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GRADIENT ESTIMATES FOR ELECTRIC FIELDS WITH

MULTI-SCALE INCLUSIONS IN THE QUASI-STATIC REGIME

YOUJUN DENG, XIAOPING FANG, AND HONGYU LIU

Abstract. In this paper, we are concerned with the gradient estimate of the
electric field due to two nearly touching dielectric inclusions, which is a central
topic in the theory of composite materials. We derive accurate quantitative
characterisations of the gradient fields in the transverse electromagnetic case
within the quasi-static regime, which clearly indicate the optimal blowup rate
or non-blowup of the gradient fields in different scenarios. There are mainly
two novelties of our study. First, the sizes of the two material inclusions may
be of different scales. Second, we consider our study in the quasi-static regime,
whereas most of the existing studies are concerned with the static case.
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1. Introduction

Stress concentration is a peculiar phenomenon that widely occurs in continuum
mechanics. It is a central topic in the theory of composite materials, where the
concentration occurs due to the nearly touching of material inclusions that are
the building blocks of the composite material. The degree of concentration is
characterised by the blowup rate of the gradient of the underlying field. There are
extensive studies in the literature on the gradient estimates of the underlying fields
due to two nearly touching inclusions. We refer to [19,20] for related results in gen-
eral elliptic system, [3,10,11,14,17,23] for elastostatics, [4] for stokes flow problem,
and [5–9, 16, 18, 21, 22] in electrostatics for optical materials. The gradient esti-
mates depend on the background field as well as the asymptotic parameter ǫ which
signifies the distance between the closely spaced material inclusions. Generically,
the optimal blow up rate of the gradient field is of order 1/

√
ǫ in two dimensions,

whereas it is (ǫ| ln ǫ|)−1 in three dimensions. In establishing those results, it is
usually assumed that the inclusions are of regular size, i.e., the size is of order
O(1) compared to the asymptotic distance parameter ǫ ≪ 1. In fact, it is shown
in [5, 15] that if the size of the two objects are of the same order as the distance
between them, the gradient stays bounded. To our best knowledge, there are few
studies on the case that the sizes of the inclusions are of different scales. More-
over, very few results are concerned with the gradient estimates for waves in the
frequency regime. There is a major difficulty for the latter case, i.e. the maximum
principle fails for the wave system (cf. [12]).
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In this paper, we study the gradient estimate for the electromagnetic field in the
transverse model in R

2 due to nearly touching dielectric inclusions. We consider
our study in the quasi-static regime, namely the size of the inclusion is smaller
than the operating wavelength. Nevertheless, we allow the sizes of the inclusions
to be of the same scale or different scales. That is, one inclusion may be of regular
size, while the size of the other one can be very large (actually, can be related to
the asymptotic parameter ǫ). Geometrically, this means that the curvatures of the
nearly touching faces of the two inclusions may be in sharply different scales, say
e.g. one is very high while the other is very low (nearly flat). In such a general
scenario, we derive an accurate gradient estimate of the electric field, which is con-
tained in (2.22) in Theorem (2.1). There are two parts in the asymptotic estimate:
the first one accounts for the static effect, whereas the second one accounts for
the frequency effect. The static part recovers the known results in the literature
if both inclusions are of regular size. It also covers the more general scenario that
the two inclusions are of sharply different scales. It is more interesting to note
that the frequency part can induce new blowup phenomena. In fact, even if the
static part vanishes, there might still be the blowup phenomenon in certain generic
scenarios due to the frequency part. In deriving the new gradient estimate, we de-
velop techniques that combine layer-potential operators with asymptotic analysis
and singular decomposition of the wave field.

The rest of the paper is organized as follows. In Section 2, we present the
mathematical setup of our study as well as state the main results of the paper. In
Section 3, we use layer potential technique to derive the integral representation of
the solution as well as the associated asymptotic expansions. The estimates of the
nonsingular and singular parts of the gradient fields are established in Sections 4
and 5, respectively.

2. Mathematical setup and statement of the main results

In this section, we present the mathematical formulation of the transverse elec-
tromagnetic scattering with multi-scale dielectric inclusions. Then we state the
main results in this paper, whose proofs shall be postponed to the subsequent
sections.

2.1. Mathematical setup. Let B1 and B2 be two disks in R
2. Let zj ∈ R

2

and rj ∈ R+ be the center and radius of Bj, j = 1, 2, respectively. Define ǫ :=
dist(B1, B2) and suppose ǫ ≪ 1. Here, B1 and B2 represent the two dielectric
inclusions and they are closely spaced, characterised by the asymptotic distance
parameter ǫ ∈ R+. By rigid motions if necessary, we can assume without loss of
generality that

z1 = (−r1 −
ǫ

2
, 0) and z2 = (r2 +

ǫ

2
, 0). (2.1)

In what follows, we set

r1 = r1,α1
ǫα1 and r2 = r2,α2

ǫα2 , αj ∈ R, j = 1, 2, (2.2)
2



where r1,α1
and r2,α2

are positive constants that are independent of ǫ. It is pointed
out that if one takes α1 = α2 = 0, then both B1 and B2 are of regular size. It is
emphasized that αj can be negative or positive, respectively corresponding to the
high- and low-curvature cases. Define

α+ = max(α1, α2) and α− = min(α1, α2). (2.3)

As mentioned earlier, B1 and B2 signify two dielectric inclusions embedded in
a uniformly homogeneous medium. The medium parameters are characterised by
the electric permittivity ε and magnetic permeability µ. By normalisation, we
assume that ε = µ = 1 in R

2 \ B1 ∪ B2. Let ε = ε1 and µ = 1 in B1 ∪ B2, where
ε1 ∈ R+. We consider the transverse magnetic scattering, which is described by
the following system (cf. [13]):























∆u∗ + ω2u∗ = 0 in R
2 \B1 ∪B2,

∇ · ( 1
ε1
∇u∗) + ω2u∗ = 0 in B1 ∪ B2,

u∗|+ = u∗|−, ∂u∗

∂ν

∣

∣

∣

+
= 1

ε1
∂u∗

∂ν

∣

∣

∣

−
on ∂B1 ∪ ∂B2,

(u∗ − ui)(x) satisfies the Sommerfeld radiation condition,

(2.4)

where ω ∈ R+ signifies the angular frequency of the wave propagation and, ui and
u∗ respectively denote the incident and total wave fields. ui is an entire solution
to ∆ui+ω2ui = 0 in R

2, and one special case is that it is a plane wave of the form
ui = eiωx·d, where d ∈ S

2 signifies the impinging direction. By the Sommerfeld
radiation condition, we mean that the scattered wave us(x) = (u∗−ui)(x) satisfies

lim
|x|→+∞

|x|1/2
(

∂us(x)

∂|x| − iωus(x)

)

= 0. (2.5)

Throughout the rest paper, we shall consider ω ≪ 1 and ε1 = O(ω).

2.2. Main gradient estimate and discussion. We present our main result in
this paper as follows:

Theorem 2.1. Suppose ω · ǫα− ≪ 1, and

ui = ui
0 +

∞
∑

j=1

ωjui
j, (2.6)

where the functions ui
j, j = 0, 1, 2, . . . are independent of ω. Let u∗(x) be defined

in (2.4). Then for any bounded set Ω containing B1 and B2, it holds that

‖∇u∗‖L∞(Ω\B1∪B2)
∼C0

r−
ǫmin(α+,1)/2−1/2

(

∂x1
ui(0) +

1

π
ω2| lnω|

∫

B1∪B2

∂x1
ui

+O(ω2)
)

+O(1),

(2.7)

where r− is defined by

r− =

{ α2−α−

α2−α1
r1,α1

+ α1−α−

α1−α2
r2,α2

, α1 6= α2,

r1,α1
+ r2,α2

, α1 = α2,
(2.8)
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and C0 > 0 is the coefficient of the leading order term of τ defined in (2.18) in
what follows.

Remark 2.1. It is worth mentioning that if α1 = α2 = 0 then from (2.18), one has

C0 =
√

2r1,0r2,0(r1,0 + r2,0),

and there holds the estimate

‖∇u∗‖L∞(Ω\B1∪B2)
∼
√

2r1,0r2,0
(r1,0 + r2,0)

ǫ−1/2
(

∂x1
ui(0) +

1

π
ω2| lnω|

∫

B1∪B2

∂x1
ui

+O(ω2)
)

+O(1),

which recovers the blowup estimate for the static case ( [5, 8, 15]).

Remark 2.2. It can be seen that if one inclusion is of high curvature, i.e., α+ > 0
and ∂x1

ui
0(0) 6= 0, then the blowup rate is ǫmin(α+,1)/2−1/2, which is less than ǫ−1/2.

No blow up occurs in the case that α+ ≥ 1.

Remark 2.3. We emphasise that the estimate (2.22) also holds for the low curvature
case, i.e., α+ < 0. In such case, the blowup rate is ǫα+/2−1/2, which is bigger than
ǫ−1/2, if ∂x1

ui
0(0) 6= 0. Moreover, even if ∂x1

ui(0) = 0, one can still have the
blowup if ∂x1

ui
1(0) = 0 and

− logǫ ω < α+ < 1− 2 logǫ ω,

or
∫

B1∪B2

∂x1
ui
0 6= 0,

α+ satisfies
− logǫ ω < α+ < 1− 2 logǫ(ω

2| lnω|).
2.3. Key decompositions. In this subsection, we present the main auxiliary
results that we shall derive in order to prove the main result in Theorem 2.1,
whose proofs are deferred to the subsequent sections. To estimate the gradient
filed of the solution to (2.4), we shall decompose the system into several parts. We
first introduce the following system:



















∆u+ ω2u = 0 in R
2 \B1 ∪ B2,

u = λ1 +O(ω2) on ∂B1,

u = λ2 +O(ω2) on ∂B2,

(u− ui)(x) satisfies the Sommerfeld radiation condition,

(2.9)

where the constants λj, j = 1, 2 are determined by
∫

∂Bj

∂νu|+ = O(ω2), j = 1, 2, (2.10)

and they are unique up to O(ω2).
We have the following result:
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Lemma 2.1. Let u∗ and u be the solution to system (2.4) and (2.9), respectively.
Then it holds that

∇u∗ = ∇u+ Cω +O(ω2) in R
2 \B1 ∪B2, (2.11)

where C is a generic constant that does not depend on ω and ǫ.

In what follows, we shall decompose the solution to (2.9) into two parts as
follows:

u(x) = aqω(x) + b(x), (2.12)

where qω(x) is the solution to

{

∆qω + ω2qω = 0 in R
2 \B1 ∪B2,

qω(x) satisfies the Sommerfeld radiation condition.
(2.13)

The concrete form of qω will be shown in the next section. Let q0 be the singular
function defined by

q0(x) :=
1

2π
(ln |x− p1| − ln |x− p2|), (2.14)

where p1 and p2 denote for the fixed points of the reflection R1R2 and R2R1,
respectively. Here, the reflection Rj with respect to ∂Bj , centering at zj and of
radius rj , are defined by

Rj(x) :=
r2j (x− zj)

|x− zj |2
+ zj , j = 1, 2. (2.15)

If α1 = α2 = 0, then it is proved in [22, 23] that pj , j = 1, 2 admits the following
asymptotic expansion:

p1 =

(

−
√
2

√

r1,0r2,0
r1,0 + r2,0

√
ǫ+O(ǫ), 0

)T

, p2 =

(√
2

√

r1,0r2,0
r1,0 + r2,0

√
ǫ+O(ǫ), 0

)T

.

(2.16)
In this paper, we shall consider the case that α1, α2 6= 0, and we derive the explicit
forms of p1 and p2 as follows:

p1 =

(

−(r1 − r2)ǫ/2 +
√
ǫτ(r1, r2, ǫ)

r1 + r2 + ǫ
, 0

)T

,

p2 =

(

(r2 − r1)ǫ/2 +
√
ǫτ(r1, r2, ǫ)

r1 + r2 + ǫ
, 0

)T

,

(2.17)

where

τ(r1, r2, ǫ) =
√

2r1r2(r1 + r2) + (r21 + 3r1r2 + r22)ǫ+ (r1 + r2)ǫ2 + ǫ3/4. (2.18)
5



The formula (2.17) can be verified by straightforward computations. It can be
seen that q0 is the solution to the following equation (see [21]):



























∆q0 = 0 in R
2 \B1 ∪ B2,

q0 = Cj on ∂Bj ,
∫

∂Bj

∂νq0|+ = (−1)j , j = 1, 2,

q0(x) = O(|x|−1) as |x| → ∞,

(2.19)

where Cj, j = 1, 2, are

Cj = (−1)j−1 1

2π
ln

−(2rj + ǫ)
√
ǫ+ 2τ

(2rj + ǫ)
√
ǫ+ 2τ

, j = 1, 2. (2.20)

In what follows, we define b(x) in (2.12) by

b(x) := u(x)− λ1 − λ2

C1 − C2
qω(x), (2.21)

where u, λj and Cj, j = 1, 2 are defined in (2.9) and (2.20). We shall prove the
following critical result:

Lemma 2.2. Suppose ω · ǫα− ≪ 1. Let b(x) be defined in (2.21). Then for any
bounded set Ω containing B1 and B2, there is a constant C which is independent
of ǫ and ω such that

‖∇b‖L∞(Ω\B1∪B2)
≤ C(1 +O(ω2)). (2.22)

3. Quantitative approximations of the solution

3.1. Layer potentials. Before the estimation of the gradient field, we introduce
some necessary notations and results on the layer potential operators, which shall
be need in our subsequent analysis. Let Γω(x) be the fundamental solution to
PDE operator ∆ + ω2 in R

2, given by

Γω(x) = − i

4
H

(1)
0 (ω|x|), (3.1)

where H
(1)
0 (ω|x|) is the Hankel function of the first kind and zeroth order. We

mention that if ω = 0 then Γ0(x) = 1
2π

ln |x|. For any bounded C2,α domain
B ⊂ R

2, α > 0, we denote by Sω
B : L2(∂B) → H1(R2 \ ∂B) the single layer

potential operator given by

Sω
B[φ](x) :=

∫

∂B

Γω(x− y)φ(y) dsy, (3.2)

and (Kω
B)

∗ : L2(∂B) → L2(∂B) the Neumann-Poincaré operator

(Kω
B)

∗[φ](x) := p.v.

∫

∂B

∂Γω(x− y)

∂νx
φ(y) dsy, (3.3)

where p.v. stands for the Cauchy principle value. In (3.3) and also in what
follows, unless otherwise specified, ν signifies the exterior unit normal vector to the
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boundary of the concerned domain. We also introduce the double layer potential
Dω

B : L2(∂D) → H1(R2 \ ∂B) given by

Dω
B[φ](x) :=

∫

∂B

∂Γω(x− y)

∂νy
φ(y) dsy. (3.4)

It is known that the single layer potential operator Sω
B is continuous across ∂B

and satisfies the following trace formula

∂

∂ν
Sω
B[φ]

∣

∣

∣

±
= (±1

2
I + (Kk

B)
∗)[φ] on ∂B, (3.5)

where ∂
∂ν

stands for the normal derivative and the subscripts ± indicate the limits
from outside and inside of a given inclusion B, respectively. The double layer
potential operator Dω

B satisfies the following trace formula across ∂B:

Dω
B[φ]

∣

∣

∣

±
= (∓1

2
I + Kk

B)[φ] on ∂B. (3.6)

When ω = 0 the operators S0
B and D0

B stand for the single layer potential operator
and double layer potential with kernel function Γ0.

3.2. Asymptotic estimates. Recall that the Bessel function J0(ω|x) and the
Neumann function Y0(ω|x) admit the following integral formula (see, e.g., [1]):

J0(ω|x|) =
1

π

∫ π

0

cos(ω|x| cos θ)dθ,

Y0(ω|x|) =
4

π2

∫ π/2

0

cos(ω|x| cos θ)(γ + ln(2ω|x| sin2 θ))dθ,
(3.7)

where γ = 0.5772... is the Euler-Mascheroni constant. The Hankel function ap-
peared in (3.1) can be represented by

H
(1)
0 (ω|x|) = − i

4
J0(ω|x|) +

1

4
Y0(ω|x|). (3.8)

Note that for ω sufficiently small, one has the following asymptotic result:

Γω(x) = aω + Γ0(x) + Aω(x), (3.9)

where aω is a constant defined by

aω := − i

4
+

γ

2π
+

1

2π
ln

ω

2
,

and the function Aω(x) is defined by

Aω(x) :=
i

4π
|x|
∫ π

0

sin(η|x| cos θ) cos θdθ

− 1

π2
|x|
∫ π/2

0

sin(η|x| cos θ) cos θ(γ + ln(2ω|x| sin2 θ))dθ,
(3.10)

7



where η ∈ (0, ω) is some fixed positive number. It is worth mentioning that Aω is
a smooth function in R

2 for any ω ∈ R+. Besides one has

Aω(x) = − 1

4π
|x|2ω2 lnω +O(ω2). (3.11)

We define the boundary integral Aω
B by

Aω
B[φ](x) :=

∫

∂B

Aω(x− y)φ(y)dsy. (3.12)

In the sequel, we let qω be the following singular function:

qω := Γω(x− p1)− Γω(x− p2) = q0 + Aω(x− p1)− Aω(x− p2). (3.13)

3.3. First approximation. We next consider the solution to (2.4). By imploring
the layer potential techniques, one can represent the solution to (2.4) by

u∗ =

{

ui + Sω
Bc
[ϕ∗

1] in R
2 \Bc,

Skc
Bc
[ϕ∗

2] in Bc,
(3.14)

where Bc := B1 ∪B2 and kc = ω
√
ε1. By using the transmission conditions across

∂Bc, there holds

Aω
Bc
[ϕ∗] = U on ∂Bc, (3.15)

where the operator Aω
Bc

: H−1/2(∂Bc) × H−1/2(∂Bc) → H1/2(∂Bc) × H−1/2(∂Bc)
is defined by

Aω
Bc

:=

(

−Sω
Bc

Skc
Bc

−
(

I
2
+ (Kω

Bc
)∗
)

1
ε1

(

− I
2
+ (Kkc

Bc
)∗
)

)

, (3.16)

and

ϕ∗ =

(

ϕ∗
1

ϕ∗
2

)

, U =

(

ui

∂ui

∂ν

)

. (3.17)

For the later use, we define the operator S by

S :=

(

S0
B1
|∂B1

S0
B2
|∂B1

S0
B1
|∂B2

S0
B2
|∂B2

)

, (3.18)

and the operator K∗ by

K
∗ :=

(

(K0
B1
)∗ ∂ν1S0

B2

∂ν2S0
B1

(K0
B2
)∗

)

, (3.19)

where ν1 and ν2 are the unit normal directions to ∂B1 and ∂B2, respectively. It
can be verified that S = S0

Bc
and K

∗ = (K0
Bc
)∗. Similar to the Calderón type

identity introduced in [2], we have the following identity:

SK
∗ = KS, (3.20)

where K is the ajoint operator of K∗ given by

K :=

(

K0
B1

D0
B2
|∂B1

D0
B1
|∂B2

K0
B2

)

.

8



For completeness and convenient reference to the reader, we shall present the proof
to the identity (3.20) in Appendix A.

Proof of Lemma 2.1. By using the asymptotic estimates in the previous section,
one can derive the following asymptotic expansions for the layer potentials:

Sω
Bc
[ϕ] =aω

∫

∂Bc

ϕ+ S0
Bc
[ϕ] +Aω

Bc
[ϕ],

(Kω
Bc
)∗[ϕ] =(K0

Bc
)∗[ϕ] + ∂νAω

Bc
[ϕ].

(3.21)

By using (3.15) and the definition of aω, one has
∫

∂Bc

ϕ∗
1 =

∫

∂Bc

ϕ∗
2 +O(ω). (3.22)

We declare that there holds the decomposition u∗ = u+ u′ in R
2 \B1 ∪B2, where

u′ is the solution to










∆u′ + ω2u′ = 0, in R
2 \B1 ∪ B2

u′ = O(ω), on ∂B1 ∪ ∂B2

u′(x) satisfies the Sommerfeld radiation condition,

(3.23)

together with the relation
∫

∂Bj

∂νu
′ = O(ω2), j = 1, 2. (3.24)

In fact, we assume that ϕ∗
1 and ϕ∗

2 admits the following asymptotic expansions:

ϕ∗
1 =ϕ∗

1,0 + ω lnωϕ∗
1,1 + ωϕ∗

1,2 + ω2 lnωϕ∗
1,3 +O(ω2),

ϕ∗
2 =ϕ∗

2,0 + ω lnωϕ∗
2,1 + ωϕ∗

2,2 + ω2 lnωϕ∗
2,3 +O(ω2).

It then follows from (3.15) and the asymptotic expansion (3.21) that
(

−I

2
+K

∗

)

[ϕ∗
2,0 + ω lnωϕ∗

2,1] = 0,

∫

∂Bj

ϕ∗
1 = O(ω2). (3.25)

Thus one has

S[ϕ∗
2,0] = λ1,1χ(∂B1) + λ2,1χ(∂B2), S[ϕ∗

2,1] = λ1,2χ(∂B1) + λ2,2χ(∂B2), (3.26)

where λj,l, j, l = 1, 2 are constants. It follows by straightforward computations
that

S0
Bc
[ϕ∗

2,2] =− 2
ǫ1
ω

(

S0
Bc
[ϕ∗

2,0] + S0
Bc
[∂νu

i
0]−

(

−I

2
+K0

Bc

)

[ui
0]

)

,

S0
Bc
[ϕ∗

2,3] =− 2
ǫ1
ω
S0
Bc
[ϕ∗

2,1].

(3.27)

One thus has

Skc
Bc
[ϕ∗

2] =S0
Bc
[ϕ∗

2,0 + ω lnωϕ∗
2,1 + ω2 lnωϕ∗

2,3] + ωS0
Bc
[ϕ∗

2,2] +O(ω2)

=

{

λ1 − 2ǫ1S0
Bc
[∂νu

i
0]− ǫ1u

i
0 +O(ω2) on ∂B1,

λ2 − 2ǫ1S0
Bc
[∂νu

i
0]− ǫ1u

i
0 +O(ω2) on ∂B2.

(3.28)
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One can thus set

u = ui + Sω
Bc
[ϕ∗

1]− 2ǫ1S0
Bc
[∂νu

i
0]− ǫ1u

i
0 +O(ω2),

and the higher order term is arranged such that ∆u+ω2u = 0 holds in R
2\B1 ∪ B2.

Now it is readily verified that u′ = u∗ − u satisfies (3.23). More precisely, one has

u′ = −2ǫ1S0
Bc
[∂νu

i
0]− ǫ1u

i
0 +O(ω2) on ∂B1 ∪ ∂B2.

Suppose u′ = ǫ1u
′
1 +O(ω2), where u′

1 is the solution to











∆u′
1 = 0 in R

2 \B1 ∪ B2,

u′
1 = −2S0

Bc
[∂νu

i
0]− ui

0 on ∂B1 ∪ ∂B2,

u′
1(x) = O(|x|−1).

(3.29)

We mention that ∇u′
1 is uniformly bounded with respect to the distance ǫ. In

fact, the solution to (3.29) can be represented by

u′
1 = SBc

[ϕ′](x), x ∈ R
2 \B1 ∪B2,

where the ϕ′ satisfy
∫

∂Bc

ϕ′ = 0,

and
(

−I

2
+K

∗

)

[ϕ′] = −2K∗[∂νu
i
0] on ∂Bc. (3.30)

One can show that

u′
1(ζ1)− u′

1(−ζ1) = ǫ(∂νu
i
0(ζ1)− 2∂νu

i
0(−ζ1)) +O(ǫ2),

where ζ1 = ( ǫ
2
, 0). One can then prove that u1 is uniformly bounded by using the

same strategy in the proof of Lemma 2.2. �

3.4. Further approximation. In order to prove the main result, we need to
estimate the key quantities at the right hand side of (2.12), where

a =
λ1 − λ2

C1 − C2

.

10



By using (3.11), one has

λ2 − λ1 =

∫

∂B2

u∂νq0 +

∫

∂B1

u∂νq0 +O(ω2)

=

∫

∂B2

(u− ui)∂νqω +

∫

∂B1

(u− ui)∂νqω +

∫

∂B1∪∂B2

ui∂νq0

+
1

2π
ω2 lnω

∫

B1∪B2

∇ui · (p1 − p2) +O(ω2)

=

∫

∂B1∪∂B2

∂ν(u− ui)qω +

∫

∂B1∪∂B2

ui∂νq0 +O(ω2)

=
1

π
ω2 lnω

∫

B1∪B2

∇ui · (p1 − p2) +

∫

∂B1∪∂B2

ui∂νq0 +O(ω2)

=ui(p1)− ui(p2) +
1

π
ω2 lnω

∫

B1∪B2

∇ui · (p1 − p2) +O(ω2),

(3.31)

where we have used the results

∫

∂B1∪∂B2

(u− ui)∂ν(qω − q0)

=
1

4π
ω2 lnω

∫

∂B1∪∂B2

(u− ui)∂ν(|x− p2|2 − |x− p1|2)

=
1

2π
ω2 lnω

∫

∂B1∪∂B2

(u− ui)ν · (p1 − p2)

=
1

2π
ω2 lnω

∫

B1∪B2

∇ui · (p1 − p2),

and

∫

∂B1∪∂B2

∂ν(u− ui)(qω − q0)

=
1

2π
ω2 lnω

(

r21

∫

∂B1

∂ν(u− ui)
x− z1

|x− z1|2
+ r22

∫

∂B2

∂ν(u− ui)
x− z2

|x− z2|2
)

· (p1 − p2)

+O(ω2) =
1

2π
ω2 lnω

∫

B1∪B2

∇ui · (p1 − p2) +O(ω2).

Moreover, one has

∇qω =∇q0 + ω2 lnω
1

2π
(p1 − p2) +O(ω2)

=
1

2π

(

x− p1

|x− p1|2
− x− p2

|x− p2|2
)

+ ω2 lnω
1

2π
(p1 − p2) +O(ω2).

(3.32)
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4. Estimate of b(x)

By definition of (2.21), one finds that b(x) is the solution to










∆b+ ω2b = 0 in R
2 \B1 ∪B2,

b =
(

λ2C1 − λ1C2

)

/(C1 − C2) on ∂B1 ∪ ∂B2,

(b− ui)(x) satisfies the Sommerfeld radiation condition.

(4.1)

By using layer potential techniques, one can represent b in (4.1) by

b(x) = ui(x) + Sω
B1
[ϕ1](x) + Sω

B2
[ϕ2](x), (4.2)

where ϕ1 ∈ L2(∂B1) and ϕ2 ∈ L2(∂B2) satisfy

ui(x) + Sω
B1
[ϕ1](x) + Sω

B2
[ϕ2](x) = C̃1, x ∈ ∂B1 ∪ ∂B2, (4.3)

with C̃1 :=
(

λ2C1 − λ1C2

)

/(C1 − C2).
Note that it is proved in [15] that ∇b(x) is uniformly bounded if ω = 0. We need

some further analysis on the solution b. First, by using (4.3) and the expansion
(3.8) one has

aω

∫

∂B1∪∂B2

ϕ+ S[ϕ] + A
ω[ϕ] = C̃1 − ui on ∂B1 ∪ ∂B2, (4.4)

for ω sufficiently small. Here ϕ = (ϕ1, ϕ2) and the operator S is given by (3.18).
The operator Aω is given by

A
ω :=

(

Aω
B1
|∂B1

Aω
B2
|∂B1

Aω
B1
|∂B2

Aω
B2
|∂B2

)

. (4.5)

By using the definition of aω there holds:
∫

∂B1∪∂B2

ϕ = O(ω). (4.6)

Suppose ϕj = ϕj,0 +O(ω), j = 1, 2. Direct asymptotic analysis shows that

b(x) = ui(x) + b0(x) +O(ω2), (4.7)

where b0 = S0
B1
[ϕ1,0](x) + S0

B2
[ϕ2,0](x) is the harmonic function which satisfies











∆b0 = 0 in R
2 \B1 ∪ B2,

b0 = C̃1 − ui on ∂B1 ∪ ∂B2,

b0(x) = O(|x|−1).

(4.8)

Proof of Lemma 2.2. By the asymptotic result in (4.7), it is sufficient to prove
that ∇b0, where b0 is the solution to (4.8), is uniformly bounded in R

2 \ (B1∪B2).
Since ∇b0 is harmonic in R

2 \ B1 ∪ B2, and ∇b0 = O(|x|−2), the function |∇b0|l∞
in R

2 \ (B1 ∪ B2) attains its maximum on the boundary ∂B1 ∪ ∂B2. Note that b0
is smooth on R

2 \ B1 ∪ B2. Tt is enough to show that ∇b0 is uniformly bounded
12



with respect to ǫ on the two points ζ1 and −ζ1, where ζ1 = ( ǫ
2
, 0). Since b0(ζ1) =

C̃1 − ui(ζ1), one has

∇b0(ζ1) =ν(ζ1) · ∇b0(ζ1)ν(ζ1) + ∂T b0(ζ1)T (ζ1)

=∂x1
b0(ζ1)(−1, 0) + ∂Tu

i(ζ1)T (ζ1)

=(−1, 0) lim
ǫ→0

b0(−ζ1)− b0(ζ1)

ǫ
+ (0, 1)∂Tu

i(ζ1)

=∇ui(ζ1),

(4.9)

where ∂T stands for the tangential derivative and T is the unit tangential vector.
Since ∇ui(ζ1) is uniformly bounded, one thus has verified that ∇b0(ζ1) is uniformly
bounded with respect to ǫ. Similarly, one can show that ∇b0(−ζ1) is also uniformly
bounded. �

Remark 4.1. We mention that the bound on ∇b0 can be shown by following a
similar argument in [8] and [15]. Here, we provide a different proof.

5. Estimate of qω(x)

In this section, we shall estimate the singular function qω(x). The asymptotic
result (3.32) shows that one only needs to estimate ∇q0. We mention that if r1
and r2 are constants which do not depend on ǫ, the estimate of ∇q0 is well settled
in [15]. We shall consider the case that r1 and r2 depend on ǫ. Note that

|x− p1| ≥
−(2r2 + ǫ)ǫ+

√
ǫτ

r1 + r2 + ǫ
, and |x− p2| ≥

−(2r1 + ǫ)ǫ+
√
ǫτ

r1 + r2 + ǫ
,

hold for x ∈ R
2 \B1 ∪ B2. It follows that

∥

∥

∥

∥

x− p1

|x− p1|2
− x− p2

|x− p2|2
∥

∥

∥

∥

L∞(R2\B1∪B2)

≤
∥

∥

∥

∥

x− p1

|x− p1|2
∥

∥

∥

∥

L∞(R2\B1∪B2)

+

∥

∥

∥

∥

x− p2

|x− p2|2
∥

∥

∥

∥

L∞(R2\B1∪B2)

≤
( 1

−(2r1 + ǫ)ǫ/2 +
√
ǫτ

+
1

−(2r2 + ǫ)ǫ/2 +
√
ǫτ

)

(r1 + r2 + ǫ).

(5.1)

On the other hand, setting x = ( ǫ
2
, 0)T , one has

∣

∣

∣

∣

x− p1

|x− p1|2
− x− p2

|x− p2|2
∣

∣

∣

∣

l∞

=
( 1

−(2r1 + ǫ)ǫ/2 +
√
ǫτ

+
1

(2r1 + ǫ)ǫ/2 +
√
ǫτ

)

(r1 + r2 + ǫ).

13



Similarly, setting x = (− ǫ
2
, 0)T , one has

∣

∣

∣

∣

x− p1

|x− p1|2
− x− p2

|x− p2|2
∣

∣

∣

∣

l∞

=
( 1

−(2r2 + ǫ)ǫ/2 +
√
ǫτ

+
1

(2r2 + ǫ)ǫ/2 +
√
ǫτ

)

(r1 + r2 + ǫ).

Thus there holds

r1 + r2 + ǫ

−(max(r1, r2) + ǫ/2)ǫ+
√
ǫτ

≤ ‖∇q0‖L∞(R2\B1∪B2)
≤ 2

r1 + r2 + ǫ

−(max(r1, r2) + ǫ/2)ǫ+
√
ǫτ

.

(5.2)

Proof of Theorem 2.1. It is sufficient to show the estimation for ∇u in Ω\B1 ∪ B2.
By using (2.20) one has

C1 − C2 =
1

2π

(

ln

(

1− 2(r1 + ǫ/2)
√
ǫ

(r1 + ǫ/2)
√
ǫ+ τ

)

+ ln

(

1− 2(r2 + ǫ/2)
√
ǫ

(r2 + ǫ/2)
√
ǫ+ τ

))

.

(5.3)
Firstly, if α− < 1, then one has

τ = C0ǫ
α−+min(α+,1)/2(1 + o(1)), (5.4)

where C0 > 0 does not depend on ǫ and is a generic constant which may vary for
different choice of α1 and α2. It follows that

C1 − C2 =

{

−2 r−
C0
ǫ1/2−α+/2(1 + o(1)), α+ < 1,

ln
(

1− 2r−
r−+C0

)

, α+ ≥ 1,

where α− is defined in (2.8). By (5.2), one has

‖∇q0‖L∞(R2\B1∪B2)
∼
{

r−
C0
ǫ−

1

2
−

α+

2 , α+ < 1
r−
C0
ǫ−1. α+ ≥ 1

Finally by (3.31), one can derive that

λ1 − λ2 =∇ui(p2) · (p2 − p1) +
1

π
ω2 lnω

∫

B1∪B2

∇ui · (p2 − p1) +O(ω2 + |p1 − p2|2)

=2
1

r−
ǫ1/2+min(α+,1)/2(1 + o(1))

(

∂x1
ui(0) +

1

π
ω2 lnω

∫

B1∪B2

∂x1
ui +O(ω2)

)

,

which together with Lemma 2.2 further yields that

‖∇u‖L∞ ∼
∣

∣

∣

λ1 − λ2

C1 − C2

∣

∣

∣
‖∇qω‖L∞ +O(ω2)

∼C0

r−
ǫmin(α+,1)/2−1/2

(

∂x1
ui(0) +

1

π
ω2| lnω|

∫

B1∪B2

∂x1
ui +O(ω2)

)

+O(1).

(5.5)
14



In the above estimation, L∞ stands for L∞(Ω\B1 ∪ B2). Similarly, if α− ≥ 1 then
one can derive that

τ = C0ǫ
3/2(1 + o(1)).

It then follows the estimates C1 − C2 = O(1), ‖∇q0‖L∞(R2\B1∪B2)
= O(ǫ−1) and

p2 − p1 = O(ǫ) and thus ‖∇u‖L∞(Ω\B1∪B2)
is uniformly bounded. The proof is

complete. �
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Appendix A. Calderón type identity

In this appendix, we prove the Calderón type identity (3.20). By straightforward
computations one can show that

SK
∗ =

(

S0
B1
(K0

B1
)∗|∂B1

+ S0
B2
∂ν2S0

B1
|∂B1

S0
B1
∂ν1S0

B2
|∂B1

+ S0
B2
(K0

B2
)∗|∂B1

S0
B1
(K0

B1
)∗|∂B2

+ S0
B2
∂ν2S0

B1
|∂B2

S0
B1
∂ν1S0

B2
|∂B2

+ S0
B2
(K0

B2
)∗|∂B2

)

,

and

SK
∗ =

(

K0
B1
S0
B1

+D0
B2
S0
B1
|∂B1

K0
B1
S0
B2

+D0
B2
S0
B2
|∂B1

D0
B1
S0
B1
|∂B2

+K0
B2
S0
B1

D0
B1
S0
B2
|∂B2

+K0
B2
S0
B2

)

.

Note that there holds the Caldrón identity:

S0
B1
(K0

B1
)∗|∂B1

= K0
B1
S0
B1
, S0

B2
(K0

B2
)∗|∂B2

= K0
B2
S0
B2
.

We first show the identity

S0
B2
∂ν2S0

B1
|∂B1

= D0
B2
S0
B1
|∂B1

.

In fact, letting ϕ ∈ L2(∂B1) and by integration by parts, there holds

S0
B2
∂ν2S0

B1
[ϕ](x) =

∫

∂B2

Γ0(x− y)

∫

∂B1

∂Γ0(y − z)

∂νy
ϕ(z)dszdsy

=

∫

∂B1

∫

∂B2

Γ0(x− y)
∂Γ0(y− z)

∂νy
dsyϕ(z)dsz

=

∫

∂B1

∫

∂B2

∂Γ0(x− y)

∂νy
Γ0(y − z)dsyϕ(z)dsz

=

∫

∂B2

∂Γ0(x− y)

∂νy

∫

∂B1

Γ0(y − z)ϕ(z)dszdsy = D0
B2
S0
B1
[ϕ](x),
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for any x ∈ ∂B1. Next, by integration by parts again one has

S0
B1
∂ν1S0

B2
[ϕ](x) + S0

B2
(K0

B2
)∗[ϕ](x)

=

∫

∂B1

Γ0(x− y)

∫

∂B2

∂Γ0(y − z)

∂νy
ϕ(z)dszdsy

+

∫

∂B2

Γ0(x− y)

∫

∂B2

∂Γ0(y − z)

∂νy
ϕ(z)dsz

∣

∣

∣

−
dsy +

1

2

∫

∂B2

Γ0(x− y)ϕ(y)
∣

∣

∣

−
dsy

=

∫

∂B2

∫

∂B1

∂Γ0(x− y)

∂νy

∣

∣

∣

−
Γ0(y − z)dsyϕ(z)dsz −

1

2

∫

∂B2

Γ0(x− y)ϕ(y)
∣

∣

∣

−
dsy

+

∫

∂B2

∫

∂B2

∂Γ0(x− y)

∂νy
Γ0(y − z)dsyϕ(z)dsz

=K0
B1
S0
B2
[ϕ](x) +D0

B2
S0
B2
[ϕ](x),

for any x ∈ ∂B1. Similarly, one can show that

S0
B1
∂ν1S0

B2
|∂B2

= D0
B1
S0
B2
|∂B2

,

and

S0
B1
(K0

B1
)∗|∂B2

+ S0
B2
∂ν2S0

B1
|∂B2

= D0
B1
S0
B1
|∂B2

+K0
B2
S0
B1
.
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infinite coefficients, Arch. Ration. Mech. Anal., 215 (2015), 307–351.
[11] J. Bao, H. Li, Y. Li, Gradient estimates for solutions of the Lamé system with partially
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