvalues is positive and non-decreasing, i.e.,

0 < λ0 ≤ λ1 ≤ λ2, . . . .

12



The eigenfunctions {ϕk}∞k=0 are orthonormal in the L2-sense and they satisfy:

B[ϕk, u] = λk〈ϕk, u〉L2(K), ∀u ∈W 1
per(K).

Since the eigenvalues form a basis of W 1
per(K), we can write the solution vj

of (14) as vj(t,x) =
∑∞

k=0 v
j
k(t)ϕk(x). By coercivity of the bilinear form and

the exponential decay of the components of vj in the eigenfunctions’ basis,
vjk(t) = e−λktgjk , we obtain

α‖∇vj(t, ·)‖2L2(K) ≤ B[vj , vj ](t)

=

∞∑

k,ℓ=0

e−(λk+λℓ)tgjkg
j
ℓB[ϕk, ϕℓ]

≤
∞∑

k,ℓ=0

e−(λk+λℓ)tgjkg
j
ℓλk〈ϕk, ϕℓ〉L2(K)

=

∞∑

k=0

e−2λkt|gjk|2λk.

From here and Parseval identity, it follows that

‖∇vj‖2L2(0,T ;L2(K)) :=

ˆ T

0

‖∇vj(t, ·)‖2L2(K) dt

≤ α−1
∞∑

k=0

λk

ˆ T

0

e−2λkt dt|gjk|2

≤ α−1

2

∞∑

k=0

|gjk|2

=
α−1

2
‖gj‖2L2(K).

To prove the bound in L1(0, T ;L2(K)), we proceed as follows:

‖∇vj‖L1(0,T ;L2(K)) :=

ˆ T

0

‖∇vj(t, ·)‖L2(K) dt

≤ α−1/2

ˆ T

0

√
√
√
√

∞∑

k=0

e−2λktλk|gjk|2 dt

≤ α−1/2

ˆ T

0

e−λ0t dt

√
√
√
√

∞∑

k=0

λk|gjk|2

=
α−1/2

λ0

(
1− e−λ0T

)√

B[gj , gj]

≤
√

β

α

1

λ0
‖∇gj‖L2(K).

13



Here λ0 ≥ αCp(K)−2, and Cp(K) is the constant of the Poincaré-Wirtinger

inequality in W 1
per(K), which can be bounded by Cp(K) ≤ diam(K)

π =
√
d

π , [36].

Hence, λ0 ≥ απ2

d and the final result follows.

3 Exponential decay of the resonance error for

the modified elliptic approach

The main result of this article is the following theorem, which gives an error
bound for the difference between the exact homogenized coefficient (3) and the
approximation (9) for a periodic material coefficient a. For proving the following
Theorem 3.1 we assume:

a(·) ∈ Mper(α, β,K), (17a)

a(·)ei ∈W 1,∞(KR), for i = 1, . . . , d, (17b)

vi ∈ Lp
(
(0, T ),W 1,p

per(K)
)
, for i = 1, . . . , d, (17c)

with p > p0 = max
{

d+2
2 , 2

}
.

Note that the assumption (17c) has been discussed in [ [1], Remark 3.2].
This assumption is related to regularity of the Green’s function associated with
the parabolic problem (14). We notive that for d = 1 it is the standard estimate.
For d = 2, 3, it is only slightly more stringent than the known a priori estimate
v ∈ L2

(
(0, T ),W 1,2

per(K)
)
.

Theorem 3.1. Under assumptions (17), let KR ⊂ R
d for R ≥ 1, µL ∈ K

q(KL)
with 0 < L < R − 2. There exists constants c1, c2, C1, C2, C3 > 0 such that, for

any 0 < T < 2c2|R−L|2
d ,

‖a0T,R,L − a0‖F ≤ sup
j

(

‖∇ · aej‖L2(K) + ‖∇ · aej‖2L2(K)

)

(

C1

√
TL−(q+1) + C2e

−c1T + C3

(

1 +
T

|R− L|

)
Rd−1

T d/2−1
e−c2

|R−L|2

T

)

,

where a0 and a0T,R,L are defined in (3) and (9). Moreover, c1 = απ2

d , C1 =

Cµ
β
α where Cµ is the Lipschitz constant for the q-th derivative of the filter µ,

C2(d, α) =
d

απ2 , C3 = γ
β2

α
√
αc2

, for a γ > 0 independent of a,R, L, T , and 0 <

c2 < ν(β, d), where ν(β, d) is a constant in the exponent of the Nash-Aronson
estimate for parabolic Green’s function (see Lemma 4.5 in [1] for details), which
depends only on d and β. In addition, the choices

L = koR, T = kTR,

14



with 0 < ko < 1, and kT =
√

c2
c1
(1 − ko) results in the following convergence

rate in terms of R

‖a0T,R,L − a0‖F ≤ C
(

R−q− 1
2 +Rd/2e−

√
c1c2(1−ko)R

)

,

where C = max{C1, C2, C3}.

Remark 2. From the last result of Theorem 3.1, the error estimate can be
decomposed into two terms, one exponentially decaying with respect to R and
the other one decaying as R−q− 1

2 , where q can be arbitrarily chosen. When
q has a finite value and R is sufficiently large, the algebraic component of the
error is dominating. However, it is possible to consider infinite-order filters (e.g.

µ(x) = eφ(x)
´ 1/2

−1(/2)
eφ(x) dx

1[−1/2,1/2](x), with φ(x) =
2

1−2|x|), or q can be chosen as

an increasing function of R. Both these strategies provide a decay rate faster
than any algebraic convergence rate, hence an exponential convergence of the
error.

In Theorem 3.1, The error
√
TL−(q+1) is the averaging error, which is ob-

tained by using a filter µL ∈ K
q(KL). The order q of the filter can be chosen

arbitrarily large with no additional computational cost. This allows to have bet-
ter convergence rates for the resonance error. However, for higher order filters
we witness a plateau in the convergence plot of the error, which is not present
for low order filters, e.g., see Figure 3. The error e−c1T is related to the solution
of the parabolic PDE (12) for a finite T . Note that the parabolic PDE (12) is
introduced only for the analysis, but in practice, we don’t solve it. The term

e−c2
|R−L|2

T along with its prefactor is an upper bound for the boundary error,
and it will decay exponentially fast with respect to R only if T < |R − L|2.

Proof. We prove this theorem in several steps:
Step 1. Error decomposition. The aim here is to show that the error

can be split as

‖a0T,R,L − a0‖F ≤ Eav + Eboundary + Etruncation. (18)

The term Eav is the averaging error which decreases by using filters µL ∈ K
q(KL)

with higher values for q. The error Etruncation is associated with truncation in
time of the solutions of parabolic cell-problems. The boundary error Eboundary
quantifies the effect of boundary conditions. To see this, we use Theorem 2.2
and write

ei · a0T,R,Lej :=

ˆ

KL

aij(x)µL(x) dx+

ˆ

KL

aik(x)∂xk
χj
T,R(x)µL(x) dx

=

ˆ

KL

aij(x)µL(x) dx+

ˆ T

0

ˆ

KL

aik(x)∂xk
uj(t,x)µL(x) dx dt,

15



where uj is the solution of the parabolic cell problem (12). In the same way, by
Theorem 2.3, the exact homogenized coefficient given by (3) can be rewritten
as

ei · a0ej =
ˆ

K

aij(x) dx+

ˆ

K

aik(x)∂xk
χj(x) dx

=

ˆ

K

aij(x) dx+

ˆ ∞

0

ˆ

K

aik(x)∂xk
vj(t,x) dx dt,

where vj is the periodic parabolic solution in (14), and χj is the solution to the
periodic cell problem (4). We exploit this equality to further decompose the
error E :=

∣
∣ei(a

0
T,R,L − a0)ej

∣
∣ as follows

∣
∣ei ·

(
a0T,R,L − a0

)
ej
∣
∣ ≤

∣
∣
∣
∣

ˆ

KL

aij(x)µL(x) dx−
ˆ

K

aij(x) dx

∣
∣
∣
∣

︸ ︷︷ ︸

Eav1

+

∣
∣
∣
∣
∣

ˆ T

0

ˆ

KL

aik(x)∂xk
uj(t,x)µL(x) dx dt−

ˆ T

0

ˆ

KL

aik(x)∂xk
vj(t,x)µL(x) dx dt

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Eboundary

+

∣
∣
∣
∣
∣

ˆ T

0

ˆ

KL

aik(x)∂xk
vj(t,x)µL(x) dx dt−

ˆ T

0

ˆ

K

aik(x)∂xk
vj(t,x) dx dt

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Eav2

+

∣
∣
∣
∣
∣

ˆ T

0

ˆ

K

aik(x)∂xk
vj(t,x) dx dt−

ˆ ∞

0

ˆ

K

aik(x)∂xk
vj(t,x) dx dt

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Etruncation

(19)

The averaging error in the splitting (18) is then defined as Eav := Eav1 + Eav2.
In the following steps we give bounds for all the errors.

Step 2. The bound for Eav. The main result in this step is summarised
in the following lemma.

Lemma 3.2. Let a ∈ Mper(α, β,K), aei ∈ Hdiv(K) and Eav := Eav1 + Eav2,
where Eav1 and Eav2 are defined in (19). Then

Eav ≤
{

C1(β, α, µ)
√
TL−q−1‖∇ · aej‖L2(K) if ∇ · aej ∈ L2(K),

C2(β, α, µ)L
−q−1‖∇ · aej‖W 1

per(K) if ∇ · aej ∈ W 1
per(K),

where C1 = C(µ(q))βα , and C2 = C(µ(q))(βα )
3/2, and C(µ(q)) is the Lipschitz

constant of qth derivative of the filter µ.

Proof. By Lemma 1.2, we can immediately see that

Eav1 :=

∣
∣
∣
∣

ˆ

KL

aij(x)µL(x) dx−
ˆ

K

aij(x) dx

∣
∣
∣
∣
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≤ CL−q−1‖aij‖L2(K) ≤ CβL−q−1,

where C = C(µ(q)) is the Lipschitz constant of q-th derivative of the filter µ.
Moreover,

Eav2 :=

∣
∣
∣
∣
∣

ˆ T

0

(
ˆ

KL

aik(x)∂xk
vj(t,x)µL(x) dx−

ˆ

K

aik(x)∂xk
vj(t,x) dx

)

dt

∣
∣
∣
∣
∣

≤ C(µ(q))L−q−1

ˆ T

0

‖aik∂xk
vj(t, ·)‖L2(K) dt

≤ C(µ(q))L−q−1β

ˆ T

0

‖∇vj(t, ·)‖L2(K) dt.

If the tensor a(x) has higher regularity, i.e. ∇ · aej ∈ W 1
per(K), we can directly

estimate ‖∇vj‖L1(0,T ;L2(K)) :=
´ T

0
‖∇vj(t, ·)‖L2(K) dt by (16) in Lemma 2.4

and obtain

Eav2 ≤ C(µ(q))(
β

α
)3/2L−q−1‖∇ · aej‖W 1

per(K).

Otherwise, if ∇ · aej ∈ L2(K) only, we will apply Cauchy-Schwarz inequality
which yields

ˆ T

0

‖∇vj(t, ·)‖L2(K) dt ≤
√
T‖∇vj‖L2(0,T ;L2(K)).

Then employing (15) in Lemma 2.4, we obtain

Eav2 ≤ C(µ(q))
β

α

√
TL−q−1‖∇ · aej‖L2(K).

This completes the proof of the Lemma.

Step 3. The bound for Etruncation.
Lemma 3.3. Let a ∈ Mper(α, β,K) and aei ∈ Hdiv(K). Then the truncation
error Etruncation defined in (19) satisfies the estimate

Etruncation ≤ C(d, α)e−
απ2

d T ‖∇ · aej‖2L2(K),

where C(d, α) = d
απ2 .

Proof. By using integration by parts and the Cauchy-Schwarz inequality we
have

Etruncation :=

∣
∣
∣
∣

ˆ ∞

T

ˆ

K

aik(x)∂xk
vj(t,x) dx dt

∣
∣
∣
∣

=

∣
∣
∣
∣

ˆ ∞

T

ˆ

K

(∂xk
aik(x)) v

j(t,x) dx dt

∣
∣
∣
∣
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≤
ˆ ∞

T

‖∇ · aei‖L2(K)‖vj(t, ·)‖L2(K) dt

≤ ‖∇ · aei‖L2(K)

ˆ ∞

T

e−λ0t‖∇ · aej‖L2(K) dt

= ‖∇ · aej‖L2(K)‖∇ · aei‖L2(K)
1

λ0
e−λ0T ,

Similar to the proof of Lemma 2.4, we complete the proof by observing that

λ0 ≥ απ2

d .

Step 4. The bound for Eboundary.

Lemma 3.4. Let a ∈ Mper(α, β,K) and aej ∈ Hdiv(KR) for any j = 1, . . . , d,

µL ∈ K
q(KL) with L < R̃, where R̃ is the largest integer such that R̃ ≤ R−1/2.

Then, the boundary error Eboundary defined in (19) satisfies the estimate

Eboundary ≤ C‖∇ · aei‖2L2(K)

(

1 +
T

|R − L|

)
Rd−1

T d/2−1
e−c2

|R−L|2

T ,

where C = γ
β2

α
√
αc

, for a γ > 0 indepedent of a,R, L, T , and 0 < c2 < ν(β, d),

where ν(β, d) is the exponent in the Nash-Aronson estimate for parabolic Green’s
function (see Lemma 4.5 in [1] for details), which depends only on d and β.

Proof. To estimate the boundary error, we define θj = uj − ρvj , where the
smooth function ρ ∈ C∞

c (KR) satisfies

ρ(x) =

{

1, if x ∈ KR̃,

0, on ∂KR.

Then,
(
uj − vj

)
(t,x) = θj(t,x) for any t > 0 and x ∈ KL ⊂ KR̃, hence

Eboundary :=

∣
∣
∣
∣
∣

ˆ T

0

ˆ

KL

aik(x)∂xk

(
uj − vj

)
(t,x)µL(x) dx dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ˆ T

0

ˆ

KL

aik(x)∂xk
θj(t,x)µL(x) dx dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ˆ T

0

ˆ

KL

∂xk
(aik(x)µL(x)) θ

j(t,x) dx dt

∣
∣
∣
∣
∣
.

Next, it follows that

Eboundary ≤
ˆ

KL

|∂xk
(aik(x)µL(x)) | dx sup

x∈KL

ˆ T

0

|θj(t,x)| dt

≤ ‖µ‖W 1,2(KL)‖aej‖H1
div(KL) sup

x∈KL

ˆ T

0

|θj(t,x)| dt
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≤ CµL
−d/2Ld/2‖aej‖H1

div(K) sup
x∈KL

ˆ T

0

|θj(t,x)| dt.

Moreover, we use the following lemma from [1], which gives a pointwise estimate
for the function θj .

Lemma 3.5. Let a ∈ Mper(α, β,K), aej ∈ W 1,∞(KR) for j = 1, . . . , d, and
0 < L < R − 2. Let θj := uj − ρvj, where uj ∈ L2

(
(0, T );H1

0 (KR)
)
and

vj ∈ Lp
(
(0, T );W 1,p

per(K)
)
, for p > max{ d+2

2 , 2} are the solutions of (12) and
(14) respectively. Then, there exist constants c2, C1, C2 > 0, independent of R
and L, such that, for any 0 < t < 2c2|R− L|2,

‖θi(·, t)‖L∞(KL) ≤ C1‖∇ · (a(·)ei) ‖L2(K)

(

1 + C2
t

|R− L|

)
Rd−1

td/2
e−c2

|R−L|2

t .

Here C1 is a constant independent of a,R, L, T , and C2 = C
β2

α
√
αc2

, for a C > 0

indepedent of a,R, L, T . Moreover, the constant 0 < c2 < ν(β, d), where ν(β, d)
is the exponent in the Nash-Aronson estimate for parabolic Green’s functions,
and depends only on d and β; see the proof of Lemma 4.5 in [1] for further
details.

Invoking the L1−L∞ Hölder inequality and the monotone growth in [0, 2c2|R−L|2
d ]

of the function f : t 7→ 1
td/2

e−c2
|R−L|2

t we obtain

sup
x∈KL

ˆ T

0

∣
∣θj(t,x)

∣
∣ dt

≤ C1‖∇ · (a(·)ei) ‖L2(K)R
d−1

ˆ T

0

(

1 + C2
t

|R − L|

)
1

td/2
e−c2

|R−L|2

t dt

≤ C1‖∇ · (a(·)ei) ‖L2(K)R
d−1

ˆ T

0

(

1 + C2
t

|R − L|

)

dt max
t∈[0,T ]

1

td/2
e−c2

|R−L|2

t

≤ C1‖∇ · (a(·)ei) ‖L2(K)R
d−1

(

1 + C2
T

2|R− L|

)
1

T d/2−1
e−c2

|R−L|2

T .

Remark 3. We emphasize here that one of the key arguments in proving an
exponentially decaying error bound for Eboundary is the requirement that L < R,
see [1].

Collecting the results from Step 1 to Step 4 gives the bound of Theorem 3.1.
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4 Approximation of the exponential operator e−TA

The exponential correction term e−TAgj in the model problem (8) needs to
be approximated in computations. The very first approach would be to regard
e−TAgj as the solution (at time T ) of a parabolic PDE with initial data gj. Such
a consideration would not lead to any gain in computational cost in comparison
to the parabolic approach described in [1]. Here we describe two more efficient
ways, based on spectral truncation and a Krylov subspace iteration (Arnoldi iter-
ation), to compute the exponential correction term, which are far less expensive
than solving a full parabolic PDE. We also show that the both approximations
result in exponentially decaying errors bounds for increasing values of R, pre-
serving the desired exponential decay in Theorem 3.1, and that the Arnoldi
iteration is computationally less expensive than the spectral truncation.

4.1 Spectral truncation

The correction term e−AT gj in (8) corresponds to the solution (at time T ) of
the parabolic PDE (12). A way of expressing the exponential operator is

[e−ATgj ](x) :=

∞∑

k=0

e−λkT gjkϕk(x), where gjk := 〈gj , ϕk〉L2(KR),

where the operator A is defined on H1
0 (KR). The eigenvalues and eigenfunctions

of A depend on domain KR, but the R subscript is omitted for brevity. If T
is not too small, most of the modes in the expansion can be neglected due to
the exponential decay with respect to the eigenvalues. Hence solving a more
expensive parabolic PDE can be avoided at the expense of computing a few
dominant modes of the operator A. To this end, let

[e−ANT gj](x) :=

N−1∑

k=0

e−λkT gjkϕk(x).

Then the cell-problem (8) can be approximated by

−∇ ·
(

a(x)∇χj
T,R,N (x)

)

= gj(x) − [e−ANT gj](x) in KR

χj
T,R,N (x) = 0 on ∂KR.

(20)

Similarly, the homogenized coefficient (9) is approximated by

ei · a0T,R,L,Nej =

ˆ

KL

(

aij(x) + aik(x)∂xk
χj
T,R,N (x)

)

µL(x) dx. (21)

The spectrally truncated cell-problem (20) and the homogenized coefficient (21)
are the ultimate approximations used in computations. In the following lemma,
we give a bound for the difference between a0T,R,L and a0T,R,L,N defined in (9)
and (21) respectively.
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Lemma 4.1. Let a ∈ M(α, β,KR), aej ∈ Hdiv(KR), and µL ∈ K
q(KL). More-

over, let a0T,R,L and a0T,R,L,N be defined as in (9) and (21) respectively. Then

Espectral := |ei ·
(
a0T,R,L − a0T,R,L,N

)
ej | ≤ C

(
R

L

) d
2

Re−
cdN2/dT

R2 (22)

where C(α, β, d, µL) and cd are constants independent of T,R, L,N .

Proof. Let

[e−AT gj ](x) =

∞∑

k=0

e−λkT gjkϕk(x), [e−ANT gj ](x) =

N−1∑

k=0

e−λkT gjkϕk(x),

where {λj , ϕj(x)}∞j=0 are the eigenvalue-function pairs of the operator A =
−∇ · (a∇) with Dirichlet boundary conditions on the domain KR. Moreover,
let EN (x) := [e−AT gj − e−ANT gj](x), with gj := ∇ · aej. The eigenvalues of
second order symmetric elliptic operators satisfy

λk ≥ cdk
2/d|KR|−2/d = cdk

2/dR−2, (23)

where cd is a constant that depends on the dimension2 d and the ellipticity
constant α, see [28, 38]. Then

‖EN‖2L2(KR) ≤
∞∑

ℓ,k=N

e−
cd(ℓ2/d+k2/d)T

R2 gjℓg
j
k

ˆ

KR

ϕℓ(x)ϕk(x) dx

=
∞∑

k=N

e−
2cdk2/d T

R2 |gjk|2 ≤ e−
2cdN2/d T

R2 ‖gj‖2L2(KR).

Taking the square root of both sides, we arrive at

‖EN‖L2(KR) ≤ e−
cdN2/dT

R2 ‖gj‖L2(KR).

Moreover, since the difference ψ := χj
T,R − χj

T,R,N satisfies −∇ · a(x)∇ψ(x) =
EN (x) with homogeneous Dirichlet BCs, standard elliptic regularity yields

‖χj
T,R − χj

T,R,N‖H1
0(KR) ≤

Cp(KR)

α
‖EN‖L2(KR)

≤ CRe−
cdN2/dT

R2 ‖gj‖L2(KR)

≤ CR1+ d
2 e−

cdN2/dT

R2 ‖aej‖Hdiv(K),

2The constant cd may depend on α and β too. The value of cd can be approximated by
computing a few eigenvalues λk and finding the largest constant so that the relation (23)
holds.
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where we have used the fact that the Poincaré constant Cp(KR) is bounded by
Cp(KR) ≤ diam(KR)/π = R21/d/π, see [36], and ‖gj‖L2(KR) ≤ |KR|1/2‖aej‖Hdiv(K).
Finally,

∣
∣ei
(
a0T,R,L − a0T,R,L,N

)
ej
∣
∣ =

ˆ

KL

aik(x)∂xk
(χT,R − χT,R,N ) (x)µL(x) dx

≤ β‖∇χj
T,R −∇χj

T,R,N‖L2(KR)‖µL‖L2(KR)

≤ β‖∇χj
T,R −∇χj

T,R,N‖L2(KR)
|KL|1/2
Ld

‖µ‖dL∞(K)

≤ C
R1+d

2

L
d
2

e−
cdN2/dT

R2 .

This completes the proof.

In Theorem 3.1, the optimal value for the parameter T is T = O(R). In
order to get an exponential decay rate, such as e−cR for some positive c, in
Lemma 4.1, we then need to compute N = O(Rd) eigenmodes. This growth of
the number of eigenmodes with respect to the dimension is the main drawback of
the naive spectral truncation leading to a high computational burden in higher
dimensions. Therefore, in the next subsection we propose a much more efficient
method based on the Krylov subspace iteration, and we show that the cost of
the method will scale linearly in terms of the number of degrees of the freedom,
while retaining the desired exponential accuracy for the approximation of the
homogenized coefficient.

Remark 4. Note that Lemma 4.1 does not assume the periodicity of a, since the
proof only relies on the decay of the eigenvalues of general second order elliptic
operators.

4.2 Approximation by the Arnoldi method

In order to introduce the approximation by the Arnoldi method, we consider a
discretization Ah of the operator −∇·(a∇) e.g., by a second order centred finite
difference scheme, where h is a discretization parameter. Moreover, assume that
the size of the matrix Ah is N × N , and that gh ∈ R

N is a finite dimensional
representation of gj on a uniform computational grid3. For the sake of simplicity,
in this section we will ignore the j superscript. Denoting F (z) = e−zT , the
idea behind the Arnoldi algorithm is to look for an approximation for F (Ah)gh
starting by a unitary transformation of Ah in the form H = Q∗AhQ, where
Q ∈ R

N×k, H ∈ R
k×k is an upper-Hessenberg matrix, and k ≪ N so that the

matrix Ah is projected into a lower dimensional space. The term F (Ah)gh can
then be approximated by

F (Ah)gh ≈ QF (H)Q∗gh.

3Note that this is not the same parameter N as in subsection 4.1
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Therefore, computing the computationally expensive exponential matrix func-
tion F (Ah) of size N×N is avoided by instead computing F (H), with a smaller
computational cost. An important question that arises is in relation with the
approximation error coming from the Arnoldi algorithm. The following theorem
from [22] provides an upper bound for such an approximation.

Theorem 4.2. (Hochbruck, Lubich [22]) Let B ∈ R
N×N be a Hermitian neg-

ative semi-definite matrix with eigenvalues in [−ρ, 0] and set β = ‖g‖2 where
g ∈ R

N . Moreover, let H = Q∗BQ be a unitary transformation of B via an
Arnoldi procedure with H ∈ R

k×k and Q ∈ R
N×k. Then the following estimate

holds

‖eBg −QeHQ∗g‖2 ≤







10βe−4k2/(5ρ),
√
ρ ≤ k ≤ ρ/2

40β

ρ
e−ρ/4

( eρ

4k

)k

, k ≥ ρ/2.
(24)

Lemma 4.3. Let Ah ∈ R
N×N be a second order centred finite difference ap-

proximation, with step-size h, of the operator −∇ · (a∇) on KR, and let ρ (Ah)
denote its spectral radius. Then, ρ (Ah) = O(h−2) and it is independent of R.

Proof. Let us define â(y) = a(x) and û(y) = u(x), where y = x/R. Then,

−∇x · (a(x)∇xu(x)) = − 1

R2
∇y · (â(y)∇yû(y)) , (25)

where the operator −∇ · (â∇) is independent of R. Let Âĥ ∈ R
N×N be a

second order centred finite difference approximation, with step-size ĥ = h/R,
of −∇ · (â∇). Since (25) holds for any sufficiently smooth function u, it follows
that

Ah =
1

R2
Âĥ.

It is known that the spectral radius of Âĥ scales as ĥ−2 (see, e.g. [27], Chapter
3 for the proof in the case of the Laplacian operator), hence

ρ(Ah) =
1

R2
ρ(Âĥ) =

1

R2
O(ĥ−2) = O(h−2).

Corollary 4.4. Let Ah ∈ R
N×N , with h ≤ 1, be a second order centred finite

difference approximation of the operator −∇ · (a∇) and set β = ‖gh‖2 where
gh ∈ R

N . Moreover, let H = Q∗BQ be a unitary transformation of Ah via an
Arnoldi procedure with H ∈ R

k×k, Q ∈ R
k×N , and F (z) = e−zT . Then the

following estimate holds

‖F (Ah)gh −QF (H)Q∗gh‖2 ≤ 10βe−4k2/(5cdN
2/dR−2T ), (26)

for
√

cdN2/dR−2T ≤ k ≤ cdN
2/dR−2T/2, where cd is a constant which de-

pends only on the dimension. Moreover, when k =
√

cdN2/dR−2T/2,and for
sufficiently small h (whenever cd < 1), the estimate reads as

‖F (Ah)gh −QF (H)Q∗gh‖2 ≤ 10βe−T/5, for T ≥ 4. (27)
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Proof. The proof of (26) follows by a direct application of the Theorem 4.2 and
the fact that the spectral radius of the operatorAhT is given by (see Lemma 4.3)

ρ(AhT ) = O(h−2T ) = O(N2/dR−2T ).

For the second part of the proof, it is sufficient to verify that the optimal

choice k =
√

cdN2/dR−2T/2 is within the interval
√

cdN2/dR−2T ≤ k ≤
cdN

2/dR−2T/2. This is easy to see if we consider two cases: 1) If cd ≥ 1,
then by using the fact that h = R/N1/d ≤ 1 and T ≥ 4, the inequalities are
satisfied. 2) When cd ≤ 1, then the inequalities are satisfied for sufficiently
small h.

The advantage of using an approximation for the exponential correction term
via the Arnoldi approach is that the number of basis functions required in the
Arnoldi iteration is practically independent of the dimension of the problem.
In other words, denoting the numbers of degrees of freedom in d-dimensions
by N := nd ≃ (R/h)d, only k =

√
cdT/(2h) basis functions are needed to

obtain an exponentially accurate approximation for the exponential correction
e−AT g up to a discretization error, see the estimate (27). An estimate for a
fully discrete approximation of the homogenized coefficient can also be derived,
following the lines of [2]. In [2], the author identifies the so-called microscopic
discretization error as one of the error sources for FE-HMM. Such an error
is due to the numerical approximation of the microscopic correctors χj

T,R. If
an s-th order FEM is used for the micro-problems, then the micro-error reads
as eMIC = O(h2s). In our setting, apart from the micro error, there are also
resonance error and the error due to Arnoldi approximation. We would then
expect that the overall errors for a fully discrete analysis of approximation for
the homogenized coefficient read as

E ≤ C
(
h2s + Eresonance + EArnoldi

)

A fully discrete analysis is skipped in the present paper so as to remain in
line with our main goal of proving an error bound for the approximation of
the homogenized coefficient in a continuous setting. But we emphasize that it
follows directly from [2] and the results therein.

4.3 Approximation of the cell problem and computational

cost

The Arnoldi iteration can be used in different ways to approximate the so-
lution of the modified elliptic PDE (8). A standard finite element/difference
discretization of the problem (8) results in the following system4

Ahχh = gh − e−TAhgh. (28)

Here we present three different ways based on the Arnoldi iteration to solve
(28).

4For simplicity all the indices are skipped in this discussion.
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Approach 1. Let F1(z) = e−tz, then the system (28) can be approximated
by

Ahχ̃h = gh −QF1(H)Q∗gh. (29)

Approach 2. Let F2(z) = 1 − e−tz, then the system (28) can be approxi-
mated by

Ahχ̃h = QF2(H)Q∗gh. (30)

Approach 3. Let F3(z) = z−1(1 − e−tz), then the system (28) can be
approximated by

χ̃h = QF3(H)Q∗gh. (31)

Assuming that the systems in approaches 1, 2 are inverted by a linearly
scaling algorithm, such as the multigrid, the overall computational costs of all
these three formulations are dominated by the Arnoldi iteration, where given the
matrix [Ah]N×N , the matrices Q and H are computed. The Arnoldi algorithm
consists of an outer loop for j = 1 : k, where in total k ≪ N sparse matrix
vector multiplications of the form Ahgh are needed. Moreover, there is an
orthogonalisation process which occurs at an inner loop for i = 1 : j, where
the essential cost is due to a vector-vector multiplication gTh gh of two dense
N × 1 vectors. The overall cost of the Arnoldi iteration, exploiting the inherent
sparsity of Ah becomes

CostArnoldi ≈
k∑

j=1

(

CdN + 4

j
∑

i=1

N

)

= O(Nk2).

If k is fixed a-priori instead of following the scaling of Corollary 4.4, then the
cost of the algorithm will grow linearly with N . A more rigorous analysis can
be done by using the analysis in subsection 4.2, where the optimal value of k
for the approach 1 has been presented. Following the result of Corollary 4.4, we
find that k2 = O(N2/d). Hence the overall cost becomes

CostArnoldi = O(Nk2) = O(N1+2/d).

Using the relation N = Rdh−d, where h is a fixed mesh size, we can write
the computational cost of the modified and the standard elliptic upscaling ap-
proaches as a function of R and h, see Table 1. The global errors, which are
composed of the resonance and the discretization errors, are also reported in Ta-
ble 1. The resonance error scales as R−q−1/2 for the modified elliptic approach,
see Theorem 3.1, while it decays as R−1 for the standard elliptic case, see (7).
The discretization error is assumed to be of order O(hs) in both cases. In order
to derive the scaling of the cost with respect to the accuracy, we impose the
global error to be smaller than a prescribed tolerance tol. So, for the modified
elliptic case, we choose R and h such that R−q−1/2 ≈ tol and hs ≈ tol, while
R−1 ≈ tol and hs ≈ tol for the standard elliptic case. Therefore, the modified
elliptic approach has a lower cost to reach a certain tolerance tol when

d+ 2

q + 1/2
+

2

s
< d,

25



which is easily achieved by using filters with better regularity properties (large
q), as well as high order numerical methods for the approximation of the elliptic
PDE (8).

Note that although an estimate for the difference between QF1(H)Q∗gh and
e−TAhgh is available, see the results stated in subsection 4.2, error estimates
for more complicated matrix functions such as F3(z) = z−1(1 − e−tz) used in
approach 3 above are not known, [21]. Nevertheless, from a computational point
of view, the approach 3 has a slight advantage of skipping the inversion of the
large sparse matrix Ah, and hence is used in the simulations of this paper.
There is another approach based on the rational Krylov subspace iteration, see
e.g., [19], which better suits the treatment of functions such as F3, but the
method requires an inversion of Ah for each column of the matrix Q.

Elliptic cell problem Computational cost Error Cost(tol)

Modified R2+dh−d−2 R−q−1/2 + hs tol−
2d+4
2q+1−

d+2
s

Standard Rdh−d R−1 + hs tol−d−d
s

Table 1: Cost to reach a tolerance tol. The cost of solving the modified elliptic
problem (8) by Arnoldi approach 1 is compared to that of the standard elliptic
problem (4).

5 Numerical tests

In this section, we provide examples in two dimensions to verify the theoretical
results stated in Theorem 3.1. Moreover, additional numerical tests are provided
to show that the method performs equally well even when the regularity and
structural assumptions of the theorem are violated. In particular, the test cases
include a periodic medium, a discontinuous layered medium, a quasi-periodic
medium, as well as a random medium. These results are discussed in separate
subsections below. Note that in all the simulations below, we will use the Arnoldi
approach 3 for the numerical approximation of the modified elliptic approach,
and we will use the Frobenius norm ‖a0 − a0T,R,L‖F to compute the errors.

Example 1. A smooth periodic coefficient. As our first example, we
consider the following two-dimensional coefficient

a(x) =

2∏

j=1

(C1 + C2 sin(2πxj)) I,

where I is the 2 × 2 identity matrix, see the left picture in Figure 1 for a
graphical representation of a. Since the coefficients are separable, i.e. a(x) =
a1(x1)a2(x2)I, the homogenized limit can be computed as (see [14], Section 4.2):

a0 =

 

K

a11(x) dx

(
 

K

a−1
22 (x) dx

)−1

I =

(

C1

√

C2
1 − C2

2

)

I. (32)
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In Figure 1, the upscaling error ‖a0T,R,L,N−a0‖F is shown for increasing values of
R. The parameter values T and L are chosen optimally as stated in Theorem 3.1,

with k0 = 2
3 , α = minx∈K a(x), β = maxx∈K a(x), and kT =

√
d

2π
√
αβ

(1 − ko),

since c1 = απ2

d (see Theorem 3.1) and c2 can be approximated by 1/(4β) (see [1],
Section 5). The number of basis functions in Arnoldi algorithm to approximate
the right hand side is k = min(700, N1/d) (where N is the total number of
degrees of freedom) for all values of R since the Arnoldi’s error is typically
much smaller than the rest of the errors. Two different kernels with q = 2
and q = 5 are used in the simulations. The cell-problem (20) is approximated
by a second order finite difference scheme with the stepsize h = 1/120. The
total number of grid-points per direction is thus R/h. The numerical results
show that the overall error is dominated by the filtering error even for moderate
values of R, and that arbitrarily high convergence rates are obtained by using
kernels with better regularity properties. Note that the filtering error can be
estimated as Eav ≤ CL−q−1 because ∇·aej ∈W 1

per(K) (see Lemma 3.2), which
also explains the improved decay rate in the numerical results. Taking larger
values for q does not increase the overall computational cost, as the filters with
larger q values can be easily precomputed. Moreover, in the same figure, we also
plot the corresponding error for the standard elliptic cell problem (6) with the
same second order discretization with stepsize h = 1/120. We observe a first
order convergence rate for the resonance error when we use the standard elliptic
problem.

(a) a(x) = diag(a11(x), a22(x))

100 101

10-6

10-4

10-2

100

(b) The upscaling error

Figure 1: A two dimensional smooth medium (32) with C1 = 2.1, C2 = 1

In Figure 2, we choose the constasts C1 = 6.1 and C2 = 5 to increase the
contrast ratio of the coefficient to β/α ≈ 101. We use h = 1/50, and choose
optimal values for kT using the new values of α and β, and study the convergence
with respect to increasing values of R. Other parameter values are chosen as in
Figure 1. In this high contrast regime, we do not observe a strong dependency
of the resonance error on the parameter q. This is expected since in the high
contrast regime, the boundary error will dominate all other errors, and the effect
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of taking higher values for q will be seen only for very large values of R; once
the averaging error will be more dominant.

(a) a(x) = diag(a11(x), a22(x))

100 101

10-6

10-4

10-2

100

(b) The upscaling error

Figure 2: A two dimensional smooth medium (32) with contrast ratio ≈ 101,
C1 = 6.1, C2 = 5

Example 2. A discontinuous periodic coefficient. The second example
is a layered medium characterised by the coefficient a(x) = diag(a11(x1), a11(x1)),
where

a11(x) =

{

10 0 ≤ x1 <
1
2

1 1
2 ≤ x1 < 1.

(33)

Such a choice is to test the generality of the method when the regularity as-
sumption on the coefficient is relaxed. The exact homogenized coefficient is
again constant and given by

a0 = diag(20/11, 11/2).

All the numerical parameters are chosen identical to those in example 1, with an
obvious adaptation of α and β. Similar to example 1, higher order convergence
rates are achieved upon using higher order kernels, showing the generality of
the method also for problems in discontinuous media.

Example 3. A quasi-periodic coefficient. To test the applicability of
the method beyond the periodic setting, we consider a quasi-periodic coefficient
given by a(x) = diag(a11, a22), where

a11(x) = 4 + cos(2π(x1 + x2)) + cos(2π
√
2(x1 + x2)), (34)

a22(x) = 6 + sin2(2πx1) + sin2(2π
√
2x1).

The very same coefficient has been used also in the elliptic approach proposed
in [15]. In this paper, such a choice for the coefficient has been intentional as
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(a) a(x) = diag(a11(x), a22(x))

100 101

10-6

10-4

10-2

100

(b) The upscaling error

Figure 3: A two dimensional periodic discontinuous medium (33)

-6 -4 -2 0 2 4 6

0

5

x

a11(0, x)

a22(x, x)

(a) a(x) = diag(a11(x), a22(x))

1 10
10−7

10−4

10−1

R

‖a
0 T
,R

,L
−
a
0
‖ F

q = 2

O(R−3)

q = 5

O(R−6)

(b) The upscaling error

Figure 4: A two dimensional quasi-periodic medium (34)

it allows for a comparison between the two methods. In this particular setting,
the homogenized coefficient is not easy to compute and therefore the value of
a0T,R,L,N with the largest R is used instead of a0 (similar to [15]). All the
parameter values are chosen identical to the example 1 in this paper. Figure 4
shows a fast decay of the error down to 10−5 for moderate values of R, i.e.,
R ≈ 10. It is worth mentioning that such an error tolerance is achieved only for
R ≈ 20 in the zero-order approach from [15].

Example 4. A random coefficient. As yet another example of a non-
periodic medium, we construct a random medium as follows: We start by choos-
ing a large computational grid, which corresponds to a discretization of the
domain KRmax with Rmax = 16. We then generate a sequence of uniformly dis-
tributed random variables taking values in the interval [1, 100], and assign these
random numbers on each grid point. Next, we set a correlation length σ (here
σ = 0.25 is chosen), and construct the random coefficient at each discretization
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(a) a(x) = diag(a11(x), a22(x))

100 101
10-4

10-3

10-2

10-1

100

101

(b) The upscaling error

Figure 5: A two dimensional random medium

point xi ∈ KR (for a given R < Rmax) by taking the average of the generated
random values associated to the points xj ∈ Bσ(xi). We then shift the entire
function to obtain a constrast ratio of max a(x)/min a(x) ≈ 6.78. Since, the
interest here is not to study the statistical error, we compute only the error

Eboundary := ‖a0T,R,L − a0T,Rmax,L‖F ,

which sees the deterministic part of the overall error only; in particular the
boundary error. In Figure 5, the generated random coefficient along with the
boundary error is depicted. All the parameter values except h = 1/40, α ≈
19.56, and β ≈ 2.88 are the same as in example 1. A decay for the boundary
error is observed for three different choices of filters with different regularities.

Cost comparison with the standard elliptic approach.
We now illustrate the elapsed computational time against tolerance, and

compare the modified elliptic approach (8) with the standard elliptic approach
(6) approaches. The two-dimensional discontinuous coefficient from example 2
with the contrast ratio of 10 is used for the simulation. For both approaches
the stepsize is taken to be h = 1/50, and the computational times and the
corresponding errors are recorded for a range of R, results of which are in Figure
6. A filter with q = 8 is used to illustrate the efficiency of the modified elliptic
approach. In Figure 6(a), we compare the decay of the errors with respect to R.
In Figure 6(b), we observe that the modified elliptic approach start to become
more efficient than the standard elliptic approach already for reasonably large
tolerance values, TOL ≈ 0.03. Note that the envelopes depicted in Figure 6(a)
are used to obtain the results in Figure 6(b). We also emphasize that, the
standard elliptic approach is solved via a direct LU -decomposition, while the
modified elliptic problem has been solved by approach 3 in subsection 4.3. This
further explains why the modified elliptic approach is superior to the standard
elliptic approach although Table 1 suggests the converse for the given parameter
values.
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(b) Tolerance vs Computational cost

Figure 6: A two dimensional periodic discontinuous medium (33)

Cost comparison with the parabolic approach from [1].
As discussed in the introduction, the modified elliptic approach (8) has been

inspired by the idea of parabolic cell-problems from [1], where the following
formulas were used for an approximation of the homogenized coefficient.

eia
0
R,L,Tej =

ˆ

KL

ei · a(x)ejµL(x) dx − 2

ˆ T

0

ˆ

KL

ui(x, t)uj(x, t)µL(x) dx dt,

where ui is the solution to the parabolic equation:






∂ui

∂t
−∇ · (a(x)∇ui) = 0 in KR × (0, T )

ui = 0 on ∂KR × (0, T )

ui(x, 0) = ∇ · (a(x)ei) in KR,

This approximation for the homogenized coefficient results in similar exponen-
tially decaying error bounds for the resonance error. However, the main differ-
ence is in the time dependent nature of the problem, which may pose a challenge
from a computational viewpoint. An efficient numerical solver for this parabolic
problem based on explicit stabilized stiff numerical solvers, such as ROCK 2, [6],
is presented in [1]. Without going into further details, we want to emphasize
that ROCK 2 is an adaptive, explicit second order time-stepping method for stiff
problems, with the advantage of having stability regions substantially larger
than standard time integration methods. Moreover, the time-steps are com-
puted adaptively according to a preset error tolerance value. To compare the
efficiency of the parabolic approach with the modified elliptic approach (8), we
consider again example 1, (32), with C1 = 2.1 and C2 = 1, and run a simulation
with q = 3 to numerically investigate the cost vs tolerance behaviour. For both
simulations, the optimal values for the parameters T and L are chosen precisely
as in example 1, and a second order method is used for the spatial discretization;
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(b) Tolerance vs Computational cost

Figure 7: A two dimensional periodic discontinuous medium

TOL h R

0.1 1/8 1 ≤ R ≤ 1.75
0.01 1/16 1.75 < R ≤ 2.5
0.01 1/32 2.5 < R ≤ 3.5
0.001 1/64 3.5 < R ≤ 8

Table 2: Parameter values for the parabolic solver

h R

1/8 1 ≤ R ≤ 4
1/16 4 < R ≤ 8

Table 3: Parameter values for the modified elliptic solver

the stepsize of which is denoted as h. For both simulations the values of h are
changed for increasing values of R with the goal of achieving a desired tolerance
value in the numerical simulation, see Tables 2 and 3. Note that the values of h
are refined differently since the modified elliptic approach results in lower error
tolerances already for coarse values of h, e.g., h = 1/8, h = 1/16, whereas in
the parabolic solver, the spatial error dominates the overall error, and there-
fore h needs to be reduced more to achieve desired error tolerances. In Figure
7, we compare (a) the actual error given by these two different approaches for
increasing values of R, as well as (b) the elapsed computational time to reach
a certain error tolerance. The envelopes for the errors depicted in Figure 7(a)
are used to produce the numerical results in Figure 7(b). These envelopes may
be seen as sharp upper bounds for the actual error, and they are used due to
the non-monotonic decay of the error due to averaging. Although both methods
possess exponentially decaying error bounds for the resonance error, we observe

32



that the modified elliptic approach results in an improved cost vs error perfor-
mance due to its lower discretization errors. In general, both approaches will
have their advantages depending on the problem to be solved. For example, for
3-dimensional problems with possibly complicated microstructure, relying on
the parabolic approach with explicit stabilized solves alleviate all linear algebra
systems to be solved and the issue of preconditioning the systems.
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