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Abstract

Nonnegative matrix factorization arises widely in machine learning and data analysis.
In this paper, for a given factorization of rank r, we consider the sparse stochastic matrix
factorization (SSMF) of decomposing a prescribed m-by-n stochastic matrix V into a product
of an m-by-r stochastic matrix W and an r-by-n stochastic matrix H, where both W and
H are required to be sparse. With the prescribed sparsity level, we reformulate the SSMF
as an unconstrained nonconvex-nonsmooth minimization problem and introduce a column-
wise update algorithm for solving the minimization problem. We show that our algorithm
converges globally. The main advantage of our algorithm is that the generated sequence
converges to a special critical point of the cost function, which is nearly a global minimizer
over each column vector of the W -factor and is a global minimizer over the H-factor as a
whole if there is no sparsity requirement on H. Numerical experiments on both synthetic
and real data sets are given to demonstrate the effectiveness of our proposed algorithm.

Keywords. Nonnegative matrix factorization, stochastic matrix factorization, sparsity, al-
ternating minimization, proximal gradient method

AMS subject classifications. 65K05, 90C06, 90C26

1 Introduction

Since the introduction of simple and efficient algorithms in the seminal work of Lee and Seung
[27], nonnegative matrix factorization (NMF) has been widely adopted in various fields such as
document clustering [5, 30], computer vision [10], recommendation systems [51], bioinformatics
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[38], face recognition [24, 50, 52], acoustic signal processing [49], source separation [14, 19], and
modeling default data via interactive hidden Markov model (IHMM) [12, 13].

In this paper, we consider the following sparse stochastic matrix factorization (SSMF) prob-
lem. Let V = (vij) ∈ Rm×n be a (column) stochastic data matrix, i.e., all its entries are
nonnegative with each column summing to 1 (

∑m
i=1 vij = 1 for j = 1, . . . , n). For a predeter-

mined factor rank r < min{m,n}, the SSMF attempts to find two stochastic matrices W ∈ Rm×r
and H ∈ Rr×n such that V ≈ WH, where the sparseness constraints are imposed on both W
and H (on columns).

In fact, the SSMF is a sparse probabilistic latent semantic analysis (PLSA). PLSA is a
statistical technique for factor analysis of two-mode and co-occurrence data [20]. Compared to
latent semantic analysis, PLSA possesses a solid statistical foundation in model fitting, model
selection and complexity control [21]. Like NMF [16], PLSA has been used in many applications
such as information retrieval and filtering, natural language processing, machine learning from
text [20, 21]. In [1, 2], some conditions were presented for the existence of a unique solution of
the stochastic matrix factorization. However, as noted in [33], these conditions may not be true
in the context of choice modeling.

There exist different methods for the sparse NMF since sparseness can achieve a sparse
representation or data clustering. In particular, in [22], Hoyer presented the projected gradient
based multiplicative algorithm for solving the following minimization problem:

min
W,H≥0

C(W,H) =
1

2
‖V −WH‖2F + λ‖H‖1, (1.1)

where V ≥ 0 is the input data matrix, λ > 0 is a regularization parameter, and ‖H‖1 :=
∑

i,j |hij |.
However, for the SSMF, the `1-norm of H is constant as H is a stochastic matrix. There ex-
ist other cost functions for measuring the factorization residual such as the generalized Kull-
back–Leibler divergence [16, 28] and Minkowski family of metrics, see for instance [41] and the
references therein. For additive regularization for stochastic matrix factorization, one may refer
to [39]. For other numerical algorithms for sparse topic modeling under the PLSA model, one
may refer to [43] and the references therein. Other regularizers include the entropic prior [37],
the pseudo-Dirichlet prior [25], and the `1/2-regularization [35].

To our best knowledge, there exist only a few works on the sparse NMF with `0 constraints.
In particular, in [44], Xiu et al. gave a structured joint sparse NMF model:

min
W,H

C(W,H) =
1

2
‖V −WH‖2F + λtr(HTLH)

subject to (s.t.) W ≥ 0, H ≥ 0, ‖H‖2,0 ≤ s,
(1.2)

where L is the graph Laplacian matrix learned from the input data matrix V ≥ 0, s is the
prescribed sparsity level, and ‖H‖2,0 denotes the `2,0 norm of H, i.e., ‖H‖2,0 := card({t :
‖H(t, :)‖ 6= 0}). Also, an optimization algorithm based on the alternating direction method of
multipliers was presented for solving the above model. However, it is not easy to choose an
appropriate regularization parameter such that a good tradeoff between the residual term and
the regularization term can be obtained [29, 42].

Recently, there have been some development in cardinality/`0-constrained optimization prob-
lems. In particular, several optimization methods were introduced for cardinality-constrained
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problems appeared in portfolio optimization and statistical learning [7, 9, 17]. In [45, 46], Xu
et al. presented some projected gradient methods for cardinality constrained optimization ap-
peared in compressed sensing, financial optimization and image processing. In [23], Kanzow et
al. gave an augmented Lagrangian method for cardinality-constrained optimization problems.

In this paper, we directly apply `0 constraints to measure the sparseness of the W -factor and
the H-factor in the SSMF. We find a solution to the SSMF by minimizing the distance between
the input stochastic data matrix V and the product WH in Frobineus norm, where each column
of the stochastic matrices W and H has the prescribed sparsity level. To our best knowledge,
most optimization algorithms for solving the sparse NMF treat each of the two factors as a whole,
which may lead to slow convergence rate. To develop an effective algorithm with simple update
and global convergence, we propose a column-wise update algorithm for solving the SSMF. This
is motivated by the alternating minimization (AM) method, see for instance the book [4], and
the proximal alternating linearized minimization (PALM) [8] and the block coordinate update
[47, 48] for nonconvex and nonsmooth optimization. We update the W -factor column by column
via the AM method or the cyclic projected gradient method and update the H-factor column
by column by using the projected gradient method, where the involved subproblems can be
solved efficiently. In [4, Theorem 14.3], it has been shown that every limit point of the sequence
generated by the AM method (i.e., the block coordinate descent method as in [6, Section 2.7])
is a stationary point, which is a coordinate-wise minimum. A PALM algorithm in [8] and the
block coordinate update algorithms in [47, 48] were proposed for solving nonconvex-nonsmooth
optimization. In particular, based on the Kurdyka- Lojasiewicz (KL) property, the proposed
PALM algorithm and the block coordinate update algorithms were shown to converge globally
to a critical point. For the sparse NMF, the `0-norm ‖ · ‖0 is a semi-algebraic function, which
satisfies the KL property [8, Theorem 3 and Examples 2–3]. Then we reformulate the SSMF
as an unconstrained nonconvex-nonsmooth minimization problem, where the objective function
measures the difference between V and WH and the entry-wise nonnegativity and sparseness of
W and H. The global convergence of the proposed method is established. The main advantage
of our method lies in the fact that the sequence generated by our method converges globally to
a special critical point, at which the objective function is nearly globally minimized over each
column vector of the W -factor and is globally minimized over the H-factor as a whole if the
sparseness constraint of H is removed. Numerical experiments on both synthetic and real data
sets show that the proposed algorithm is more effective than the PALM method for solving the
SSMF in terms of the reconstruction error.

Throughout this paper, we use the following notations. Let Rm×n be the set of all m × n
real matrices and Rn = Rn×1. Let Rn be equipped with the Euclidean inner product 〈·, ·〉 and
its induced norm ‖ · ‖. Let Rm×n be equipped with the Frobenius inner product 〈·, ·〉F and its
induced Frobenius norm ‖ · ‖F . The superscript“·T ” stands for the transpose of a matrix or
vector. In denotes the identity matrix of order n. Let | · | be the absolute value of a real number
or the components of a real vector and ‖ · ‖p be the matrix p-norm (especially p = 1, 2,∞) and
‖ · ‖0 denotes the number of nonzero entries of a vector or a matrix. We denote by λmax(·) the
largest eigenvalue of a symmetric matrix. Let ΠD(·) denote the metric projection onto a subset
D in Rn or Rm×n. For any matrix A, A ≥ 0 means that A is entrywise nonnegative and A(i, :)
and A(:, j) denote respectively the i-th row and the j-th column of A. For any given point
(X1, X2) ∈ Rm1×n1× ⊂ Rm2×n2 and any subset D1×D2 ⊂ Rm1×n1 ×Rm2×n2 , the distance from
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(X1, X2) to D1 ×D2 is determined by

dist((X1, X2),D1 ×D2)) = inf{‖(X1, X2)− (Y1, Y2)‖F | (Y1, Y2) ∈ D1 ×D2}.

Let [n] = {1, 2, . . . , n} and for any nonempty set S ⊂ [n], let card(S) and S be the cardinality
of S and the complement of S in [n], respectively. For any set S ⊂ [n], xS is the subvector of a
vector x with components indexed by S.

The rest of this paper is organized as follows. In Section 2, we reformulate the SSMF as
a nonconvex-nonsmooth minimization problem and then propose a new column-wise update
algorithm for solving it. In Section 3, we establish the global convergence of the proposed
algorithm. In Section 4, we report some numerical experiments to illustrate the effectiveness of
our method. Finally, concluding remarks are given in Section 5.

2 A column-wise update algorithm

In this section, we reformulate the SSMF as an unconstrained nonconvex-nonsmooth minimiza-
tion problem. Then we propose a column-wise update algorithm for solving the minimization
problem.

2.1 Preliminaries

We recall the definition of subdifferential (subgradient) for a nonsmooth function in [32, 36].

Definition 2.1 Let h : Rn → (−∞,+∞] be a proper lower semicontinuous (lsc) function. Then,
the set

∂̂h(ā) :=
{
r ∈ Rn | lim inf

a→ā

h(a)− h(ā)− 〈r,a− ā〉
‖a− ā‖

≥ 0
}
.

is the presubdifferential or Fréchet subdifferential of h at ā ∈ dom h and we set ∂̂h(ā) := ∅ if
ā /∈ dom h. Moreover, the set

∂h(ā) :=
{
r ∈ Rn | ∃ak → ā, h(ak)→ h(ā) and rk ∈ ∂̂h(ak)→ r as k →∞

}
(2.1)

is the limiting subdifferential of h at ā ∈ Rn.

From [36, Theorem 8.6], it follows that, for any ā ∈ dom g, ∂̂h(ā) ⊂ ∂h(ā) and ∂̂h(ā) is
convex and closed while ∂h(ā) is closed. A point ā ∈ Rn is called a critical point of h if 0 ∈ ∂h(ā).

2.2 Reformulation

As in [27], for the SSMF, we measure the approximation quantity by the residual ‖V −WH‖F
in the Frobenius norm. Then we can rewrite the SSMF as the following minimization problem:

min
W∈Rm×r,H∈Rr×n

f(W,H) =
1

2
‖V −WH‖2F

s.t. W ∈ G1 ∩ G2, H ∈ G3 ∩ G4,
(2.2)
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where G1 := {W = (wij) ∈ Rm×r | W ≥ 0,
∑m

i=1wit = 1, t = 1, . . . , r}, G2 := {W ∈
Rm×r | ‖W (:, t)‖0 ≤ s1, t = 1, . . . , r}, G3 := {H = (hij) ∈ Rr×n | H ≥ 0,

∑r
t=1 htj = 1, j =

1, . . . , n}, and G4 := {H ∈ Rr×n | ‖H(:, j)‖0 ≤ s2, j = 1, . . . , n}. Here, s1, s2 > 0 are prescribed
sparsity level.

It is easy to see that the SSMF (2.2) can be reduced to the following unconstrained mini-
mization problem:

min
W∈Rm×r,H∈Rr×n

F (W,H) := f(W,H) + δG1∩G2(W ) + δG3∩G4(H), (2.3)

where δK is the indicator function of a set K, i.e., δK(x) = 0 if x ∈ K and δK(x) = +∞ if x 6∈ K.

In Problem (2.3), f is nonconvex and smooth, and both δG1∩G2 and δG3∩G4 are nonsmooth.
One may solve Problem (2.3) by the PALM method in [8], which is described in Algorithm 2.1
below.

Algorithm 2.1 A PALM method for Problem (2.3)

Step 0. Choose W 0 ∈ G1 ∩ G2, H0 ∈ G3 ∩ G4, δ1 > 0, δ2 > 0, and let k := 0.

Step 1. Take µk = 1/(‖Hk‖2F + δ1) and compute

W k+1 = ΠG1∩G2
(
W k − µk∇W f(W k, Hk)

)
.

Step 2. Take νk = 1/(‖W k+1‖2F + δ2) and compute

Hk+1 = ΠG3∩G4
(
Hk − νk∇Hf(W k+1, Hk)

)
.

Step 3. Replace k by k + 1 and go to Step 1.

In Algorithm 2.1, both the W -factor and the H-factor are updated as a whole, which may
cause slow convergence. To overcome this drawback, we develop an efficient algorithm with
simpler update for solving the SSMF (2.2).

In the following, we present a column-wise update algorithm for solving the SSMF (2.2),
where both the W -factor and the H-factor are updated column-by-column. To begin, we let

Pn := {x ∈ Rn | x ≥ 0,

n∑
j=1

xj = 1}, Qsn := {x ∈ Rn | ‖x‖0 ≤ s}.

For convenience, we let

f(W,H) =
1

2

∥∥V − [w1, . . . ,wr][h1, . . . ,hn]
∥∥2

F
≡ f(w1, . . . ,wr,h1, . . . ,hn), (2.4)
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for all W := [w1, . . . ,wr] ∈ Rm×r and H := [h1, . . . ,hn] ∈ Rr×n. Also, we define F by

F (W,H) = f(w1, . . . ,wr,h1, . . . ,hn) +

r∑
i=1

δPm(wi) +

r∑
i=1

δQs1
m

(wi)

+

n∑
t=1

δPr(ht) +

n∑
t=1

δQs2
r

(ht) ≡ F (w1, . . . ,wr,h1, . . . ,hn), (2.5)

for all W := [w1, . . . ,wr] ∈ Rm×r and H := [h1, . . . ,hn] ∈ Rr×n. Then the SSMF (2.2) can be
rewritten equivalently as the following unconstrained minimization problem:

min
w1,...,wr∈Rm,h1,...,hn∈Rr

F (w1, . . . ,wr,h1, . . . ,hn). (2.6)

To avoid confusion, we refer to Problem (2.6) as the SSMF.

Let V := [v1, . . . ,vn]. Then the partial gradient ∇wif of f defined in (2.4) at (w1, . . . ,wr,
h1, . . . ,hn) ∈ Rm × · · · × Rm︸ ︷︷ ︸

r

×Rr × · · · × Rr︸ ︷︷ ︸
n

is given by

∇wif(w1, . . . ,wr,h1, . . . ,hn) = −(Ui −wiH(i, :))(H(i, :))T (2.7)

with the Lipschitz constant ‖H(i, :)‖2 for i = 1, . . . , r, where Ui := V −
∑i−1

j=1 wjH(j, :) −∑r
j=i+1 wjH(j, :) for 1 ≤ i ≤ r. Moreover, the partial gradient ∇htf of f at (w1, . . . ,wr,h1, . . . ,

hn) ∈ Rm × · · · × Rm︸ ︷︷ ︸
r

×Rr × · · · × Rr︸ ︷︷ ︸
n

is given by

∇htf(w1, . . . ,wr,h1, . . . ,hn) = W T (Wht − vt), (2.8)

with the Lipschitz constant ‖W TW‖2 for t = 1, . . . , n.

We must point out that the function F defined in (2.5) is nonconvex-nonsmooth as f is
nonconvex and smooth while δPm , δPr , δQs1

m
and δQs2

r
are all nonsmooth. For the partial subd-

ifferential of F defined by (2.5), we have the following result from [3, 8, 36].

Lemma 2.2 Let F be defined in (2.5). Then for any

(W,H) := (w1, . . . ,wr,h1, . . . ,hn) ∈ Rm × · · · × Rm︸ ︷︷ ︸
r

×Rr × · · · × Rr︸ ︷︷ ︸
n

,

we have ∂F (W,H) = (∂w1F (W,H), . . . , ∂wrF (W,H), ∂h1F (W,H), . . . , ∂hnF (W,H)), where ∂wiF
(w1, . . . ,wr,h1, . . . ,hn) = {∇wif(w1, . . . ,wr,h1, . . . ,hn) + ∂δPm(wi) + ∂δQs1

m
(wi)} for i =

1, . . . , r and ∂htF (w1, . . . ,wr,h1, . . . ,hn) = {∇htf(w1, . . . ,wr, h1, . . . ,hn)+∂δPr(ht)+∂δQs2
r

(ht)}
for t = 1, . . . , n.

We note that δPm , δPr , δQs1
m

and δQs2
r

are all lower semicontinuous (lsc). As noted in [8], the
`0-norm ‖·‖0 is semi-algebraic and thus satisfies the KL property (see for instance [3, 8, 47, 48]).
Hence, F is semi-algebraic and thus is a KL function. It is natural to solve the SSMF (2.6) by
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the PALM method in [8] and the generated sequence converges to a critical point of F . However,
for any fixed W = [w1, . . . ,wr] ∈ Rm×r, F is separable with respect to the variables ht’s, i.e.,

F (W,H) =

n∑
t=1

1

2
‖vt −Wht‖2 +

r∑
i=1

δPm(wi) +

r∑
i=1

δQs1
m

(wi)

+

n∑
t=1

δPr(ht) +

n∑
t=1

δQs2
r

(ht).

Then it is desired to n update ht’s separately via the proximal gradient method. On the other
hand, for any fixed H = [h1, . . . ,hn] ∈ Rr×n, F is non-separable with respect to the variables
wi’s. Thus, it is preferred to apply the AM method to updating wi’s. However, one can see
from [4, Chapter 14] and [6, Section 2.7]) that, when we directly apply the AM method to the
SSMF (2.6), it is not guaranteed that every limit point of the sequence generated by the AM
method is a column-wise minimum point, which is not necessarily a stationary point since F is
nonconvex-nonsmooth. In this paper, to take full advantage of both the AM method and the
PALM method, we propose a column-wise update algorithm for solving the SSMF (2.6), which
is stated in Algorithm 2.2 below.

Regarding Algorithm 2.2, we have the following remarks.

• In Step 2 of Algorithm 2.2, we have by the definition of ψk, for any 1 ≤ t ≤ n,

ψk(h
k
t )− ψk(h̄kt ) =

1

2

(
‖vt −W k+1hkt ‖2 − ‖vt −W k+1h̄kt ‖2

)
,

which is easy to estimate.

• In Step 1 of Algorithm 2.2, for each 1 ≤ i ≤ r, we update wk
i by (2.9) if the minimum

in (2.9) is uniquely attained, which satisfies the sufficient decrease condition φk(w
k
i ) −

φk(w̄
k
i ) ≥ δ1

2 ‖w
k
i − w̄k

i ‖2; Otherwise, we update wk
i via the proximal gradient scheme

(2.10).

• For the scalar νtk defined in Step 2 of Algorithm 2.2, we have the following bounds. Since
W k+1 = [wk+1

1 , . . . ,wk+1
r ] with wk+1

i ∈ Pm ∩ Qs1m for i = 1, . . . , r, we have ‖W k+1‖1 = 1

and ‖W k+1‖∞ = max1≤i≤m
∑r

j=1wij ≤ r. Thus,

‖(W k+1)TW k+1‖2 ≤ ‖W k+1‖22 ≤ ‖W k+1‖1‖W k+1‖∞ = ‖W k+1‖∞ ≤ r, (2.14)

If νtk is determined by (2.11), then from (2.14) we have

νtk = c ≥ 1/δ2 or 1/r ≤ 1/‖(W k+1)TW k+1‖2 ≤ νtk ≤ c. (2.15)

If νtk is determined by (2.12), then from (2.14) we have

1/(r + δ2) ≤ 1/(‖(W k+1)TW k+1‖2 + δ2) = νtk ≤ 1/δ2. (2.16)

• All subproblems in Algorithm 2.2 can be solved efficiently (see Section 3.1).
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Algorithm 2.2 A column-wise update algorithm for solving the SSMF (2.6)

Step 0. Choose W 0 := [w0
1, . . . ,w

0
r ] ∈ G1 ∩ G2, H0 := [h0

1, . . . ,h
0
n] ∈ G3 ∩ G4, δ1 > 0, δ2 > 0,

c ≥ 1/δ2, and let k := 0.

Step 1. For i = 1, . . . , r, if ‖Hk(i, :)‖ = 0, then set wk+1
i = wk

i ; else compute

w̄k
i = argmin

wi∈Pm∩Q
s1
m

φk(wi) (2.9)

such that if φk(w
k
i )− φk(w̄k

i ) ≥ δ1
2 ‖w

k
i − w̄k

i ‖2, then set wk+1
i = w̄k

i ; else set

wk+1
i = ΠPm∩Q

s1
m

(
wk
i − µik∇φk(wk

i )
)
, (2.10)

where φk(wi) := f(wk+1
1 , . . . ,wk+1

i−1 ,wi,w
k
i+1, . . . ,w

k
r , H

k), Φk(wi) := φk(wi) + δPm(wi) +

δQs1
m

(wi), and µik = 1/(‖Hk(i, :)‖2 + δ1). Set

W k+1 := [wk+1
1 , . . . ,wk+1

r ].

Step 2. For t = 1, . . . , n, take νtk = min
{
c,

‖∇ψk(hk
t )‖2

‖Wk+1∇ψk(hk
t )‖2

}
and compute

h̄kt = ΠPr∩Q
s2
r

(
hkt − νtk∇ψk(hkt )

)
(2.11)

such that if ψk(h
k
t )− ψk(h̄kt ) ≥ δ2

2 ‖h
k
t − h̄kt ‖2, then set hk+1

t = h̄kt ; else set

hk+1
t = ΠPr∩Q

s2
r

(
hkt − νtk∇ψk(hkt )

)
, (2.12)

where ψk(ht) := f(W k+1,hk1, . . . ,h
k
t−1,ht,h

k
t+1, . . . ,h

k
n, ), Ψk(ht) := ψk(ht) + δPr(ht) +

δQs2
r

(ht), and νtk = 1/(‖(W k+1)TW k+1‖2 + δ2). Set

Hk+1 := [hk+1
1 , . . . ,hk+1

n ]. (2.13)

Step 3. Replace k by k + 1 and go to Step 1.
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3 Convergence analysis

In this section, we first derive the projection onto Pn ∩ Qsn. Then we establish the global
convergence of Algorithm 2.2 by combining the convergence analysis of the PALM [8] and that
of the AM method (e.g., [4, Chapter 14] and [6, Section 2.7]) based on the KL property. Here,
we give a closed-form projection onto Pn ∩ Qsn (see Proposition 3.1), which can be computed
with the computational complexity O(n log n). We also give a closed-form of w̄k

i defined in (2.9)
(Lemma 3.4).

3.1 Projection onto Pn ∩Qsn
We note that, for any given y ∈ Rn, z = ΠPn∩Qs

n
(y) is the unique solution to the following

minimization problem:

min
S⊂[n], card(S)=s

1

2
‖z− y‖2

s.t. z ∈Mn
S := {z ∈ Rn |

∑
i∈S zi = 1, zS ≥ 0, zS = 0}.

(3.1)

For problem (3.1), we have the following result.

Proposition 3.1 Let y ∈ Rn and 1 ≤ s ≤ n. Suppose π = {π(1), . . . , π(n)} is a permutation
such that yπ(1) ≥ yπ(2) ≥ · · · ≥ yπ(n). Let S∗ = {π(1), . . . , π(s)} ⊂ [n]. Then a solution z∗ ∈ Rn
to problem (3.1) is given by

z∗ := argmin
z∈Mn

S∗

1

2
‖z− y‖2. (3.2)

Proof. Without loss of generality, we assume that y1 ≥ y2 ≥ · · · ≥ yn. In this case, S∗ =
{1, . . . , s}. For any S = {j1, . . . , js} ⊂ [n] with j1 < j2 < · · · < js, there exists a permutation
matrix P (S) ∈ Rn×n such that z ∈ Mn

S if and only if z = P (S)w for some w ∈ Mn
S∗ . Let

ẑ := argminz∈Mn
S

1
2‖z−y‖2. Then we have ẑ = P (S)ŵ ∈Mn

S , where ŵ := argminw∈Mn
S∗

1
2‖w−

(P (S))Ty‖2. By hypothesis, y1 ≥ y2 ≥ · · · ≥ yn and j1 < j2 < · · · < js. Thus, yi ≥ yji for
i = 1, . . . , s. We note that ẑji ≥ 0 for i = 1, . . . , s since ẑ ∈ Mn

S . Hence, −ẑjiyi ≤ −ẑjiyji for
i = 1, . . . , s. By the definitions of z∗ and ŵ and using the orthogonal invariance of the vector
2-norm, we have

1

2
‖z∗ − y‖2 ≤ 1

2
‖ŵ − y‖2 =

1

2
‖ẑ− P (S)y‖2 =

1

2

s∑
i=1

(ẑji − yi)2 +
1

2

n∑
i=s+1

y2
i

=
1

2

s∑
i=1

(ẑ2
ji − 2ẑjiyi) +

1

2

n∑
i=1

y2
i ≤

1

2

s∑
i=1

(ẑ2
ji − 2ẑjiyji) +

1

2

n∑
i=1

y2
i

=
1

2

s∑
i=1

(ẑji − yji)2 +
1

2

∑
i/∈S

y2
ji =

1

2
‖ẑ− y‖2.

By the arbitrariness of S, the proof is complete.
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Remark 3.2 In [46, Theorem 2.4], Xu et al. gave another way for finding a closed-form pro-
jection onto Pn ∩Qsn.

Based on Proposition 3.1 and the projection of a vector onto the probability simplex [11],
we can find z = ΠPn∩Qs

n
(y) of a given vector y ∈ Rn, which is described in Algorithm 3.3.

Algorithm 3.3 Projection onto Pn ∩Qsn
Step 0. Given a vector y = (y1, . . . , yn)T ∈ Rn and a permutation π = {π(1), . . . , π(n)} such

that yπ(1) ≥ yπ(2) ≥ · · · ≥ yπ(n).

Step 1. Find ρ = maxj{j ∈ [s] | yπ(j)− 1
j

(∑j
r=1 yπ(r)−1

)
> 0} and define β = 1

ρ

(∑ρ
r=1 yπ(r)−

1
)
.

Step 2. Set z := (z1, . . . , zn)T ∈ Rn with zπ(j) = max{yπ(j)−β, 0} for j = 1, . . . , s and zπ(j) = 0
for j = s+ 1, . . . , n.

We point out that the complexity of Algorithm 3.3 is O(n log n), which is dominated by
sorting the elements of y.

3.2 Global convergence of Algorithm 2.2

In this subsection, we establish the global convergence of Algorithm 2.2. In the following, we
present some necessary lemmas. We first recall the lemma for a continuously differentiable
function ([6, 34]).

Lemma 3.3 Let g : Rn → R be a continuously differentiable function, where the gradient ∇g is
Lipschitz-continuous with a Lipschitz constant Lg. Then one has

g(y2) ≤ g(y1) + 〈y2 − y1,∇g(y1)〉+
Lg
2
‖y2 − y1‖2, ∀y1,y2 ∈ Rn.

For the sequence {w̄k
i } generated by Algorithm 2.2, we have the following result.

Lemma 3.4 Let (W k, Hk) be the current iterate generated by Algorithm 2.2. For i = 1, . . . , r,
if ‖Hk(i, :)‖ > 0, then

w̄k
i = ΠPm∩Qs1

m

( 1

‖Hk(i, :)‖2
Uk
i (Hk(i, :))T

)
= ΠPm∩Qs1

m

(
wk

i −
1

‖Hk(i, :)‖2
∇wi

φk(wk
i )
)
,

where Uki := V −
∑i−1

j=1 wk+1
j Hk(j, :)−

∑r
j=i+1 wk

jH
k(j, :).

Proof. By the definition of w̄k
i , we have

w̄k
i = argmin

wi∈Pm∩Q
s1
m

1

2
‖Uki −wiH

k(i, :)‖2F .
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Let 1 ≤ i ≤ r be fixed. By hypothesis, we have ‖Hk(i, :)‖ > 0. Then one can construct an
orthogonal matrix

Q =

[
(Hk(i, :))T

‖Hk(i, :)‖
,q2, . . . ,qm

]
∈ Rm×m.

By (2.7) we have

∇wiφk(w
k
i ) = −

(
Uki −wk

iH
k(i, :)

)(
Hk(i, :)

)T
= −Uki (Hk(i, :))T + ‖Hk(i, :)‖2wk

i .

This, together with the orthogonal invariance of the Frobenius matrix norm, yields

w̄k
i = argmin

wi∈Pm∩Q
s1
m

1

2

∥∥∥Uki Q−wiH
k(i, :)Q

∥∥∥2

F

= argmin
wi∈Pm∩Q

s1
m

1

2
‖Hk(i, :)‖2

∥∥∥wi −
1

‖Hk(i, :)‖2
Uki (Hk(i, :))T

∥∥∥2

= argmin
wi∈Pm∩Q

s1
m

‖Hk(i, :)‖2

2

∥∥∥wi −
(
wk
i −

1

‖Hk(i, :)‖2
∇wiφk(w

k
i )
)∥∥∥2

.

Lemma 3.4 shows the minimization in (2.9) is in fact a projection onto Pm ∩Qs1m , which can
be computed via Algorithm 3.3.

We also have the following useful properties for Algorithm 2.2.

Lemma 3.5 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2. Then for any k ≥ 0,

Φk(w
k
i )− Φk(w

k+1
i ) ≥ δ1

2
‖wk

i −wk+1
i ‖2, (3.3)

for i = 1, 2, . . . , r and

Ψk(h
k
t )−Ψk(h

k+1
t ) ≥ δ2

2
‖hkt − hk+1

t ‖2, (3.4)

for t = 1, 2, . . . , n.

Proof. We first prove that (3.3) holds for all k ≥ 0. Let k ≥ 0 and 1 ≤ i ≤ r be fixed. We
establish (3.3) in different cases. If ‖Hk(i, :)‖ = 0, then wk+1

i = wk
i . In this case, it is obvious

that (3.3) holds.
Suppose ‖Hk(i, :)‖ 6= 0. If Φk(w

k
i ) − Φk(w̄

k
i ) ≥ δ1

2 ‖w
k
i − w̄i

k‖2, then wk+1
i = w̄k

i and thus

(3.3) also holds. Otherwise, wk+1
i is determined by (2.10), i.e.,

wk+1
i = argmin

wi∈Rm

{〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2µik
‖wi −wk

i ‖2 + δPm(wi) + δQs1
m

(wi)
}
.

Thus,

δPm(wk
i ) + δQs1

m
(wk

i ) ≥
〈
wk+1
i −wk

i ,∇φk(wk
i )
〉

+
1

2µik
‖wk+1

i −wk
i ‖2

+δPm(wk+1
i ) + δQs1

m
(wk+1

i ).
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This, together with Lemma 3.3 for g = φk, yields

φk(w
k+1
i ) + δPm(wk+1

i ) + δQs1
m

(wk+1
i )

≤ φk(w
k
i ) + δPm(hki ) + δQs1

m
(wk

i )− 1

2

( 1

µik
− ‖Hk(i, :)‖2)

)
‖wk+1

i −wk
i ‖2.

By hypothesis, µik = 1/(‖Hk(i, :)‖2 + δ1). Then we obtain (3.3).
Next, we show that (3.4) holds for t = 1, 2, . . . , n and for all k ≥ 0. Let 1 ≤ l ≤ r and k ≥ 0

be fixed. If Ψk(h
k
t )−Ψk(h̄

k
t ) ≥ δ2

2 ‖h
k
t − h̄kt ‖2, then we have hk+1

t = h̄kt . In this case, it is natural

that (3.4) holds. Otherwise, hk+1
t is given by (2.12), i.e.,

hk+1
t = argmin

ht∈Rr

{〈
ht − hkt ,∇ψk(hkt )

〉
+

1

2νtk
‖ht − hkt ‖2 + δPr(ht) + δQs2

r
(ht)

}
,

which gives rise to

δPr(hkt ) + δQs2
r

(hkt ) ≥
〈
hk+1
t − hkt ,∇ψk(hkt )

〉
+

1

2νtk
‖hk+1

t − hkt ‖2

+δPr(hk+1
t ) + δQs2

r
(hk+1

t ).

This, together with Lemma 3.3 for g = ψk, yields

ψk(h
k+1
t ) + δPr(hk+1

t ) + δQs2
r

(hk+1
t )

≤ ψk(h
k
t ) + δPr(hkt ) + δQs2

r
(hkt )−

1

2

( 1

νtk
− ‖(W k+1)TW k+1‖2

)
‖hk+1

t − hkt ‖2.

By hypothesis, νtk = 1/(‖(W k+1)TW k+1‖2 + δ2). Therefore, we have (3.4).

The following lemma shows the monotone decreasing property of the sequence {F (W k, Hk)}
generated by Algorithm 2.2.

Lemma 3.6 The sequence {F (W k, Hk)} generated by Algorithm 2.2 is monotonic decreasing
and for all k ≥ 0,

F (W k, Hk)− F (W k+1, Hk+1) ≥ δ1

2
‖W k+1 −W k‖2F +

δ2

2
‖Hk+1 −Hk‖2F .

Proof. Using Lemma 3.5 and the definitions of Φk and Ψk we have, for any k ≥ 0,

F (W k, Hk)− F (W k+1, Hk+1)

=

r∑
i=1

(
Φk(wk

i )− Φk(wk+1
i )

)
+

n∑
t=1

(
Ψk(hk

t )−Ψk(hk+1
t )

)
≥ δ1

2

r∑
i=1

‖wk+1
i −wk

i ‖2 +
δ2
2

n∑
t=1

‖hk+1
t − hk

t ‖2 =
δ1
2
‖W k+1 −W k‖2F +

δ2
2
‖Hk+1 −Hk‖2F .

This shows that {F (W k, Hk)} is monotonic decreasing and bounded below.
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Remark 3.7 From Lemma 3.6, it follows that, for any integer q > 0,

q∑
k=0

∥∥(W k+1, Hk+1)− (W k, Hk)
∥∥2

F
≤ 2

δ3

(
F (W 0, H0)− F (W q+1, Hq+1)

)
,

where δ3 := min{δ1, δ2}. Hence,
∑∞

k=0

∥∥(W k+1, Hk+1)− (W k, Hk)
∥∥2

F
<∞.

The following lemma gives a subgradient lower bound for the successive iterate gap. We
refer to Definition 2.1 and Lemma 2.2 for the subgradient of F .

Lemma 3.8 Let {W k, Hk} be the sequence generated by Algorithm 2.2. For any k ≥ 0, define
Ak+1 = [ak+1

1 , . . . ,ak+1
r ] with

ak+1
i := ∇wif(W k+1, Hk+1)−∇φk(wk

i )− 1

αik
(wk+1

i −wk
i ),

for i = 1, . . . , r and Bk+1 = [bk+1
1 , . . . ,bk+1

r ] with

bk+1
t := ∇htf(W k+1, Hk+1)−∇ψk(hkt )−

1

νtk
(hk+1

t − hkt ),

for t = 1, . . . , n, where αik = 1 if ‖Hk(i, :)‖ = 0; else αik = 1/‖Hk(i, :)‖2 if Φk(w
k
i )−Φk(w̄

k
i ) ≥

δ1
2 ‖w

k
i − w̄k

i ‖2 and αik = µik if Φk(w
k
i ) − Φk(w̄

k
i ) < δ1

2 ‖w
k
i − w̄k

i ‖2. Then (Ak+1, Bk+1) ∈
∂F (W k+1, Hk+1) and

‖(Ak+1, Bk+1)‖F ≤
√
δ4‖(W k+1, Hk+1)− (W k, Hk)‖F , (3.5)

where δ4 := max{2(2
√
nr + ‖V ‖2)2 + (δ2 + 2r)2, r(r + 1)(2n+ δ1)2}.

Proof. Let k ≥ 0 be fixed. First, we show that Ak+1 ∈ ∂WF (W k+1, Hk+1) by proving that
ak+1
i ∈ ∂wiF (W k+1, Hk+1) for i = 1, . . . , r. For any fixed 1 ≤ i ≤ r, we show that ak+1

i ∈
∂wiF (W k+1, Hk+1) in different cases. If ‖Hk(i, :)‖ = 0, then we have

∇φk(wk
i ) = −

(
Uki −wk

iH
k(i, :)

)
(Hk(i, :))T = 0.

where Uki is defined as in Lemma 3.4. By Algorithm 2.2, we have wk+1
i = wk

i . Since 0
∈ ∂δPm(wk+1

i ) and 0 ∈ ∂δQs1
m

(wk+1
i ), we know that ∇wif(W k+1, Hk+1) ∈ ∂wiF (W k+1, Hk+1).

Thus, ak+1
i = ∇wif(W k+1, Hk+1) ∈ ∂wiF (W k+1, Hk+1).

Suppose ‖Hk(i, :)‖ 6= 0. If Φk(w
k
i )−Φk(w̄

k
i ) ≥ δ1

2 ‖w
k
i − w̄k

i ‖2, then wk+1
i = w̄k

i . By Lemma
3.4 we have

w̄k
i = ΠPm∩Q

s1
m

(
wk
i −

1

‖Hk(i, :)‖2
∇φk(wk

i )
)
,

which is a solution to the following minimization problem:

wk+1
i = argmin

wi∈Rm

{〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2αik
‖wi −wk

i ‖2 + δPm(w) + δQs1
m

(w)
}
,
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where αik = 1/‖(Hk(i, :))T ‖2. Then there exists an element ξk+1
i ∈ ∂δPm(wk+1

i ) and ζk+1
i

∈ ∂δQs1
m

(wk+1
i ) such that

∇φk(wk
i ) +

1

αik
(wk+1

i −wk
i ) + ξk+1

i + ζk+1
i = 0.

Therefore, ak+1
i = ∇wif(W k+1, Hk+1) + ξk+1

i + ζk+1
i ∈ ∂wiF (W k+1, Hk+1).

On the other hand, if Φk(w
k
i )− Φk(w̄

k
i ) < δ1

2 ‖w
k
i − w̄k

i ‖2, then we have by (2.10),

wk+1
i = ΠPm∩Q

s1
m

(
wk
i − µik∇φk(wk

i )
)
,

which is a solution to the following minimization problem:

wk+1
i = argmin

wi∈Rm

{〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2αik
‖wi −wk

i ‖2 + δPm(w) + δQs1
m

(w)
}
,

where αik = µik. Then there exists an element ϑk+1
i ∈ ∂δPm(wk+1

i ) and ςk+1
i ∈ ∂δQs1

m
(wk+1

i )
such that

∇φk(wk
i ) +

1

αik
(wk+1

i −wk
i ) + ϑk+1

i + ςk+1
i = 0.

Therefore, ak+1
i = ∇wif(W k+1, Hk+1) + ϑk+1

i + ςk+1
i ∈ ∂wiF (W k+1, Hk+1).

Next, we show that Bk+1 ∈ ∂HF (W k+1, Hk+1). For any fixed 1 ≤ t ≤ n, it is easy to see that
the iterate hk+1

t defined in Algorithm 2.2 is a solution to the following minimization problem:

min
ht∈Rr

〈
ht − hkt ,∇ψk(hkt )

〉
+

1

2νtk
‖ht − hkt ‖2 + δPr(ht) + δQs2

r
(ht).

Then there exists an element θk+1
t ∈ ∂δPr(hk+1

t ) and ηk+1
t ∈ ∂δQs2

r
(hk+1

t ) such that

∇ψk(hkt ) +
1

νtk
(hk+1

t − hkt ) + θk+1
t + ηk+1

t = 0.

Hence, bk+1
t = ∇htf(W k+1, Hk+1) + θk+1

t + ηk+1
t ∈ ∂htF (W k+1, Hk+1).

Finally, we show that (3.5) holds. By the definition of ak+1
i and φk and using (2.7) we have,

for any 1 ≤ i ≤ r,
ak+1
i = uk+1

i + gk+1
i ,

where uk+1
i = W k+1

(
Hk+1(Hk+1(i, :))T −Hk(Hk(i, :))T

)
+ V

(
(Hk(i, :))T − (Hk+1(i, :))T

)
and

gk+1
i =

(∑r
j=i(w

k+1
j −wk

j )Hk(j, :)
)
(Hk(i, :))T − 1

αik
(wk+1

i −wk
i ). Thus,

Ak+1 = Uk+1 +Gk+1, Uk+1 := [uk+1
1 , . . . ,uk+1

r ], Gk+1 := [gk+1
1 , . . . ,gk+1

r ].

By the definition of ak+1
i we obtain

‖gk+1
i ‖ ≤

( r∑
j=i

‖wk+1
j −wk

j ‖‖Hk(j, :)‖
)
‖Hk(i, :)‖+ (‖Hk(i, :)‖2 + δ1)‖wk+1

i −wk
i ‖

≤ (2n+ δ1)

r∑
j=i

‖wk+1
i −wk

i ‖F ,
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where the second inequality uses the fact that ‖Hk(i, :)‖2 ≤ n. Hence,

‖Gk+1‖2F =
r∑
i=1

‖gk+1
i ‖2 ≤

r∑
i=1

(2n+ δ1)2
( r∑
j=i

‖wk+1
j −wk

j ‖
)2

≤ (2n+ δ1)2
r∑
i=1

(r − i+ 1)
r∑
j=i

‖wk+1
j −wk

j ‖2

≤ 1

2
r(r + 1)(2n+ δ1)2‖W k+1 −W k‖2F .

In addition, by the definition of uk+1
i we have

‖Uk+1‖F = ‖W k+1
(
Hk+1(Hk+1)T −Hk(Hk)T

)
+ V (Hk −Hk+1)T ‖F

≤ ‖W k+1‖2‖Hk+1‖2‖Hk+1 −Hk‖F
+‖W k+1‖2‖Hk+1 −Hk‖F ‖Hk‖2 + ‖V ‖2‖Hk+1 −Hk‖F

≤ (2
√
nr + ‖V ‖2)‖Hk+1 −Hk‖F ,

where the second inequality uses the fact that ‖W k+1‖22 ≤ r and ‖Hk‖22 ≤ n. Thus,

‖Ak+1‖2F ≤ 2‖Uk+1‖2F + 2‖Gk+1‖2F
≤ 2(2

√
nr + ‖V ‖2)2‖Hk+1 −Hk‖2F + r(r + 1)(2n+ δ1)2‖W k+1 −W k‖2F . (3.6)

By the definition of Bk+1 and ψk we have

Bk+1 = ∇Hf(W k+1, Hk+1)−∇Hf(W k+1, Hk)−Dk(Hk+1 −Hk),

where Dk = diag(1/ν1k, . . . , 1/νnk). By the definition of νtk and using (2.15) and (2.16) we have

‖W k‖22 ≤ r and ‖Dk‖2 ≤ r + δ2. (3.7)

From (2.14) and (3.7) we have

‖Bk+1‖F ≤ ‖∇Hf(W k+1, Hk+1)−∇Hf(W k+1, Hk)‖F + ‖Dk(Hk+1 −Hk)‖F
≤ ‖W k+1‖22‖Hk+1 −Hk‖F + ‖Dk‖2‖Hk+1 −Hk‖F
≤ (δ2 + 2r)‖Hk+1 −Hk‖F . (3.8)

Therefore, (3.5) follows from (3.6) and (3.8).

In the following, we set L(W 0, H0) to be the set of all accumulation points of the sequence
{(W k, Hk)} generated by Algorithm 2.2. Regarding the set L(W 0, H0), we have the following
result.

Lemma 3.9 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2. Then L(W 0, H0) is
a nonempty and compact set and the function F (W,H) is finite and constant on L(W 0, H0).

15



Proof. It is obvious that L(W 0, H0) is nonempty and compact since {(W k, Hk)} is bounded.
By Lemma 3.6 we know that {F (W k, Hk)} converges to a finite limit F∗. For any (W ∗, H∗) ∈
L(W 0, H0), there exists a subsequence {(W kq , Hkq)} such that limq→∞(W kt , Hkt) = (W ∗, H∗).
Thus, F (W ∗, H∗) = limq→∞ F (W kq , Hkq) = F∗. Hence, F is finite and constant on L(W 0, H0).

On the global convergence of Algorithm 2.2, we have the following result.

Theorem 3.10 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2. Then every accu-
mulation point of {(W k, Hk)} is a critical point of F .

Proof. The proof is similar to that of [8, Lemma 5(i)] by using Remark 3.7 and Lemmas 3.8–3.9.

Finally, on the convergence of the sequence {(W k, Hk)} generated by Algorithm 2.2, we have
the following result. The proof follows from the arguments similar to that of [8, Theorem 1] by
using Lemmas 3.5–3.6, Lemmas 3.8–3.9, and Theorem 3.10. Hence, we omit it here.

Theorem 3.11 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2. Then the sequence
{(W k, Hk)} converges to a critical point of F .

The following theorem shows that the sequence {(W k, Hk)} generated by Algorithm 2.2
converges to a special critical point of F .

Theorem 3.12 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2, which converges
to (W ∗, H∗). Then we have, for any 1 ≤ i ≤ r,

F (W ∗, H∗) ≤ F (w∗1, . . . ,w
∗
i−1,wi,w

∗
i+1, . . . ,w

∗
r , H

∗) + δ1, (3.9)

for all wi ∈ Pm ∩Qs1m .

Proof. Let 1 ≤ i ≤ r be fixed. If ‖Hk(i, :)‖ = 0, then, by Step 1 of Algorithm 2.2 we have
wk+1
i = wk

i and

F (wk+1
1 , . . . ,wk+1

i−1 ,w
k+1
i ,wk

i+1, . . . ,w
k
r , H

k)

= F (wk+1
1 , . . . ,wk+1

i−1 ,wi,w
k
i+1, . . . ,w

k
r , H

k), (3.10)

for all wi ∈ Pm ∩Qs1m .
Suppose ‖Hk(i, :)‖ 6= 0. If Φk(w

k
i )− Φk(w̄

k
i ) ≥ δ1

2 ‖w
k
i − w̄k‖2, then

wk+1
i = w̄k

i = argmin
wi∈Rm

F (wk+1
1 , . . . ,wk+1

i−1 ,wi,w
k
i+1, . . . ,w

k
r , H

k).

Thus,

F (wk+1
1 , . . . ,wk+1

i−1 ,w
k+1
i ,wk

i+1, . . . ,w
k
r , H

k)

≤ F (wk+1
1 , . . . ,wk+1

i−1 ,wi,w
k
i+1, . . . ,w

k
r , H

k), (3.11)
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for all wi ∈ Pm ∩Qs1m .
On the other hand, if Φk(w

k
i )−Φk(w̄

k
i ) < δ1

2 ‖w
k
i −w̄k

i ‖2, then wk+1
i is determined by (2.10),

i.e.,

wk+1
i = argmin

wi∈Pm∩Q
s1
m

{〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2µik
‖wi −wk

i ‖2
}
.

We note that φk is a quadratic function. By simple calculation, we find that, for any wi ∈
Pm ∩Qs1m ,

φk(wi) = φk(w
k
i ) +

〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2
‖Hk(i, :)‖2‖wi −wk

i ‖2.

Thus,

φk(w
k+1
i ) = φk(w

k
i ) +

〈
wk+1
i −wk

i ,∇φk(wk
i )
〉

+
1

2
‖Hk(i, :)‖2‖wk+1

i −wk
i ‖2

≤ φk(w
k
i ) +

〈
wi −wk

i ,∇φk(wk
i )
〉

+
1

2µik
‖wi −wk

i ‖2 −
δ1

2
‖wk+1

i −wk
i ‖2

= φk(wi) +
δ1

2
‖wi −wk

i ‖2 −
δ1

2
‖wk+1

i −wk
i ‖2,

for all wi ∈ Pm ∩Qs1m . This means that

F (wk+1
1 , . . . ,wk+1

i−1 ,w
k+1
i ,wk

i+1, . . . ,w
k
r , H

k)

≤ F (wk+1
1 , . . . ,wk+1

i−1 ,wi,w
k
i+1, . . . ,w

k
r , H

k)

+
δ1

2
‖wi −wk

i ‖2 −
δ1

2
‖wk+1

i −wk
i ‖2, (3.12)

for all wi ∈ Pm ∩ Qs1m . By hypothesis, {(W k, Hk)} converges to (W ∗, H∗). Then, by using the
arguments similar to that of Theorem 3.10 to the inequalities (3.10)–(3.12), we have

F (w∗1, . . . ,w
∗
i−1,w

∗
i ,w

∗
i+1, . . . ,w

∗
r , H

∗)

≤ F (w∗1, . . . ,w
∗
i−1,wi,w

∗
i+1, . . . ,w

∗
r , H

∗) +
δ1

2
‖wi −w∗i ‖2,

for all wi ∈ Pm ∩ Qs1m . Therefore, (3.9) holds since ‖wi − w∗i ‖2 ≤ ‖wi‖2 + ‖w∗i ‖2 ≤ 2 for all
wi,w

∗
i ∈ Pm ∩Qs1m .

Theorem 3.13 Let {(W k, Hk)} be the sequence generated by Algorithm 2.2, which converges
to (W ∗, H∗). If s2 = r, then we have

F (W ∗, H∗) ≤ F (W ∗, H) ∀H ∈ G3. (3.13)

Proof. Let 1 ≤ t ≤ n be fixed. From Step 2 of Algorithm 2.2 we see that hk+1
t ∈ Pr solves the

following minimization problem:

min
ht∈Rr

1

2νtk

∥∥ht − (hkt − νtk∇ψk(hkt ))∥∥2

s.t. 1Tr ht = 1, ht ≥ 0,
(3.14)
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where 1r ∈ Rr is a vector of all ones, Then there exist two Lagrange multipliers γk+1 and pk+1

such that the following first-order optimization conditions hold:
1
νtk

(hk+1
t − hkt ) +∇ψk(hkt ) + γk+11r − pk+1 = 0,

1Tr hk+1
t = 1, hk+1

t ≥ 0,

pk+1 ≥ 0, 〈pk+1,hk+1
t 〉 = 0.

(3.15)

We can obtain that{
γk+1 = −〈hk+1

t , 1/νtk(h
k+1
t − hkt ) +∇ψk(hkt )〉,

pk+1 = 1
νtk

(hk+1
t − hkt ) +∇ψk(hkt ) + γk+11r.

We note that ∇ψk(hkt ) = (W k+1)T (W k+1hkt − vt). By hypothesis, {(W k, Hk)} converges to
(W ∗, H∗). From Remark 3.7 we know that ‖Hk+1 − Hk‖F → 0 as k → ∞. Also, {νtk} is
bounded. Taking k →∞ yields lim

k→∞
γk+1 = −〈h∗t , (W ∗)T (W ∗h∗t − vt)〉 ≡ γ∗,

lim
k→∞

pk+1 = (W ∗)T (W ∗h∗t − vt) + γ∗1r ≡ p∗.

This, together with (3.15), implies that
(W ∗)T (W ∗h∗t − vt) + γ∗1r − p∗ = 0,

1Tr h∗t = 1, h∗t ≥ 0,

p∗ ≥ 0, 〈p∗,h∗t 〉 = 0.

(3.16)

It is obvious that h∗t satisfies (3.16) for some Lagrange multipliers γ∗ and p∗. Thus, h∗t is a
global solution of the following minimization problem:

min
wi∈Rr

1

2

∥∥W ∗ht − vt
∥∥2

s.t. 1Tr ht = 1, ht ≥ 0.
(3.17)

We note that

f(W,H∗) =
1

2
‖V −W ∗H‖2F =

n∑
t=1

1

2

∥∥W ∗ht − vt
∥∥2

and H ∈ G3 if and only if 1Tr ht = 1, ht ≥ 0 (t = 1, . . . , n) for all H := [h1, . . . ,hn] ∈ Rr×n. It is
easy to see that H∗ := [h∗1, . . . ,h

∗
n] is a global solution of the following minimization problem:

min
H∈Rr×n

f(W ∗, H) =
1

2
‖V −W ∗H‖2F

s.t. H ∈ G3.
(3.18)

Therefore, F (W ∗, H∗) ≤ F (W ∗, H) for all H ∈ G3.
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Remark 3.14 From Theorems 3.12 and 3.13, we observe that the sequence {(W k, Hk)} gener-
ated by Algorithm 2.2 converges to a special critical point of F , which is nearly a global minimum
of F over each column vector of the W -factor if the parameter δ1 > 0 is sufficiently small and
is globally minimized over the H-factor as a whole if the sparseness constraint of H is removed.
In the latter numerical tests, one can see that the solution to the SSMF obtained by the proposed
algorithm may have a smaller factorization residual than the PALM method.

4 Numerical experiments

In this section, we report the numerical performance of Algorithm 2.2 for solving the SSMF
(2.6) over synthetic and real data. To illustrate the effectiveness of our method, we compare
Algorithm 2.2 with the PALM algorithm in [8] (i.e., Algorithm 2.1), the PLSA with additive
sparsing regularization for topic models (ARTMsparse) in [39], which was implemented by simple
modification of the PLSA algorithm [20]1. All the numerical tests were carried out in MATLAB

R2020a on a linux server with an Intel Xeon CPU Gold 6230 of 2.10 GHz and 32 GB of RAM.
In our numerical tests, for Algorithms 2.1 and 2.2, we set δ1 = δ2 = 10−6, and c = 1/δ2 = 106.

The errors between the restored distributions V k
ij = (W kHk)ij and the model ones Vij were

measured by the averaged Hellinger distance [39]:

H(V, V k) =
1

m

m∑
j=1

(1

2

n∑
i=1

(
√
V k
ij −

√
Vij)

2
) 1

2
.

For comparison purposes, we use the symbols ‘ITmax’, ‘ct.’, ‘res.’, ‘nnz1.’, and ‘nnz2.’ to
denote the largest number of iterations, the averaged total computing time in seconds, the
averaged relative residual ‖V −W kHk‖F /‖V ‖F , and the averaged numbers of non-zero elements
of W k and Hk at the final iterates of the corresponding algorithms, respectively.

4.1 Synthetic data

We first compare the sparsity of the results obtained by several algorithms on synthetic data
and the change of the difference between restored V ∗ and model V with the number of iteration
steps.

Example 4.1 In this example, we consider the SSMF with fixed (m, r, n) and sparsity. Here,

V = Ŵ Ĥ ∈ R1000×500 with Ŵ = ΠG1(W ) ∈ R1000×60 and Ĥ = ΠG2(H) ∈ R60×500 with the true

sparsity of each column of Ŵ being ts1 = 200 and the true sparsity of each column of Ĥ being
ts2 = 12, where W and H are randomly generated by using rand. We report our numerical
results for the prescribed sparsity (s1, s2) = (230, 17).

The numerical results for Example 4.1 are given in Table 4.1 by running Algorithms 2.1, 2.2,
PLSA and ARTMsparse over 20 randomly generated initial points with ITmax=300. Figure 4.1
displays the averaged quality of recovery versus the number of iterations for Example 4.1. We
find from Table 4.1 and Figure 4.1 that Algorithm 2.2 works much better than the other methods

1https://github.com/lizhangzhan/plsa
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in terms of the reconstruction error. In addition, the computed solutions via Algorithms 2.1 and
2.2 have almost the same sparsity since they have the same sparsity level requirements.

nnz1. nnz2. H(V, WkHk) ct.

Alg. 2.1 17956 5511 0.3646 128.95
Alg. 2.2 12116 5751 0.0107 191.45

PLSA 60000 30000 0.5402 507.24
ARTMsparse 60000 2458 0.5439 505.91

Table 4.1: Numerical results for Example 4.1.

0 50 100 150 200 250 300

Total number of iterations

10 -2

10 -1

10 0

10 1
Alg. 2.2

Alg. 2.4

PLSA

ARTMsparse

Figure 4.1: Reconstruction errors for Example 4.1.

Example 4.2 We consider the SSMF with fixed (m, r, n). Here, V = Ŵ Ĥ ∈ R400×200 with

Ŵ = ΠG1(W ) ∈ R400×100 and Ĥ = ΠG2(H) ∈ R100×200 with the true sparsity of each column

of Ŵ being ts1 and the true sparsity of each column of Ĥ being ts2, where W and H are
randomly generated by using rand. We report our numerical results for the true sparsity ts1 =
80, 100, 120, 140, 160, ts2 = ts1/4, and prescribed sparsity (s1, s2) = (ts1 + 30, ts2 + 15).

Example 4.3 We consider the SSMF with fixed (m, r, n) and different prescribed sparsity. Here,

V = Ŵ Ĥ ∈ R400×200, where Ŵ = ΠG1(W ) ∈ R400×50 and Ĥ = ΠG2(H) ∈ R50×200 with the true

sparsity of each column of Ŵ being ts1 = 80 and the true sparsity of each column of Ĥ being
ts1 = 10, where W and H are randomly generated by using rand. We report our numerical
results for fixed V and the prescribed sparsity (a) (s1, s2) = (80, 10); (b) (s1, s2) = (96, 12); (c)
(s1, s2) = (112, 14); (d) (s1, s2) = (128, 16); (e) (s1, s2) = (144, 18); (f) (s1, s2) = (160, 20).

For Examples 4.2–4.3, we randomly choose the same initial point (W 0, H0) and the stopping
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criterion is set to be
‖W kHk −W k−1Hk−1‖

‖W k−1Hk−1‖
≤ tol,

where “tol” is a prescribed tolerance.
Table 4.2 displays the numerical results for Example 4.2 by running Algorithms 2.1 and 2.2

over 100 randomly generated V and initial points with tol = 10−5 and ITmax = 6000 and for
Example 4.3 by running Algorithms 2.1 and 2.2 over 100 randomly generated initial points with
tol = 10−5 and ITmax = 4000. Here, the recovery is considered to be successful if the relative
reconstruction error ‖V −W kHk‖F /‖V ‖F is less than 1% at the final iterate (W k, Hk).

We can observe from Table 4.2 that with the increase of prescribed sparsity, the probability
of successful reconstruction of our algorithm is much higher than Algorithm 2.1.

Ex. 4.2 Ex. 4.3

ts1
Alg. 2.1 Alg. 2.2

(s1, s2)
Alg. 2.1 Alg. 2.2

probability probability probability probability
80 3% 59% (a) 0% 66%
100 2% 54% (b) 0% 84%
120 5% 60% (c) 0% 83%
140 2% 57% (d) 1% 85%
160 3% 55% (e) 7% 89%

(f) 19% 88%

Table 4.2: Numerical results for Examples 4.2 and 4.3.

4.2 Real data

In this subsection, we first consider a numerical example in document recognition [31].

Example 4.4 We consider the data converted from grayscale images from the MNIST Hand-
written Digits data set2. We arbitrarily choose 800 20× 20 images of handwritten digit 3, which
are vectorized to column vectors and normalized to have total sum of one. Then we use the
vectorized and normalized images to form the 400× 800 target matrix V . We would like to de-
compose V as the product of an 400×196 stochastic matrix W and a 196×800 sparse stochastic
matrix H.

Figures 4.2–4.3 give the decomposition results for Example 4.4 with (s1, s2) = (100, 100) and
(s1, s2) = (150, 120), respectively, where tol = 10−3 and ITmax = 5000. Here, we only show 36
reshaped columns of the factors as images because of space limits. Table 4.3 displays the relative
reconstruction error and the total computing time and Figures 4.4–4.5 show the convergence
curve and the computing time curve versus the number of iterations.

We see from Figures 4.2–4.3 that our method is more effective than Algorithm 2.1 in doc-
ument recognition. We also observe from Table 4.3 and Figures 4.4–4.5 that, compared with
Algorithm 2.1, our algorithm can obtain smaller factorization residual though we need more
computing cost in each iteration.

Next, we consider a numerical example in COVID-19 open Research Dataset [40].

2http://yann.lecun.com/exdb/mnist/
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true images W H WH

true images W H WH

Figure 4.2: Constructed images with (s1, s2) = (100, 100) via Alg. 2.1 (top) and Alg. 2.2
(bottom) for Example 4.4.

(s1, s2)
Alg. 2.1 Alg. 2.2

res. H(V, WkHk) ct. res. H(V, WkHk) ct.

(100, 100) 12.129 0.3132 0.3753 0.1368 0.1293 371.40
(150, 120) 12.802 0.3130 0.3754 0.1329 0.1264 403.47

Table 4.3: Numerical results for Example 4.4.

Example 4.5 The CORD-19 data3, offered by Allen Institute for AI and other leading research
groups, is a growing resource containing all scientific papers on Covid-19 and related historical
coronavirus research. We select one of the file packages and use the abstracts of the articles in
the file package for the experiment. First, we remove the abstracts with a total number of words
less than 400, then remove the meaningless words in the abstracts and remove the words that
appear less than 20 times. Finally, we count the times of all words in each abstract document
and normalized each column to have total sum of 1. Finally, we get a 12801×8625 target matrix
V .

Figure 4.6 and Table 4.4 show the quality of recovery and the sparsity of the computed
solution via Algorithms 2.1 and 2.2 with (s1, s2) = (4500, 5) and ARTMsparse via running 350
steps on the CORD-19 data matrix V .

3https://www.semanticscholar.org/cord19/download
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true images W H WH

true images W H WH

Figure 4.3: Constructed images with (s1, s2) = (150, 120) via Alg. 2.1 (top) and Alg. 2.2
(bottom) for Example 4.4.
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Figure 4.4: Convergence and computing time curves for one of the tests ((s1, s2) = (100, 100))
for Example 4.4.

We observe from Figure 4.6 and Table 4.4 that Algorithm 2.2 can achieve much smaller
reconstruction error than the other methods while the computed solutions via Algorithms 2.1
and 2.2 are more sparse than the solution obtained by ARTMsparse.
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Figure 4.5: Convergence and computing time curves for one of the tests ((s1, s2) = (150, 120))
for Example 4.4.
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Figure 4.6: Reconstruction errors for Example 4.5.

‖Wk‖0 ‖Hk‖0 res. H(V,WkHk) ct.

Alg. 2.1 135000 43125 0.5807 0.2833 4.6933× 102

Alg. 2.2 135000 43125 0.1162 0.0280 1.2355× 104

ARTMsparse 384030 50483 0.2390 0.0868 1.5349× 105

Table 4.4: Numerical results for Example 4.5.

5 Concluding remarks

In this paper, we have considered the sparse stochastic matrix factorization, which is rewritten
as an unconstrained nonconvex-nonsmooth minimization problem. Then a column-wise update
algorithm is proposed for solving the minimization problem. The global convergence of the
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proposed algorithm is established. Numerical experiments on both synthetic and real data sets
demonstrate the effectiveness of our algorithm. The main drawback of the sparse stochastic
matrix factorization is that the factors are not necessarily unique in general. How to guarantee
the uniqueness of our factorization method is a challenging question. Another interesting ques-
tion is how to choose the sparsity level for the sparse stochastic matrix factorization. Therefore,
further studies are needed.
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