
SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR
TRAINING SEPARABLE DEEP NEURAL NETWORKS∗

ELIZABETH NEWMAN† , JULIANNE CHUNG‡ , MATTHIAS CHUNG§ , AND LARS

RUTHOTTO¶

Abstract. Deep neural networks (DNNs) have shown their success as high-dimensional function
approximators in many applications; however, training DNNs can be challenging in general. DNN
training is commonly phrased as a stochastic optimization problem whose challenges include non-
convexity, non-smoothness, insufficient regularization, and complicated data distributions. Hence,
the performance of DNNs on a given task depends crucially on tuning hyperparameters, especially
learning rates and regularization parameters. In the absence of theoretical guidelines or prior ex-
perience on similar tasks, this requires solving a series of repeated training problems which can
be time-consuming and demanding on computational resources. This can limit the applicability of
DNNs to problems with non-standard, complex, and scarce datasets, e.g., those arising in many sci-
entific applications. To remedy the challenges of DNN training, we propose slimTrain, a stochastic
optimization method for training DNNs with reduced sensitivity to the choice hyperparameters and
fast initial convergence. The central idea of slimTrain is to exploit the separability inherent in many
DNN architectures; that is, we separate the DNN into a nonlinear feature extractor followed by a lin-
ear model. This separability allows us to leverage recent advances made for solving large-scale, linear,
ill-posed inverse problems. Crucially, for the linear weights, slimTrain does not require a learning
rate and automatically adapts the regularization parameter. In our numerical experiments using
function approximation tasks arising in surrogate modeling and dimensionality reduction, slimTrain
outperforms existing DNN training methods with the recommended hyperparameter settings and
reduces the sensitivity of DNN training to the remaining hyperparameters. Since our method oper-
ates on mini-batches, its computational overhead per iteration is modest and savings can be realized
by reducing the number of iterations (due to quicker initial convergence) or the number of training
problems that need to be solved to identify effective hyperparameters.

Key words. deep learning, iterative methods, stochastic approximation, learning rates, variable
projection, inverse problems

AMS subject classifications. 68T07, 65K99, 65C20.

1. Introduction. Deep neural networks (DNNs) provide a powerful framework
for approximating complex mappings, possessing universal approximation proper-
ties [15] and flexible architectures composed of simple functions parameterized by
weights. Numerous studies have shown that excellent performance can be obtained us-
ing state-of-the-art DNNs in numerous applications including mage processing, speech
recognition, surrogate modeling, and dimensionality reduction [23, 45, 49]. However,
getting such results in practice may be a computationally expensive and cumbersome
task. The process of training DNNs, or finding the optimal weights, is rife with chal-

∗Submitted to the editors September 30, 2021.
Funding: This work was partially supported by the National Science Foundation (NSF) un-

der grant DMS-1654175 (J. Chung), DMS-1723005 (M. Chung and J. Chung), and DMS-1751636
(Ruthotto), Air Force Office of Scientific Research Grant 20RT0237 (Newman and Ruthotto), the US
Department of Energy’s Office of Advanced Scientific Computing Research Field Proposal 20-023231
(Newman and Ruthotto)
†Department of Mathematics, Emory University, Atlanta, GA (elizabeth.newman@emory.edu,

http://math.emory.edu/∼enewma5).
‡Department of Mathematics, Academy of Data Science, Virginia Tech, Blacksburg, VA (jm-

chung@vt.edu, https://intranet.math.vt.edu/people/jmchung).
§Department of Mathematics, Academy of Data Science, Virginia Tech, Blacksburg, VA (mc-

chung@vt.edu, https://intranet.math.vt.edu/people/mcchung).
¶Department of Mathematics, Emory University, Atlanta, GA (lruthotto@emory.edu,http://www.

mathcs.emory.edu/∼lruthot)

1

ar
X

iv
:2

10
9.

14
00

2v
1

 [
cs

.L
G

]
 2

8
Se

p
20

21

mailto:elizabeth.newman@emory.edu
http://math.emory.edu/~enewma5
mailto:jmchung@vt.edu
mailto:jmchung@vt.edu
https://intranet.math.vt.edu/people/jmchung
mailto:mcchung@vt.edu
mailto:mcchung@vt.edu
https://intranet.math.vt.edu/people/mcchung
mailto:lruthotto@emory.edu
http://www.mathcs.emory.edu/~lruthot
http://www.mathcs.emory.edu/~lruthot

2 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

lenges, e.g., the optimization problem is non-convex, expressive networks require a
very large number of weights, and, perhaps most critically, appropriate regulariza-
tion is needed to ensure the trained network generalizes well to unseen data. Due
to these challenges, it can be difficult to train a network efficiently and to sufficient
accuracy, especially for large, high-dimensional datasets and complex mappings and
in the absence of experience on similar learning task. This is a particular challenge
in scientific applications that often involve unique training data sets, which limits the
use of standard architectures and established hyperparameters.

While the literature on effective solvers for training DNNs is vast (see, e.g., the
recent survey [7]), the most popular approaches are stochastic approximation (SA)
methods. SA methods are computationally appealing since only a small, randomly-
chosen sample (i.e., mini-batch) from the training data is needed at each iteration to
update the DNN parameters. Also, SA methods tend to exhibit good generalization
properties. The most extensively studied and utilized SA method is the stochastic
gradient descent (SGD) method [43] and its many popular variants such as AdaGrad
[18] and ADAM [29]. Despite the popularity of SGD variants, major disadvantages
include slow convergence and, most notoriously, the need to select a suitable learn-
ing rate (step size). Stochastic Newton and stochastic quasi-Newton methods have
been proposed to accelerate convergence of SA methods [6, 24, 9, 52, 12], but includ-
ing curvature information in SA methods is not trivial. Contrary to deterministic
methods, which are known to benefit from the use of second-order information (con-
sider, e.g., the natural step size of one and local quadratic convergence of Newton’s
method), noisy curvature estimates in stochastic methods may have harmful effects
on the robustness of the iterations [12]. Furthermore, SA methods cannot achieve a
convergence rate that is faster than sublinear [1], and additional care must be taken
to handle nonlinear, nonconvex problems arising in DNN training. The performance
and convergence properties of SA methods depend heavily on the properties of the
objective function and on the choice of the learning rate.

In this paper, we seek to simplify the training of DNNs by exploiting the separa-
bility inherent in most common DNN architectures. We assume that the network, G,
is parameterized by two blocks of weights, W and θ, and is of the form

(1.1) G(·,W,θ) = WF (·,θ),

where F , also referred to as a feature extractor, is a parameterized, nonlinear function.
The important observation here is that the DNN is nonlinear in θ and, crucially, is
linear in W. Any DNN whose last layer does not contain a nonlinear activation
function can be written in this form, so our definition includes many state-of-the-
art DNNs; see, e.g., [27, 41, 31, 30, 44] and following works like [46, 49, 34]. In a
supervised learning framework, the goal is to find a set of network weights, (W,θ),
such that WF (y,θ) ≈ c for all input-target pairs (y, c) in a data space. Training
the network means learning the network weights by minimizing an expected loss or
discrepancy of the DNN approximation over all input-target pairs (y, c) in a training
set, while generalizing well to unobserved input-target pairs.

Main contributions. In this paper, we describe slimTrain, a sampled limited-
memory training method that exploits the separability of the DNN architecture to
leverage recently-developed sampled Tikhonov methods for automatic regularization
parameter tuning [34, 13].For the linear weights in a regression framework, we obtain
a stochastic linear least-squares problem, and we use recent work on sampled limited-
memory methods to approximate the global curvature of the underlying least-squares
problem. Such methods can be viewed as row-action or SA methods and can speed

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS 3

up the initial convergence and to improve the accuracy of iterates [13]. As discussed
above, applying a second-order SA method to the entire problem is not trivial and
obtaining curvature information for the nonlinear weights is computationally expen-
sive, particularly for deep networks. As our approach only incorporates curvature
in the final layer of the network, where we have a linear structure, its computa-
tional overhead is minimal. In doing so, we can not only improve initial convergence
of DNN training, but also can select the regularization parameter automatically by
exploiting connections between the learning rate of the linear weights and the regular-
ization parameter for Tikhonov regularization [11]. Thus, slimTrain is an efficient,
practical method for training separable DNNs that is memory-efficient (i.e., working
only on mini-batches), exhibits faster initial convergence compared to standard SA
approaches (e.g., ADAM), produces networks that generalize well, and incorporates
automatic hyperparameter selection.

The paper is organized as follows. In section 2, we describe separable DNN
architectures and review various approaches to train such networks, with special em-
phasis on variable projection. Notably, ae provide new theoretical analysis to sup-
port a VarPro stochastic approximation method. In section 3, we introduce our new
slimTrain approach that incorporates sampled limited-memory Tikhonov (slimTik)
methods within the nonlinear learning problem. Here, we describe cross-validation-
based techniques to automatically and adaptively select the regularization parameter.
Numerical results are provided in section 4, and conclusions follow in section 5.

2. Exploiting separability with variable projection. Given the space of
input features Y ⊆ Rnin and the space of target features C ⊆ Rntarget , let D ⊆ Y × C
be the data space containing input-target pairs (y, c) ∈ D. We focus on separable
DNN architectures that consist of two separate phases: a nonlinear feature extractor
F : Y × Rnθ → Rnout parametrized by θ ∈ Rnθ followed by a linear model W ∈
Rntarget×nout . In general, the goal is to learn the network weights, (W,θ), by solving
the stochastic optimization problem

min
W,θ

E L(WF (y,θ), c) +R(θ) + S(W),(2.1)

where L : Rntarget×C → R is a loss function, and R : Rnθ → R and S : Rntarget×nout →
R are regularizers. Here, E denotes the expected value over a distribution of input-
target pairs in D.

Choosing an appropriate loss function L is task-dependent. For example, a least-
squares loss function promotes data-fitting and is well-suited for function approxima-
tion tasks whereas a cross-entropy loss function is preferred for classification tasks
where the network outputs are interpreted as a discrete probability distribution [28].
In this work, we focus on exploiting separability to improve DNN training for func-
tion approximation or data fitting tasks such as PDE surrogate modeling [49, 55] and
dimensionality reduction such as autoencoders [23]. Hence, we restrict our focus to a
stochastic least-squares loss function with Tikhonov regularization

min
W,θ

Φ(W,θ) ≡ E 1
2 ‖WF (y,θ)− c‖22 + α

2 ‖Lθ‖22 + λ
2 ‖W‖2F,(2.2)

where Φ : Rntarget×nout × Rnθ → R is the objective function, L is a user-defined
operator, ‖ · ‖F is the Frobenius norm, and α, λ ≥ 0 are the regularization parameters
for θ and W, respectively.

4 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

2.1. SA methods that exploit separability. A standard, and the current
state-of-the-art, approach to solve (2.2) is stochastic optimization over both sets of
weights (W,θ) simultaneously (i.e., joint estimation). While generic and straightfor-
ward, this fully-coupled approach can suffer from slow convergence (e.g., due to ill-
conditioning) and does not attain potential benefits that can be achieved by treating
the separate blocks of weights differently (e.g., exploiting the structure of the arising
subproblems). We seek computational methods for training DNNs that exploit sepa-
rability, i.e., we treat the two parameter sets θ and W differently and exploit linearity
in W. Three general approaches to numerically tackle the optimization problem (2.2)
while taking advantage of the separability are as follows.

Alternating directions. One approach that exploits separability of the vari-
ables θ and W is alternating optimization [3]. For (2.2), this corresponds to alternat-
ing between two stochastic optimization problems. Note for simplicity of presentation
we assume that each of following optimization problems has a unique minimizer. Sup-
pose we initialize θ0. Then, at the k-th iteration, we embark on

(2.3) Wk = arg min
W

Φ(W,θk−1)

and

(2.4) θk = arg min
θ

Φ(Wk,θ).

Notice that convergence of this approach can be slow when variables are tightly cou-
pled [2, 53]. Furthermore, this approach is not practical in our settings, since min-
imization problem (2.3) and (2.4) are computationally expensive, particularly the
non-convex, high-dimensional, often non-smooth optimization problem for θ.

Block coordinate descent. A practical alternative for alternating directions is
block coordinate descent. The general idea of a block coordinate descent approach
for (2.2) is to approximate the alternating optimization of (2.3) and (2.4) via iter-
ative update schemes (e.g., one iteration of an iterative optimization step) for each
set of variables [53]. Note that under certain assumptions, a block coordinate de-
scent method applied to two sets of parameters has been shown to converge [33, 42].
Although a block coordinate descent approach provides a computationally appealing
alternative to the fully coupled and alternating directions approaches, this approach,
like alternating directions, suffers from slow convergence when the blocks are tightly
coupled.

Variable projection (VarPro). A compromise between alternating directions
and block coordinate descent is to solve (2.3) with respect to W while performing an
iterative update method for (2.4) with respect to θ. This can be seen as a stochastic
approximation version of a variable projection approach [21]. Formally, we can write
the iteration in terms of the reduced stochastic optimization problem

min
θ

Φred(θ) ≡ Φ(Ŵ(θ),θ)(2.5)

where

(2.6) Ŵ(θ) = arg min
W

E 1
2 ‖WF (y,θ)− c‖22 + λ

2 ‖W‖2F.

Notice that (2.6) is a stochastic Tikhonov-regularized linear least-squares problem
and, under mild assumptions, there exists a closed form solution, i.e.,

(2.7) Ŵ(θ) = EcF (y,θ)>
(
Σy(θ) + µy(θ)µy(θ)> + λI

)−1
.

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS 5

Here, µy(θ) = EF (y,θ) and Σy(θ) = E(F (y,θ) − µy)(F (y,θ) − µy)>. Details of
the derivation can be found in Appendix A.

2.2. Theoretical justification for VarPro in SA methods. After solving for

Ŵ(θ) in (2.6), VarPro uses an iterative scheme, typically an SGD variant, to update
θ. The key is to ensure that the mini-batch gradients used to update θ are unbiased.
To the best of our knowledge, we provide the first theoretical analysis demonstrating
that VarPro in an SA setting produces an unbiased estimate of the gradient. We
note that the derivation, presented for stochastic Tikhonov-regularized least-squares
problems, can be extended to any objective function which is convex with respect to
the linear weights, such as when using a cross-entropy loss function.

In the context of the DNN training problem, let T ⊆ D be a finite training set.
At the k-th training iteration, we select a mini-batch the training set, Tk ⊂ T . For
the Tk we seek to minimize the function

(2.8) Φk(W,θ) =
1

|Tk|
∑

(y,c)∈Tk

1
2 ‖WF (y,θ)− c‖22 + α

2 ‖Lθ‖
2
2 + λ

2 ‖W‖
2
F .

A VarPro SA method applied to (2.5) considers the reduced functional at the k-th
iteration,

Φred
k (θ) = Φk(Ŵ(θ),θ)(2.9)

where Ŵ(θ) is obtained from (2.6), i.e., the solution to the stochastic Tikhonov-
regularized linear least-squares problem over the entire data space.

To update the nonlinear weights, we select a “descent” direction pk with respect
to θ and compute the next iterate,

(2.10) θk = θk−1 + γpk(θk−1; Ŵ(θk−1)).

Here, γ denotes an appropriate learning rate and pk is a direction that is computed
based on the current estimate of θk−1 with respect to the current batch Tk. The
selection of pk depends on the chosen stochastic optimization method and requires
knowing information about the derivative of (2.8). Explicitly, we compute the deriv-
ative of Φred

k with respect to θ by

DθΦred
k (θ) = DθΦk(Ŵ(θ),θ)

= [DWΦk(W,θ)]
W=Ŵ(θ)

·DθŴ(θ) +
[
Dθ̃Φk(Ŵ(θ), θ̃)

]
θ̃=θ

.
(2.11)

Note that, contrary to VarPro derivations in deterministic settings [21, 14, 34], the

first term in (2.11) does not vanish. This is because Ŵ(θ) satisfies the optimality
conditions for Φ, the objective function for expected value minimization problem (2.6)
but may not be optimal for Φk, the objective function for the current batch. However,
we observe that the term vanishes in expectation over all samples, that is,

E
(

[DWΦk(W,θ)]
W=Ŵ(θ)

·DθŴ(θ)
)

= [DWEΦk(W,θ)]
W=Ŵ(θ)

·DθŴ(θ)

= [DWΦ(W,θ)]
W=Ŵ(θ)

·DθŴ(θ)

= 0.

(2.12)

6 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

Because (2.11) is equal to the gradient of the full objective function Φ in expectation,
we say the update for θ is unbiased. Since SA methods can handle unbiased noisy
gradients, one could define a VarPro SGD approach using the following unbiased
estimator for the gradient,

(2.13) pk(θ; Ŵ(θ)) = −
[
Dθ̃Φk(Ŵ(θ), θ̃)

]>
θ̃=θ

where the derivative is

DθΦk(W,θ) = Dθ

 1

|Tk|
∑

(y,c)∈Tk

1
2 ‖WF (y,θ)− c‖22 + α

2 ‖Lθ‖
2
2


=

1

|Tk|
∑

(y,c)∈Tk

(
WF (y,θ)> − c

)
WDθF (y,θ) + αθ>L>L.

(2.14)

Note that DθF (y,θ) can be obtained through back propagation which can be paral-
lelized over samples.

2.3. Challenges of VarPro in stochastic optimization. The appeal of a

VarPro approach is marred by the impracticality of computing Ŵ(θ) in (2.6). For

each mini-batch update of θ, one would need to recompute Ŵ(θ), which requires
propagating many samples through the network. Since a computation is costly, in

terms of time and storage, we can only obtain an approximation of Ŵ(θ) in practice.

One way to approximate Ŵ(θ) is to replace the vector µy(θ) and the matrix

EcF (y,θ)> with sample mean approximations and the covariance matrix Σy(θ) with
a sample covariance matrix. The accuracy of the approximation, and hence the ex-
pected bias of the gradients for the nonlinear weights, will depend on the size of
the sample. However, these quantities still depend on θ, and hence for any itera-
tive process where θ is being updated, these values need to be recomputed at each
iteration.

A practical strategy to approximate Ŵ(θ) is to use a sample average approx-
imation (SAA) approach. In SAA methods, one first approximates the expected
loss using a (large and representative) sample. The resulting optimization problem
is deterministic and a wide range of optimization methods with proven theoretical
guarantees can be used. For example, inexact Newton methods may be utilized to
obtain fast convergence [5, 36, 54]. Solving a deterministic SAA optimization problem
with an efficient solver guarantees the linear model fits the sampled data optimally
at each training iteration. Note that if an SAA approach were used to solve both
(2.5) and (2.6) with the same (fixed) sample set, then this would be equivalent to the
variable projection SAA approach described in [34]. Indeed, there are various recent
works [34, 40, 16] that exploit the separable structures (1.1) of neural networks in
SAA settings in order to accelerate convergence. However, the disadvantage of SAA
methods is that very large batch sizes are needed to obtain sufficient accuracy of the
approximation and to prevent overfitting. Although parallel computing tools (e.g.,
GPU and distributed computing) and strategies such as repeated sampling may be
used, the storage requirements for SAA methods remain prohibitively large.

To summarize section 2, the widely-used, fully-coupled approach (optimizing over
θ and W simultaneously) and the alternating minimization approach represent two
extremes: the former is a tractable approach, but ignores the separable structure while
the latter exploits separability, but is computationally intractable in the stochastic

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS 7

setting. Although a block coordinate descent approach decouples the parameters
and replaces expensive optimization solves with iterative updates, a VarPro approach
can mathematically eliminate the linear weights, thereby reducing the problem to a
stochastic optimization problem in θ only. The resulting noisy gradient estimates for

θ are unbiased when Ŵ(θ) is computed exactly, making VarPro compatible with SGD

variants to update θ. However, computing Ŵ(θ) when also updating θ is intractable
and poor approximations may lead to a large bias in the gradients for θ. Hence,

providing an effective and efficient way to approximate Ŵ(θ) is crucial to obtain a
practical implementation of VarPro stochastic optimization.

3. Sampled limited-memory DNN training with slimTrain. We present
slimTrain as a tractable variant of VarPro in the SA setting, which adopts a sampled
limited-memory Tikhonov scheme to approximate the linear weights and to estimate
an effective regularization parameter for the linear weights. The key idea is to approx-
imate the linear weights using the output features obtained from recent mini-batches
and nonlinear weight iterates. By storing the output features from the most recent
iterates, slimTrain avoids additional forward and backward propagations through
the neural network which, especially for deep networks, is computationally the most
expensive part of training, and hence adds only a small computational overhead to
the training.

3.1. Sampled Tikhonov methods to approximate Ŵ(θ). As described

in section 2, approximating Ŵ(θ) well is challenging, but important for reducing bias
in the gradient for θ, see (2.12). This motivates us to use state-of-the-art iterative
sampling approaches to solve stochastic, Tikhonov-regularized, linear least-squares
problems. For exposition purposes, we first reformulate (2.6) as

(3.1) ŵ(θ) = arg min
w

E 1
2 ‖A(y,θ)w − c‖22 + λ

2 ‖w‖22,

where w = vec(W) ∈ Rntargetnout concatenates the columns of W in a single vector,
A(y,θ) = F (y,θ)>⊗Intarget

with ⊗ denoting the Kronecker product. This Kronecker
structure extends to a mini-batch Tk. Suppose we order the samples (yi, ci) ∈ Tk for
i = 1, . . . , |Tk|. Then, the final layer be expressed for vectorized linear weights as

WZk(θ) ≈ Ck

vec−−−−−→←−−−−−
mat

Ak(θ)w ≈ bk

where

Zk(θ) =
[
F (y1,θ) · · · F (y|Tk|,θ)

]
∈ Rnout×|Tk|,

Ck =
[
c1 · · · c|Tk|

]
∈ Rntarget×|Tk|,

Ak(θ) = Zk(θ)> ⊗ Intarget
∈ R|Tk|ntarget×noutntarget , and

bk = vec(Ck) =

 c1

...
c|Tk|

 ∈ Rntarget|Tk|.

Henceforth, in this section, since θ is fixed in (3.1), we use Ak = Ak(θ) for presenta-
tion purposes.

Introduced in [47, 13], sampled Tikhonov (sTik) and sampled limited-memory
Tikhonov (slimTik) methods are specialized iterative methods developed for solving

8 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

stochastic regularized linear least-squares problems. For an initial iterate w0, the k-th
sTik iterate is given by

(3.2) wk(Λ) = arg min
w

1

2

∥∥∥∥∥∥∥∥∥∥∥∥


A1

...
Ak−1

Ak√
Λ +

∑k−1
i=1 ΛiI

w −



A1wk−1

...
Ak−1wk−1

bk∑k−1
i=1 Λi√

Λ+
∑k−1
i=1 Λi

wk−1



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

where wk−1 is the previously computed estimate, A1, . . . ,Ak−1 are matrices contain-

ing previously computed output features, Λ +
∑k−1
i=1 Λi > 0, and Λ is a regularization

parameter estimate. The sTik iterates can also be expressed in update form as an
SA method,

(3.3) wk(Λ) = wk−1 −Bk(Λ)gk(wk−1,Λ),

with gk(wk−1,Λ) = A>k (Akwk−1−bk) + Λwk−1 containing gradient information for

the current mini-batch and Bk(Λ) = ((Λ +
∑k−1
i=1 Λi)I +

∑k
i=1 A>i Ai)

−1 containing
global curvature information of the least-squares problem. Note that contrary to stan-
dard SA methods, (3.3) does not require a learning rate nor a line search parameter.
The learning rate can be interpreted as one, which is optimal for Newton’s method.

Importantly, the regularization parameter λ in (3.1), which is typically required
to be set in advance, has been replaced with a new parameter estimate Λ which
can be chosen adaptively at each iteration. Each Λk corresponds to a regulariza-
tion parameter at iteration k and can change at each iteration (Λj , j = 1, . . . , k − 1
correspond to regularization parameters from previous iterations). In fact, the pa-
rameters λ and Λk’s are directly connected. After one epoch (e.g., iterating through
all training samples), the sTik iterate is identical to the Tikhonov solution of (3.1)

with λ =
∑k
i=1 Λi where k is the number of iterations required for one epoch. We

exemplify the convergence of sTik in Figure 1 when approximating Matlab’s peaks
function [25]. Moreover, it has been shown that sTik iterates converge asymptotically
to a Tikhonov solution and subsequently adaptive parameter selection methods were
developed in [47].

Since (3.2) and (3.6) correspond to standard Tikhonov problems, extensions
of standard regularization parameters methods, such as the discrepancy principle
(DP), unbiased predictive risk minimization (UPRE), and generalized cross valida-
tion (GCV) techniques can be utilized. Indeed, sampled regularization parameter
selection methods sDP, sUPRE, and sGCV for sTik and slimTik and their connec-
tion to the overall regularization parameter λ can be found in [47]. In this work,
we focus on regularization parameter selection via sGCV since this method does not
require any further hyperparameters (e.g., noise level estimates for the mini-batch),
and we have observed that sGCV provides favorable λ estimates. For details on the
GCV function, see original works [22, 51] and books [26, 50]. The sGCV parameter
at the k-th slimTik iterate can be computed as

(3.4) Λk = arg min
Λ

|Tk| ‖Akwk(Λ)− bk‖22(
|Tk| − tr

(
AkTk(Λ)A>k

))2

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS 9

Convergence in one epoch

10 20 30 40 50 60 70 80
10´14

10´11

10´8

10´5

10´2

iteration k

}w
k
´

p w
} 2{
}p w
} 2

ADAM
sTik

1 20 40 60 80

Function approximator obtained from
the Tikhonov solution, ApwGround truth

Iteration

approx.
Awk

abs. diff.
|Awk ´Apw|

Fig. 1. Illustration comparing convergence of sTik and ADAM with a fixed regularization
parameter for solving (3.1). We consider approximating Matlab’s peaks function, f : R2 → R,
using training data located on a uniform grid. We apply a fixed nonlinear transformation to each
point in the domain to form the rows of Ak ∈ R|Tk|×|w| and the corresponding true function values
are stored in bk ∈ R|Tk| where |w| is the number of linear weights. The constant regularization
parameters are Λk = λ

80
where 80 is the number of iterations in one epoch. Both |w| and λ are

chosen arbitrarily and the number of iterations depends on the number of training points and the
batch size. The best linear weights are given by the Tikhonov solution, ŵ = (A>A + λI)−1A>b,
and the corresponding best function approximator is Aŵ. To the left, we plot the convergence of the
relative error ‖wk − ŵ‖2/‖ŵ‖2 for each iteration k in a single epoch. By design, sTik converges to
the least-squares solution in one epoch whereas ADAM makes little progress. To the right, the middle
row shows the function approximations for different sTik iterates, Awk, and the bottom row shows
the absolute difference of the approximation with the best approximation. The top row depicts the
true peaks function (left) and the best approximation obtained from the Tikhonov solution (right).

where

(3.5) Tk(Λ) =

((
Λ +

k−1∑
i=1

Λi

)
In +

k∑
i=k−r

A>i Ai

)−1

.

For some problems, e.g., inverse problems where Ak represent large-scale forward
model matrices, sTik may not be practical since each iteration requires either solving
a least-squares problem (3.2) whose coefficient matrix is growing at each iteration
or updating matrix Bk. To alleviate the memory burden, a variant of sTik called
the sampled limited-memory Tikhonov (slimTik) method was proposed in [47]. Let
r ∈ N0 be a memory depth parameter. Then, the k-th slimTik iterate has the form

(3.6) wk(Λ) = arg min
w

1

2

∥∥∥∥∥∥∥∥∥∥∥∥


Ak−r

...
Ak−1

Ak√
Λ +

∑k−1
i=1 ΛiI

w −



Ak−rwk−1

...
Ak−1wk−1

bk∑k−1
i=1 Λi√

Λ+
∑k−1
i=1 Λi

wk−1



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

We provide a few remarks about the slimTik method. For linear least-squares
problems, it can be shown that for the case r = 0, the slimTik method is equivalent to
the stochastic block Kaczmarz method. Furthermore, for linear least-squares problems
with a fixed regularization parameter, theoretical convergence results for slimTik with
memory r = 0 were developed in [13]. We point out that limited memory methods like

10 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

slimTik were initially developed to address problems where the size of w is massive,
but this is not necessarily the case in DNN training where the number of weights
in w may be modest. However, as we will see in subsection 3.2, a limited memory
approach is suitable and can even be desirable in the context of solving nonlinear
problems, where nonlinear parameters have direct impact on the model matrices Ak.
In this work, we are interested in incorporating extensions of slimTik with adaptive
regularization parameter selection for nonlinear problems that exploit separability.

3.2. slimTrain. Our proposed SA algorithm, slimTrain takes advantage of the
separable structure of many DNNs and integrates the slimTik method for efficiently
updating the linear parameters and for automatic regularization parameter tuning.
We consider the slimTik update of W to serve as an approximation of the eliminated

linear weights in VarPro SA from (2.6). Specifically, at the k-th iteration, Ŵ(θ) ≈
Wk = mat(wk(Λk)) where

(3.7) wk(Λk) = arg min
w

∥∥∥∥∥∥∥
 Mk

Ak(θk−1)√∑k
i=1 ΛiI

w −

 Mkwk−1

bk∑k−1
i=1 Λi√∑k
i=1 Λi

wk−1


∥∥∥∥∥∥∥

2

2

,

with

(3.8) Mk =

Ak−r(θk−r−1)
...

Ak−1(θk−2)


and Λk is computed using the sGCV method (c.f., (3.4)). Notice that this is not
equivalent to the slimTik method for arg minW Φ(W,θk−1), since there is no inner
iterative process and because of the dependence on previous θj . A summary of the
algorithm is provided in Algorithm 3.1.

Algorithm 3.1 slimTrain: sampled limited-memory training for separable DNNs

1: Training Data: T ⊆ D
2: Hyperparameters: memory depth r ∈ N0, mini-batch size nbatch, learning rate
γ, regularization parameter α

3: Initialize: θ0 ∈ Rnθ , W0 ∈ Rntarget×nout

4: while not converged do
5: randomly partition T into mini-batches such that T =

⊔
k Tk and |Tk| = nbatch

6: for k = 1, . . . , b|T |/nbatchc do
7: select mini-batch Tk
8: forward propagate network to obtain Ak(θk−1)
9: update memory matrix Mk . (3.8)

10: select Λk using sGCV . (3.4)
11: compute Wk = mat(wk(Λk)) . (3.7)
12: compute [DθΦk(Wk,θ)]θ=θk−1

via backpropagation . ??
13: select search direction pk
14: update θk = θk−1 + γpk(θk−1; Wk)
15: end for
16: end while

We note that an SA method that incorporates the slimTik method was considered
for separable nonlinear inverse problems in [11], but there are some distinctions. First,

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS11

the results in [11] use a fixed regularization parameter, but here we allow for adap-
tive parameter choice, which has previously only been considered for linear problems.
We note that updating regularization parameters in nonlinear problems (especially
stochastic ones) is a challenging task, and currently there are no theoretical justifi-
cations. Second, all forward matrices were recomputed for each new set of nonlinear
parameters in [11]. That is, for updated estimate θk−1,

(3.9) Mk =

Ak−r(θk−1)
...

Ak−1(θk−1)

 .
Such an approach would be computationally demanding for DNN learning problems,
since this would require revisiting previous mini-batches and re-computing the forward
propagation matrix for new parameters θk−1. Instead, we propose to use (3.8), and
we will show that these methods can perform well in practice.

3.3. Efficient implementation. Training separable DNNs with slimTrain

adds some computational costs compared to existing SA methods like ADAM; how-
ever, those are modest in many cases and the overhead in computational time can
be reduced by an efficient implementation. The additional costs stem from solving
for the optimal linear weights in (3.6) and approximating the optimal regulariza-
tion parameter using the sGCV function (3.4). The costs of these steps depend on
the size of the nonlinear feature matrix, Ak ∈ R|Tk|ntarget×noutntarget , the size of the
memory matrix, Mk, which contains r blocks of nonlinear features from previous
batches, and the number of linear weights. In the case when the linear weights are
applied via dense matrix, we can exploit the Kronecker structure in our problem;
see subsection 3.1 for details. The Kronecker structure results in solving ntarget least-
squares problems simultaneously where each problem is moderate in size (typically,
on the order of 102 or 103). Due to the modest problem size, we use a singular value
decomposition (SVD) to solve the least-squares problem. We also re-use the SVD
factors for efficiently adapting the regularization parameter. For the peaks and sur-
rogate modeling experiments (subsection 4.1 and subsection 4.2), we implement the
Kronecker-structure framework in Matlab. The code is available in the Meganet.m

repository on https://github.com/XtractOpen/Meganet.m.
In the case when the linear weights parameterize a linear operator (most impor-

tantly, a convolution), efficient iterative solvers, such as LSQR [38] that only require
matrix-vector products and avoid forming the matrix explicitly, can be used to find
the optimal linear weights. Such methods were employed in [11] where the authors ap-
plied slimTik to massive, separable nonlinear inverse problems where the data matrix
could not be represented all-at-once. Modifications of the sGCV function using sto-
chastic trace estimators can then be used for estimating the regularization parameter
efficiently; for more details, see [47].

In subsection 4.3, the linear weights parameterize a convolution layer with several
input but only one output channel. Exploiting the separability between the different
channels and the small number of weights per channel, we form the nonlinear feature
matrix, Ak, explicitly in our implementation. This allows us to use the same SVD-
based automatic regularization parameter selection as in the dense case. To be precise,
the columns of Ak are shifted copies of the batch data, which is large, but accessible
(on the order of 105). Importantly, the number of columns (copies of the data) is
small because the number of weights parameterizing the linear operator, denoted |w|,

https://github.com/XtractOpen/Meganet.m

12 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

is small (on the order of 102). We can construct the data matrix Ak efficiently by
taking advantage of the structure of convolutional operators; each channel has its
own linear weights and the samples share the same weights. For storage efficiency,
we can form the smaller matrix A>k Ak ∈ R|w|×|w| one time, and use the update
rule (3.3) to adjust the linear weights. We implement the convolutional operator
framework in Pytorch [39]. The code is available on github at https://github.com/
elizabethnewman/slimTrain.

4. Numerical results. We present a numerical study of training separable
DNNs using slimTrain with automatic regularization parameter selection. In this
section, we first provide a general discussion on numerical considerations of our pro-
posed method in subsection 3.3. In subsection 4.1, we explore the relationship between
various slimTrain hyperparameters (e.g., batch size, memory depth, regularization
parameters) in a function approximation task. Our results show that automatic reg-
ularization parameter selection can mitigate poor hyperparameter selection. In sub-
section 4.2, we apply slimTrain to a PDE surrogate modeling task and show that it
outperforms the state-of-the-art ADAM for the default hyperparameters. In subsec-
tion 4.3, we apply slimTrain to a dimensionality-reduction task in which the linear
weights are applied via a convolution. Notably, we observe faster convergence and,
particularly with limited training data, improved results compared to ADAM.

4.1. Peaks. To explore the hyperparameters in slimTrain, we examine a scalar
function approximation task. We train a DNN to fit the peaks function in Matlab,
which is a mixture of two-dimensional Gaussians. We use a small residual neural
network (ResNet) [27] with a width of w = 8 and a depth of d = 8 corresponding to
a final time of T = 5. Further details about the ResNet architecture can be found
in Appendix B. The nonlinear feature extractor maps F : R2 × R528 → R8 where
528 is the number of weights in θ. The final linear layer introduces the weights W ∈
R1×9, where the number of columns equals the width of the ResNet plus an additive
bias. Our training data consists of 2,000 points sampled uniformly on the domain
[−3, 3] × [−3, 3]. We display the convergence of slimTrain for various combinations
of hyperparameters in Figure 2.

The interplay between number of output features, the batch size, and the memory
depth is apparent in Figure 2. In this scalar-function example, we seek 9 weights (i.e.,
W ∈ R1×9) to fit (r + 1)|Tk| samples. With small memory depth and batch size,
the problem is underdetermined (or not sufficiently overdetermined) and solving for
W significantly overfits the given batch at each iteration. This results in the slow,
oscillatory convergence behavior, particularly with a batch size of |Tk| = 1 (Figure 2,
first column). When the memory depth and batch size are large enough (e.g., r = 100
in the |Tk| = 1), the linear least-squares problem is sufficiently overdetermined and
the training loss converges faster and to a lower value (Figure 2, purple line in first
column).

Solving the optimization problem and decreasing the loss of the training data is
a proxy to the goal of DNN training: to generalize to unseen data. To illustrate the
generalizability of DNNs trained with slimTrain, we display the DNN approximations
in Figure 3 corresponding to a batch size of |Tk| = 5 (second column of Figure 2) of
the convergence plots.

Exemplified in Figure 3, the choice of regularization parameter for W signifi-
cantly impacts the approximation quality of the network when training with a fixed
regularization parameter (Figure 3, second column set of figures). If the optimiza-
tion problem over-regularizes the linear weights (λ = 100), the DNN approximation

https://github.com/elizabethnewman/slimTrain
https://github.com/elizabethnewman/slimTrain

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS13
λ

“
10

0

0 10 20 30 40 50
10´2

10´1

100

101

102

lo
ss

|Tk| “ 1

0 10 20 30 40 50
10´2

10´1

100

101

102

|Tk| “ 5

0 10 20 30 40 50
10´2

10´1

100

101

102

|Tk| “ 10

λ
“

10
´3

0 10 20 30 40 50
10´2

10´1

100

101

102

lo
ss

0 10 20 30 40 50
10´2

10´1

100

101

102

0 10 20 30 40 50
10´2

10´1

100

101

102

λ
“

10
´1

0

0 10 20 30 40 50
10´2

10´1

100

101

102

epoch

lo
ss

0 10 20 30 40 50
10´2

10´1

100

101

102

epoch
0 10 20 30 40 50

10´2

10´1

100

101

102

epoch

slimTrain, sGCV: r “ 0 slimTrain, sGCV: r “ 5 slimTrain, sGCV: r “ 10 slimTrain, sGCV: r “ 100
slimTrain, fixed: r “ 0 slimTrain, fixed: r “ 5 slimTrain, fixed: r “ 10 slimTrain, fixed: r “ 100

Fig. 2. Convergence of training loss for the peaks experiment when training with slimTrain

with a learning rate of γ = 10−3. Each row corresponds to a different choice of fixed regularization
parameter for W, λ = 100, 10−3, 10−10. When training with adaptive regularization parameter
selection, the initial regularization parameter Λ0 is set to be the same as the fixed regularization
parameter. Each column corresponds to a different batch size, |Tk| = 1, 5, 10. Each convergence plot
consists of dashed and solid lines corresponding using a fixed regularization parameter and adaptively
choosing the regularization parameter using sGCV, respectively. The color of each line corresponds
to memory depth r = 0, 5, 10 and, additionally, r = 100 for |Tk| = 1.

is smoother than the true peaks function and does not fit the extremes tightly (Fig-
ure 3, first row). In the under-regularized case (λ = 10−10) with a small memory
depth (r = 0), W overfits the batches and the DNN approximation does not gener-
alize well (e.g., we miss the small peaks) (Figure 3, third row). With a well-chosen
regularization parameter (here, λ = 10−3), the DNN approximation is close to the
true peaks function, but tuning this regularization parameter can be costly (Figure 3,
second row). In comparison, the DNN approximations when automatically choosing a
regularization parameter using the sGCV method are good approximations and look
similar, no matter the initial regularization parameter or memory depth (Figure 3,
first column set of figures).

The selected regularization parameters are related to the ill-posedness of the prob-
lem, as illustrated for the λ = 10−10 case in Figure 4. When the batch size is |Tk| = 1
(Figure 4, first column), the linear least-squares problem is underdetermined for mem-
ory depths r = 0 and r = 5 and is overdetermined when r = 10. To avoid overfitting
in the underdetermined cases, larger regularization parameters are selected. In the

14 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

True

λ
“

10
0

slimTrain, sGCV

2.44 ˆ 10´1

r “ 0

1.79 ˆ 10´1

r “ 5

1.70 ˆ 10´1

r “ 10

slimTrain, fixed

5.29 ˆ 10´1

r “ 0

5.18 ˆ 10´1

r “ 5

5.18 ˆ 10´1

r “ 10

λ
“

10
´3

1.67 ˆ 10´1 1.70 ˆ 10´1 1.80 ˆ 10´1 1.12 ˆ 10´1 1.53 ˆ 10´1 1.52 ˆ 10´1

λ
“

10
´1

0

1.40 ˆ 10´1 1.61 ˆ 10´1 1.79 ˆ 10´1 4.96 ˆ 10´1 1.61 ˆ 10´1 1.79 ˆ 10´1

Fig. 3. DNN approximations for the peaks experiment with batch size of |Tk| = 5 and a learning
rate of γ = 10−3. The results use the network weights corresponding to the lowest validation loss
for each training method. Each block row corresponds to a different choice of fixed regularization
parameter for W, λ = 100, 10−3, 10−10. The top rows of images in each block depict the DNN
approximations of the peaks function. The bottom rows of images in each block depict the absolute
difference of the DNN approximations and the true peaks function. The DNN weights used provided
the smallest validation loss during training. The relative error of the DNN approximation versus
the true function is displayed below the corresponding absolute difference image.

overdetermined case, overfitting is less likely and thus less regularization is needed.
With an adequate choice of memory depth and batch size, training a DNN with

slimTrain decreases the training loss and generalizes well to unseen data. The choice
of regularization parameter significantly impacts the resulting network: too much
regularization and the training stagnates; too little regularization and the training
oscillates. Employing adaptive regularization parameter selection mitigates these ex-
tremes and simplifies the costly a priori step of tuning the parameter.

4.2. PDE surrogate modeling. Due to their approximation properties, there
has been increasing interest in using DNNs as efficient surrogate models for computa-
tionally expensive tasks arising in scientific applications. One common task is partial
differential equation (PDE) surrogate modeling in which a DNN replaces expensive

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS15

|Tk| “ 1 |Tk| “ 5 |Tk| “ 10
2000 batches/epoch 400 batches/epoch 200 batches/epoch

r
“

0

b
a
tc
h

#

r
“

5

b
a
tc
h

#

r
“

1
0

b
a
tc
h

#

epoch epoch epoch

´12

´6

0

Fig. 4. Regularization parameters selected by approximately minimizing the sGCV function
in the peaks example for a learning rate of γ = 10−3 and an initial regularization parameter of
Λ0 = 10−10. Each column corresponds to a different batch size, |Tk| = 1, 5, 10, respectively. Each
row corresponds to a different memory depth, r = 0, 5, 10, respectively. In each image, the horizontal
axis is the number of epochs, in this case 50, and the vertical axis is the number of iterations per
epoch. For example, when the batch size is |Tk| = 5, the vertical axis has 400 iterations (the number
of training samples divided by the batch size). Each pixel corresponds to the regularization parameter
used for a particular batch batch and the batches change because we shuffle the training data at the
start of each epoch. The images are displayed in log scale. The first few regularization parameters in
each case are small (top left corner of each image) because we start with a small initial regularization
parameter.

linear system solves [37, 4, 56, 49]. Here, we consider a parameterized PDE

c = Pu where A(u,y) = 0,(4.1)

where u is the solution to a PDE defined by A and parameterized by y (which could
be discrete or continuous). In our case, the solution is measured at discrete points
given by the linear operator P and the observations are contained in c. The goal is to
train a DNN as a surrogate mapping from parameters y to observables c and avoid
costly PDE solves.

In our experiment, we consider the convection diffusion reaction (CDR) equation
which models physical phenomena in many fields including climate modeling [48] and
mathematical biology [17, 8]. As its name suggests, the CDR equation is composed
of three terms: a diffusion term that encourages an even distribution of the solution
u (e.g., chemical concentration), a convection (or advection) term that describes how
the flow (e.g., of the fluid containing the chemical) moves the concentration, and
a reaction term that captures external factors that affect the concentration levels.
In our example, the reaction term is a linear combination of 55 different reaction
functions and the parameters y ∈ R55 are the coefficients. The observables c ∈ R72

are measured at the same 6 spatial coordinates and 12 different time points; for
details, see [34]. We train a ResNet with a width of w = 16 and a depth of d = 8

16 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

0 20 40 60 80 100
100

101

102

103

104

105

lo
ss

|T k
|“

5

0 20 40 60 80 100
100

101

102

103

104

105

epoch

lo
ss

|T k
|“

10

γ “ 10´3

0 20 40 60 80 100
100

101

102

103

104

105

0 20 40 60 80 100
100

101

102

103

104

105

epoch

γ “ 10´2

0 20 40 60 80 100
100

101

102

103

104

105

0 20 40 60 80 100
100

101

102

103

104

105

epoch

γ “ 10´1

slimTrain, sGCV: r “ 0 slimTrain, sGCV: r “ 5 slimTrain, sGCV: r “ 10 ADAM

Fig. 5. Convergence results for the training loss for the CDR experiment. The rows corre-
spond to different batch sizes, |Tk| = 5, 10, and the columns correspond to different learning rates,
γ = 10−3, 10−2, 10−1. The colorful, solid lines depict the convergence of the training loss using
slimTrain with sGCV regularization parameter selection. Each color corresponds to a different
memory depth, r = 0, 5, 10. The black line with markers depicts the convergence of the training loss
using ADAM.

Table 1
Training and validation loss in the CDR experiment for batch size |Tk| = 5, 10 and learning

rates γ = 10−3, 10−2, 10−1. We display the loss after the first 20 epochs to compare early perfor-
mance. Because the memory depth does not significantly impact convergence, we display the loss
for slimTrain with a memory depth of r = 0. Closeness between the training and validation losses
indicates good generalization. The best overall performance (lowest loss) is achieved by slimTrain

with a batch size of |Tk| = 10, denoted in bold.

γ = 10−3 γ = 10−2 γ = 10−1

train valid train valid train valid

|T
k
|=

5 slimTrain, r = 0 42.98 41.17 22.06 22.25 18.74 23.25

ADAM 1453.00 1338.00 45.24 42.73 8.07 8.70

|T
k
|=

1
0 slimTrain, r = 0 47.65 52.95 4.28 5.30 15.61 16.60

ADAM 4405.00 4143 49.92 41.23 10.67 10.71

corresponding to a final time of T = 4; see Appendix B for further details. The linear
weights in the final, separable layer are stored as a matrix W ∈ R72×17, where the
number of columns is the width of the ResNet plus an additive bias. The results of
training the ResNet with slimTrain are displayed in Figure 5. The major takeaway
is that slimTrain exploits the separable structure of the ResNet and, as a result,
trains the network faster and fits the observed data better (lower loss) than ADAM
with the recommended learning rate (γ = 10−3).

In Table 1, we examine if the performance of slimTrain and ADAM generalizes

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS17

γ “ 10´3 γ “ 10´2 γ “ 10´1

r
“

0

b
a
tc
h

#

r
“

5

b
a
tc
h

#

r
“

10

b
a
tc
h

#

epoch epoch epoch

´12

´6

0

Fig. 6. Effect of learning rate and memory depth on the choice of regularization parameters
in the CDR experiment. The presented plots are from training using slimTrain for a batch size of
|Tk| = 5. We show the regularization parameters (in log scale) obtained for various learning rates
(columns) and memory depths (rows).

to unseen after 20 epochs; we choose 20 epochs to analyze early performance and
because the training loss decreases more closes after 20 epochs in Figure 5. The
training and validation losses are close for both slimTrain and ADAM, indicating
that both training algorithms produce networks that generalize well. For ADAM’s
suggested learning rate, γ = 10−3, slimTrain achieves a validation loss that is two
orders of magnitude less than that of ADAM. When the learning rate is tuned to
γ = 10−1, the performance of ADAM improves, but the overall best performance
is achieved by slimTrain. Most significantly, the performance of slimTrain is less
sensitive to the choice learning rate.

As with the numerical experiment in subsection 4.1, there is a relationship be-
tween batch size, memory depth, and the number of output features. In this exper-
iment, because W ∈ R72×17, we solve 72 independent least-squares problems with
17 unknowns in each problem. Illustrated in Figure 6, when the memory depth is
small (r = 0, 5), each least-squares problem is underdetermined or not sufficiently
overdetermined, and hence more regularization on W is needed to avoid overfitting.
Because we use sGCV to automatically select the regularization parameter, the train-
ing with slimTrain achieves a comparable loss for all memory depths. In addition,
the learning rate to update θ plays a role in the regularization parameters chosen.
When the learning rate is large (γ = 10−1), the output features of the network can
change rapidly. As a result, larger regularization parameters are selected, even in the
sufficiently overdetermined case (r = 10), to avoid fitting features that will change
significantly at the next iteration.

In this surrogate modeling example, slimTrain converges faster to the same or
a better accuracy than ADAM using the recommended learning rate (γ = 10−3) by

18 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

y P R784

encode
latent space

Rnlat decode

py P R784

Fig. 7. Illustration of autoencoder for the MNIST data. The goal is to represent high-
dimensional data in a low-dimensional, latent space for dimensionality reduction and feature ex-
traction [23]. The encoder is a neural network that maps input data y to the latent space with
intrinsic dimension nlat (typically user-defined). The decoder is a neural network that maps from
the latent space to obtain an approximation of the original input, ŷ.

exploiting the separability of the DNN architecture. Tuning the learning rate can
improve the results for ADAM, but training with slimTrain produces comparable
results and reaches a desirable loss in the same or fewer epochs. Using sGCV to
select the regularization parameter on the weights W provides more robust training,
adjusting automatically to the various hyperparameters (memory depth, learning rate)
to produce consistent convergence.

4.3. Autoencoders. Autoencoders are a dimensionality-reduction technique
using two neural networks: an encoder that represents high-dimensional data in a low-
dimensional space and a decoder that reconstructs the high-dimensional data from
this encoding, illustrated in Figure 7. Training an autoencoder is an unsupervised
learning problem that can be phrased as optimization problem

min
w,θdec,θenc

Φauto(w,θdec,θenc) ≡ E 1
2‖K(w)Fdec(Fenc(y,θenc),θdec)− y‖22(4.2)

+ αenc

2 ‖θenc‖22 + αdec

2 ‖θdec‖22 + λ
2 ‖w‖22,

where the components of the objective function are the following:
• Encoder: Fenc : Y × R|θenc| → Rnlat is the encoding neural network that

reduces the dimensionality of the input features nin to an intrinsic dimension
nlat with nlat � nin. Typically, the true intrinsic dimension is not known
and must be chosen manually. The weights are θenc ∈ R|θenc|, the number of
encoder weights is |θenc|, and the regularization parameter is αenc ≥ 0.

• Decoder Feature Extractor: Fdec : Rnlat × R|θdec| → Rnout is the decoder
feature extractor. The weights are θdec ∈ R|θdec|, the number of weights is
|θdec|, and the regularization parameter is αdec ≥ 0.

• Decoder Final Layer: K(·) : R|w| → Rnin×nout is a linear operator, map-
ping w to a matrix K(w). For instance, K(w) could be a sparse convolution
matrix which can be accessed via function calls. The learnable weights w
have a regularization parameter λ ≥ 0.

For notational simplicity, we let θ = (θenc,θdec) and α = αenc = αdec for the
remainder of this section.

In this experiment, we train a small autoencoder on the MNIST dataset [31].
The data consists of 60,000 training and 10,000 test gray-scale images of size 28× 28

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS19

Initial evaluation + full 50 epochs Epochs 1 to 10

DNN approximations after 1 epoch

True ADAM slimTrain

λ “ 100 λ “ 10´1 λ “ 10´10 Λ0 “ 10´1

D
N

N
a
p
p
ro

x
.

lo
g
1
0
pab

s.
d
iff

.q

test loss 7.69ˆ 101 5.87ˆ 101 6.34ˆ 101 4.12ˆ 101

after 1 epoch

Fig. 8. Training loss convergence and visualizations of MNIST autoencoder approximations.
For the convergence plots, the networks are trained for 50 epochs and with recommended learning
rate of γ = 10−3, batch size of |Tk| = 32, regularization parameter α = 10−10 for θ, and 50,000
training images plus 10,000 for validation. For ADAM, we train with three different regularization
parameters for w, λ = 100, 10−1, 10−10. When using slimTrain, we automatically select the regu-
larization parameters using sGCV with initial parameter Λ0 = 10−1 and choose a modest memory
depth of r = 5. We display the DNN approximations after the first epoch below the convergence
plots. The top row of MNIST images are, from left to right, 16 test images, the approximation from
the ADAM-trained networks with various regularization parameters on w, and the approximation
obtained from slimTrain. The bottom row of images are the absolute differences (in log scale) be-
tween the network approximations and the true test images. The value below the absolute difference
images is the test loss over all 10,000 test images after the first epoch.

(i.e., 784 input features). We implement convolutional neural networks for both the
encoder and decoder with intrinsic dimension nlat = 50; see details in Appendix C.
Unlike the dense matrices in the previous experiments, the final, separable layer is a
(transposed) convolution. Because convolutions use few weights and the prediction
is high-dimensional, the least-squares problem is always overdetermined for this ap-
plication. Hence, we require only a moderate memory depth in our experiments and,
motivated by our results in subsection 4.1 and subsection 4.2, we use a memory depth
of r = 5 when training with slimTrain.

The convergence results comparing slimTrain and ADAM are presented in Fig-
ure 8. Here, we see that training with slimTrain converges faster than ADAM in
the first 10 epochs and to a comparable lowest loss after 50 epochs. Each training

20 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

Fig. 9. Effect of regularization parameters on the minimum loss. We vary the regularization
parameter α of θ for both ADAM (blue) and slimTrain (black), the regularization parameter λ on
w for ADAM, and the initial regularization parameter Λ0 on w for slimTrain. For simplicity, we
set the (initial) regularization parameters equal, α = λ = Λ0. The height of each bar is the training
(solid) and validation (striped) loss for the network that obtained the lowest validation loss in 50
epochs for the given hyperparameters.

scheme forms an autoencoder that approximates the MNIST data accurately and gen-
eralizes well, even after the first epoch. However, the absolute difference between the
slimTrain approximation and the true test images after the first epoch is noticeably
less noisy than the ADAM-trained approximations after the first epoch, particularly
for a poor choice of regularization parameter on w (e.g., λ = 100). We note that
because we employ automatic regularization parameter selection, the performance of
slimTrain was nearly identical with different initial regularization parameters, Λ0.
We display the case that produced slightly less oscillatory convergence.

Using a good choice of the regularization parameter on the nonlinear weights
(α = 10−10) is partially responsible for the quality approximations obtained for each
training method. The results in Figure 9 support our choice of a small regularization
parameter on θ. It can be seen that smaller regularization parameters on θ produce
better DNN approximations. When α is poorly-chosen (in this case, when α is large),
slimTrain produces a considerably smaller loss than training with ADAM. Hence,
training with slimTrain and sGCV can adjust to poor hyperparameter selection,
even when those hyperparameters are not directly related to the regularization on w.

In addition to adjusting regularization parameters for the linear weights, we found
that training with slimTrain offers significant performance benefits in the limited-
data setting; see Figure 10. When only a few training samples were used, training
with slimTrain produces a lower training and validation loss. In the small training
data regime, the optimization problem is more ill-posed and there are fewer network
weight updates per epoch. Hence, the automatic regularization selection and fast
initial convergence of slimTrain produces a more effective autoencoder.

Consistent with the results in our previous experiments, in the autoencoder exam-
ple with a final convolutional layer, slimTrain converges faster initially than ADAM
to a good approximation and is less sensitive to the choice regularization on the
nonlinear weights, θ. In the case of limited data, a common occurance for scientific

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS21

Fig. 10. Mean loss of MNIST autoencoder for small number of training data with a batch size
of 32. All networks were trained for 50 epochs for 10 different weight initializations using the same
hyperparameters as with the full training data in Figure 8. For each initialization, we choose the
network that produced the minimal validation loss over 50 epochs. In the plot, each point denotes
the mean loss over the 10 runs and the bands depict one standard deviation from the mean.

applications, the training problem becomes more ill-posed. Here, slimTrain produces
networks that fit and generalize better than ADAM. By solving for good weights w
and automatically choosing an appropriate regularization parameter at each iteration,
slimTrain achieves more consistent training performance for many different choices
of hyperparameters.

5. Conclusions. We address the challenges of training DNNs by exploiting the
separability inherent in most commonly-used architectures whose output depends lin-
early on the weights of the final layer. Our proposed algorithm, slimTrain, leverages
this separable structure for function approximation tasks where the optimal weights of
the final layer can be obtained by solving a stochastic regularized linear least-squares
problem. The main idea of slimTrain is to iteratively estimate the weights of the
final layer using the sampled limited-memory Tikhonov scheme slimTik [13], which is
a state-of-the-art method to solve stochastic linear least-squares problems. By using
slimTik to update the linear weights, slimTrain provides a reasonable approximation
for the optimal linear weights and simultaneously estimates an effective regularization
parameter for the linear weights. The latter point is crucial – slimTrain does not
require a difficult-to-tune learning rate and automatically adapts the regularization
parameter for the linear weights, which can simplify the training process. In our
numerical experiments, slimTrain is less sensitive to the choice of hyperparameters,
which can make it a good candidate to train DNNs for new datasets with limited
experience and no clear hyperparameter selection guidelines.

From a theoretical perspective, slimTrain can be seen as an inexact version of
the variable projection [20, 35] (VarPro) scheme extended to the stochastic approxi-

22 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

mation (SA) setting. Using this viewpoint, we show in subsection 3.2 that we obtain
unbiased gradient estimates for the nonlinear weights when the linear weights are es-
timated accurately. This motivates the design of slimTrain as a tractable alternative
to VarPro SA, which is infeasible as it requires re-evaluation of the nonlinear feature
extractor over many samples after every training step. The computational costs of
slimTrain are limited as it re-uses features from the most recent batches and there-
fore adds little computational overhead; see subsection 3.3. In addition, slimTrain
approximates the optimal linear weights obtained from VarPro, thereby reducing the
bias introduced by the approximation when updating the nonlinear weights.

From a numerical perspective, the benefits of slimTrain, and specifically auto-
mated hyperparameter selection, are demonstrated by the numerical experiments for
both fully-connected and convolutional final layers. In subsection 4.1, we explore the
relationship of the slimTrain parameters, observing that memory depth and batch
size play a crucial role in determining the ill-posedness of the least-squares problem to
solve for the linear weights. The regularization parameter adapts to the least-squares
problem accordingly – larger regularization parameters are selected when the prob-
lem is underdetermined. In subsection 4.2, we observe that slimTrain is less sensitive
to the choice of learning rate, outperforming the recommended settings for ADAM.
Again, the regularization parameters adapt to the learning rate – larger parameters
are chosen when the nonlinear weights change more rapidly. In subsection 4.3, we
show that slimTrain can be applied to a final convolutional layer and outperforms
ADAM in the limited-data regime, which is typical in scientific applications.

Acknowledgments. This work was initiated as a part of the SAMSI Program on
Numerical Analysis in Data Science in 2020. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright, Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization, IEEE Transac-
tions on Information Theory, 58 (2012), pp. 3235–3249.

[2] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type meth-
ods, SIAM Journal on Optimization, 23 (2013), pp. 2037–2060, https://doi.org/10.1137/
120887679, https://doi.org/10.1137/120887679, https://arxiv.org/abs/https://doi.org/10.
1137/120887679.

[3] J. C. Bezdek and R. J. Hathaway, Some notes on alternating optimization, in AFSS Inter-
national Conference on Fuzzy Systems, Springer, 2002, pp. 288–300.

[4] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart, Model reduction and
neural networks for parametric PDEs, The SMAI Journal of Computational Mathematics,
7 (2021), pp. 121–157, https://arxiv.org/abs/2005.03180.

[5] R. Bollapragada, R. H. Byrd, and J. Nocedal, Exact and inexact subsampled Newton
methods for optimization, IMA Journal of Numerical Analysis, 39 (2018), pp. 545–578,
https://doi.org/10.1093/imanum/dry009, http://dx.doi.org/10.1093/imanum/dry009.

[6] L. Bottou and Y. Cun, Large scale online learning, in Advances in Neural Information Pro-
cessing Systems, 2004, pp. 217–224.

[7] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine
learning, SIAM Review, 60 (2018), pp. 223–311.

[8] N. Britton, Reaction-diffusion equations and their applications to biology., Elsevier Academic
Press Inc, USA United States, 1986.

[9] R. Byrd, S. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for
large-scale optimization, SIAM Journal on Optimization, 26 (2016), pp. 1008–1031.

[10] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary differential
equations, in Proceedings of the 32nd International Conference on Neural Information

https://doi.org/10.1137/120887679
https://doi.org/10.1137/120887679
https://doi.org/10.1137/120887679
https://arxiv.org/abs/https://doi.org/10.1137/120887679
https://arxiv.org/abs/https://doi.org/10.1137/120887679
https://arxiv.org/abs/2005.03180
https://doi.org/10.1093/imanum/dry009
http://dx.doi.org/10.1093/imanum/dry009

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS23

Processing Systems, 2018, pp. 6572–6583.
[11] J. Chung, M. Chung, and J. T. Slagel, Iterative sampled methods for massive and separable

nonlinear inverse problems, in International Conference on Scale Space and Variational
Methods in Computer Vision, Springer, 2019, pp. 119–130.

[12] J. Chung, M. Chung, J. T. Slagel, and L. Tenorio, Stochastic Newton and quasi-Newton
methods for large linear least-squares problems, arXiv preprint arXiv:1702.07367, (2017).

[13] J. Chung, M. Chung, J. T. Slagel, and L. Tenorio, Sampled limited memory methods for
massive linear inverse problems, Inverse Problems, 36 (2020), p. 054001.

[14] J. Chung and J. G. Nagy, An efficient iterative approach for large-scale separable nonlinear
inverse problems, SIAM Journal on Scientific Computing, 31 (2010), pp. 4654–4674.

[15] G. Cybenko, Approximations by superpositions of a sigmoidal function, Mathematics of Con-
trol, Signals, and Systems, 2 (1989), pp. 303–314.

[16] E. C. Cyr, M. A. Gulian, R. G. Patel, M. Perego, and N. A. Trask, Robust training and
initialization of deep neural networks: An adaptive basis viewpoint, in Mathematical and
Scientific Machine Learning, PMLR, 2020, pp. 512–536.

[17] G. de Vries, T. Hillen, M. Lewis, J. Müller, and B. Schönfisch, A Course in Mathe-
matical Biology, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006,
https://doi.org/10.1137/1.9780898718256.

[18] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization., Journal of Machine Learning Research, 12 (2011).

[19] W. E, A Proposal on Machine Learning via Dynamical Systems, Comm. Math. Statist., 5
(2017), pp. 1–11, https://doi.org/10.1007/s40304-017-0103-z, http://link.springer.com/10.
1007/s40304-017-0103-z.

[20] G. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate, SIAM Journal on Numerical Analysis, 10 (1973),
pp. 413–432.

[21] G. Golub and V. Pereyra, Separable nonlinear least squares: The variable projection method
and its applications, Inverse Problems, 19 (2003), pp. R1–R26.

[22] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method
for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223,
https://doi.org/10.1080/00401706.1979.10489751, https://www.tandfonline.com/doi/
abs/10.1080/00401706.1979.10489751, https://arxiv.org/abs/https://www.tandfonline.
com/doi/pdf/10.1080/00401706.1979.10489751.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Nov. 2016.
[24] R. Gower and P. Richtárik, Randomized quasi-Newton updates are linearly convergent ma-

trix inversion algorithms, SIAM Journal on Matrix Analysis and Applications, 38 (2017),
pp. 1380–1409.

[25] E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Probl., 34
(2017), p. 014004.

[26] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Society for Industrial
and Applied Mathematics, 1998, https://doi.org/10.1137/1.9780898719697, https://
epubs.siam.org/doi/abs/10.1137/1.9780898719697, https://arxiv.org/abs/https://epubs.
siam.org/doi/pdf/10.1137/1.9780898719697.

[27] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[28] L. Hui and M. Belkin, Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks, in International Conference on Learning Representations,
2020.

[29] D. P. Kingma and J. Ba, ADAM: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolu-
tional neural networks, NIPS, (2012).

[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, Handwritten digit recognition with a back-propagation network, Advances
in Neural Information Processing Systems, 2 (1990).

[32] J. Malmaud and L. White, Tensorflow.jl: An idiomatic Julia front end for TensorFlow,
Journal of Open Source Software, 3 (2018), p. 1002, https://doi.org/10.21105/joss.01002,
https://doi.org/10.21105/joss.01002.

[33] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems,
SIAM Journal on Optimization, 22 (2012), pp. 341–362.

[34] E. Newman, L. Ruthotto, J. Hart, and B. v. B. Waanders, Train like a (var) pro: Effi-

https://doi.org/10.1137/1.9780898718256
https://doi.org/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
https://doi.org/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1979.10489751
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1979.10489751
https://doi.org/10.1137/1.9780898719697
https://epubs.siam.org/doi/abs/10.1137/1.9780898719697
https://epubs.siam.org/doi/abs/10.1137/1.9780898719697
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719697
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719697
https://doi.org/10.21105/joss.01002
https://doi.org/10.21105/joss.01002

24 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

cient training of neural networks with variable projection, arXiv preprint arXiv:2007.13171,
(2020).

[35] D. P. O’Leary and B. W. Rust, Variable projection for nonlinear least squares prob-
lems, Computational Optimization and Applications. An International Journal, 54 (2013),
pp. 579–593.

[36] T. O’Leary-Roseberry, N. Alger, and O. Ghattas, Inexact Newton Methods for Stochastic
Non-Convex Optimization with Applications to Neural Network Training, arXiv, (2019),
https://arxiv.org/abs/1905.06738.

[37] T. O’Leary-Roseberry, U. Villa, P. Chen, and O. Ghattas, Derivative-informed projected
neural networks for high-dimensional parametric maps governed by PDEs, 2021, https:
//arxiv.org/abs/2011.15110.

[38] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, (1982), pp. 43–71.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, Pytorch: An imperative style, high-performance deep learn-
ing library, in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds., Curran Associates, Inc., 2019, pp. 8024–8035, http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[40] R. G. Patel, N. A. Trask, M. A. Gulian, and E. C. Cyr, A block coordinate descent
optimizer for classification problems exploiting convexity, arXiv preprint arXiv:2006.10123,
(2020).

[41] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, Elsevier, 378 (2019), pp. 686–707.

[42] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, Mathematical Programming, 144 (2014),
pp. 1–38.

[43] H. Robbins and S. Monro, A Stochastic Approximation Method, The annals of mathematical
statistics, 22 (1951), pp. 400–407.

[44] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomed-
ical image segmentation, in International Conference on Medical image computing and
computer-assisted intervention, Springer, 2015, pp. 234–241.

[45] L. Ruthotto and E. Haber, Deep neural networks motivated by partial differential equations,
Journal of Mathematical Imaging and Vision, 62 (2019), p. 352–364, https://doi.org/10.
1007/s10851-019-00903-1.

[46] J. Sjöberg and M. Viberg, Separable non-linear least-squares minimization-possible improve-
ments for neural net fitting, in Neural Networks for Signal Processing VII. Proceedings of
the 1997 IEEE Signal Processing Society Workshop, 1997.

[47] J. T. Slagel, J. Chung, M. Chung, D. Kozak, and L. Tenorio, Sampled Tikhonov regular-
ization for large linear inverse problems, Inverse Problems, 35 (2019), p. 114008.

[48] T. Stocker, Introduction to Climate Modelling, Advances in Geophysical and Environmental
Mechanics and Mathematics, Springer Berlin Heidelberg, 2011, https://books.google.com/
books?id=D4zulgFb5JwC.

[49] R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neural network surrogate models
for high dimensional uncertainty quantification, Journal of Computational Physics, 375
(2018), pp. 565–588.

[50] C. R. Vogel, Computational Methods for Inverse Problems, Society for Industrial
and Applied Mathematics, 2002, https://doi.org/10.1137/1.9780898717570, https://
epubs.siam.org/doi/abs/10.1137/1.9780898717570, https://arxiv.org/abs/https://epubs.
siam.org/doi/pdf/10.1137/1.9780898717570.

[51] G. Wahba, Practical approximate solutions to linear operator equations when the data are
noisy, SIAM Journal on Numerical Analysis, 14 (1977), pp. 651–667.

[52] X. Wang, S. Ma, D. Goldfarb, and W. Liu, Stochastic quasi-Newton methods for nonconvex
stochastic optimization, SIAM Journal on Optimization, 27 (2017), pp. 927–956.

[53] S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151
(2015), pp. 3–34, https://doi.org/10.1007/s10107-015-0892-3, https://doi.org/10.1007/
s10107-015-0892-3.

[54] P. Xu, F. Roosta, and M. W. Mahoney, Second-order optimization for non-convex machine
learning: an empirical study, Proceedings of the 2020 SIAM International Conference

https://arxiv.org/abs/1905.06738
https://arxiv.org/abs/2011.15110
https://arxiv.org/abs/2011.15110
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1007/s10851-019-00903-1
https://books.google.com/books?id=D4zulgFb5JwC
https://books.google.com/books?id=D4zulgFb5JwC
https://doi.org/10.1137/1.9780898717570
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717570
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717570
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3

SLIMTRAIN - A STOCHASTIC APPROXIMATION METHOD FOR SEPARABLE DNNS25

on Data Mining, (2020), pp. 199–207, https://doi.org/10.1137/1.9781611976236.23, http:
//dx.doi.org/10.1137/1.9781611976236.23.

[55] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification, Journal of Computational Physics, 366 (2018),
pp. 415–447.

[56] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification without
labeled data, Journal of Computational Physics, 394 (2019), p. 56–81, https://doi.org/10.
1016/j.jcp.2019.05.024, http://dx.doi.org/10.1016/j.jcp.2019.05.024.

Appendix A. Stochastic linear Tikhonov problem. In this section,
we show that under certain assumptions, the stochastic Tikhonov-regularized least-
squares problem (2.6) has a closed form solution (2.7). Let us begin by defining
µy(θ) = EF (y,θ), Σy(θ) = E(F (y,θ) − µy)(F (y,θ) − µy)> and µc(θ) = Ec,

Σc = E(c− µc)(c− µc)>. Then using the identity

E(δ>Λδ) = tr(ΛΣδ) + µ>δ Λµδ,

where tr(·) denotes the trace of a matrix, we have (sans constant from the regular-
ization term for θ)

Φ(W,θ) = E 1
2 ‖WF (y,θ)− c‖22 + λ

2 ‖W‖
2
F(A.1)

= E 1
2 (WF (y,θ)− c)

>
(WF (y,θ)− c) + λ

2 ‖W‖
2
F(A.2)

= E 1
2F (y,θ)>W>WF (y,θ)− Ec>WF (y,θ) + 1

2Ec>c + λ
2 ‖W‖

2
F(A.3)

= 1
2 tr
(
W>WΣy(θ)

)
+ 1

2µy(θ)>W>Wµy(θ)− Ec>WF (y,θ)(A.4)

+ 1
2 tr(Σc) + 1

2µ
>
c µc + λ

2 ‖W‖
2
F(A.5)

Notice that this function is quadratic in W, and so for a given θ a minimizer (2.6)
can be found by differentiation. That is,

(A.6) DWΦ(W,θ) = WΣy(θ) + Wµy(θ)µy(θ)> + λW − EcF(y,θ)>

assuming we can switch order DE = ED. Now setting DWΦ = 0, we get

(A.7) Ŵ(θ)
(
Σy(θ) + µy(θ)µy(θ)> + λI

)
= EcF (y,θ)>

and hence (2.7).

Appendix B. Residual neural networks (ResNets). Residual neural
networks (ResNets), among the most popular DNN architectures, are composed of
layers of the form

u0 = σ(Kiny + bin)(B.1)

uj+1 = uj + hσ(Kjuj + bj) for j = 0, . . . , d− 1.(B.2)

The architecture is defined by the width (the number of entries in the feature vectors
uj), the depth (the number of layers d), and the step size h > 0. The key property
of ResNets is the identity mapping or skip connection which enables deeper, more
expressive networks to be trained [27]. Recent work has interpreted ResNets as dis-
cretizations of continuous differential equations or dynamical systems [19] which have
led to notions of stability [25], PDE-inspired architectures [45], and Neural ODEs [10].

In subsection 4.1, we train a DNN to map y ∈ R2 to a scalar c ∈ R. The feature
extractor is a ResNet with a width of w = 8 and a depth of d = 8 corresponding to a

https://doi.org/10.1137/1.9781611976236.23
http://dx.doi.org/10.1137/1.9781611976236.23
http://dx.doi.org/10.1137/1.9781611976236.23
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1016/j.jcp.2019.05.024
http://dx.doi.org/10.1016/j.jcp.2019.05.024

26 NEWMAN, CHUNG, CHUNG, AND RUTHOTTO

Table 2
Autoencoder architecture with a width w = 16 and intrinsic dimension d. For the convolutional

layers, s is the stride and p is the padding. The layer ConvT indicates a transpose convolution. The
dashed line indicates the separable final layer.

Layer Type Description # Feat. Out # Weights w = 16, d = 50

E
n
c

Conv. + ReLU w, 4 × 4 × 1 filters, s = 2, p = 1 14 × 14 × w 16w + w 272

Conv. + ReLU 2w, 4 × 4 × w filters, s = 2, p = 1 7 × 7 × 2w 32w2 + 2w 8, 224

Affine d × (49 · 2w) matrix + d × 1 bias d × 1 98wd + d 78, 450

D
e
c

Affine (49 · 2w) × d matrix + (49 · 2w) × 1 bias 98w × 1 98wd + 98w 79, 968

Batch Norm — — — —

ConvT. + ReLU w, 4 × 4 × 2w filters, s = 2, p = 1 14 × 14 × w 32w2 + w 8,208

ConvT. + ReLU 1, 4 × 4 × w filter, s = 2, p = 1 28 × 28 × 1 16w + 1 257

Total — 175, 122 + 257

final time of T = 5 or equivalently with a step size of h = 5/8. In subsection 4.2, we
train a DNN to map y ∈ R55 to a scalar c ∈ R72. The feature extractor is a ResNet
with a width of w = 16 and a depth of d = 8 corresponding to a final time of T = 5
or equivalently with a step size of h = 5/8. In both experiments, we use the smooth
hyperbolic tangent activation function, σ(x) = tanh(x).

Appendix C. Autoencoder architecture. We adapt the MNIST autoen-
coder from [32]. The autoencoder consists of two convolutional neural networks with
a user-defined width w and intrinsic dimension d. The width controls the number of
convolutional filters used and the intrinsic dimension is the size of the low-dimensional
embedding. The architecture is described in Table 2.

The final layer is a (transposed) convolution, denoted in subsection 3.3 as K(·) :
R|w| → Rnin×nout . Note that nin > nout in our case. As we did in subsection 3.1,
we can express the operation of K(w) ∈ Rnin×nout on the output features Zk(θ) ∈
Rnout×|Tk| as a linear operator applied to the weights w; that is,

K(w)Zk(θ)
de-conv−−−−−→
←−−−−−

conv

Ak(θ)w.

The matrix Ak(θ) ∈ R|Tk|nin×|w| has known structure. In particular, each column
of A(θ) contains a shifted copy of vec(Zk(θ)). Näıvely, we can form each col-
umn of Ak(θ) explicitly by applying the (transposed) convolution operator to “stan-
dard basis” filters. Specifically, the j-th column of Ak(θ) is vec(K(ej)Zk(θ)) where
ej ∈ R|w| is the j-th unit vector. In our implementation, we construct Ak(θ) by
recognizing that the samples and the channels of Zk(θ) are independent, requiring
fewer evaluations of the (transposed) convolution operator. Our code is available at
https://github.com/elizabethnewman/slimTrain.

https://github.com/elizabethnewman/slimTrain

	1 Introduction
	2 Exploiting separability with variable projection
	2.1 SA methods that exploit separability
	2.2 Theoretical justification for VarPro in SA methods
	2.3 Challenges of VarPro in stochastic optimization

	3 Sampled limited-memory DNN training with slimTrain
	3.1 Sampled Tikhonov methods to approximate W"055BW()
	3.2 slimTrain
	3.3 Efficient implementation

	4 Numerical results
	4.1 Peaks
	4.2 PDE surrogate modeling
	4.3 Autoencoders

	5 Conclusions
	References
	Appendix A. Stochastic linear Tikhonov problem
	Appendix B. Residual neural networks (ResNets)
	Appendix C. Autoencoder architecture

