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Abstract. We generalize the well-known primal-dual algorithm proposed by Chambolle and Pock

for saddle point problems, and improve the condition for ensuring its convergence. The improved

convergence-guaranteeing condition is effective for the generic setting, and it is shown to be optimal. It

also allows us to discern larger step sizes for the resulting subproblems, and thus provides a simple and

universal way to improve numerical performance of the original primal-dual algorithm. In addition,

we present a structure-exploring heuristic to further relax the convergence-guaranteeing condition for

some specific saddle point problems, which could yield much larger step sizes and hence significantly

better performance. Effectiveness of this heuristic is numerically illustrated by the classic assignment

problem.
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convergence condition, assignment problem

1 Introduction

A fundamental mathematical model is the saddle point problem:

min
x∈X

max
y∈Y
L(x, y) := f(x)− yTAx− g(y), (1.1)

where X ⊆ <n and Y ⊆ <m are closed convex sets, f : X → < and g : Y → < are proper

convex but not necessarily smooth functions, and A ∈ <m×n is a given matrix. The saddle point

problem (1.1) includes many special cases such as the optimality condition of the canonical convex

programming problem with linear constraints (see Section 3), scientific computing problems (see

[1]), and particularly a number of variational models arising in image reconstruction problems (see

[6, 7, 11, 30]).

To solve the saddle point problem (1.1), the primal-dual algorithm proposed by Chambolle and

Pock in [6] is influential. Its iterative scheme reads as
xk+1 = arg min

{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (1.2a)

x̄k+1 = xk+1 + α(xk+1 − xk), (1.2b)

yk+1 = arg max
{
L(x̄k+1, y)− s

2
‖y − yk‖2 | y ∈ Y

}
, (1.2c)
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where α ∈ [0, 1] is an extrapolation parameter, r > 0 and s > 0 are the regularization parameters for

the proximal regularization terms in the decomposed subproblems (1.2a) and (1.2c), respectively.

We refer to, e.g., [8, 10, 11, 13, 16, 21, 23, 29], for discussions and generalizations on the algorithm

(1.2) from different perspectives. In particular, the algorithm (1.2) is reduced to the Arrow-Hurwicz

method in [1] when α = 0, and it has been reemphasized as the primal-dual hybrid gradient method

(PDHG) since the work [30]. As studied in various literatures such as [3, 6, 11, 16], convergence of

the PDHG can be established only when some more restrictive conditions are additionally assumed,

such as strong convexity of the functions or some demanding requirements on the step sizes. Most

recently, it was shown in [15] that, for the algorithm (1.2) with α = 0, convergence is not guaranteed

in the generic setting without these additional conditions. Moreover, to the best of our knowledge,

convergence of the algorithm (1.2) with α ∈ (0, 1) is still unknown. Then, the most popular choice

is the remaining case with α = 1 for the primal-dual algorithm (1.2), and the resulting scheme is

(CP-PPA)


xk+1 = arg min

{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (1.3a)

x̄k+1 = 2xk+1 − xk, (1.3b)

yk+1 = arg max
{
L(x̄k+1, y)− s

2
‖y − yk‖2 | y ∈ Y

}
. (1.3c)

In [6], the parameters r > 0 and s > 0 are required to satisfy the condition

r · s > ρ(ATA) (1.4)

to theoretically ensure the convergence of (1.3), where ρ(·) denotes the spectrum of a matrix. For

(1.3), it was shown by He and Yuan in [17] that it can be interpreted as an application of the classic

proximal point algorithm (PPA) proposed in [22, 24], and the condition (1.4) essentially ensures the

positive definiteness of the underlying matrix which is used to define the corresponding proximal

term. We thus call the algorithm (1.3) “CP-PPA” for short. The CP-PPA (1.3) is more preferable

than the general primal-dual algorithm (1.2) with other choices of α, because of its better theoretical

properties such as the guaranteed convergence and the mentioned PPA interpretation, as well as

its more attractive numerical performance widely shown in the literatures such as [5, 6, 7, 17].

Numerical performance of the CP-PPA (1.3) certainly depends on the choices of r and s. Indeed,

r and s determine the step sizes for solving the subproblems (1.3a) and (1.3c), respectively. To

discern more appropriate choices of r and s for a specific problem, it is necessary to first investigate

their theoretical role in ensuring convergence of the CP-PPA (1.3) for the generic setting of (1.1).

An apparent effort is to consider relaxing the condition (1.4) and hence gain the possibility of

enlarging the step sizes, while convergence of the CP-PPA (1.3) can be still kept theoretically. Our

main purpose is to propose a generalized version of the CP-PPA (1.3) and improve the convergence

condition (1.4) in the generic setting of (1.1). More specifically, we generalize the CP-PPA (1.3) as

(Generalized CP-PPA)



xk+1 = arg min
{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (1.5a)

x̄k+1 = xk+1 + α(xk+1 − xk), (1.5b)

ȳk+1 = arg max
{
L(x̄k+1, y)− s

2
‖y − yk‖2 | y ∈ Y

}
, (1.5c)

yk+1 = ȳk+1 − (1− α)
1

s
A(xk+1 − xk), (1.5d)

in which α ∈ [0, 1], and then improve the condition (1.4) as

r · s > (1− α+ α2)ρ(ATA). (1.6)
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It is trivial to see that the generalized CP-PPA (1.5) with (1.6) includes the CP-PPA (1.3) with

(1.4) as the special case of α = 1. It is also clear that (1− α + α2) ≤ 1 for α ∈ [0, 1]5. Hence, the

theoretical lower bound of r ·s determined by (1.4) is improved from scratch and it becomes possible

to enlarge the step sizes for the subproblems (1.3a) and (1.3c) in lieu with the new condition (1.6).

We will prove in Section 3.1 that the generalized CP-PPA (1.5) coincides with the CP-PPA (1.3) for

any α if the saddle point problem (1.1) is formed by the canonical convex programming problem

with linear equality constraints (see (3.1)). Obviously, α = 1/2 is the best choice to yield the

minimal value of (1 − α + α2) = 0.75. Hence, if we choose α = 1/2, then the improved condition

(1.6) becomes

r · s > 0.75ρ(ATA), (1.7)

and this improvement is effective for the generic setting of the canonical convex programming

problem with linear equality constraints (see(3.1)). More specifically, the improved condition (1.7)

theoretically enlarges the range of r · s so that better choices of r and s can be empirically probed

to accelerate the CP-PPA (1.3) for specific problems. We will verify the acceleration of (1.7) in

Section 6 by some concrete applications. Indeed, we will prove in Section 3.2 that the condition

(1.7) is optimal for the CP-PPA (1.3) in the sense that there always exists an example for which the

CP-PPA (1.3) is divergent if the constant 0.75 is replaced by any other smaller positive number in

(1.7). It is certainly non-meaningful to expect that the numerical acceleration could be dramatic,

given that the lower bound is refined by 25% from (1.4) to (1.7) and the refinement is effective for

the generic canonical convex programming problem with linear equality constraints. Note that the

generalized CP-PPA (1.5) does not entail any substantial additional computation because there is

no need to compute the multiplications Axk and Axk+1 in the step (1.5d); they are available when

the subproblems (1.5a) and (1.5c) are solved. It is also worth recalling that convergence of the

algorithm (1.2) is unknown for α ∈ (0, 1), while convergence of the generalized CP-PPA (1.5) can

be rigorously ensured (see Section 4), along with its provable worst-case convergence rate measured

by iteration complexity (see Section 5), for any α ∈ [0, 1].

The other purpose of this work is to further relax the condition (1.4) heuristically for some

specific cases of the saddle point problem (1.1), and improve the performance of the CP-PPA (1.3)

empirically by discerning even larger step sizes. This consideration is necessary if the corresponding

ρ(ATA) is too large and thus r · s is restricted by a large lower bound in either (1.4) or (1.6). For

this case, it is necessary for implementing the CP-PPA (1.3) to avoid tiny step sizes. Generically, a

convergence-guaranteeing condition for certain algorithm is sufficient, but not necessary, and thus

such a condition is generally too conservative despite that the sufficiency favors theoretical analysis

and mathematical rigor. This means such a sufficient condition can and should be relaxed to some

extent when an algorithm is implemented, though mathematical rigor may not be maintained.

Of course, relaxing such a theoretically sufficient condition should not be random, but be niche

targeting. For the condition (1.4), one possible strategy is exploring the structure of ATA per

se meticulously for a given specific problem, and combining it with the generic-purpose condition

(1.4). Indeed, such a heuristical study for a specifically given problem is complementary to the

methodological and theoretical study in the generic setting. We will show in Section 7 that this

heuristic idea works extremely well for the classic assignment problem when it is relaxed as a convex

programming problem with linear equality constraints.

5Indeed, α could be any number to carry out our theoretical analysis to be presented, but we are only interested

in α ∈ [0, 1] because a larger lower bound of r · s is less meaningful.
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2 Preliminaries

In this section, we summarize some preliminaries and recall some known results for further analysis.

2.1 Lemma

The following lemma is basic and will be frequently used in our analysis. Its proof can be found

in, e.g., [2].

Lemma 2.1. Let Z ⊆ <n be a closed convex set, θ(z) and f(z) be convex functions. If f is

differentiable on an open set which contains Z, and the solution set of the minimization problem

min{θ(z) + f(z) | z ∈ Z}

is nonempty, then we have

z∗ ∈ arg min{θ(z) + f(z) | z ∈ Z} (2.1a)

if and only if

z∗ ∈ Z, θ(z)− θ(z∗) + (z − z∗)T∇f(z∗) ≥ 0, ∀ z ∈ Z. (2.1b)

2.2 Variational inequality reformulation

Similar as our previous work [17], theoretical analysis for the generalized CP-PPA (1.5) will be

based on the variational inequality (VI) reformulation of the saddle point problem (1.1). Note that

a solution point of (1.1), denoted by (x∗, y∗) ∈ X × Y, satisfies the following inequalities:

Ly∈Y(x∗, y) ≤ L(x∗, y∗) ≤ Lx∈X (x, y∗).

That is, for a solution point (x∗, y∗) of (1.1), we have{
x∗ ∈ arg min

{
L(x, y∗) | x ∈ X

}
,

y∗ ∈ arg max
{
L(x∗, y) | y ∈ Y

}
.

Recall that the functions f and g in (1.1) are not necessarily smooth. According to Lemma 2.1,

(x∗, y∗) satisfies the following inequalities:{
x∗ ∈ X , f(x)− f(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀ x ∈ X ,
y∗ ∈ Y, g(y)− g(y∗) + (y − y∗)T (Ax∗) ≥ 0, ∀ y ∈ Y.

These two inequalities can be compactly written as the following VI:

VI(Ω, F, θ) : u∗ ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.2a)

where

u =

(
x

y

)
, θ(u) = f(x) + g(y), F (u) =

(
−AT y
Ax

)
and Ω = X × Y. (2.2b)

Note that the operator F given in (2.2b) is monotone, because

(u− v)T (F (u)− F (v)) ≡ 0, ∀ u, v ∈ <(n+m). (2.3)

We denote by Ω∗ the solution set of the VI (2.2) throughout.
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3 Connection between (1.3) and (1.5)

In this section, we take a closer look at the generalized CP-PPA (1.5) and its connection to the

CP-PPA (1.3) in the context of the canonical convex programming problem with linear equality

constraints. That is, we consider

min{f(x) | Ax = b, x ∈ X}, (3.1)

where f : <n → < is a proper convex function, X ⊆ <n is a closed convex set, A ∈ <m×n is a given

matrix, and b ∈ <m. The Lagrangian function of (3.1) is

L(x, y) = f(x)− yT (Ax− b) = f(x)− yTAx− (−bT y),

with y ∈ <m the Lagrange multiplier. Then, (x∗, y∗) is called a saddle point of L(x, y) if the

following inequalities hold:

Ly∈<m(x∗, y) ≤ L(x∗, y∗) ≤ Lx∈X (x, y∗).

It is clear that finding a saddle point of L(x, y) is a special case of (1.1) with g(y) = −bT y and

Y = <m.

3.1 Equivalence of (1.3) and (1.5) for (3.1)

When the CP-PPA (1.3) is applied to the specific model (3.1), it follows from g(y) = −bT y that

L([2xk+1 − xk], y) = f(2xk+1 − xk)− yTA(2xk+1 − xk) + bT y.

Because Y = <m, the solution of the subproblem (1.3c) satisfies

−A(2xk+1 − xk) + b− s(yk+1 − yk) = 0.

Thus, the CP-PPA (1.3) for (3.1) is specified as
xk+1 = arg min

{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (3.2a)

yk+1 = yk − 1

s

[
A(2xk+1 − xk)− b

]
. (3.2b)

Similarly, it is easy to see that the generalized CP-PPA (1.5) for (3.1) is specified as
xk+1 = arg min

{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (3.3a)

ȳk+1 = yk − 1

s

(
A[xk+1 + α(xk+1 − xk)]− b

)
, (3.3b)

yk+1 = ȳk+1 − (1− α)
1

s
A(xk+1 − xk). (3.3c)

To see the equivalence of (3.2) and (3.3) for the specific model (3.1), we know that

yk+1 (3.3c)
= ȳk+1 − (1− α)

1

s
A(xk+1 − xk)

(3.3b)
= yk − 1

s

(
A[xk+1 + α(xk+1 − xk)]− b

)
− (1− α)

1

s
A(xk+1 − xk)

= yk − 1

s

[
A(2xk+1 − xk)− b

]
.

Thus, (3.2) and (3.3) coincide for any α when the specific model (3.1) is considered.
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3.2 Optimality of (1.7) for CP-PPA (1.3)

We take the example in [14], which is a special case of the model (3.1), to show that the condition

(1.7) is optimal for the CP-PPA (1.3) to ensure its convergence in the generic setting of (1.1).

Recall that the example in [14] is

min{0 · x | x = 0, x ∈ <}. (3.4)

It is clear that x = 0 is the solution point of (3.4) and ρ(ATA) = 1 because A = 1 for the example.

Now, we show that convergence of the CP-PPA (1.3) for the example (3.4) is not guaranteed if

the constant 0.75 in (1.7) is replaced by any other smaller positive number. Let us fix s = 1. Then,

the condition (1.7) becomes r > 0.75 and we need to show that the CP-PPA (3.2) is divergent for

any 0 < r < 0.75. When the problem (3.4) is considered, it is easy to derive that the CP-PPA (3.2)

with s ≡ 1 becomes xk+1 = xk +
1

r
yk, (3.5a)

yk+1 = yk − (2xk+1 − xk). (3.5b)

Note that

yk+1 (3.5b)
= yk − (2xk+1 − xk) (3.5a)

= yk −
{

2(xk +
1

r
yk)− xk

}
= −xk + (1− 2

r
)yk.

Hence, iterations generated by (3.5) can be recursively rewritten as

uk+1 = P(r)uk with P(r) =

(
1 1

r

−1 1− 2
r

)
. (3.6)

It is clear that the matrix P(r) has the following two eigenvalues:

λ1(r) = (1− 1

r
)−

√
1

r2
− 1

r
and λ2(r) = (1− 1

r
) +

√
1

r2
− 1

r
. (3.7)

Thus, when r = 0.75, we have λ1(0.75) = −1 and λ2(0.75) = 1/3. Note that

λ′1(r) =
1

r2
+

2
r3 − 1

r2

2
√

1
r2 − 1

r

> 0 when r ∈ (0, 1).

That is, λ1(r) < −1 if 0 < r < 0.75, and this means divergence of the iterations (3.6) for any

0 < r < 0.75. Hence, the condition (1.7) is optimal for the CP-PPA (1.3) in the sense that there

always exists an example such that it is divergent if the constant 0.75 in (1.7) is replaced by any

other smaller positive number.

4 Convergence analysis

In this section, we prove convergence of the generalized CP-PPA (1.5) with the improved condition

(1.6).
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4.1 Some matrices

To simplify the notation for the convergence analysis, we first define two matrices as the following:

Q =

(
rIn AT

αA sIm

)
and M =

(
In 0

−(1− α)1
sA Im

)
. (4.1)

Then, with the matrices M and Q defined in (4.1), we define two more matrices as

H := QM−1 and G := QT +Q−MTHM, (4.2)

and show that the condition (1.6) ensures their positive definiteness.

Proposition 4.1. The condition (1.6) ensures the positive definiteness of both the matrices H and

G defined in (4.2).

Proof. It follows from (4.1) and (4.2) that

H = QM−1 =

(
rIn AT

αA sIm

)(
In 0

(1− α)1
sA Im

)
=

(
rIn + (1− α)1

sA
TA AT

A sIm

)
, (4.3)

and

G = QT +Q−MTHM = QT +Q−MTQ

=

(
2rIn (1 + α)AT

(1 + α)A 2sIm

)
−

(
In −(1− α)1

sA
T

0 Im

)(
rIn AT

αA sIm

)

=

(
2rIn (1 + α)AT

(1 + α)A 2sIm

)
−

(
rIn − α(1− α)1

sA
TA αAT

αA sIm

)

=

(
rIn + α(1− α)1

sA
TA AT

A sIm

)
. (4.4)

Let us define a nonsingular matrix as

C =

(
In 0

−1
sA Im

)
.

Then, it is clear that

CTHC =

(
In −1

sA
T

0 Im

)(
rIn + (1− α)1

sA
TA AT

A sIm

)(
In 0

−1
sA Im

)

=

(
rIn − α

sA
TA 0

0 sIm

)
.

Hence, it follows from the law of inertia that the matrix H is positive definite if and only if

r · s · In � αATA. Since 1 − α + α2 ≥ α for any α ∈ <, it is clear that the matrix H � 0 when

r · s > (1− α+ α2)ρ(ATA). Similarly, because

CTGC =

(
In −1

sA
T

0 Im

)(
rIn + α(1− α)1

sA
TA AT

A sIm

)(
In 0

−1
sA Im

)

=

(
rIn − 1

s (1− α+ α2)ATA 0

0 sIm

)
,

the matrix G is positive definite if and only if r · s · In � (1−α+α2)ATA. It is obvious that G � 0

when r · s > (1− α+ α2)ρ(ATA). This completes the proof of this proposition.
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4.2 Prediction-correction representation

Then, we rewrite the generalized CP-PPA (1.5) as a prediction-correction framework, and this

framework further helps us conduct the convergence analysis with easier notation. More specifically,

for a given uk = (xk, yk), the iterate uk+1 = (xk+1, yk+1) generated by the generalized CP-PPA

(1.5) with (1.6) can be represented as the following two steps. Recall that the matrix M in (4.6) is

defined in (4.1).

(Prediction)


x̃k = arg min

{
L(x, yk) +

r

2
‖x− xk‖2 | x ∈ X

}
, (4.5a)

ỹk = arg max
{
L([x̃k + α(x̃k − xk)], y)− s

2
‖y − yk‖2 | y ∈ Y

}
. (4.5b)

(Correction) uk+1 = uk −M(uk − ũk). (4.6)

We would emphasize that this prediction-correction representation is merely used for theoret-

ical analysis, and there is no need to implement the generalized CP-PPA (1.5) by following this

prediction-correction framework.

4.3 Convergence

Now, we take advantage of the prediction-correction representation (4.5)-(4.6), and prove con-

vergence of the generalized CP-PPA (1.5). The following lemma characters the difference of the

predictor ũk represented by (4.5) from a solution point of the VI (2.2).

Lemma 4.1. Let ũk = (x̃k, ỹk) be the predictor represented by (4.5) with given uk = (xk, yk).

Then, we have

ũk ∈ Ω, θ(u)− θ(ũk) + (u− ũk)TF (ũk) ≥ (u− ũk)TQ(uk − ũk), ∀ u ∈ Ω, (4.7)

where the matrix Q is defined in (4.1).

Proof. For the subproblem (4.5a), it follows from Lemma 2.1 that

x̃k ∈ X , f(x)− f(x̃k) + (x− x̃k)T {−AT yk + r(x̃k − xk)} ≥ 0, ∀ x ∈ X ,

which can be further rewritten as

x̃k ∈ X , f(x)− f(x̃k) + (x− x̃k)T {−AT ỹk + r(x̃k − xk) +AT (ỹk − yk)} ≥ 0, ∀ x ∈ X . (4.8)

Similarly, for the subproblem (4.5b), we have

ỹk ∈ Y, g(y)− g(ỹk) + (y − ỹk)T {A[x̃k + α(x̃k − xk)] + s(ỹk − yk)} ≥ 0, ∀ y ∈ Y. (4.9)

Adding (4.8) and (4.9), we have ũk = (x̃k, ỹk) ∈ X × Y such that

f(x) + g(y)− (f(x̃k) + g(ỹk)) +

(
x− x̃k

y − ỹk

)T {(
−AT ỹk

Ax̃k

)

+

(
r(x̃k − xk) +AT (ỹk − yk)
αA(x̃k − xk) + s(ỹk − yk)

)}
≥ 0, ∀ (x, y) ∈ X × Y.

Using the notation in (2.2) and the matrix Q defined in (4.1), the assertion of this lemma follows

immediately.
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The following lemma refines the right-hand side of the inequality (4.7), and it enables us to use

the predefined matrices H and G in (4.2) to quantify the difference of ũk from a solution point of

the VI (2.2) by quadratic terms.

Lemma 4.2. Let uk be a given vector. The predictor ũk and the corrector uk+1 are represented by

(4.5) and (4.6), respectively. Then, we have

θ(u)− θ(ũk) + (u− ũk)TF (u) ≥ 1

2

(
‖u− uk+1‖2H − ‖u− uk‖2H

)
+

1

2
‖uk − ũk‖2G, ∀ u ∈ Ω, (4.10)

where the matrices H and G are defined in (4.2).

Proof. According to (4.6) and Q = HM (see (4.2)), the right-hand side of (4.7) can be rewritten

as

(u− ũk)TQ(uk − ũk) = (u− ũk)THM(uk − ũk) (4.6)
= (u− ũk)TH(uk − uk+1).

It follows from the monotonicity of F (see (2.3)) that

θ(u)− θ(ũk) + (u− ũk)TF (u) ≡ θ(u)− θ(ũk) + (u− ũk)TF (ũk).

The inequality (4.7) is thus equivalent to

θ(u)− θ(ũk) + (u− ũk)TF (u) ≥ (u− ũk)TH(uk − uk+1), ∀ u ∈ Ω. (4.11)

Applying the identity

(a− b)TH(c− d) =
1

2

{
‖a− d‖2H − ‖a− c‖2H

}
+

1

2

{
‖c− b‖2H − ‖d− b‖2H

}
,

to the right-hand side of (4.11) with a = u, b = ũk, c = uk and d = uk+1, we have

(u− ũk)TH(uk−uk+1) =
1

2

{
‖u−uk+1‖2H −‖u−uk‖2H

}
+

1

2

{
‖uk− ũk‖2H −‖uk+1− ũk‖2H

}
. (4.12)

For the second part of the right-hand side of (4.12), because Q = HM and 2uTQu = uT (QT +Q)u,

we have

‖uk − ũk‖2H − ‖uk+1 − ũk‖2H
(4.6)
= ‖uk − ũk‖2H − ‖(uk − ũk)−M(uk − ũk)‖2H
= 2(uk − ũk)THM(uk − ũk)− (uk − ũk)TMTHM(uk − ũk)
= (uk − ũk)T (QT +Q−MTHM)(uk − ũk)

(4.2)
= ‖uk − ũk‖2G. (4.13)

Then, substituting (4.12) and (4.13) into (4.11), we prove the assertion (4.10).

The right-hand side of (4.10) represented by quadratic terms is easier to be operated recursively,

and it helps us derive the strict contraction of the sequence {uk} generated by the generalized CP-

PPA (1.5) in Theorem 4.1.

Theorem 4.1. Let uk be a given vector. The predictor ũk and the corrector uk+1 are represented

by (4.5) and (4.6), respectively. It holds that

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − ũk‖2G, ∀ u∗ ∈ Ω∗, (4.14)

where the matrices H and G are defined in (4.2).

9



Proof. Setting u in (4.10) as arbitrary u∗ ∈ Ω∗, we obtain

‖uk − u∗‖2H − ‖uk+1 − u∗‖2H ≥ ‖uk − ũk‖2G + 2
(
θ(ũk)− θ(u∗) + (ũk − u∗)TF (u∗)

)
.

Since u∗ is a solution point of the VI (2.2), we have

θ(ũk)− θ(u∗) + (ũk − u∗)TF (u∗) ≥ 0.

Thus, it holds that

‖uk − u∗‖2H − ‖uk+1 − u∗‖2H ≥ ‖uk − ũk‖2G, ∀ u∗ ∈ Ω∗,

and the assertion (4.14) is proved.

Now, we are ready to prove the global convergence of the generalized CP-PPA (1.5) with the

condition (1.6).

Theorem 4.2. The sequence {uk} generated by the generalized CP-PPA (1.5) with the condition

(1.6) converges to a solution point of the saddle point problem (1.1).

Proof. It follows from (4.14) that the sequence {uk} is bounded. Summarizing (4.14) over k =

0, 1, . . . ,∞, we obtain
∞∑
k=0

‖uk − ũk‖2G ≤ ‖u0 − u∗‖2H ,

which implies

lim
k→∞

‖uk − ũk‖G = 0. (4.15)

Therefore, the sequence {ũk} is also bounded. Let u∞ be a cluster point of {ũk} and {ũkj} be a

subsequence converging to u∞. Then, it follows from (4.7) that

ũkj ∈ Ω, θ(u)− θ(ũkj ) + (u− ũkj )TF (ũkj ) ≥ (u− ũkj )TQ(ukj − ũkj ), ∀ u ∈ Ω.

Since the matrix Q defined in (4.1) is nonsingular, it follows from the continuity of θ(u) and F (u)

that

u∞ ∈ Ω, θ(u)− θ(u∞) + (u− u∞)TF (u∞) ≥ 0, ∀ u ∈ Ω.

This means u∞ is a solution point of the VI (2.2), which is also a solution point of the saddle point

problem (1.1). Moreover, it follows from (4.15) that limj→∞ u
kj = u∞. Also, according to (4.14),

we obtain

‖uk+1 − u∞‖H ≤ ‖uk − u∞‖H ,

which indicates that the sequence {uk} does not have more than one cluster point. Therefore, we

have limk→∞ u
k = u∞ and the proof is complete.

5 Convergence rate

In this section, we derive the worst-case O(1/N) convergence rate measured by the iteration com-

plexity for the generalized CP-PPA (1.5) in both the ergodic and point-wise senses, where N denotes

the iteration counter.
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5.1 Convergence rate in the ergodic sense

We follow our previous work [18] and prove the worst-case O(1/N) convergence rate in the ergodic

sense for the generalized CP-PPA (1.5). First of all, recall the characterization of the solution set

of the VI (2.2) given in [12].

Theorem 5.1. The solution set of the VI (2.2) is convex and it can be characterized as

Ω∗ =
⋂
u∈Ω

{
ũ ∈ Ω : θ(u)− θ(ũ) + (u− ũ)TF (u) ≥ 0

}
. (5.1)

Proof. See the proof of Theorem 2.3.5 in [12], or Theorem 2.1 in [18].

Accordingly, for a given accuracy ε > 0, ũ ∈ Ω is called an ε-approximate solution point of the

VI (2.2) if it satisfies

θ(ũ)− θ(u) + (ũ− u)TF (u) ≤ ε, ∀ u ∈ D(ũ),

where D(ũ) =
{
u ∈ Ω | ‖u − ũ‖ ≤ 1

}
. Now, we show that, after N iterates generated by the

generalized CP-PPA (1.5), we can find a point ũ such that

ũ ∈ Ω and sup
u∈D(ũ)

{
θ(ũ)− θ(u) + (ũ− u)TF (u)

}
≤ ε := O(1/N). (5.2)

Theorem 5.2. Let {uk} be the sequence generated by the generalized CP-PPA (1.5) with the condi-

tion (1.6). The predictor ũk and the corrector uk+1 are represented by (4.5) and (4.6), respectively.

For any integer N > 0, we define

ūN =
1

N + 1

N∑
k=0

ũk. (5.3)

Then, it holds that

ūN ∈ Ω, θ(ūN )− θ(u) + (ūN − u)TF (u) ≤ 1

2(N + 1)
‖u− u0‖2H , ∀ u ∈ Ω. (5.4)

Proof. It follows from the inequality (4.10) and the positive definiteness of the matrix G that

θ(ũk)− θ(u) + (ũk − u)TF (u) ≤ 1

2

{
‖u− uk‖2H − ‖u− uk+1‖2H

}
, ∀ u ∈ Ω. (5.5)

Adding (5.5) over k = 0, 1, . . . , N , we get

N∑
k=0

θ(ũk)− (N + 1)θ(u) +
( N∑
k=0

ũk − (N + 1)u
)T
F (u) ≤ 1

2
‖u− u0‖2H , ∀ u ∈ Ω.

Using the notation ūN defined in (5.3), the above inequality can be rewritten as

1

N + 1

N∑
k=0

θ(ũk)− θ(u) + (ūN − u)TF (u) ≤ 1

2(N + 1)
‖u− u0‖2H , ∀ u ∈ Ω. (5.6)

Since X and Y are convex sets, and ũk ∈ Ω for all k ≥ 0, we have ūN ∈ Ω. On the other hand, θ

is convex and thus we have

θ(ūN ) ≤ 1

N + 1

N∑
k=0

θ(ũk). (5.7)

Substituting (5.7) into (5.6), the assertion of this theorem follows immediately.
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Then, it follows from Theorem 5.2 that, with the first N iterates generated by the generalized

CP-PPA (1.5), the point ūN defined in (5.3) satisfies

ūN ∈ Ω and sup
u∈D(ūN )

{
θ(ūN )− θ(u) + (ūN − u)TF (u)

}
≤ c

2(N + 1)
= O(1/N),

where D(ūN ) =
{
u ∈ Ω | ‖u − ūN‖ ≤ 1

}
and c = sup{‖u − u0‖2H | u ∈ D(ūN )}. The worst-case

O(1/N) convergence rate is thus established for the generalized CP-PPA (1.5) in the ergodic sense.

5.2 Convergence rate in a point-wise sense

Now, we follow our previous work [19] and derive the worst-case O(1/N) convergence rate in a point-

wise sense for the generalized CP-PPA (1.5). The following lemma shows certain monotonicity of

the sequence {‖M(uk − ũk)‖2H}, and it helps us operate these terms recursively.

Lemma 5.1. Let {uk} be the sequence generated by the generalized CP-PPA (1.5) with the condition

(1.6) and recall its prediction-correction representation (4.5)-(4.6). For any integer k ≥ 0, it holds

that

‖M(uk+1 − ũk+1)‖2H ≤ ‖M(uk − ũk)‖2H . (5.8)

Proof. Utilizing the identity ‖a‖2H − ‖b‖2H = 2aTH(a − b) − ‖a − b‖2H with a = M(uk − ũk) and

b = M(uk+1 − ũk+1), we have

‖M(uk − ũk)‖2H − ‖M(uk+1 − ũk+1)‖2H
= 2(uk − ũk)TMTHM{(uk − ũk)− (uk+1 − ũk+1)} − ‖M{(uk − ũk)− (uk+1 − ũk+1)}‖2H .

(5.9)

Let us first bound the crossing term in the right-hand side of (5.9) by a quadratic term. More

specifically, setting u = ũk+1 in (4.7), we have

θ(ũk+1)− θ(ũk) + (ũk+1 − ũk)TF (ũk) ≥ (ũk+1 − ũk)TQ(uk − ũk). (5.10)

Rewrite the inequality (4.7) for the (k + 1)-th iteration and obtain

θ(u)− θ(ũk+1) + (u− ũk+1)TF (ũk+1) ≥ (u− ũk+1)TQ(uk+1 − ũk+1), ∀ u ∈ Ω. (5.11)

Setting u = ũk in (5.11), we get

θ(ũk)− θ(ũk+1) + (ũk − ũk+1)TF (ũk+1) ≥ (ũk − ũk+1)TQ(uk+1 − ũk+1). (5.12)

Adding (5.10) and (5.12), and using the monotonicity of F (see (2.3)), we obtain

(ũk − ũk+1)TQ{(uk − ũk)− (uk+1 − ũk+1)} ≥ 0. (5.13)

Moreover, adding the term {(uk− ũk)− (uk+1− ũk+1)}TQ{(uk− ũk)− (uk+1− ũk+1)} to both sides

of (5.13) and using uTQu = 1
2u

T (QT +Q)u, we have

(uk − uk+1)TQ{(uk − ũk)− (uk+1 − ũk+1)} ≥ 1

2
‖(uk − ũk)− (uk+1 − ũk+1)‖2QT +Q. (5.14)

Note that the left-hand side of (5.14) can be rewritten as

(uk − uk+1)TQ{(uk − ũk)− (uk+1 − ũk+1)}
(4.6)
= {M(uk − ũk)}TQ{(uk − ũk)− (uk+1 − ũk+1)}

(4.2)
= (uk − ũk)TMTHM{(uk − ũk)− (uk+1 − ũk+1)}.
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Thus, we obtain

2(uk − ũk)TMTHM{(uk − ũk)− (uk+1 − ũk+1)} ≥ ‖(uk − ũk)− (uk+1 − ũk+1)‖2QT +Q. (5.15)

Furthermore, substituting (5.15) into (5.9), we have

‖M(uk − ũk)‖2H − ‖M(uk+1 − ũk+1)‖2H
= 2(uk − ũk)TMTHM{(uk − ũk)− (uk+1 − ũk+1)} − ‖M{(uk − ũk)− (uk+1 − ũk+1)}‖2H

(5.15)

≥ ‖(uk − ũk)− (uk+1 − ũk+1)‖2QT +Q − ‖M{(u
k − ũk)− (uk+1 − ũk+1)}‖2H

= ‖(uk − ũk)− (uk+1 − ũk+1)‖2G,

where G is defined in (4.2). Recall that G is positive definite under the condition (1.6) (see

Proposition 4.1). The assertion of this lemma is proved.

Now, we are ready to derive the O(1/N) convergence rate in a point-wise sense for the gener-

alized CP-PPA (1.5).

Theorem 5.3. Let {uk} be the sequence generated by the generalized CP-PPA (1.5) with the

condition (1.6) and recall its prediction-correction representation (4.5)-(4.6). Then, for any positive

integer N , we have

‖M(uN − ũN )‖2H ≤
1

(N + 1)c0
‖u0 − u∗‖2H , ∀ u∗ ∈ Ω∗, (5.16)

where c0 > 0 is a constant independent of N .

Proof. Recall Theorem 4.1. Because of the equivalence of different norms, there exists a constant

c0 > 0 such that

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − c0‖M(uk − ũk)‖2H , ∀ u∗ ∈ Ω∗. (5.17)

Summarizing (5.17) over k = 0, . . . , N , we have

N∑
k=0

c0‖M(uk − ũk)‖2H ≤ ‖u0 − u∗‖2H , ∀ u∗ ∈ Ω∗.

It follows from (5.8) that the sequence {‖M(uk− ũk)‖2H} is monotonically non-increasing. We thus

have

(N + 1)c0‖M(uN − ũN )‖2H ≤
N∑
k=0

c0‖M(uk − ũk)‖2H ≤ ‖u0 − u∗‖2H , ∀ u∗ ∈ Ω∗,

which leads to the assertion of this theorem immediately.

Let d := inf{‖u0 − u∗‖2H | u∗ ∈ Ω∗}. It follows from Theorem 5.3 that

‖M(uN − ũN )‖2H ≤
d

(N + 1)c0
= O(1/N).

Recall the inequality (4.7) and the fact Q = HM . Then, ũk is a solution point of the VI (2.2)

if and only if ‖M(uk − ũk)‖2H = 0. Hence, the assertion (5.16) indicates the worst-case O(1/N)

convergence rate in a point-wise sense for the generalized CP-PPA (1.5).

Remark 5.1. Recall (4.6) and we have uk−uk+1 = M(uk− ũk). The assertion (5.16) also implies

that ‖uk −uk+1‖ < ε can be used as a stopping criterion for implementing the generalized CP-PPA

(1.5), where ε > 0 denotes the error tolerance.
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6 Numerical experiments

In this section, we test some specific applications of the saddle point problem (1.1) and report the

numerical results to verify our theoretical assertions. In particular, we verify that the improved

condition (1.6) leads to better numerical performance for the CP-PPA (1.3). The acceleration is

moderately but universally effective for a class of problems in form of (3.1). We particularly focus

on the best choice of α = 0.5 and compare it with the original choice of α = 1, i.e., (1.4). That

is, we mainly compare the numerical difference of the CP-PPA (1.3) with the conditions (1.4) and

(1.7). Our codes were written in Python 3.9 and they were implemented in a Lenovo laptop with

2.20 GHz Intel Core i7-8750H CPU and 16 GB memory.

6.1 Basis pursuit

We first consider the basis pursuit problem

min
{
‖x‖1 | Ax = b, x ∈ <n

}
, (6.1)

where ‖x‖1 =
∑n

i=1 |xi|, A ∈ <m×n (m < n) is a given data matrix, and b ∈ <m. The basis

pursuit problem (6.1) plays a fundamental role in various areas such as compressed sensing, signal

processing and statistical learning. We refer to, e.g., [4, 9], for some survey papers.

When the CP-PPA (1.3) is applied to (6.1), the resulting scheme is{
xk+1 = arg min

{
‖x‖1 + r

2‖x− (xk + 1
rA

T yk)‖22 | x ∈ <n
}
,

yk+1 = yk − 1
s

[
A(2xk+1 − xk)− b

]
.

(6.2)

Note that the x-subproblem in (6.2) has a closed-form solution, and it is represented by the shrinkage

operator defined in [9]. Recall that the CP-PPA (1.3) and the generalized CP-PPA (1.5) coincide

for the model (6.1), and our purpose of testing (6.1) is to verify that the condition (1.6) can result

in numerical acceleration.

To simulate, we follow some standard way (e.g., as elucidated on https://web.stanford

.edu/~boyd/papers/admm/basis_pursuit/basis_pursuit_example.html) to generate x∗ ∈ <n

randomly and s coordinates of it are drawn from the uniform distribution in [−10, 10] and the rest

are zeros, and then generate the matrix A ∈ <m×n whose entries satisfying the normal distribution

N (0, 1). We set b = Ax∗, and use x0 = 0 and y0 = 0 as the initial point. Moreover, we take

m = n/4 and set the sparse parameter s = n/20. The stopping criterion for (6.2) is

‖uk − uk−1‖ =
√
‖xk − xk−1‖2 + ‖yk − yk−1‖2 < 10−9.

Since our focus is not discussing how to tune the parameters r and s empirically for a specific

problem, but verifying acceleration of the improved theoretical lower bound of r · s, we fix the

mechanism of determining r and s individually (which is also experimentally probed) and test the

numerical difference with different lower bound of r · s. More precisely, they are chosen as follows

subject to the only difference of the constant 1− α+ α2.

• CP-PPA with (1.4): r =
√
ρ(ATA)/10 and s = 10

√
ρ(ATA).

• CP-PPA with (1.6): r =
√

(1− α+ α2)ρ(ATA)/10 and s = 10
√

(1− α+ α2)ρ(ATA).

• CP-PPA with (1.7): r =
√

0.75ρ(ATA)/10 and s = 10
√

0.75ρ(ATA).
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In Table 6.1, for different cases of n, the iteration number (“It.”), computing time in seconds

(“CPU”), the objective function value (“‖x‖1”), and the violation of constraints (“‖Axk− b‖”) are

reported. The moderate acceleration of the optimal condition (1.7) over (1.4) is clearly seen in

Table 6.1. To see the acceleration of other values of α in (1.6), we plot the iteration numbers with

respect to some values of α ∈ [0, 1] for the cases of n = 200 and n = 2000 in Figure 6.1. From

the plotted curves, the optimality of α = 0.5 and the acceleration of other values near 0.5 are well

demonstrated.

Table 6.1: Improvement of (1.7) for CP-PPA (1.3).

n ρ(ATA)
CP-PPA with (1.4) CP-PPA with (1.7)

It. CPU ‖xk‖1 ‖Axk − b‖ It. CPU ‖xk‖1 ‖Axk − b‖

100 214.14 464 0.13 23.61 7.84e-8 342 0.06 23.61 8.98e-8

200 444.51 714 0.17 49.88 6.84e-8 531 0.11 49.88 7.71e-8

300 691.99 1065 0.29 83.25 2.47e-7 827 0.17 83.25 1.57e-7

400 863.35 780 0.19 116.46 1.58e-7 596 0.13 116.46 1.56e-7

500 1071.84 928 0.25 142.75 1.75e-7 703 0.16 142.75 1.69e-7

800 1749.00 858 0.24 234.90 2.26e-7 647 0.16 234.90 2.37e-7

1000 2213.51 948 0.27 281.97 3.58e-7 734 0.19 281.97 2.56e-7

2000 4486.57 1022 0.92 507.92 1.16e-7 782 0.61 507.92 9.80e-8

3000 6651.24 1103 2.97 768.48 2.97e-7 886 2.30 768.48 2.12e-7

5000 11230.30 1092 9.62 1244.81 3.62e-7 869 7.62 1244.81 1.39e-7
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Figure 6.1: Performance of CP-PPA (1.3) with different α in (1.6) for (6.1).

6.2 Potts-model-based image segmentation problem

Then, we test the convex-relaxed version of the Potts model for multi-phase image segmentation

problem

min
ui(x)≥0

{ m∑
i=1

∫
Ω
ui(x)ρ(li, x) + µ|∇ui(x)|dx

∣∣∣ m∑
i=1

ui(x) = 1
}
,
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where µ > 0 is the weight parameter for the regularization term of the total perimeter of all

segmented regions,
∫

Ω |∇ui(x)|dx (i = 1, . . . ,m) are total variation (TV) regularization terms (see

[25]), ρ(li, x) (i = 1, . . . ,m) are used to evaluate the cost of assigning the label li to the specified

position x, and Ω is the image domain. As analyzed in [28], its corresponding dual problem can be

reformulated as

max

∫
Ω
ps(x)dx

s.t. Div qi(x)− ps(x) + pi(x) = 0, i = 1, 2, . . . ,m,

|qi(x)| ≤ µ, pi(x) ≤ ρ(li, x), i = 1, 2, . . . ,m,

(6.3)

where Div = (−∇)∗ is the adjoint of the −∇ operator, ps(x) and pi(x) (i = 1, . . . ,m) stand for the

source flow and the sink flow, respectively. After discretization, let IC(p(x), q(x)) be the convex

characteristic function on the convex set

C := {(p(x); q(x)) | pi(x) ≤ ρ(li, x), |qi(x)| ≤ µ, i = 1, 2, . . . ,m},

1 be is the n-vector whose elements are all 1, and In be the n×n identity matrix. Then, the model

(6.3) can be rewritten as

min
ps,p,q

−1T ps + IC(p, q)︸ ︷︷ ︸
f(ps,p,q)

(6.4a)

subject to the following linear equality constraints
−In
−In

...

−In

 ps +


Div

0
...

0

 q1 +· · ·+


0

0
...

Div

 qm +


In
0
...

0

 p1 +· · ·+


0

0
...

In

 pm

︸ ︷︷ ︸
A(ps; q1;...; qm; p1;...; pm)

=


0

0
...

0


︸ ︷︷ ︸
b

. (6.4b)

Hence, it is a special case of (3.1) with the specific matrix A defined as

A =


−In Div 0 · · · 0 In 0 · · · 0

−In 0 Div · · · 0 0 In · · · 0
...

...
...

. . .
...

...
...

. . .
...

−In 0 0 . . . Div 0 0 . . . In

 .

We thus have

AAT =


2In −∆ In · · · In
In 2In −∆ · · · In
...

...
. . .

...

In In · · · 2In −∆

 .

As analyzed in [27], we have ρ(ATA) = ρ(AAT ) ≤ 9 + m for the Potts-based image segmentation

model (6.4), and the CP-PPA (1.3) for (6.4) can be specified as

qk+1
i = Pµ(qki − 1

r∇u
k
i ), i = 1, . . . ,m,

pk+1
i = Pρi(pki + 1

ru
k
i ), i = 1, . . . ,m,

pk+1
s = pks + 1

r (1−
∑m

i=1 u
k
i ),

uk+1
i = uki − 1

s

{
Div (2qk+1

i − qki )− (2pk+1
s − pks) + (2pk+1

i − pki )
}
, i = 1, . . . ,m,

(6.5)
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where the projections Pµ and Pρi (i = 1, . . . ,m) are respectively defined as follows:

Pµ(q) = q/max
{

1,
|q|
µ

}
and Pρi(p) = min

{
p, ρ(li, x)

}
for i = 1, . . . ,m.

For succinctness, we only consider the case of m = 4 for the Potts-based image segmentation

model (6.4). Note that ρ(ATA) ≤ 9 +m = 13 in (6.4). We simply follow [27], and choose r · s = 13

to satisfy the condition (1.4) (which is numerically reasonable because the condition (1.4) only

requires that r · s be arbitrarily larger than ρ(ATA)). Accordingly, the optimal condition (1.7)

becomes r · s = 0.75 × 13. Again, for comparison purpose, we use the same mechanism to choose

r and s for implementing (6.5), and they are chosen in the following ways subject to the only

difference of the constant 0.75:

• CP-PPA with (1.4): r = 13/s and s = 3, 4, 5, 6, 7.

• CP-PPA with (1.7): r = 0.75× 13/s and s = 3, 4, 5, 6, 7.

We follow the package developed by the authors of [28] (which is available at https://www.ma

thworks.com/matlabcentral/fileexchange/34224-fast-continuous-max-flow-algorithm-to-2d

-3d-multi-region-image-segmentation) and take the stopping criterion for (6.5) as

ADE(k) :=
‖uk − uk−1‖

size(u)
< 10−7,

where “ADE” denotes the average dual error. For experiments, we test the image “flowers” with

size 539 × 359 which can be downloaded from https://github.com/taigw/GrabCut-GraphCut,

and the image “butterfly” with size 768 × 512 can be downloaded from https://homepages.ca

e.wisc.edu/~ece533/images/.

Table 6.2: Numerical results of CP-PPA (1.3) for (6.4) with m = 4.

Parameter s
CP-PPA with (1.4) CP-PPA with (1.7)

It. CPU ADE It. CPU ADE

flowers

s = 3 426 78.74 9.99e-8 335 62.19 9.99e-8

s = 4 422 78.54 9.97e-8 336 61.68 9.93e-8

s = 5 419 78.30 9.99e-8 332 61.78 9.94e-8

s = 6 412 76.47 9.91e-8 329 60.30 9.89e-8

s = 7 408 75.45 9.86e-8 318 58.39 9.89e-8

butterfly

s = 3 572 194.13 9.99e-8 480 162.97 9.91e-8

s = 4 529 181.25 9.91e-8 450 154.28 9.87e-8

s = 5 503 172.59 9.96e-8 433 147.86 9.85e-8

s = 6 488 167.92 9.99e-8 422 143.75 9.96e-8

s = 7 482 164.87 9.95e-8 423 144.63 9.99e-8

Some numerical results of the CP-PPA (1.3) for solving the Potts-based image segmentation

model (6.4) are reported in Table 6.2. The moderate acceleration of the optimal condition (1.7)
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over the original condition (1.4) is shown again for the CP-PPA (1.3). In Figure 6.2, some tested

images and the computationally segmented results are visualized.

(a) Original image: flowers (b) Segmented result of flowers

(c) Original image: butterfly (d) Segmented result of butterfly

Figure 6.2: Clean and computationally segmented images by CP-PPA (1.3) with (1.7) for (6.4)

with four labels; s = 7 for “flowers” and s = 6 for “butterfly”.

7 Heuristic for improving (1.4)

The convergence-guaranteeing condition (1.6) is less restrictive than the original condition (1.4),

and its optimal choice (1.7) with α = 0.5 is verified to be effective for accelerating the CP-PPA (1.3)

moderately. This improvement is effective for the generic case where the corresponding ATA is not

assumed to have any specific structure. As mentioned, if ρ(ATA) is too large, then the condition

(1.4) restricts the choices of r ·s severely and tiny step sizes become unavoidable. For this case, the

condition (1.4) becomes the bottleneck to the efficiency of the CP-PPA (1.3), and the improved

condition (1.6) or (1.7) does not help much, either.

7.1 Motivation

When ρ(ATA) is too large, it is necessary to consider how to further relax these conditions and thus

to avoid too small step sizes, even though rigorous convergence may not be guaranteed. Note that

the essential role of the conditions (1.4), (1.6) and (1.7) in the convergence proof of the CP-PPA
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(1.3) is to sufficiently hence most conservatively guarantee the inequalities

r · s‖xk − xk+1‖2 > ‖A(xk − xk+1)‖2 (7.1)

for all iterations uniformly. In this sense, these conditions provide iteration-independent and hence

globally applicable bounds for the choice of r · s. Indeed, all these conditions are for the generic

setting of (1.1) and no structure of ATA is pre-assumed. Our essential idea is to consider the less

restrictive condition (7.1) directly, and explore the structure of A to probe smaller lower bound of

r ·s iteratively in lieu with the iteration-dependent condition (7.1) directly. If the average eigenvalue

of ATA (denoted by ρaverage(ATA)) is significantly smaller than the largest one, then we are inspired

to determine the range of r · s heuristically in terms of ρaverage(ATA), instead of ρ(ATA), and we

even allow for certain flexibility in the requirement of satisfying the condition (7.1) strictly. Though

there is no mathematical rigor, the condition (7.1) may be satisfied for some iterations. Once it is

satisfied, tiny step sizes are avoided and hence much computation can be saved. This is how the

niche targeting heuristic works for the CP-PPA (1.3).

7.2 Assignment problem

Recall that the classic assignment problem in operational research aims at assigning n jobs to n

persons with each job being exactly assigned to one person, and its model is

max Φ(x) :=
∑n

i=1

∑n
j=1 cijxij

s.t
∑n

j=1 xij = 1, i = 1, . . . , n,∑n
i=1 xij = 1, j = 1, . . . , n,

xij ∈ {0, 1},

(7.2)

where cij > 0. It is well known (e.g. Section 6.5 in [20]) that the assignment problem (7.2) can be

relaxed as the following one in which the binary constraints are replaced by box constraints:

min −Φ(x) :=
∑n

i=1

∑n
j=1−cijxij

s.t
∑n

j=1 xij = 1, i = 1, . . . , n,∑n
i=1 xij = 1, j = 1, . . . , n,

0 ≤ xij ≤ 1.

(7.3)

The model (7.3) is obviously a special case of the model (3.1) with a linear objective function, linear

equality constraints, and box constraints. Now we focus on finding an efficient heuristic to further

accelerate the CP-PPA (1.3) by exploiting the special structure of the specific problem (7.3).

Let us define

xT = (x11, x12, . . . , x1n, x21, x22, . . . , x2n, · · · · · · , xn1, xn2, . . . , xnn).

Then, for the model (7.3), the matrix A corresponding to (3.1) has the form

A =


eT

eT
· · · · · ·

eT
eT

In In · · · · · · In In

 , (7.4)

where e is the n-vector whose elements are all 1, and In is the n× n identity matrix. Notice that

the 2n × n2 matrix A defined in (7.4) is totally unimodular, and as analyzed in, e.g., [26], this

19



property essentially ensures the equivalence between the assignment problem (7.2) and its relaxed

one (7.3).

Now, we explain how to calculate the largest and average eigenvalues of the matrix ATA. First, it

follows from basic linear algebra knowledge that ρ(ATA) = ρ(AAT ) and Trace(ATA) = Trace(AAT ).

Using the structure of the matrix A in (7.4), we have

AAT =



n 0 . . . . . . 0 1 1 . . . . . . 1

0 n
. . .

... 1 1 . . . . . . 1
...

. . .
. . .

. . .
...

...
...

...
...

. . .
. . . 0 1 1 . . . . . . 1

0 . . . . . . 0 n 1 1 . . . . . . 1
1 1 . . . . . . 1 n 0 . . . . . . 0

1 1 . . . . . . 1 0 n
. . .

...
...

...
...

...
. . .

. . .
. . .

...

1 1 . . . . . . 1
...

. . .
. . . 0

1 1 . . . . . . 1 0 . . . . . . 0 n



=

(
nIn eeT

eeT nIn

)
. (7.5)

According to the assertion of the Gerschgorin-circle for the eigenvalues of a matrix, for every

eigenvalue ρi of the positive semi-definite matrix AAT , we have

|ρi − n| ≤ n and thus 0 ≤ ρi ≤ 2n.

In addition, we have

AAT

(
e

e

)
=

(
nIn eeT

eeT nIn

)(
e

e

)
= 2n

(
e

e

)
.

Therefore, it holds that

ρ(ATA) = ρ(AAT ) = 2n.

On the other hand, it follows from (7.5) that

Trace(ATA) = Trace(AAT ) = 2n2,

and thus ρaverage(ATA) = 2. That is, for the matrix A defined in (7.4) ρ(ATA) = 2n while

ρaverage(ATA) ≡ 2. When n is large, the condition (1.4), as well as its improved ones (1.6) and

(1.7), are all too conservative to yield favorable step sizes, because of ρ(ATA) = 2n. To avoid

tiny step sizes for this case, the significant difference between ρ(ATA) and ρaverage(ATA) naturally

inspires us to consider replacing these conditions heuristically by

r · s = 2ρaverage(ATA), (7.6)

to implement the CP-PPA (1.3) for the model (7.3).

To simulate, we generate some data for the model (7.3) with different values of n. We take

cij = random× 10 for i = 1, . . . , n, j = 1, . . . , n; x0
ij = 1

n for i = 1, . . . , n, j = 1, . . . , n; and y0 = 0.

The stopping criterion is

max
{
‖xk − xk−1‖∞, ‖yk − yk−1‖∞

}
< 10−10.

We still include the improved condition (1.7) for comparison, although our main purpose is to

verify the effectiveness of the heuristic condition (7.6). More specifically, we compare the following

specific choices of r and s to implement the CP-PPA (1.3).
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• CP-PPA with (1.4): r = (10/n)×
√
n/2 and s = 0.4n×

√
n/2.

• CP-PPA with (1.7): r =
√

0.75× (10/n)×
√
n/2 and s =

√
0.75× 0.4n×

√
n/2.

• CP-PPA with (7.6): r = 10/n and s = 4/r = 0.4n.

We report some numerical results for the CP-PPA (1.3) with different conditions in Table 7.3. It

can be seen that the structure-exploiting heuristic (7.6) accelerates the CP-PPA (1.3) significantly.

Indeed, the acceleration of (7.6) over the conditions (1.4) and (1.7) can be as much as more than

20 times. Hence, the possible loss of mathematical rigor in (7.6) leads to a significant acceleration

empirically for the CP-PPA (1.3). In addition, for all the cases tested, it is empirically verified that

solutions of the relaxed problem (7.3) are all binary. Hence, the CP-PPA (1.3) with the heuristical

condition (7.6) provides a very efficient solver to the challenging assignment problem (7.2). We

visualize the solutions for some tested scenarios in Figure 7.3 below.
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Figure 7.3: Numerical results for (7.3) solved by CP-PPA (1.3) with the heuristic condition (7.6).
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Table 7.3: Numerical results of the CP-PPA (1.3) for (7.3).

Size n
CP-PPA with (1.4) CP-PPA with (1.7) CP-PPA with (7.6)

It. CPU Φ(xk) It. CPU Φ(xk) It. CPU Φ(xk)

20 229 0.06 186.64 201 0.03 186.64 74 0.01 186.64

50 317 0.10 486.51 275 0.08 486.51 57 0.01 486.51

80 438 0.12 782.31 381 0.10 782.31 69 0.02 782.31

100 1053 0.35 983.74 910 0.28 983.74 144 0.05 983.74

200 2139 1.53 1983.47 1841 1.27 1983.47 200 0.14 1983.47

300 2407 3.82 2983.28 2081 3.20 2983.28 217 0.33 2983.28

400 10330 76.77 3982.58 8886 64.82 3982.58 699 5.29 3982.58

500 4739 53.62 4983.45 4070 45.76 4983.45 296 3.43 4983.45

600 9321 151.68 5983.80 8049 130.17 5983.80 505 8.14 5983.80

700 18774 413.38 6984.00 16280 358.55 6984.00 1041 23.03 6984.00

800 20660 597.20 7983.59 17816 517.03 7983.59 1034 30.16 7983.59

900 9500 349.11 8983.77 8240 300.18 8983.77 443 16.52 8983.77

1000 16699 759.72 9984.04 14466 659.46 9984.04 704 31.85 9984.04

8 Conclusions

In this paper, we generalize the well-known primal-dual algorithm proposed by Chambolle and

Pock for saddle point problems, and improve the condition for ensuring its convergence. The

improved condition is effective for the most generic setting of convex programming problems with

linear equality constraints, and it is shown to be optimal. We particularly recommend the choice

of α = 1/2 to implement the generalized primal-dual algorithm (1.5) for various applications of the

saddle point problem (1.1), because of the resulting optimal convergence-guaranteeing condition

(1.7). It is also verified by some standard applications that the improved condition can easily lead

to numerical acceleration. We would reiterate that the acceleration is generally moderate because

it is resulted by a theoretically optimal condition and it is effective for the generic setting. But

it is extremely easy to realize the acceleration; essentially there is no need to tune any parameter

additionally and basically we just need to adapt the available codes by attaching the constant

0.75 to the current way of determining the parameters r and s. Hence, the improved condition

immediately provides a simple and universal way to further improve the numerical performance of

the original primal-dual algorithm proposed by Chambolle and Pock. We also propose a structure-

exploiting heuristic to further accelerate the original primal-dual algorithm empirically for some

specific saddle point problems, and verify its significant acceleration by the classic assignment

problem.
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