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Image warp preserving content intensity

Enrico Segre∗

Abstract. An accurate method for warping images is presented. Differently from most commonly used tech-
niques, this method guarantees the conservation of the intensity of the transformed image, evaluated
as the sum of its pixel values over the whole image or over corresponding transformed subregions
of it. Such property is mandatory for quantitative analysis, as, for instance, when deformed images
are used to assess radiances, to measure optical fluxes from light sources, or to characterize material
optical densities. The proposed method enforces area resampling by decomposing each rectangular
pixel in two triangles, and projecting the pixel intensity onto half pixels of the transformed image,
with weights proportional to the area of overlap of the triangular half-pixels. The result is quanti-
tatively exact, as long as the original pixel value is assumed to represent a constant image density
within the pixel area, and as long as the coordinate transformation is diffeomorphic. Implementation
details and possible variations of the method are discussed.

Key words. Warping, Area resampling, Image distortion, Photometry
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1. Introduction. Many scientific procedures which make quantitative use of the image
content, in fields which range from microscopy to astronomy, require images to be transformed
and remapped onto deformed coordinates system. Typical applications include the correction
of geometrical aberrations produced by imaging systems, the mutual registration of scenes
recorded with different optical systems or from different points of view [44, 23]; stitching
together different images with partial overlap among themselves [13], also referred to as multi-
frame joint image registration; the fusion and proper coadding of different images of the same
source fields [42]. In medical imaging and computational anatomy in particular, to name
another application, cross image registration is always required to properly compare features
of compliant soft tissue. Furthermore, dynamic mapping of image sequences over deforming
templates was used with expressive intent in yesteryears, in a procedure called “morphing”
[38, 27] where the appearance of one object was transformed smoothly into that of another
(e.g. a human figure into an animal) by means of gradual deformation and blending.

For our purposes, we consider two dimensional images, generically represented as two
dimensional arrays of values of the intensity over Cartesian grids. The methods for determining
the appropriate geometrical transformation between the source and the target coordinates are
varied and sophisticated [14, 24], depend on the task, and are not themselves of concern of this
paper. Such methods may make use of functional relations between the coordinate systems
known a priori, or may rely on the identification of common landmark features appearing in the
images [3, 20], either known from supervised annotation, from model fit or from trained deep
learning (e.g. [41, 43]). In computational anatomy, for instance, diffeomorphic flow is assumed
between source and target images, and LDDMM [2] in a number of variants is very popular.
A large body of literature exists on these methods, which do not need to be reviewed here.
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Once the functional transformation which maps the two systems of coordinates is established, a
“best” way of transforming also the image values is sought. The acception of “best” is sometimes
subjective and in many cases depends on the application: it may refer to a cosmetically
pleasing result, to an optimal way of representing and preserving sharp level transitions in
the destination image, or to the suppression of moiré or aliasing artifacts. Optimal ways of
prefiltering and resampling of transformed images by means of interpolation are well described
in literature [26, 1, 12] and implemented in widely adopted software libraries (e.g. OpenCV
[4], scikit [35], ImageMagick [18]) as well as in graphic applications. In other cases, like in
superresolution imaging and reconstruction [22], the recovery of realistic, underresolved image
details is achieved relying on a priori subscale models, or optimal use of information resulting
from multiple low resolution images belonging to a sequence. In this paper, in contrast, we
describe a procedure which is purely intended to preserve the brightness of the image content
across the transformation, even when the images are not Nyquist sampled, without invoking
any help from the image data itself or from a priori knowledge of structure lost by the process
of image formation. In simple terms, we exactly redistribute the whole intensity content of the
source pixels over the target raster. The procedure is linear, and amounts to the determination
of a reweighting matrix which projects the pixel values from the source to the destination image,
and most importantly, depends only on the coordinate transform and not on the image data
itself. As such, some variants of the procedure can be devised from the basic scheme, including
one which provides a stable alternative to image interpolation without ad hoc filtering.

Our procedure implements a rigorous area resampling. The concept is known even from
earlier literature, but does not seem to have received adequate attention, probably because
of its higher computational cost which hinders its applications, and does not seem to have
been pursued in the general case. Early attempts include that of [9], which proposes a fast
implementation, based on a scanline decomposition. Scanline approaches treat the deformation
of a raster image by carrying on some of the intensity content from one pixel to its adjacent
in scan order, and are not proven to be exact for transformations beyond simple shears. A
simpler version of Fant’s algorithm, applied only to raster resizing, goes under the name of
pixel mixing [31] and was probably implemented in the open first by the pamscale function
of the netpbm package [28]. The thesis [5] generalizes the problem, introducing the term
“imaging-consistent integrating resampler”, taking into account also the point spread function
of the imager, and blurring in image formation. The algorithm proposed there, though, still
falls within the category of separable, scanline approaches, with a single accumulation register
providing intensity remainders carried over from one pixel to the next. Another double pass,
scanline algorithm is that of [16]. The seminal thesis [17] discusses the problem, and gives
a partial solution in terms of adaptive local deformation of circular neighborhoods. This
method is also implemented in the popular software package ImageMagick [33]. Another
cognate approach proposed, and employed specifically for oversampling stacks of dithered
astronomical images while preserving photometry, is “Drizzle” [11], but it relies on empirical
factors, and treats both source and destination pixels as squares. “Drizzling” estimates pixel
area overlaps using a sort of a Montecarlo approach, where the randomness is provided by
inter-image pixel shifts. As a procedure, it some offers other advantages like the possibility
of assigning individual quality weights to each contributing pixel; still it is not general for
arbitrary deformations.
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In summary, the existing literature on area resampling concentrated on the search for “effi-
cient” variants of the method, or which seem to lack generality or exactness, when specifically
looking at the preservation of the photometric intensity. It is our intention to discuss here a
rigorous procedure, and its implementation.

The paper is organized as follows: section 2 describes the geometrical principle of pixel
remapping, section 3 outlines the algorithm used, section 4 demonstrates it, section 5 discusses
some variations, section 6 shows the advantage of area resampling in photometric measure-
ments, and section 7 concludes and outlines future perspectives. Computational details are
included in the appendices: the convention adopted for barycentric coordinates is given in
appendix A; appendix B discusses the problem of intersecting triangles, and code performance
is reported in appendix C.

2. Exact area resampling by pixel triangulation. We start from an intensity image, given
as a set of N1×M1 pixel values I1(i, j), representing the cumulative value of some quantity (for
instance, the number of photons impinging the area of an individual photosensitive element),
integrated over the rectangular pixel pij, defined as the rectangle xi ≤ x < xi+1, yj ≤ y <
yj+1, for 1 ≤ i ≤ N1 and 1 ≤ j ≤ M1. For simplicity we will treat here an equispaced
coordinate grid, xi = x1 + (i − 1) ·∆x and yj = y1 + (j − 1) ·∆y, though the procedure can
be easily generalized to non-equispaced plaid grids. We consider an a priori given bijective
and differentiable coordinate transformation (X,Y ) = f(x, y). We assume that the underlying
intensity density i1(x, y) inside the pixel pij is uniform, and that

∫

pij
i1(x, y) dx dy = I1(i, j).

Therefore, i1(x, y) = I1(i, j)/A [pij ], where A [pij] = ∆x∆y is the area of the pixel.
Our goal is to produce a new image of N2 ×M2 pixels, transforming the set of values I1

into a new set I2(l,m) on a new equispaced grid {(Xl, Ym)}, with 1 ≤ l ≤ N2, 1 ≤ m ≤ M2

and spacing ∆X, ∆Y , in such a way that the cumulative intensity within any closed contour
is preserved by the transformation:

(2.1)

∫

Ω1

i1(x, y) dx dy =

∫

Ω2

i2(X,Y ) dX dY

for any region Ω2 = f (Ω1), and assuming an underlying transformed intensity density i2 in
the destination image. A natural way of achieving this property is to consider the quadrilat-
eral Qij = {f (xi, yj) , f (xi+1, yj) , f (xi+1, yj+1) , f (xi, yj+1)}, which approximates (to second
order in ∆x, ∆y) the transform of the rectangular pixel pij, identified by the set of its four
vertices {(xi, yj) , (xi+1, yj) , (xi+1, yj+1) , (xi, yj+1)} (see Fig. 2.1). Save for singular or ex-
treme deformations and coarse griddings which are of little practical interest, we can tacitly
assume that Qij remains a convex quadrilateral (concavity would imply a change of sign of
the Jacobian of the transformation, violating the assumption of diffeomorphic transformation).
For shorthand, we write Qij ≃ f (pij), applying f() to polygons and contours as well as to
individual points. Locally, this scalar density would be transformed as

(2.2) i2(X,Y ) = Jf i1(x, y) =

∣

∣

∣

∣

∣

∂X
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∣

∣

∣

∣

∣

i1(x, y) ,

so that, to second order, (2.1) is satisfied for Qij and hence for any region composed of sets
of pixels of image 1. Within the same approximation, we assume that the Jacobian Jf is
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Figure 2.1. Pixel transform pij → Qij from the source to the destination image space, and mapping of
closed contours Ω1 → Ω2 including specific pixel groups.

constant within pij and the density i2 constant within Qij. This position allows us to reduce
the change of integration variable in Eq. (2.1) into a problem of decomposition of pixel areas:
each fraction of Qij projected on the destination grid, will contribute to the target intensity
proportionally to its fractional area only.

The idea of considering the shape change of the pixel in the transformation is not new (see
for example of the procedure described in §15.5 of [36]); however, our development is different
in that we do not invoke arbitrary interpolations for the reconstruction of the destination
image. The intensity of the rectangular pixel

Plm = {(Xl, Ym) , (Xl+1, Ym) , (Xl+1, Ym+1) , (Xl, Ym+1)}

on the target image is expressed as a sum of contributions

(2.3) I2(l,m) =
∑

overlaps

Iij2 (l,m) =
∑

overlaps

A [Plm ∩Qij]

A [Qij]
I1(i, j) ,

from each of the transformed pixels Qij of image 1 partially overlapping with Plm in image 2.
The subset of indices i, j to be taken into account is indicated here generically as “overlaps”;
a criterion for selecting them will be formulated in the following. In (2.3), A [] indicates the
area of the resulting polygon. The procedure involves therefore two steps: 1) for any given
destination pixel Plm identify the set of original pixels pij whose transform Qij overlaps with
it, and 2) determine the polygonal shape of each intersection and compute its area.

The intersection of two convex quadrangles can be, in general, a polygon with anything
between three and eight sides. Algorithms for the intersection of generic polygons exist in
reputable computer geometry packages (e.g. in CGAL [10]), but their generality comes as a
hindrance for our specialized case, requiring peculiar organized data structures, and is not nec-
essarily optimal for a fast calculation. We prefer to simplify the task one step further. We divide
both the origin pixel pij and the destination pixel Plm in two triangles, splitting the quadrangles
arbitrarily along one of their two diagonals, for instance tUij = {(xi, yj) , (xi+1, yj+1) , (xi, yj+1)}

and tLij = {(xi, yj) , (xi+1, yj) , (xi+1, yj+1)}, and analogously TU
lm and TL

lm (Fig. 2.2).
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Figure 2.2. Decomposition of a source pixel pij = tUij ∪ tLij in two triangles in the origin and in the
destination space, Qij = f (pij) = f

(

tUij
)

∪ f
(

tLij
)

, and its overlap with the destination pixel Plm = TU
lm ∪ TL

lm.

The intersection TL
lm ∩ f

(

tLij
)

, in this case a pentagon, is highlighted in purple for illustration.

The task of identifying intersections between N1 × M1 origin and N2 × M2 destination
pixels, required by Eq. (2.3), is split in that of finding the intersections between four times
as many triangular half pixels. This is still non trivial, as there are no less than 17 possible,
topologically different ways of intersecting two triangles (Figure B.1), excluding degenerate
cases, as further discussed in appendix B, but is definitely a simpler task than for quadrangles.

The same partial intensity I1(i, j)/2 is assigned to each of the two original triangles.
Eq. (2.3) therefore expands into

(2.4) I2(l,m) =
∑

overlaps





A
[

TU
lm ∩ f

(

tUij

)]

+A
[

TL
lm ∩ f

(

tUij

)]

2A
[

f
(

tUij

)] +

A
[

TU
lm ∩ f

(

tLij

)]

+A
[

TL
lm ∩ f

(

tLij

)]

2A
[

f
(

tLij

)]



 I1(i, j)

Formally, the transformation between pixel intensities from the one to the other image can
be written as

(2.5) I2(l,m) =

N1,M1
∑

i,j=1

Blm,ijI1(i, j) ,

where Blm,ij is the incidence matrix detailing which fraction of Qij intersects with Plm. In
typical cases, in which pixels of the original and of the destination rasters are of comparable
sizes, this matrix is very sparse.

For transformations in which a source pixel pij is completely mapped on pixels on the
the destination raster, the property

∑

lmBlm,ij = 1 holds. Conversely,
∑

ij Blm,ij gives a

discretized representation of J−1
f on the destination raster.

As an aside, once the transformation from I1 to I2 has been computed according to
Eq. (2.5), its inverse can be obtained directly inverting the sparse matrix B, for which nu-
merical techniques are well studied. This may be more advantageous than using the inverse
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coordinate mapping, if using an algorithm like the one described in the next section, which
exploits the fact that the source image grid is cartesian.

3. Algorithm layout. As resulting from (2.5), the intensity transformation between the
two rasters reduces to a simple matrix multiplication, once the matrix elements Blm,ij are
computed. To this extent, the steps sketched in inset 3.1 are required.

Algorithm 3.1 Intensity transformation between I1 and I2
For each pixel of the source image, i.e. iterating on i and j:

1. the coordinates of the vertices of each original hemipixel tL,Ui,j , are transformed with f

2. the set of hemipixels
{

TL,U
lm

}

which have a non empty overlap with f(tL,Uij ) is deter-

mined
3. the area of the intersections between each of the triangles of this set and each f(tL,Uij )

in turn, is found.

4. the areas A
[

f
(

tUij

)]

and A
[

f
(

tLij

)]

are computed.

5. the relevant contributions are summed to construct the matrix Blm,ij,
Finally, the image I2 is obtained by (2.5).

Step 1 is the simple evaluation of a given function f of the coordinates, and does not need
to be described here. In the terminology of image processing, we are using naturally here a
forward mapping between source and destination image.

For step 2, all triangles T which have at least one vertex within the bounding box
[minX (Qij) ,maxX (Qij)] ⊗ [minY (Qij) ,maxY (Qij)] are selected (⊗ denoting the Cartesian
product of the two intervals). Since the triangular half pixels T are defined on a structured
grid, they can be indexed in such a way that the criterion is translated to a simple choice
of indices, involving integer arithmetics. It is algorithmically simpler to use this simplified
criterion, which may sometimes include additional disjoint triangles, than to refine the search
to the subset of triangles which have an actual intersection. The condition for a positive
overlap is not as simple as for instance the requirement that vertices of Tlm fall internally to
f (tij) or viceversa (figure B.1 provides many counter examples).

The computation of overlap areas is more involved, and performed at step 3. For that,
we make due use of barycentric coordinates [6, 8] to reference the position of a point within
a given triangle T . In barycentric coordinates, the position of any point B in the plane is
determined by a triple of real numbers (b1,b2, b3). This system has several properties that
come to advantage for topological tests. With proper normalization, B can be said to be
internal to T if all the three numbers b are positive; B falls on a side of T if one of the
three b is null, and coincides with a vertex of T if two b are simultaneously null. Intersection
points between two segments (in our case, sides of T and of f(t)) are easily computed from
the barycentric coordinates of their extremes (equation A.4). Since a segment and the side of
a triangle intersect only if the relevant barycentric coordinate of the extremes have opposite
signs, inspection of the signs can also be used as a flag to avoid unnecessary computation of
non existing crossings. Details are in Appendix A.

Two possible algorithms for computing the areas of the triangle intersections needed for
step 3 are described in detail in Appendix B. In our approach we make use of the one described
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in B.4, which, albeit possibly slightly less efficient, is of much simpler implementation.
For step 4 the area A is elementary obtained from the vertex coordinates, computing the

outer product of two side vectors, whereas step 5 is mechanic.

4. Warping examples and evaluation. We provide an example of the area resampling
method using an 8 bit monochrome, 512 × 512 pixels test image (boat.512, from [37]). The
image coordinates are defined so that x1 = y1 = 0 and x512 = y512 = 1 (y increasing down-
wards). For the sake of illustration we take, as warping transformation,

(4.1)

(

X
Y

)

= f(x, y) =

(

x+ 3 sin(2πy)
20

y − 3 sin(πx)
20

)

,

which induces no deformation on the sides of the unit square, and has Jacobian comprised
between 0.45 < Jf < 1.65 . To quantify the numerical error in the preservation of intensity of
the warped image, we compute the total intensity discrepance

(4.2) δ =

∑N1,M1

i,j=1 I1(i, j) −
∑N2,M2

l,m=1 I2(l,m)
∑N1,M1

i,j=1 I1(i, j)
.

The result of warping is shown in Figure 4.1. The warp has been computed at various
completely arbitrary resolutions, under and oversampling the image, to show the generality of
the procedure. The calculation is performed in double precision floating point. The resulting
δ, reported over each warped image, are barely over numerical precision.

5. Extensions. Alternative forms of the matrix element Blm,ij can be devised, giving
different weights to the deformed pixel overlaps. The form of (2.4) distributes the available
intensity separately on each destination hemipixel. Its effect can be appreciated in figure

(5.1) for high downsampling ratio and non-affine pixel deformations, for which A
[

f
(

tLij

)]

is

significantly different from A
[

f
(

tUij

)]

. Two other choices are presented in the following.

5.1. Pixel uniformity. Grouping together the two hemipixels, we can recast the total
intensity of the original rectangular pixel onto the destination pixel, as actually prescribed by
Eq. (2.3):

(5.1)

Bq
lm,ij =

A
[

TU
lm ∩ f

(

tUij

)]

+A
[

TL
lm ∩ f

(

tUij

)]

+A
[

TU
lm ∩ f

(

tLij

)]

+A
[

TL
lm ∩ f

(

tLij

)]

A
[

f
(

tUij

)]

+A
[

f
(

tLij

)] .

In other words, the contributions of the transformed half pixels f
(

tUij

)

and f
(

tLij

)

are weighted

with a cumulative factor, which is the average of the two denominators in (2.4). The effect of
this choice is illustrated in Fig. 5.1. It may be argued that this weighting is more natural, as
it preserves the original quadrangular pixel identity, rather than splitting it arbitrarily along
one of its two diagonals.
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Figure 4.1. Warped boat at different resolutions: a) original image, 512×512; b) 41×36; c) 105×87, d)
1757×1876. The values of δ are reported over each warped image. Color bars at the side of each panel show
how the intensity range of the image is inversely proportional to its resolution, so that the sum of the pixel
values remains constant.

(a) (b) (c)

Figure 5.1. Effect of hemipixel vs. full pixel weighting on a highly oversampled transformation. a) Original
8 × 8 pixels image, in which each square of the checker pattern occupies 2 × 2 pixels. b) Warp to 200 × 200
pixels using Eq. (2.4). The different brightness of the halves of highly stretched pixels is apparent. c) Warp to
200×200 pixels using Eq. (5.1), which averages the contributions of the two original halves. The grayscale map
of a) is different than that of b) and c) in order to stretch the visual contrast.
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5.2. Weighted area interpolation. In the intensity-preserving resampling illustrated be-
fore, we assign a contribution of pixel I1(i, j) to the destination pixel Plm which is proportional
to to the inverse area of Qij , i.e. we take into account the local stretch or contraction caused
by the warp. If instead we weight the contribution according to the destination area covered,
normalizing over the area of the destination pixel, as in

(5.2)

Ba
lm,ij =

A
[

TU
lm ∩ f

(

tUij

)]

+A
[

TL
lm ∩ f

(

tUij

)]

+A
[

TU
lm ∩ f

(

tLij

)]

+A
[

TL
lm ∩ f

(

tLij

)]

A
[

TL
lm

]

+A
[

TU
lm

] ,

we achieve a form of area averaging and resampling. For a Cartesian grid, obviously A
[

TL
lm

]

+
A
[

TU
lm

]

= ∆X∆Y . When undersampling, i.e. when several transformed pixels fall into a
single destination pixel, their intensity values are averaged with a weight proportional to the
area which they occupy on the destination; when oversampling, i.e. as a single deformed pixel
covers more than a destination pixel, that destination pixel is assigned the same intensity of
the source. This form can be thus seen as a value preserving warping, rather than an intensity
preserving warping, and can be compared to other interpolation techniques in use in image
processing.

5.2.1. Comparison with resampling interpolation. Figure 5.2 provides a visual compar-
ison of the merits of the weighted area interpolation based on Eq. (5.2) versus the commonly
used bilinear interpolation, as a reference. Other more sophisticated interpolators, like higher
order polynomial (e.g. bicubic, spline), Lanczos, or edge preserving (Akima), etc. could be
compared as well, without affecting the main result. While many more interpolation methods
are known in literature, the comparison with the simplest baseline algorithm is justified by
the fact that the present area resampling recipe is only dependent on the geometry of the
coordinate transform, not on the image data itself, nor on any assumed or a priori knowledge
about the structure of the image. Other data-dependent interpolators (e.g. Takeda’s kernel
regression [32], not to mention even more elaborate techniques based on deep learning) may
produce more “realistic” results on the perceptual point of view, or even behave well as image
denoisers (which implies a discrimination between an underlying image model and the super-
imposed corrupting noise). Here we merely report about the own merits of the weighted area
resampler, without claiming that it is outperforming other image reconstruction techniques.

As an example of warping, we use the perspective transformation

(5.3)

(

X
Y

)

= g(x, y) =

(

a+ (x− a) d−b
y−b

c
(

1 + d−b
y−b

)

)

,

which describes the projection of an image on the xy plane on the vertical plane x = X, y = d,
Y = z, from the viewpoint x = a, y = b, z = c.

To compare the two, we apply (2.5) and (5.2) using areas of triangles transformed from the
(x, y) to the (X,Y ) space, i.e. using a direct coordinate transform. For the interpolation in-
stead, we exploit a more efficient, customary implementation which evaluates the image values
on the regular (X,Y ) destination grid by looking up and interpolating values on g−1(X,Y ).
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(a) (b)

(c) (d)

Figure 5.2. Comparison between area resampling (left) and unfiltered bilinear interpolation resampling
(right). The original image is a checker pattern defined on 128 × 64 pixels, which is projected with (5.3-5.4)
onto a raster of 100× 100 rectangular pixels. The lower panels (c) and (d) show a zoom-in of the area enclosed
within the yellow boxes. Differences are appreciated as absence of smoothing at the checker boundaries on the
“near” side of the checker, and as reduction of aliasing artifacts at the “far” end.

In other words, we perform an inverse pixel lookup. The transformation (5.3) has analytical
inverse

(5.4)

(

x
y

)

= g−1(X,Y ) =

( 2ac−cX−aY
c−Y

bY+ce−2bc
c−Y

)

,

with a = 1
4 , b = − 1

10 , c = 1
2 , d = 0, and −5 < Jg < − 5

1331 for 0 < y < 1. To stress the essential
differences between the two methods, no dealiasing filter prior to interpolation is applied.

Area resampling somehow averages many original image values falling on the destination
pixels, whereas the traditional resampling only picks up one value or averages few neighbors,
sampling those which fall close to an interpolation point. Area resampling provides thus a
smoother result than interpolation when undersampling images, and can be less prone to
aliasing, since in that case it automatically behaves as an adaptive box filter. Interpolation
is affected by aliasing, which is usually cured by low pass prefiltering; however, for a general
warp transformation this filtering has to be local [17], complicating matters. An example of
aliasing reduction is shown in Figure 5.3, where a global rescaling ratio and a simple periodic
pattern evidence the different amplitude of the aliased spatial component. The amount of alias
suppression, though, is entirely dependent on the particular local downsampling ratio, and on
the original image content.

On the other hand, when oversampling, the weighted area transform produces images
which are sharper and more faithful to pixel edges, since the destination value picked in that
case represents well the original pixel value, rather than being an interpolation between nearest
neighbors.
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Figure 5.3. (a) A 512× 100, 8 bit image containing sinusoidal test bars, with periods of 20, 12, 6, 4 and 2
pixels, (top) downsampled to 145× 80 using area resampling (center) and linear interpolation (the pixel aspect
ratio is varied so that all images have the same coordinate span). (b) intensity profiles of the three images along
the center line, red dashed lines in (a). For these bar spatial frequencies and resampling ratio, the amplitude of
the aliased spatial frequency of the rightmost patterns is reduced using area downsampling.

6. Example: source photometry. Preservation of the intensity is an essential property
when photometry is performed on deformable images. We show in figure 6.1 an illustrative
example with synthetic data. To make our point, we consider the warp of a high resolution
image to a lower resolution, and different ways to estimate, in the transformed image, the
original intensity of each source. An original 400× 400 pixels image is created, simulating well
separated, randomly placed sources with a gaussian peak profile with σ = 0.01L, where L = 1
is the size of the square image. Each source k, centered at (xsk, y

s
k) ∈]0, 1[⊗]0, 1[, contributes

to the pixel I1(i, j) with intensity
(6.1)

Ik1 (i, j) =
1

4

[

erf

(

xi − xsk +∆x

σ

)

− erf

(

xi − xsk
σ

)] [

erf

(

yj − ysk +∆y

σ

)

− erf

(

yj − ysk
σ

)]

.

With this integral definition, the total contribution of each source is normalized to the value
sk = 1. The image is then warped and downsampled to 50× 50 using the transformation

(6.2)

(

X
Y

)

= f(x, y) =

(

1−cos(πx)
2

1−cos(πy)
2

)

which expands the original image away from its center, compressing it at the edges. Dif-
ferently than (4.1), this mapping has a closed inverse form

(6.3)

(

x
y

)

= f−1(X,Y ) =

(

1
2 − sin−1(1−2X)

π
1
2 −

sin−1(1−2Y )
π

)

.

The Jacobian of the direct transformation is Jf = 1
4π

2 sin(πx) sin(πy), whereas that of its
inverse is

J−1
f =

1

π2
√

X (X − 1)Y (Y − 1)
.
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Figure 6.1. Photometry of synthetic sources in a warped image: a) original image I1, 400×400. The
intensity s̃

orig

k of each dot is evaluated summing up all pixel values in neighborhoods of radius 4σ, whose contour
is plotted in blue. b) Image I2, warped and downsampled to 50×50 using Eq. (5.1). New pixel neighborhoods
of radius 4σ around the displaced source centers are plotted in green, along with the deformed contours of the
original neighborhoods, in blue. c) Image Iw2 , warped to 50×50 using the weight of Eq. (5.2). d) I

interp

2
, warped

resampling to 50×50 of I1, using bilinear interpolation.

While this mapping is not exceedingly representative of the transformations used in practice
to correct imaging defects (which are often modeled by polynomial functions), the existence
of an analytical inversion formula instead of an approximation to it, allows a fair comparison
with traditional resampling image interpolations, which are easily performed using the inverse
map.

To estimate a posteriori the contribution of the sources, all intensity values in a pixel
neighborhood of radius 4σ are summed, and the result is compared to the nominal unit intensity
of the peak. To simulate possible pitfalls of the process, when applied to real images, we
add some real world methodological errors. In figure 6.1a, we compute the pixel sums even
when some of the neighborhoods receive overlapped contributions from more than a source,
or sources fall near the margins of the image and contribute incompletely to the total. In
figure 6.1b, we estimate the intensity of each source by summing pixel values within a circular
pixel neighborhood centered on the transformed source position, rather than transforming the
shape of the initial neighborhood. In figure 6.1c and d, we interpolate the image, compute
the neighborhood sums, compensating for the area changes by either multiplying them by
J−1
f (xsk, y

s
k) computed merely at the source center, or by multiplying the local intensity by the

local value of the Jacobian. In total we compare six different estimators of the intensity of the
source, assuming (xsk, y

s
k) known a priori:
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1. On the original image, we compute s̃orig
k =

∑

4σ I1(i, j) over the pixels within a distance
4σ from the center (xsk, y

s
k) (within the blue contours in figure 6.1a)

2. On the area warped image, we compute s̃area warp
k =

∑

4σ I2(l,m), summing this time
the intensities of the destination pixels which fall within 4σ from the transformed center
(Xs

k , Y
s
k ) (within the green contours in figure 6.1b). These summation neighborhoods

may differ form the transformed original ones (compare green and blue lines); by using
this evaluation, we want to assess the error involved, which is presumed small given
the rapid decay and good separation of the peaks.

3. Using instead the area resampled image Iw2 of figure 6.1c, obtained using the weighted
equalization of (5.2), we compute

s̃area resampled
k =

∆X∆Y

∆y∆y

∑

4σ

J−1
f (l,m) · Iw2 (l,m)

Here Jf (l,m) is the value of the Jacobian evaluated at the center of each pixel of the
destination image.

4. Using the area resampled image of figure 6.1c, we compute

s̃
area resampled/center
k = J−1

f (Xs
k, Y

s
k )

∆X∆Y

∆y∆y

∑

4σ

Iw2 (l,m)

using the value of the Jacobian evaluated at the transformed position of the center of
the source alone.

5. Using instead the warped and interpolated image I interp
2 (l,m) of figure 6.1d, we com-

pute

s̃interpolation
k =

∆X∆Y

∆y∆y

∑

4σ

J−1
f (l,m) · I interp

2 (l,m)

6. Using the interpolated image I interp
2 (l,m), we compute

s̃
interpolation/center
k = J−1

f (Xs
k, Y

s
k )

∆X∆Y

∆y∆y

∑

4σ

I interp
2 (l,m)

Figure 6.2 summarizes the results of the various estimators. Discrepancies of the different
s̃k with respect to the nominal value can be ascribed to sums over circular neighborhoods
which deviate from the actual warped profile of the peak, as well as to overlapping peak
tails (which are minimal in our example), but are notably due to the use of Jacobian factors
evaluated pointwise. Figure 6.2b shows in particular how errors significantly increase for

sources at the periphery of the domain, where J varies more rapidly, as quantified by
∣

∣

∣

~∇Jf

∣

∣

∣,

which is easily computed analitically. We have chosen here deliberately an extreme case,
in which J is not constant across the domain, and a downsampling of a factor 8, in order
to exhacerbate the loss of information due to point-based resampling. It is clear that naive
estimators based on the interpolated image can lead to misestimation, with root mean square

errors ε =

√

〈

(s̃k − sk)
2
〉

of the order of a quarter of the nominal peak intensity itself. In

contrast, even a naive estimation, using mere undeformed circular neighborhoods, on the area
warped image (s̃areawarp

k of point 2) produces much more accurate results.
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Figure 6.2. Source intensities s̃k estimated according to different methods. The root mean square error of
each method is reported in the caption. In (a), the datapoints are sorted according to the source number k, for
identification on Figure 6.1; in (b) the inferred source strengths are plotted versus the value of the gradient of
the Jacobian at the center of the source. The plot shows how, while area warp provides a reasonable photometric
estimation everywhere in the warped domain, methods 5 and 6 succeed only where Jf varies slowly. The relative
better performance of method 6 over 5 is probably due to the symmetry of the original source, and the better
representativeness of the central value of Jf .

7. Conclusions and future outlook. We have described a rigorous method for warping
images, which by construction preserves the cumulative brightness of their features, and thus
is suitable for photometric measurements on the transformed image. In doing so we dwelt on
the computational geometry problem of finding the area of the intersection of two triangles.
Despite its geometrical simplicity, we were not aware of a viable and robust algorithm for it
available openly, and we provide one. We showed that a slight variation of the procedure can
instead preserve the local values of intensity, and thus be directly compared with traditional
implementations of warping, based on resampling the deformed image at gridpoints. Our
method remains an area resampling method also in this application, and thus has implicit
different filtering properties, not requiring for instance a preliminary antialiasing filter, and
preserving sharper edges in case of severe oversampling.

The method has been showcased on monochrome images, but its extension to multichan-
nel (e.g. color) images would be trivial, and in its simplest conception would amount to the
computation of equation (2.5) independently for each channel.

The algorithms proposed are computationally more demanding that plain resampling ones,
and in this work we have not pursued their highest possible efficiency. Future work could
concentrate on developing faster implementations of them. Being prone to parallelization (see
Appendix C), a GPU implementation of the algorithm can be envisioned. Once proved viable,
the implementation of the present method in different programming languages its and inclusion
into popular software packages like those mentioned in the introduction can be advocated for.

As a further development, the procedure could be adapted to non-rectangular source pix-
els, which can be in any case be decomposed into constituent triangles. The core of the method
would remain the same, the only differences would be in devising an indexing for the trian-
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gulation of the shaped pixels. Two use cases come in mind: for one, real physical imagers,
notably CMOS sensor chips, have by architectural necessity photosensitive areas which cover
partially the rectangular pixel cell [39]. Our procedure would provide an area-consistent way of
resampling their measurements on differently gridded or deformed coordinates. As for another
application, our method could be used where by design the image pixels are not arranged over
a Cartesian grid at all, like for instance in hexagonal image processing [21].

Appendix A. Barycentric coordinates. Given the triangle T = {~u,~v, ~w}, defined by the
plane coordinates of its three vertices, and a point ~x, we define:

2A = 2 [(vy − wy) (ux − wx)− (vx − wx) (uy − wy)]

s = (~x− ~w) · (vy − wy, vx − wx)(A.1)

t = (~x− ~w) · (uy − wy, ux − wx) ,

where A is the signed area of the triangle T , positive or negative depending on the clockwise
order of the vertices. Our convention is to define the (unscaled) barycentric coordinates of
point ~x as

(A.2) ~b =





b1
b2
b3



 = sign(A)





s
t

2A− s− t



 .

For any point ~x internal to T , 0 ≤ bk ≤ 2A, for any k = {1, 2, 3}.
If one component bk = 0, the point ~x lies on a side of T . If two components bk are

simultaneously zero, the point ~x is simultaneously on two sides of T , i.e. coincides with a
vertex of the reference triangle. All three components of ~b can be null only for the degenerate
case of a triangle with three coinciding vertices.

The inversion relation giving ~x from its barycentric coordinates is

(A.3) ~x =
b1~u+ b2~v + b3 ~w

2 |A|
.

A segment { ~x1, ~x2}, whose extremes have barycentric coordinates ~b1 and ~b2 with respect to
T , intersects the k-th side of the triangle T if b1k and b2k have opposite signs. The barycentric

coordinates ~bc of the intersection point are then

(A.4) ~bc =
b2k
~b1 + b1k

~b2

b2k − b1k
.

Appendix B. Area of the intersection of two triangles. The problem of intersecting
triangles in two and three dimensions has received due attention in computer graphics, being
fundamental in a number of applications which involve triangulation of domains, like collision
detection or intersection of triangulated surfaces [7], and indeed literature on it is available
(e.g. [40, 15, 25, 34, 29]). However, in these works at most the conditions for the detection of
planarity and intersection of two triangles are given, but not an explicit algorithm computing
the overlap area of planar triangles, which we need here. Its derivation is discussed in this
appendix.
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3000 2210 2221 1420a 1420b 1431

1210 1221 1222 0221 0222 0420

0431a 0431b 0630 0000 0003

Figure B.1. The seventeen topologically different ways for two triangles T1 (blue) and T2(green) to intersect.
Blue and green dots indicate respectively vertices of T1 internal to T2 and viceversa; red dots intersections
between sides. The numeric label above each couple reflects the classification explained in the text. The area of
the intersection polygon can always be computed as a sum or a difference of constituent trianglets (up to four),
which are highlighted by pink dashed lines.

B.1. Enumeration of possible cases. The possible ways in which two triangles T1 and T2

can overlap and intersect can be classified according to topological properties. Being triangles
always convex, their intersection is always a convex polygon. A side of T2 can intersect zero,
one or two sides of T1. A side of of T2 with one vertex internal and one external to T1 implies
a single intersection with one side of T1, while both vertices internal or external could both
grant either zero or two intersections. The different overlap cases can be labeled according to:
the number v1 of vertices of T1 falling inside T2 (which can be 0, 1, 2, or 3); the number is
of intersections between sides of the two triangles (0, 2, 4 or 6); the number s2 of sides of T2

intersected, and, to remove ambiguities, the number v2 of vertices of T2 falling into T1. All the
possible cases are depicted in Fig. B.1. The label above each subfigure is derived from these
numbers, v1iss2v2. A further distinction is necessary for some of the cases with is = 4: two
topologically different arrangements are possible with the same classification numbers, hence
1420a and 1420b, 0431a and 0431b.

As for areas, clearly A [T1 ∩ T2] = A [T2 ∩ T1], and commutativity would reduce the number
of topologically different cases to 11 (five of the seventeen cases are topologically invariant for
the exchange of the two members, like e.g. 1431, 1221; the other twelve have each one their
dual, like 2210 and 0222, counted only once). In our computation, though, the two member
triangles have different roles, and we must in principle treat the all cases as distinct. In any
case, the area of the intersection polygon can always be computed as a sum or difference of at
most four smaller trianglets, formed either by the vertices or by the intersection points of the
member sides.
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We note that an early analysis of the problem was given in the report [30], though without
an explicit computation algorithm and without considering degenerate cases.

B.2. Degeneracy and numerical precision. Problems arise for triangles which have some
colinear side, or simply vertices of one triangle falling on the sides of the other. Figure B.2
displays 59 topologically different configurations, and is possibly not even exhaustive of them.
Such cases have to be treated with care in the numerical computation, because their identi-
fication requires the simultaneous satisfaction of more than a single equality condition. For
instance, if one vertex of T1 falls onto a side of T2, three conditions are to be true: the vertex
must belong to the side of the second triangle, and two sides of the first triangle must intersect
that side, both exactly in that point. For our purposes, one of the triangles will be a half
pixel in the destination image, and the other a warped half pixel of the original image. For a
generic functional mapping between (x, y) and (X,Y ), expressed by algebraic or transcenden-
tal functions, such cases may be extremely rare; however, colinear points will be very frequent
for transformations like grid sub or oversampling by integer factors, or rotation by notable
angles, which are indeed among the most typical test cases. A reliable algorithm for warping
must be capable to treat them adequately as well.

At numerical precision, due to the propagation of truncation errors, exact equality condi-
tions may often be violated; moreover, they may be violated in a way which is topologically
inconsistent. For example, it may result numerically that one vertex of T1 falls on a side of
T2, whereas the sides of T1 originating from that vertex may not appear to intersect T2, or, to
intersect it in numerically different points than the vertex in question. Additionally, extreme
image warpings around singular points of the coordinate transformation can produce patho-
logical triangles with nearly-colinear vertices. The numerical identification of intersections
between sides can also produce bogus results for them.

A way of coping with nearly degenerate cases would be to evaluate the algebraic conditions
which define whether a point is interior or exterior to a triangle, or whether two segments
intersect, within preassigned tolerances, larger than typical truncation errors [19, 8]. The
problem in that is that the resolution of the ambiguity usually requires a compatible set of
decisions for more than a single test. If for instance one of the barycentric coordinates of a
point is found to be nearly zero, implying that the point lies on the side of the test triangle, it
is not possible to consider systematically that point as interior or exterior to the triangle, by
itself. The decision depends on which intersections among sides should be counted or not, in
order to reconduce the limit case to one of the 17 basic ones of figure B.1.

B.3. Topological approach. If it was not for the possible degeneration, we could compute
the area of T1 ∩ T2 in each of the 17 cases mentioned in section B.1 identifying in each con-
figuration the composing trianglets (up to four) which are to be considered. Such trianglets
are highlighted by pink dashed lines in Fig. B.1. In this approach, the case is first identified
counting the number of points of T1 internal to T2, and then determining the number and
the coordinates of the intersections only among the sides required. In some of the cases, the
knowledge of the internal points makes the computation of some intersections among sides
unnecessary, saving operations. For instance, in case 2210 it is known a priori that one side
of T1 is all contained in T2, and doesn’t intersect any of its sides. Then, with conditional
code which treats each case differently, the relevant trianglets are singled out and their areas
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1s0v2e-f 1s0v2e-g 1s0v2e-h 0s0v1i 0s0v2i1e 0s0v2e1i 0s0v3e-a 0s0v3e-b

0s0v3e-c 0s0v3e-d 0s0v3e-e 0s0v3e-f 0s0v3e-g 0s0v3e-i 0s0v3e-j 0s0v3e-k

0s0v3e-l 0s0v3e-m 1s0v2e-n

Figure B.2. 59 topologically different degenerate cases of triangles with one or more vertices of T1 (blue)
falling on sides of T2 (green), or viceversa. A possible classification, hinted in the labels, may count the number
of vertices of T1 falling on sides of T2 (suffix s), the number of common vertices (suffix v), the number of other
vertices of T1 internal or external to T2 (suffixes i or e); but these indicators alone are not exhaustive (hence
the lowercase letters appended to the label).

added. This may be, for some of the cases, computationally more economical than with the
approach described in the next section. A sample Matlab implementation of this method is
given in the file areaTriangleIntersection.m included in the Supplementary Material (di-
rectory Triangles/topologicalIntersection/). However, the the procedure is incomplete
if degenerate cases are not treated, identified and cast into one of the 17 basic patterns. While
this is possible, it requires detailed case-by-case code, branching through all possibilities (see
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the function intersectTriangles2.m in the same directory). That would lead to a code com-
plicate and difficult to be maintained, outweighing the minimal performance gain which could
result from it.

B.4. Brute force approach. To avoid the classification of all potentially degenerate tri-
angle overlap cases, we adopt a simpler approach. We start noting that the vertices of the
polygon T1 ∩ T2 are points which always belong to at least one of three sets: the vertices of
T1 which are internal to T2, the vertices of T2 internal to T1, and the intersections between
sides of T1 and T2. First, a list of such points (at most 12 = 3 + 3 + 6) is compiled using
barycentric coordinates for the computations. In the degenerate cases, some of these points
can appear in more than one of the subsets: for example a point of T1 on a side of T2 can
appear both as an internal point and as the intersection of two different sides of T1 with T2.
The list is therefore pruned, eliminating duplicate points which coincide within a given numer-
ical tolerance. The area of the polygon is then computed from the pruned list of N vertices
{~xk} = {(xk, yk)} according to algorithm B.1, which is robust to nearly coincident or colinear
vertices, and economical in terms of operations.

Algorithm B.1 area of the intersection polygon

if N < 3, A [{}] = 0
if N = 3,

A [{~x1, ~x2, ~x3}] =
|(x3 − x1) (y2 − y1)− (x2 − x1) (y3 − y1)|

2

if N > 3:
1. the center point ~xM = 1

N

∑N
k=1 ~xk is computed

2. ray angles from the center are computed, ϕk = tan−1 yM−yk
xM−xk

3. the set {~xk} is sorted in order of increasing ϕk

4. ~x1 is taken as a pivot, and for 3 ≤ k ≤ N the N − 2 triangle areas

A [{~x1, ~xk−1, ~xk}] =
(xk − x1) (yk−1 − y1)− (xk−1 − x1) (yk − y1)

2

are computed and summed.

Sorting the vertices in cyclic order is required for N > 3 (steps 1–3 of algorithm B.1),
since the pruned list of vertices is not guaranteed to be ordered, by construction. This adds
a computational cost of two divisions by N (step 1), N evaluations of atan2() (step 2)
and a sort operation of a list of four to six floating numbers (step 3). Conditional code to
list the internal points and the intersections in a proper order, on the other hand, would
be more convoluted. As an aside, step 4 involves only 2 (N − 2) multiplications, whereas
the standard shoelace algorithm for computing the area of the polygon would require 2N .
The cyclic order of the vertices, and the convexity of the polygon itself, guarantee that
(xk − x1) (yk−1 − y1) − (xk−1 − x1) (yk − y1) > 0 for all k. There would be other algorith-
mic possibilities to achieve cyclic sorting, avoiding the evaluation of atan2(); (compare for
instance the function polygonArea2.m given in Supplementary Material, which uses it, with
polygonArea3.m, which does not, both in directory Triangles/); however, as for Matlab is
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concerned, the first option is faster).
The advantage of this procedure is that a single threshold identification criterion is ap-

plied to the list of points obtained, without the need of pondering the compatibility between
resolutions of internality and crossing in the limit cases. Conversely, the effect of including or
excluding some nearly coincident polygon vertices, dependent on the threshold value chosen,
amounts only to adding or not some nearly null area contributions.

This algorithm is implemented in the file areaTriangleIntersection2.m included in the
Supplementary Material (directory Triangles/), and has been used to process the images
shown in this paper.

Appendix C. Computational performance. The algorithms described in this paper have
been implemented in Matlab, and the code is provided as Supplementary Material of this paper.
Coding has paid some amount of attention to efficiency and good programming practice, but
ultimate performance has not been sought for itself.

Some CPU times of the algorithm presented, vs. the much faster resampling interpolation
of the inverse map, are presented in Table C.1. Timings were obtained on a 12 core Intel
Xeon® W-2135 CPU with 3.70GHz clock, using Matlab 2020a. Tests runs on square images
defined on unit square coordinates, similar to that reported in section 5.2.1 were executed
at different resolutions, and the average of 10 area warp iterations and 1000 interpolation
iterations is recorded. The sin mapping of Eq. (6.2) was chosen, having an analytical inverse
and being bijective on the whole unit square.

Table C.1

Timings for area warping vs. resampling.

I1 resolution I2 resolution area warp, ms #Ba
lm,ij 6= 0 bilinear resampling, ms

64× 64 100× 100 251.6 26244 0.313
64× 64 1000 × 1000 4594 1127844 10.75

512 × 512 100× 100 3540 372100 2.43
512 × 512 1000 × 1000 10748 2280100 13.43

These timings are to be taken only as somewhat indicative of a general trend. In our
implementation of the area warping, the core routine for computing A [Tlm ∩ f (tij)] using
eq. (A.4) and Algorithm B.1 is compiled into a mex file, for higher efficiency, but all other
parts of the code are executed in a loop by the Matlab interpreter. This includes the index
referencing to tij and Tlm, as well as the computation of f (tij). On the other hand, the
outer loop on i, j of algorithm 3.1 described in §3 can be easily parallelized, using Matlab’s
parfor construct. In contrast, when we look at traditional resampling, we are comparing
with a single call of interp2, which is certainly well optimized internally, and involves much
less operations. It is thus not too constraining, at this stage, to observe that the area warp
procedure is some three orders of magnitude slower than the usual technique. Moreover,
the computational effort for the area warp is expected to be dependent on the amount of
stretching and destination domain coverage caused by the particular mapping f , which affects
the sparsity of the resulting matrix Ba

lm,ij, and even by the number of sides of each individual
triangle intersection generated.
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