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STRONGLY MINIMAL SELF-CONJUGATE LINEARIZATIONS FOR
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Abstract. We prove that we can always construct strongly minimal linearizations of an arbitrary
rational matrix from its Laurent expansion around the point at infinity, which happens to be the
case for polynomial matrices expressed in the monomial basis. If the rational matrix has a particular
self-conjugate structure, we show how to construct strongly minimal linearizations that preserve it.
The structures that are considered are the Hermitian and skew-Hermitian rational matrices with
respect to the real line, and the para-Hermitian and para-skew-Hermitian matrices with respect to
the imaginary axis. We pay special attention to the construction of strongly minimal linearizations
for the particular case of structured polynomial matrices. The proposed constructions lead to efficient
numerical algorithms for constructing strongly minimal linearizations. The fact that they are valid
for any rational matrix is an improvement on any other previous approach for constructing other
classes of structure preserving linearizations, which are not valid for any structured rational or
polynomial matrix. The use of the recent concept of strongly minimal linearization is the key for
getting such generality. Strongly minimal linearizations are Rosenbrock's polynomial system matrices
of the given rational matrix, but with a quadruple of linear polynomial matrices (i.e., pencils):

L(\lambda ) :=
\Bigl[ A(\lambda )  - B(\lambda )

C(\lambda ) D(\lambda )

\Bigr] 
, where A(\lambda ) is regular, and the pencils

\bigl[ 
A(\lambda )  - B(\lambda )

\bigr] 
and

\Bigl[ A(\lambda )
C(\lambda )

\Bigr] 
have no finite or infinite eigenvalues. Strongly minimal linearizations contain the complete information
about the zeros, poles, and minimal indices of the rational matrix and allow one to very easily recover
its eigenvectors and minimal bases. Thus, they can be combined with algorithms for the generalized
eigenvalue problem for computing the complete spectral information of the rational matrix.
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1. Introduction. In the 1970s, Rosenbrock [46] introduced the concept of a
polynomial system matrix L(\lambda ) of an arbitrary rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n. Such
a system matrix is partitioned in a quadruple \{ A(\lambda ), B(\lambda ), C(\lambda ), D(\lambda )\} of compatible
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polynomial matrices

(1.1) L(\lambda ) :=

\biggl[ 
A(\lambda )  - B(\lambda )
C(\lambda ) D(\lambda )

\biggr] 
such that its Schur complement with respect to D(\lambda ) equals R(\lambda ). That is, R(\lambda ) =
D(\lambda ) + C(\lambda )A(\lambda ) - 1B(\lambda ). Then the quadruple \{ A(\lambda ), B(\lambda ), C(\lambda ), D(\lambda )\} is said to be
a realization of R(\lambda ). Rosenbrock showed that one can retrieve from the polynomial
matrices A(\lambda ) and L(\lambda ), respectively, the finite pole and zero structure of R(\lambda ),
provided L(\lambda ) is irreducible or minimal, meaning that the matrices

(1.2)
\bigl[ 
A(\lambda )  - B(\lambda )

\bigr] 
,

\biggl[ 
A(\lambda )
C(\lambda )

\biggr] 
have, respectively, full row and column rank for all finite \lambda \in \BbbC . It was shown recently
in [18] that when the quadruple consists of polynomial matrices of degree at most one,
i.e., pencils, then one can recover the complete eigenstructure of the rational matrix,
namely its finite and infinite polar and zero structure, and its left and right null space
structure from the pencils A(\lambda ) and L(\lambda ), provided the pencils in (1.2) have full rank
for all \lambda , infinity included. Moreover, in this situation, the eigenvectors and minimal
bases of R(\lambda ) can be very easily recovered from those of L(\lambda ), and their minimal
indices are the same. In such a case, L(\lambda ) is said to be strongly minimal [16, 18] or,
also, a strongly minimal linearization of R(\lambda ). The main advantage of using pencils
is that there are well-established stable algorithms to compute their eigenstructure
using unitary transformations only, both in the regular [43] and in the singular [49]
case. There are also algorithms available to derive strongly minimal linear polynomial
system matrices from nonminimal ones. These algorithms are also based on unitary
transformations only [18, 50].

In this paper, we show how to construct strongly minimal linearizations for rational
matrices R(\lambda ) \in \BbbC (\lambda )m\times n starting from a Laurent expansion around the point at
infinity:

(1.3) R(\lambda ) = Rd\lambda 
d + \cdot \cdot \cdot +R1\lambda +R0 +R - 1\lambda 

 - 1 +R - 2\lambda 
 - 2 +R - 3\lambda 

 - 3 + \cdot \cdot \cdot ,

which is convergent for sufficiently large \lambda \in \BbbC . The approach we propose is also valid
if instead of considering the Laurent expansion R - 1\lambda 

 - 1 +R - 2\lambda 
 - 2 +R - 3\lambda 

 - 3 + \cdot \cdot \cdot for
the strictly proper part of R(\lambda ), any minimal state-space realization of the strictly
proper part of R(\lambda ) is given.

If the rational matrix is square (i.e., m = n) and has a particular type of self-
conjugate structure, the coefficients Ri \in \BbbC m\times m of its expansion also inherit the
self-conjugate structure and the poles and zeros of R(\lambda ) appear in self-conjugate pairs.
Such structures arise in many applications, as we comment below, and in these cases
we also show how to construct strongly minimal linearizations preserving the structure.
In particular, we consider here four types of self-conjugate rational matrices, two with
respect to the real line and two with respect to the imaginary axis. The Hermitian
and skew-Hermitian rational matrices R(\lambda ), with respect to the real line, satisfy

[R(\lambda )]\ast = R(\lambda ) and [R(\lambda )]\ast =  - R(\lambda ),

respectively. They have poles and zeros that are mirror images with respect to the
real line \BbbR , and have coefficient matrices Ri that are Hermitian (i.e., R\ast 

i = Ri) and
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skew-Hermitian (i.e., R\ast 
i =  - Ri), respectively. The para-Hermitian and para-skew-

Hermitian rational matrices, with respect to the imaginary axis, satisfy

[R(\lambda )]\ast = R( - \lambda ) and [R(\lambda )]\ast =  - R( - \lambda ),

respectively. They have poles and zeros that are mirror images with respect to the
imaginary line \jmath \BbbR , and have scaled coefficient matrices \jmath iRi that are Hermitian and
skew-Hermitian, respectively. The nomenclature introduced above is used in the
linear systems and control theory literature (see, for instance, [24, 44, 45] and the
references therein). However, in standard references on structured polynomial matrices
[37, 38] the para-Hermitian and para-skew-Hermitian structures are called alternating
structures, because the matrix coefficients satisfy, respectively, R\ast 

i = ( - 1)iRi and
R\ast 

i = ( - 1)i+1Ri and, thus, alternate between being Hermitian or skew-Hermitian
matrices. Specifically, para-Hermitian polynomial matrices are called \ast -even, and
para-skew-Hermitian polynomial matrices are called \ast -odd in [37, 38].

There are, of course, equivalent definitions for real rational matrices, where all
coefficient matrices Ri are real. Namely, (skew-)symmetric and para-(skew-)symmetric
rational matrices. In these cases, the poles and zeros satisfy the same symmetries that
have been described above.

The symmetries in the zeros and poles of structured polynomial and rational
matrices reflect specific physical properties, as they usually originate from the physical
symmetries of the underlying applications [24, 31, 35, 37, 39]. Such special structures
occur in numerous applications in engineering, mechanics, control, and linear systems
theory. Some of the most common algebraic structures that appear in applications are
the (skew-)symmetric (or Hermitian) and the para-(skew-)symmetric (or Hermitian)
or alternating structures considered in this work (see [31, 37, 44, 45] and the references
therein). For instance, symmetric (or Hermitian) matrix polynomials arise in the
classical problem of vibration analysis [25, 34], and alternating matrix polynomials
find applications in the study of corner singularities in anisotropic elastic materials
[42] and in the study of gyroscopic systems [35]. Rational matrices with the structures
mentioned above have appeared, for instance, in the continuous-time linear-quadratic
optimal control problem and in the spectral factorization problem [24, 44, 45, 51].

Because of the numerous applications where structured rational and polynomial
matrices occur, there have been many attempts to construct linearizations for such
structured rational and polynomial matrices that display the same structure as that of
the rational or polynomial matrix (see [5, 10, 11, 15, 20, 24, 31, 34, 37] among many
other references on this topic). An important motivation for this search is to preserve
numerically in floating point arithmetic the symmetries of the zeros and poles of these
structured problems by applying structured algorithms for structured generalized
eigenvalue problems to these structured linearizations [7, 33, 40, 41, 42, 47]. However,
all of these earlier attempts to construct structured linearizations find obstacles when
they are applied to the structured problems considered in this paper, because they
either cover only a subclass of the structures, or they impose certain conditions on the
rational and polynomial matrices for their construction to apply, such as regularity,
strict properness, or invertibility of certain matrix coefficients. We emphasize that,
for some polynomial matrices, the mentioned obstacles cannot be overcome in any
way with the previously adopted definitions of linearization, because it has been
proved in [37, 38] that there exist alternating polynomial matrices which cannot be
linearized at all according to the standard definitions of linearizations in [37, 38]. In
contrast, in the present paper, we give a construction of structured strongly minimal
linearizations valid for arbitrary rational and polynomial matrices, with any of the
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above four structures. Moreover, the proof used for this construction is different from
these earlier papers, and we claim it to be simpler as well.

This paper is organized as follows. In section 2, we develop background material for
the problem and introduce strongly minimal linearizations for polynomial and rational
matrices. In section 3, we show how to construct strongly minimal linearizations of
arbitrary polynomial matrices, paying particular attention to quadratic polynomial
matrices in subsection 3.1. In section 4, we extend this construction to structured
strongly minimal linearizations of structured polynomial matrices. In sections 5 and 6,
we develop analogous results for strictly proper rational matrices. That is, we build
strongly minimal linearizations for arbitrary and structured strictly proper rational
matrices, respectively. In section 7, we combine the results in previous sections to
construct strongly minimal linearizations for arbitrary and structured rational matrices.
Finally, in section 8, we comment on some algorithmic aspects, and in section 9, we
give some concluding remarks and some lines of possible future research.

2. Background and strongly minimal linearizations. This section recalls
basic definitions that are used throughout this paper and discusses the recent concept
of strongly minimal linearizations of rational matrices [16, 18], which is fundamental
in this work. We refer to [32, 46] for more details.

We consider the field of complex numbers \BbbC . Then \BbbC [\lambda ]m\times n and \BbbC (\lambda )m\times n denote
the sets of m\times n matrices whose entries are in the ring of polynomials \BbbC [\lambda ] and in
the field of rational functions \BbbC (\lambda ), respectively. Their elements are called polynomial
and rational matrices.

A rational function r(\lambda ) = n(\lambda )
d(\lambda ) is said to be proper if deg(n(\lambda )) \leq deg(d(\lambda )) and

strictly proper if deg(n(\lambda )) < deg(d(\lambda )), where deg(\cdot ) stands for degree. A (strictly)
proper rational matrix is a matrix whose entries are (strictly) proper rational functions.
By the division algorithm for polynomials, any rational function r(\lambda ) \in \BbbC (\lambda ) can be
uniquely written as r(\lambda ) = p(\lambda ) + rsp(\lambda ), where p(\lambda ) is a polynomial and rsp(\lambda ) a
strictly proper rational function. Therefore, any rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n can
be uniquely written as

(2.1) R(\lambda ) = P (\lambda ) +Rsp(\lambda ),

where P (\lambda ) \in \BbbC [\lambda ]m\times n is a polynomial matrix and Rsp(\lambda ) \in \BbbC (\lambda )m\times n is a strictly
proper rational matrix. Then, P (\lambda ) is called the polynomial part of R(\lambda ) and Rsp(\lambda )
the strictly proper part of R(\lambda ).

A rational matrix M(\lambda ) \in \BbbC (\lambda )m\times n is regular if it is square and its determinant
is not identically equal to 0. Otherwise, M(\lambda ) is said to be singular. A square rational
matrix M(\lambda ) \in \BbbC (\lambda )m\times m is regular at a point \lambda 0 \in \BbbC if M(\lambda 0) is invertible, with
M(\lambda 0) \in \BbbC m\times m. M(\lambda ) is regular at infinity or biproper if M(1/\lambda ) is regular at 0. If
M(\lambda ) is regular for all \lambda 0 \in \BbbC , then M(\lambda ) is said to be unimodular and, equivalently,
it is a polynomial matrix with constant nonzero determinant. The normal rank of a
rational matrix is the size of its largest nonidentically zero minor.

Poles and zeros of rational matrices are defined via the local Smith--McMillan form
[53, 3]. Let R(\lambda ) \in \BbbC (\lambda )m\times n be a rational matrix of normal rank r, and let \lambda 0 \in \BbbC .
Then there exist rational matrices M\ell (\lambda ) and Mr(\lambda ) regular at \lambda 0 such that

(2.2) M\ell (\lambda )R(\lambda )Mr(\lambda ) = diag((\lambda  - \lambda 0)
d1 , . . . , (\lambda  - \lambda 0)

dr , 0(m - r)\times (n - r)),

where d1 \leq d2 \leq \cdot \cdot \cdot \leq dr are integer numbers. The diagonal matrix in (2.2) is unique
and is called the local Smith--McMillan form of R(\lambda ) at \lambda 0. The exponents di are
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called the structural indices of R(\lambda ) at \lambda 0. If there are strictly positive indices in (2.2)
and they are 0 < dp \leq \cdot \cdot \cdot \leq dr, then \lambda 0 is a zero of R(\lambda ) with partial multiplicities
(dp, . . . , dr). In this case, we also say that (dp, . . . , dr) is the zero structure of R(\lambda )
at \lambda 0. If there are strictly negative indices in (2.2) and they are d1 \leq \cdot \cdot \cdot \leq dq < 0,
then \lambda 0 is a pole of R(\lambda ) with partial multiplicities ( - d1, . . . , - dq). In this case, we
also say that ( - d1, . . . , - dq) is the pole (or polar) structure of R(\lambda ) at \lambda 0. If \lambda 0 = \infty ,
then the factor (\lambda  - \lambda 0) is replaced by 1

\lambda in (2.2), the matrices M\ell (\lambda ) and Mr(\lambda ) are
biproper, and the structural indices, zeros, poles, as well as their partial multiplicities,
of R(\lambda ) at infinity are defined analogously. Observe that the structural indices and the
pole and the zero structures of R(\lambda ) at infinity are exactly those of R(1/\lambda ) at zero.

The zero structure of a rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n is comprised of the set
of its zeros (finite and infinite) and their partial multiplicities. The sum of the partial
multiplicities of all the zeros (finite and infinite) of R(\lambda ) is called the zero degree
\delta z(R) of R(\lambda ). The pole (or polar) structure of a rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n is
comprised of the set of its poles (finite and infinite) and their partial multiplicities.
The sum of the partial multiplicities of all the poles (finite and infinite) of R(\lambda ) is
called the polar degree \delta p(R) of R(\lambda ), or, also, the McMillan degree of R(\lambda ) [32].

Remark 2.1. Polynomial matrices are particular cases of rational matrices. There-
fore, the definitions above can be applied to polynomial matrices. However, standard
literature on polynomial matrices [23, 26] use the term eigenvalues instead of zeros and
poles and define the structure at infinity in a different way. We discuss these points in
this remark. Note first that a polynomial matrix P (\lambda ) does not have finite poles, i.e.,
all the indices di in (2.2) are nonnegative for any finite \lambda 0. The finite eigenvalues of
P (\lambda ) and their partial multiplicities [26] are exactly the same as the finite zeros of P (\lambda )
and their partial multiplicities. However, in [26], a polynomial matrix P (\lambda ) of degree
d and normal rank r is said to have an eigenvalue at infinity with partial multiplicities
0 < tp \leq \cdot \cdot \cdot \leq tr if the reversal polynomial matrix revdP (\lambda ) := \lambda dP (1/\lambda ) has an
eigenvalue at 0 with partial multiplicities 0 < tp \leq \cdot \cdot \cdot \leq tr. In this situation the
structural indices (2.2) of P (\lambda ) at infinity when viewed as a rational matrix are

(2.3) (d1, d2, . . . , dr) = (0, . . . , 0\underbrace{}  \underbrace{}  
p - 1

, tp, . . . , tr) - (d, d, . . . , d).

Thus, the pole-zero structures of a polynomial matrix at infinity are different from
its ``eigenvalue structure"" at infinity defined through the reversal, but they are easily
related through (2.3) and are completely equivalent to each other. From now on, we
will make a clear distinction for any polynomial matrix P (\lambda ) of degree d: whenever
we talk about its ``eigenvalue structure at infinity,"" we refer to the zero structure of
revdP (\lambda ) at 0, and whenever we talk about its ``pole or zero structures at infinity,"" we
refer to the pole or zero structures of P (1/\lambda ) at 0. Recall that such a distinction is
not necessary at finite points. Moreover, we emphasize that a polynomial matrix of
degree d > 0 may or may not have an eigenvalue at infinity, may or may not have a
zero at infinity, but always has a pole at infinity with largest partial multiplicity (or
order) d. More on this topic can be found in [4]. Finally, note that for pencils, i.e.,
polynomial matrices with degree 1, the definition of ``eigenvalue structure at infinity""
via reversals is equivalent to that coming from the Kronecker canonical form [23], and
that the relation (2.3) was pointed out in [50].

In addition to the pole and zero structures, a singular rational matrix has a singular
structure or minimal indices. In order to define them, recall that every rational vector
subspace \scrV , i.e., every subspace \scrV \subseteq \BbbC (\lambda )n over the field \BbbC (\lambda ), has bases consisting
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entirely of polynomial vectors. We call them polynomial bases. By Forney [22], a
minimal basis of \scrV is a polynomial basis of \scrV consisting of polynomial vectors whose
sum of degrees is minimal among all polynomial bases of \scrV . Though minimal bases
are not unique, the ordered list of degrees of the polynomial vectors in any minimal
basis of \scrV is unique. These degrees are called the minimal indices of \scrV .

We now consider a rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n and the rational vector
subspaces:

\scrN r(R) = \{ x(\lambda ) \in \BbbC (\lambda )n\times 1 : R(\lambda )x(\lambda ) = 0\} and
\scrN \ell (R) = \{ y(\lambda )T \in \BbbC (\lambda )1\times m : y(\lambda )TR(\lambda ) = 0\} ,

which are called the right and left null-spaces of R(\lambda ), respectively. If R(\lambda ) is singular,
then at least one of these null-spaces is nontrivial. If \scrN r(R) (resp., \scrN \ell (R)) is non-
trivial, it has minimal bases and minimal indices, which are called the right (resp.,
left) minimal bases and minimal indices of R(\lambda ). Notice that an m\times n rational matrix
of normal rank r has m - r left minimal indices and n - r right minimal indices.

The complete list of structural data of a rational matrix is formed by its zero
structure, its pole structure, and its left and right minimal indices.

The following degree sum theorem [55] relates the structural data of a rational
matrix R(\lambda ). In particular, it relates the McMillan degree \delta p(R) and the zero degree
\delta z(R) of R(\lambda ) to the left null space degree \delta \ell (R) of R(\lambda ), which is the sum of all left
minimal indices, and to the right null space degree \delta r(R) of R(\lambda ), which is the sum of
all right minimal indices.

Theorem 2.2. Let R(\lambda ) \in \BbbC (\lambda )m\times n be a rational matrix. Then

\delta p(R) = \delta z(R) + \delta \ell (R) + \delta r(R).

2.1. Strongly minimal linearizations and their relation with other class-
es of linearizations. Linearizing rational matrices is one of the most competitive
methods for computing their complete lists of structural data. This means constructing
a matrix pencil such that the complete list of structural data of the corresponding
rational matrix can be recovered from the structural data of the pencil. In this paper,
we focus on the strongly minimal linearizations introduced in Definition 2.8. For the
purpose of comparing our results with others available in the literature, we also very
briefly revise other notions of linearizations.

Since the results in this paper are also relevant when they are applied to polynomial
matrices, we start with a very popular notion of linearization of a polynomial matrix.
A pencil L(\lambda ) of degree 1 is a linearization in the sense of Gohberg, Lancaster, and
Rodman [26], the GLR-sense for short, of a polynomial matrix P (\lambda ) of degree d > 1 if
there exist unimodular matrices U(\lambda ) and V (\lambda ) such that

U(\lambda )L(\lambda )V (\lambda ) =

\biggl[ 
P (\lambda ) 0
0 Is

\biggr] 
,

where Is denotes the identity matrix of size any integer s \geq 0. The key property of
a GLR-linearization is that it has the same finite eigenvalues with the same partial
multiplicities as P (\lambda ). Furthermore, L(\lambda ) is a strong linearization of P (\lambda ) in the GLR-
sense if L(\lambda ) is a GLR-linearization of P (\lambda ) and rev1L(\lambda ) is a GLR-linearization of
revdP (\lambda ). Then, a GLR-strong linearization has the same finite and infinite eigenvalues
with the same partial multiplicities as P (\lambda ). However, the minimal indices of a GLR
(strong) linearization L(\lambda ) may be completely unrelated to those of P (\lambda ) [13, section
4], except for the fact that the number of left (resp., right) minimal indices of L(\lambda ) and
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P (\lambda ) are equal. Nevertheless, the GLR-strong linearizations that are used in practice
have minimal indices that are simply related to those of the polynomial through
addition of a constant shift (see [14] and the references therein).

In order to linearize a rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n, in this paper we consider
linear polynomial system matrices of R(\lambda ) [46]. This means that we consider block
partitioned pencils

(2.4) L(\lambda ) :=

\biggl[ 
\lambda A1  - A0  - \lambda B1 +B0

\lambda C1  - C0 \lambda D1  - D0

\biggr] 
=:

\biggl[ 
A(\lambda )  - B(\lambda )
C(\lambda ) D(\lambda )

\biggr] 
\in \BbbC [\lambda ](p+m)\times (p+n),

where A(\lambda ) \in \BbbC [\lambda ]p\times p is regular and the Schur complement of A(\lambda ) in L(\lambda ) is the
rational matrix R(\lambda ), i.e., R(\lambda ) = D(\lambda )+C(\lambda )A(\lambda ) - 1B(\lambda ). In this situation, it is also
said that R(\lambda ) is the transfer function matrix of L(\lambda ). These pencils are particular
instances of Rosenbrock's polynomial system matrices [46], which may have any degree.

A linear polynomial system matrix L(\lambda ) as in (2.4) contains the finite zero and
pole structures of its transfer function matrix R(\lambda ) provided that L(\lambda ) satisfies the
following minimality conditions. L(\lambda ) is minimal if the matrices

(2.5)
\bigl[ 
\lambda A1  - A0  - \lambda B1 +B0

\bigr] 
,

\biggl[ 
\lambda A1  - A0

\lambda C1  - C0

\biggr] 
,

have, respectively, full row and column rank for all \lambda 0 \in \BbbC . This is equivalent to
stating that the pencils in (2.5) do not have finite eigenvalues. Then we have the
following result.

Theorem 2.3 (see [46]). Let R(\lambda ) be the transfer function matrix of L(\lambda ) in
(2.4). Let \lambda 0 \in \BbbC . If L(\lambda ) is minimal, then we have the following:

1. the zero structure of R(\lambda ) at \lambda 0 is the same as the zero structure of L(\lambda ) at
\lambda 0 and

2. the pole structure of R(\lambda ) at \lambda 0 is the same as the zero structure of \lambda A1  - A0

at \lambda 0.

It is very easy to prove that the number of left (resp., right) minimal indices of a
minimal polynomial system matrix is equal to the number of left (resp., right) minimal
indices of its transfer function matrix, though their values may be different [2, 55].

Remark 2.4. We can combine Theorem 2.3 applied to a polynomial matrix P (\lambda )
and the equality of the number of the minimal indices of L(\lambda ) and P (\lambda ) with [13,
Theorem 4.1] for proving that any minimal linear polynomial system matrix of a
polynomial matrix P (\lambda ) is always a GLR-linearization of P (\lambda ). The reverse result is
not true in general. Observe also that any minimal polynomial system matrix of a
polynomial matrix P (\lambda ) must have the block A(\lambda ) in (2.4) unimodular, because P (\lambda )
does not have finite poles.

The minimal linear polynomial system matrices of an arbitrary rational matrix
R(\lambda ) are particular cases of the linearizations of R(\lambda ) defined in [1, Definition 3.2],
which were introduced with the idea of combining the concept of minimal polynomial
system matrix with the extension of GLR-linearizations from polynomial to rational
matrices.

Notice that Theorem 2.3 does not provide information about the structure at
infinity. The recovering of this structure requires the following concept: L(\lambda ) in (2.4)
is minimal at infinity [16] if the matrices

(2.6)
\bigl[ 
A1  - B1

\bigr] 
and

\biggl[ 
A1

C1

\biggr] 
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have, respectively, full row and column rank. This condition is equivalent to stating
that the pencils in (2.5) have degree exactly 1 and do not have eigenvalues at \infty . Then
we have the next result that follows from [54] and [18, section 3].

Theorem 2.5. Let R(\lambda ) be the transfer function matrix of L(\lambda ) in (2.4). If L(\lambda )
is minimal at \infty , then we have the following:

1. the zero structure of R(\lambda ) at infinity is the same as the zero structure of L(\lambda )
at infinity and

2. the polar structure of R(\lambda ) at infinity is the same as the zero structure of the
pencil

(2.7)

\left[ 
\lambda A1  - A0  - \lambda B1 0

\lambda C1 \lambda D1  - Im
0 In 0

\right] 

at infinity.

The polar structure of R(\lambda ) at \infty can also be recovered without considering the
extended pencil in (2.7). In particular, both the zero and polar structures of R(\lambda ) at
infinity can be obtained from the eigenvalue structures of the pencils L(\lambda ) and A(\lambda )
at infinity as Theorem 2.6 shows. We emphasize that the hypothesis of minimality at
\infty used in Theorem 2.6 implies that L(\lambda ) has degree 1. However, A(\lambda ) = \lambda A1  - A0

might have degree 0 if A1 = 0. In any case, we understand that rev1A(\lambda ) = A1  - \lambda A0.

Theorem 2.6 (see [16, Theorem 3.13]). Let R(\lambda ) be the transfer function matrix
of L(\lambda ) in (2.4). Assume that R(\lambda ) has normal rank r. Let 0 < e1 \leq \cdot \cdot \cdot \leq es be
the partial multiplicities of rev1A(\lambda ) at 0, and let 0 < \widetilde e1 \leq \cdot \cdot \cdot \leq \widetilde eu be the partial
multiplicities of rev1L(\lambda ) at 0. If L(\lambda ) is minimal at \infty , then the structural indices at
infinity d1 \leq \cdot \cdot \cdot \leq dr of R(\lambda ) are

(d1, d2, . . . , dr) = ( - es, - es - 1, . . . , - e1, 0, . . . , 0\underbrace{}  \underbrace{}  
r - s - u

, \widetilde e1, \widetilde e2, . . . , \widetilde eu) - (1, 1, . . . , 1).

A linear polynomial system matrix that is minimal (at finite points) and also
minimal at \infty is called strongly minimal [16, 18]. Related to this concept we present
the following definitions, which have been introduced in [18, section 3] for polynomial
system matrices of any degree.

Definition 2.7. A linear polynomial system matrix L(\lambda ) as in (2.4) is said to be
strongly E-controllable and strongly E-observable, respectively, if the pencils

(2.8)
\bigl[ 
A(\lambda )  - B(\lambda )

\bigr] 
and

\biggl[ 
A(\lambda )
C(\lambda )

\biggr] 
have degree exactly 1 and have no finite or infinite eigenvalues. If both conditions are
satisfied, L(\lambda ) is said to be strongly minimal.

The letter E in the definition of strong E-controllability and E-observability refers
to the condition of the matrices in (2.8) not having eigenvalues, finite or infinite, and
emphasizes the differences with the concepts of ``strong controllability, observability,
and irreducibility"" used in [18, 55, 54]. As mentioned before, the degree 1 pencils in
(2.8) do not have infinite eigenvalues if and only if the matrices in (2.6) have full row
and full column rank, respectively. The ranks of the matrices in (2.6) will also be
called the ranks at infinity of the pencils in (2.8), even in the case when the matrices
in (2.6) do not have full ranks.
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Next, we formally introduce the definition of strongly minimal linearization of a
rational matrix, which is fundamental in this work. This definition is implicit in [18].

Definition 2.8. Let R(\lambda ) \in \BbbC (\lambda )m\times n be a rational matrix. A linear polynomial
system matrix L(\lambda ) as in (2.4) is said to be a strongly minimal linearization of R(\lambda )
if L(\lambda ) is strongly minimal and its transfer function matrix is R(\lambda ). Equivalently,
\{ A(\lambda ), B(\lambda ), C(\lambda ), D(\lambda )\} is said to be a strongly minimal linear realization of R(\lambda ).

Strongly minimal linearizations L(\lambda ) of a rational matrix R(\lambda ) have been defined
with the goal of constructing pencils that allow us to recover the complete pole and zero
structures of R(\lambda ) through Theorems 2.3 and 2.6, or 2.5. Surprisingly, the condition
of strong minimality implies that the minimal indices of L(\lambda ) and R(\lambda ) are the same.
This is proved in Theorem 2.9, which, together with Theorems 2.3 and 2.6, allows
us to recover the complete list of structural data of a rational matrix from any of its
strongly minimal linearizations.

Theorem 2.9. Let L(\lambda ) be a strongly minimal linearization of a rational matrix
R(\lambda ). Then the left and right minimal indices of R(\lambda ) are the same as the left and
right minimal indices of L(\lambda ).

Proof. By [18, Proposition 1], a strongly minimal linear polynomial system matrix
is strongly irreducible according to the definition in [54]. Then, by [54, Result 2], the
left and right minimal indices of R(\lambda ) and L(\lambda ) are the same.

As we have seen in the proof of Theorem 2.9, any strongly minimal linearization
L(\lambda ) of a rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n is a strongly irreducible polynomial system
matrix of R(\lambda ) (see definition in [54]). Thus, [54, Result 2] establishes a simple
bijection between the left (resp., right) minimal bases of L(\lambda ) and those of R(\lambda ) that
allows us to recover a left (resp., right) minimal basis of R(\lambda ) from any left (resp.,
right) minimal basis of L(\lambda ), and conversely, without any computational cost. We
only state here the result for right minimal bases since for left minimal bases the result
is analogous.

Theorem 2.10. Let L(\lambda ) as in (2.4) be a strongly minimal linearization of a

rational matrix R(\lambda ). If the columns of
\bigl[ M1(\lambda )
M2(\lambda )

\bigr] 
, partitioned conformably to the blocks

of L(\lambda ), form a right minimal basis for L(\lambda ), then the columns of M2(\lambda ) form a right
minimal basis for R(\lambda ). Conversely, if the columns of M2(\lambda ) form a right minimal

basis for R(\lambda ), then the columns of
\bigl[ 
A(\lambda ) - 1B(\lambda )M2(\lambda )

M2(\lambda )

\bigr] 
form a right minimal basis for

L(\lambda ).

Remark 2.11. Given \lambda 0 \in \BbbC with detA(\lambda 0) \not = 0, it is easy to prove that the
same recovery rules of Theorem 2.10 hold for the bases of the left (resp., right) null
space of the constant matrix R(\lambda 0) as for those of the left (resp., right) null space of
the constant matrix L(\lambda 0) for any linear polynomial system matrix L(\lambda ) as in (2.4),
without imposing strong minimality (see [15, section 5.1]). In the case of regular
rational matrices, \lambda 0 \in \BbbC is an eigenvalue of R(\lambda ) when it is a zero but not a pole,
and the finite poles of R(\lambda ) are the finite zeros of A(\lambda ) if L(\lambda ) is minimal. Then, by
assuming minimality on L(\lambda ), the previous rule allows us to recover the associated
eigenvectors of R(\lambda ) from those of L(\lambda ).

Remark 2.12. It follows from Theorems 2.3, 2.5, and 2.9 that if L(\lambda ) is a strongly
minimal linearization of a rational matrix R(\lambda ), then

\delta z(R) + \delta \ell (R) + \delta r(R) = \delta z(L) + \delta \ell (L) + \delta r(L),
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and then from Theorem 2.2 that \delta p(R) = \delta p(L). But the only pole of L(\lambda ) := \lambda L1+L0

is the point at infinity and its polar degree is equal to rank(L1) [50, p. 126]. Therefore,
the McMillan degree \delta p(R) of R(\lambda ) equals the rank of L1 for any strongly minimal
linearization of R(\lambda ) and no other pencils with the same zero structure and the same
left and right minimal indices as R(\lambda ) can have a first order coefficient with smaller
rank. Thus, strongly minimal linearizations are optimal in this sense.

By Remark 2.4, we have that strongly minimal linearizations of a polynomial
matrix P (\lambda ) are always GLR-linearizations of P (\lambda ). However, the following example
shows that they are not, in general, GLR-strong linearizations.

Example 2.13 (strongly minimal linearizations of polynomial matrices are not
strong linearizations in the sense of Gohberg, Lancaster, and Rodman). Consider the
polynomial matrix

P (\lambda ) = \lambda 2

\biggl[ 
0 0
0 1

\biggr] 
+ \lambda 

\biggl[ 
1 0
0 1

\biggr] 
+

\biggl[ 
1 0
0 1

\biggr] 
and the partitioned pencil

L(\lambda ) =

\left[ 
 - 1 0 \lambda 

0 \lambda + 1 0

\lambda 0 \lambda + 1

\right] 
.

The transfer function matrix of L(\lambda ) is P (\lambda ), and L(\lambda ) is minimal and minimal
at infinity. Therefore, L(\lambda ) is a strongly minimal linearization of P (\lambda ) and also a
GLR-linearization of P (\lambda ). However, rev1L(\lambda ) is not unimodularly equivalent to
diag(rev2P (\lambda ), 1) and, thus, L(\lambda ) is not a GLR-strong linearization of P (\lambda ). In order
to see this, observe that

rev2P (\lambda ) = \lambda 2

\biggl[ 
1 0
0 1

\biggr] 
+\lambda 

\biggl[ 
1 0
0 1

\biggr] 
+

\biggl[ 
0 0
0 1

\biggr] 
and rev1L(\lambda ) =

\left[ 
 - \lambda 0 1

0 \lambda + 1 0

1 0 \lambda + 1

\right] 
,

which makes it transparent that rev1L(\lambda ) does not have eigenvalues (or zeros) at zero,
while rev2P (\lambda ) does. In general, it is possible to prove by using Theorem 2.6 that
strongly minimal linearizations of polynomial matrices of degree larger than 1 with
eigenvalues at infinity are not GLR-strong linearizations.

Despite the fact of not being GLR-strong linearizations, strongly minimal lin-
earizations of a polynomial matrix P (\lambda ) allow us to always recover the complete list of
structural data of P (\lambda ), including its minimal indices. Moreover, we will prove in this
paper that they allow us to preserve structures of polynomial matrices that cannot
always be preserved by GLR-strong linearizations.

Finally, note that according to the definitions in [16], we can also say that a
strongly minimal linearization L(\lambda ) of a rational matrix R(\lambda ) is a linearization of its
transfer function matrix R(\lambda ) at all finite points and also at infinity. However, strongly
minimal linearizations are not always strong linearizations in the sense of [1, Definition
3.4] since the first degree coefficients of their (1, 1)-blocks are not necessarily invertible.

3. Constructing strongly minimal linearizations of polynomial matrices.
In this section we focus on constructing explicitly a strongly minimal linearization for
any given polynomial matrix P (\lambda ) \in \BbbC [\lambda ]m\times n of degree d > 1:

(3.1) P (\lambda ) := P0 + P1\lambda + \cdot \cdot \cdot + Pd\lambda 
d.



 

 

 

 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1364 F. M. DOPICO, M. C. QUINTANA, AND P. VAN DOOREN

Such a strongly minimal linearization is constructed in Theorem 3.2, and we will prove
in section 4 that it inherits the structure of P (\lambda ), when P (\lambda ) possesses any of the
self-conjugate structures considered in this work. The construction uses three pencils
associated with P (\lambda ) that have appeared before in the literature. They are described
in the following paragraphs.

The pencil

(3.2) Lr(\lambda ) :=

\Biggl[ 
Ar(\lambda )  - Br(\lambda )

Cr(\lambda ) Dr(\lambda )

\Biggr] 
:=

\left[ 
 - In \lambda In 0

. . .
. . .

...
 - In \lambda In 0

 - In \lambda In

\lambda Pd . . . . . . \lambda P2 \lambda P1 + P0

\right] 

was used in the classical reference [52]. It is easy to see that Lr(\lambda ) is a linear
polynomial system matrix of P (\lambda ), since P (\lambda ) = Dr(\lambda ) + Cr(\lambda )Ar(\lambda )

 - 1Br(\lambda ), and
that it is minimal for all finite \lambda . For the point at \infty , E-controllability is clearly
satisfied but E-observability is only satisfied if the matrix Pd has full column rank n.
Thus, Lr(\lambda ) is not a strongly minimal linearization of P (\lambda ) when Pd does not have
full column rank. However, note that Lr(\lambda ) is always a GLR-strong linearization of
P (\lambda ). This can be seen, for instance, by noting that if the two block rows in (3.2) are
interchanged, we obtain one of the block Kronecker linearizations (with only one block
column) associated to P (\lambda ) defined in [14, section 4]. The pencil (3.2) has a structure
similar to that of the classical first or row Frobenius companion form.

The pencil

(3.3) Lc(\lambda ) :=

\Biggl[ 
Ac(\lambda )  - Bc(\lambda )

Cc(\lambda ) Dc(\lambda )

\Biggr] 
:=

\left[ 
 - Im \lambda Pd

\lambda Im
. . .

...
. . .  - Im

...
\lambda Im  - Im \lambda P2

0 . . . 0 \lambda Im \lambda P1 + P0

\right] 

is in some sense ``dual"" to (3.2). It is also a linear polynomial system matrix of
P (\lambda ), since P (\lambda ) = Dc(\lambda ) + Cc(\lambda )Ac(\lambda )

 - 1Bc(\lambda ). Moreover, Lc(\lambda ) is strongly E-
observable, but not necessarily strongly E-controllable, unless Pd has full row rank.
As a consequence, Lc(\lambda ) is a strongly minimal linearization of P (\lambda ) if and only if Pd

has full row rank. However, Lc(\lambda ) is always a GLR-strong linearization of P (\lambda ). The
pencil (3.3) has a structure similar to that of the classical second or column Frobenius
companion form.

The pencil
(3.4)

Ls(\lambda ) :=

\Biggl[ 
As(\lambda )  - Bs(\lambda )

Cs(\lambda ) Ds(\lambda )

\Biggr] 
:=

\left[  - Pd \lambda Pd

..
.

\lambda Pd  - Pd - 1

...

 - Pd ..
. ...

...

 - Pd \lambda Pd  - Pd - 1 . . . \lambda P3  - P2 \lambda P2

\lambda Pd . . . . . . \lambda P2 \lambda P1 + P0

\right] 

was originally proposed by Lancaster in [34, pp. 58--59] for regular polynomial matrices
with Pd invertible. In this paper, we use it for arbitrary polynomial matrices, including
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rectangular ones. Ls(\lambda ) has the advantage of preserving the Hermitian or skew-
Hermitian nature of the coefficients of the linearization if P (\lambda ) happens to have
coefficients with such properties. The pencil Ls(\lambda ) has also been studied more recently
in [31, 36], where it is seen as one of the pencils of the standard basis of the linear
space \BbbD \BbbL (P ) of pencils related to P (\lambda ). It is well known that Ls(\lambda ) is a GLR-strong
linearization of P (\lambda ) if and only if Pd is invertible [12, 36]. In fact, in this case,
Ls(\lambda ) is also a strongly minimal linearization of P (\lambda ) since it is strongly minimal and
P (\lambda ) = Ds(\lambda ) + Cs(\lambda )As(\lambda )

 - 1Bs(\lambda ). However, if Pd is not invertible, Ls(\lambda ) is not a
linearization of P (\lambda ) in any of the senses considered in the literature, and, even more,
it is not a Rosenbrock polynomial system matrix of P (\lambda ) since As(\lambda ) is not regular.
Despite this fact, Ls(\lambda ) is our starting point for constructing the strongly minimal
linearization of P (\lambda ) of interest in this work.

The constant block Hankel matrix T defined in the next equation,

(3.5) T :=

\left[ 
Pd

..
.

Pd - 1

Pd ..
. ...

Pd Pd - 1 . . . P2

\right] 
,

plays a key role in the rest of this paper. To begin, it allows us to obtain the following
relations:

(3.6)
\bigl[ 
As(\lambda )  - Bs(\lambda )

\bigr] 
= T

\bigl[ 
Ar(\lambda )  - Br(\lambda )

\bigr] 
,

\biggl[ 
As(\lambda )
Cs(\lambda )

\biggr] 
=

\biggl[ 
Ac(\lambda )
Cc(\lambda )

\biggr] 
T

between submatrices of the pencils Ls(\lambda ), Lr(\lambda ), and Lc(\lambda ). The matrix T is invertible
if and only if Pd is square and invertible. Otherwise, T is singular which is the case
that requires careful analysis.

In [52], it was shown how to derive from the linear polynomial system matrix

Lr(\lambda ) of P (\lambda ), a smaller linear polynomial system matrix \widehat Lr(\lambda ) that is both strongly
E-controllable and E-observable, and hence strongly minimal, by using only multipli-
cations by constant unitary matrices. This was obtained by deflating the unobservable
infinite eigenvalues from the pencil Lr(\lambda ). Moreover, the obtained pencil \widehat Lr(\lambda ) allows
us to recover the complete list of structural data of P (\lambda ). The reduction procedure
in [52] has been recently extended to arbitrary linear polynomial system matrices of
arbitrary rational matrices R(\lambda ) in [18], where it is proved that the obtained strongly
minimal linear polynomial system matrix has as a transfer function matrix Q1R(\lambda )Q2,
where Q1 and Q2 are constant invertible matrices. We emphasize that the procedures
in [52, 18] lead to stable and efficient numerical algorithms since both are based on
unitary transformations.

We show in Theorem 3.2 that a procedure similar to that in [52] can be applied

to Ls(\lambda ) in order to derive a strongly minimal linear polynomial system matrix \widehat Ls(\lambda )
of P (\lambda ), despite the fact that if Pd is not square or invertible, then Ls(\lambda ) is not a
Rosenbrock polynomial system matrix since As(\lambda ) is then not regular. Moreover, we
remark that the procedure in Theorem 3.2 is much simpler than those in [18, 52] and
that, as said before, it yields a polynomial system matrix whose transfer function
matrix is precisely P (\lambda ). Before stating and proving Theorem 3.2, we prove the simple
auxiliary Lemma 3.1 and introduce some other auxiliary concepts.

A rational matrix G(\lambda ) \in \BbbC (\lambda )p\times n (with p < n) is said to be a rational basis if
its rows form a basis of the rational subspace they span, i.e., if it has full row normal
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rank. Two rational bases G(\lambda ) \in \BbbC (\lambda )p\times n and H(\lambda ) \in \BbbC (\lambda )q\times n are said to be dual if
p+ q = n and G(\lambda )H(\lambda )T = 0.

Lemma 3.1. Let

S(\lambda ) :=

\biggl[ 
A(\lambda )  - B(\lambda )
C(\lambda ) D(\lambda )

\biggr] 
\in \BbbC [\lambda ](p+m)\times (p+n)

be a polynomial system matrix, where A(\lambda ) is assumed to be regular. Let H(\lambda ) be
a rational basis of the form H(\lambda ) :=

\bigl[ 
M(\lambda ) In

\bigr] 
dual to

\bigl[ 
A(\lambda )  - B(\lambda )

\bigr] 
; then\bigl[ 

C(\lambda ) D(\lambda )
\bigr] 
H(\lambda )T is the transfer function of S(\lambda ).

Proof. The equation \bigl[ 
A(\lambda )  - B(\lambda )

\bigr] \biggl[ M(\lambda )T

In

\biggr] 
= 0

implies A(\lambda )M(\lambda )T = B(\lambda ) and, since A(\lambda ) is regular, M(\lambda )T = A(\lambda ) - 1B(\lambda ). Thus\bigl[ 
C(\lambda ) D(\lambda )

\bigr] 
H(\lambda )T = C(\lambda )A(\lambda ) - 1B(\lambda ) +D(\lambda ).

Theorem 3.2. Let P (\lambda ) \in \BbbC [\lambda ]m\times n be a polynomial matrix as in (3.1). Let T
be the block Hankel matrix in (3.5), and let r := rank(T ). Let U =

\bigl[ 
U1 U2

\bigr] 
and

V =
\bigl[ 
V1 V2

\bigr] 
be unitary matrices that ``compress"" the matrix T as follows:

(3.7) U\ast TV =

\biggl[ 
0 0
0 U\ast 

2TV2

\biggr] 
=:

\biggl[ 
0 0

0 \widehat T
\biggr] 
,

where \widehat T is of dimension r \times r and invertible. Then, if Ls(\lambda ) is the matrix pencil in
(3.4), the pencil diag(U\ast , Im)Ls(\lambda ) diag(V, In) is equal to the ``compressed"" pencil

(3.8)

\left[ 
0 0 0

0 \widehat As(\lambda )  - \widehat Bs(\lambda )

0 \widehat Cs(\lambda ) \widehat Ds(\lambda )

\right] 
:=

\Biggl[ 
U\ast As(\lambda )V  - U\ast Bs(\lambda )

Cs(\lambda )V Ds(\lambda )

\Biggr] 
,

and

(3.9) \widehat Ls(\lambda ) :=

\Biggl[ \widehat As(\lambda )  - \widehat Bs(\lambda )\widehat Cs(\lambda ) \widehat Ds(\lambda )

\Biggr] 

is a strongly minimal linearization of P (\lambda ), where \widehat As(\lambda ) \in \BbbC [\lambda ]r\times r is regular. In

particular, P (\lambda ) = \widehat Ds(\lambda ) + \widehat Cs(\lambda ) \widehat As(\lambda )
 - 1 \widehat Bs(\lambda ).

Proof. It follows from (3.6) and the strong E-controllability of [Ar(\lambda )  - Br(\lambda ) ] that
[As(\lambda )  - Bs(\lambda ) ] has rank r for all \lambda , infinity included, and that its left null space is
spanned by the rows of U\ast 

1 . Likewise, it follows from (3.6) and the strong E-observability

of
\bigl[ Ac(\lambda )
Cc(\lambda )

\bigr] 
that

\bigl[ As(\lambda )
Cs(\lambda )

\bigr] 
has rank r for all \lambda , infinity included, and that its right null

space is spanned by the columns of V1. This proves the compressed form (3.8).

We then prove that the r \times r matrix pencil \widehat As(\lambda ) is regular. This follows from
the identity

(3.10) \widehat As(\lambda ) = U\ast 
2TAr(\lambda )V2, where Ar(\lambda ) =

\left[ 
 - In \lambda In

. . .
. . .

 - In \lambda In
 - In

\right] 
,
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which for \lambda = 0 becomes \widehat As(0) =  - U\ast 
2TV2 =  - \widehat T .

The fact that [ \widehat As(\lambda )  - \widehat Bs(\lambda ) ] has full row rank r for all \lambda , infinity included, follows
from the identity\Bigl[ 

0 \widehat As(\lambda )  - \widehat Bs(\lambda )
\Bigr] 
= \widehat TV \ast 

2

\bigl[ 
Ar(\lambda )  - Br(\lambda )

\bigr] 
diag(V, In).

The fact that
\bigl[ \widehat As(\lambda )\widehat Cs(\lambda )

\bigr] 
has full column rank r for all \lambda , infinity included, follows from

the dual identity \left[ 
0\widehat As(\lambda )\widehat Cs(\lambda )

\right] 
= diag(U\ast , Im)

\biggl[ 
Ac(\lambda )
Cc(\lambda )

\biggr] 
U2

\widehat T .
Together, these properties guarantee that \widehat Ls(\lambda ) is a strongly minimal linear

polynomial system matrix. Its transfer function \widehat Cs(\lambda ) \widehat As(\lambda )
 - 1 \widehat Bs(\lambda ) + \widehat Ds(\lambda ) can then

be obtained from a particular dual basis N(\lambda ) \in \BbbC (\lambda )n\times (r+n) of [ \widehat As(\lambda )  - \widehat Bs(\lambda ) ], by
using Lemma 3.1. Since\biggl[ 

0 0 0

0 \widehat As(\lambda )  - \widehat Bs(\lambda )

\biggr] 
diag(V \ast , In) = U\ast \bigl[ As(\lambda )  - Bs(\lambda )

\bigr] 
= U\ast T

\bigl[ 
Ar(\lambda )  - Br(\lambda )

\bigr] 
,

it follows that

\biggl[ 
0 0 0

0 \widehat As(\lambda )  - \widehat Bs(\lambda )

\biggr] 
diag(V \ast , In)

\left[ 
  

\lambda d - 1In
...

\lambda In
In

\right] 
= 0,

and hence that

\Bigl[ \widehat As(\lambda )  - \widehat Bs(\lambda )
\Bigr] 
diag(

\bigl[ 
0 Ir

\bigr] 
V \ast , In)

\left[ 
  

\lambda d - 1In
...

\lambda In
In

\right] 
= 0.

Therefore, by setting

N(\lambda )T := diag(
\bigl[ 
0 Ir

\bigr] 
V \ast , In)

\left[ 
  

\lambda d - 1In
...

\lambda In
In

\right] 
\in \BbbC [\lambda ](r+n)\times n,

we have that N(\lambda ) is a dual basis of [ \widehat As(\lambda )  - \widehat Bs(\lambda ) ] with its rightmost block equal to
In. By Lemma 3.1, and using the fact that

\widehat Cs(\lambda )
\bigl[ 
0 Ir

\bigr] 
V \ast =

\Bigl[ 
0 \widehat Cs(\lambda )

\Bigr] 
V \ast = Cs(\lambda ),
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we obtain that

\Bigl[ \widehat Cs(\lambda ) \widehat Ds(\lambda )
\Bigr] 
N(\lambda )T =

\bigl[ 
Cs(\lambda ) Ds(\lambda )

\bigr] 
\left[   \lambda d - 1In

...
\lambda In
In

\right] 
= P (\lambda )

is the transfer function of \widehat Ls(\lambda ).

Remark 3.3. Once the unitary matrices U and V (or just their last r columns,

U2 and V2) and the matrix \widehat T in (3.7) are computed, Theorem 3.2 yields an effi-
cient and stable algorithm for computing the strongly minimal linear realization
\{ \widehat As(\lambda ), \widehat Bs(\lambda ), \widehat Cs(\lambda ), \widehat Ds(\lambda )\} of P (\lambda ). An expensive method for computing U , V, and\widehat T is to compute the SVD of T in the economic version if just U2 and V2 are required. A
cheaper method is to use the complete orthogonal decomposition in [27, section 5.4.2],
which amounts to computing two QR factorizations. The block Hankel structure of
T (which by flipping the order of the block rows becomes block Toeplitz) allows us
to use the very fast and stable method in [53, section IV], which makes all of the
computations on m\times n submatrices. The method in [53] has the additional advantage
that if rd = rank(Pd), then the rows of U\ast (1 : (m  - rd), 1 : m) and the columns of
V (1 : n, 1 : (n  - rd)) (where we used MATLAB notation) of the computed U and
V are, respectively, unitary bases of the left and right nullspaces of Pd. Recall that
these subspaces are precisely the left and right eigenspaces associated to the infinite
eigenvalue of P (\lambda ) when P (\lambda ) is regular.

Remark 3.4. Even though the pencil Ls(\lambda ) in (3.4) is not a Rosenbrock polynomial
system matrix and neither is a GLR-linearization of P (\lambda ) if Pd is rectangular or square
and singular, it is easy to see, by using unimodular transformations that are well
known in the literature, that it has the same finite eigenvalues as P (\lambda ) with the same
partial multiplicities. For this purpose, note that V (\lambda )Ls(\lambda )W (\lambda ) = diag( - T, P (\lambda )),
where

V (\lambda ) :=

\left[ 
1
0 1
...

. . .
. . .

0 \cdot \cdot \cdot 0 1
\lambda d - 1 \cdot \cdot \cdot \lambda 2 \lambda 1

\right] 
  \otimes Im, W (\lambda ) :=

\left[ 
1 \lambda \lambda 2 . . . \lambda d - 1

1 \lambda 
. . .

...
. . .

. . . \lambda 2

1 \lambda 
1

\right] 
  \otimes In.

Since the polynomial matrices V (\lambda ) and W (\lambda ) are unimodular, and diag( - T, P (\lambda )) is
strictly equivalent to diag(0, Ir, P (\lambda )), this implies that Ls(\lambda ) is unimodularly equiva-
lent to diag(0, Ir, P (\lambda )). Therefore, Ls(\lambda ) and P (\lambda ) have the same finite eigenvalues
with the same partial multiplicities. Of course, this also follows from Theorem 3.2
and the properties of strongly minimal linearizations studied in section 2.1. However,
note that Ls(\lambda ) is not a GLR-linearization of P (\lambda ) because Ls(\lambda ) is not unimodularly
equivalent to diag(I, P (\lambda )).

On the other hand, if we consider the pencil \widehat Ls(\lambda ) in (3.9), then Theorem 3.2

proves that Ls(\lambda ) is strictly equivalent to diag(0, \widehat Ls(\lambda )). Combining the results above,

we see that \widehat Ls(\lambda ) and diag(Ir, P (\lambda )) have the same normal rank and the same finite

eigenvalues and partial multiplicities, which implies that \widehat Ls(\lambda ) and diag(Ir, P (\lambda )) are

unimodularly equivalent [23] and, therefore, that \widehat Ls(\lambda ) is a GLR-linearization of P (\lambda ).
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This is a particular instance of the result mentioned in section 2.1 that any minimal
linear polynomial system matrix of P (\lambda ) is a GLR-linearization of P (\lambda ).

Remark 3.5. Observe that whenever Pd is singular (which may happen even if P (\lambda )

is regular), the pencil Ls(\lambda ) is singular, since it is strictly equivalent to diag(0, \widehat Ls(\lambda ))
by Theorem 3.2. Thus, Ls(\lambda ) has m(d  - 1)  - r left minimal indices equal to 0 and
n(d  - 1)  - r right minimal indices equal to 0 in addition to the minimal indices of\widehat Ls(\lambda ) (which are precisely the minimal indices of P (\lambda ) due to Theorem 2.9). Then,
the process described in Theorem 3.2 can be seen as a process that deflates from Ls(\lambda )

these additional minimal indices equal to zero in order to get a smaller pencil \widehat Ls(\lambda )
which is a strongly minimal linearization of P (\lambda ).

3.1. Quadratic polynomial matrices with low rank leading coefficient.
In this subsection, we particularize the results in Theorem 3.2 to quadratic polynomial
matrices

P (\lambda ) = P0 + \lambda P1 + \lambda 2P2 \in \BbbC [\lambda ]m\times n

since they are particularly important in applications [48]. Moreover, in some important
applications, the leading coefficient P2 of P (\lambda ) has low rank [6], a property related in
the regular case to the presence of an infinite eigenvalue with high multiplicity. This
presence is a challenge for the best available algorithms that compute all the eigenvalues
of a regular dense quadratic polynomial matrix [19, 28], since infinite eigenvalues have
to be deflated. The algorithms in [19, 28] are based on the GLR-strong linearization
known as the second Frobenius companion form, but the strongly minimal linearization
constructed in Theorem 3.2 might be a competitive option since, as we show in this
section, it is very simple and much smaller than the Frobenius companion form for
quadratic polynomial matrices with P2 having low rank.

Note that in the quadratic case

Ls(\lambda ) =

\Biggl[ 
 - P2 \lambda P2

\lambda P2 \lambda P1 + P0

\Biggr] 
\in \BbbC [\lambda ]2m\times 2n and T = P2.

In order to avoid confusion, in this section we denote the rank of the constant matrix P2

by r2 and the normal rank of P (\lambda ) by rP , which in the regular case satisfies rP = m = n.
The rank compresion in (3.7) reduces to obtaining a low rank representation of P2,

i.e., P2 = U2
\widehat TV \ast 

2 , where
\widehat T \in \BbbC r2\times r2 is invertible and U2 \in \BbbC m\times r2 , V2 \in \BbbC n\times r2 have

orthornormal columns. Such representation can be computed via an economic SVD
of P2 or a complete orthogonal decomposition, as commented in Remark 3.3. Then,
we immediately obtain the following result either via a trivial computation or as a
corollary of Theorem 3.2.

Theorem 3.6. Let P (\lambda ) = P0 + P1\lambda + P2\lambda 
2 \in \BbbC [\lambda ]m\times n and P2 = U2

\widehat TV \ast 
2 , where\widehat T \in \BbbC r2\times r2 is invertible and U2 \in \BbbC m\times r2 , V2 \in \BbbC n\times r2 have orthornormal columns.

Then \widehat Ls(\lambda ) =

\Biggl[ 
 - \widehat T \lambda \widehat TV \ast 

2

\lambda U2
\widehat T \lambda P1 + P0

\Biggr] 
\in \BbbC [\lambda ](r2+m)\times (r2+n)

is a strongly minimal linearization of P (\lambda ).

Observe that if P (\lambda ) \in \BbbC [\lambda ]m\times m is regular, then any GLR-strong linearization of

P (\lambda ) has size 2m\times 2m, while the size of \widehat Ls(\lambda ) is (r2 +m)\times (r2 +m) and, so, much
smaller if r2 \ll m.
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Another interesting feature of the quadratic polynomial case is that the recovery
of the eigenvalue structure at infinity of P (\lambda ) from the one of \widehat Ls(\lambda ) is much simpler
than in Theorem 2.6, as the next corollary shows.

Corollary 3.7. With the same notation and hypotheses as in Theorem 3.6, let
rP be the normal rank of P (\lambda ), and let 0 < \widetilde e1 \leq \cdot \cdot \cdot \leq \widetilde eu be the partial multiplicities

of rev1\widehat Ls(\lambda ) at 0. Then, the partial multiplicities of rev2P (\lambda ) at 0 are

1 = \cdot \cdot \cdot = 1\underbrace{}  \underbrace{}  
rP - r2 - u

\leq \widetilde e1 + 1 \leq \cdot \cdot \cdot \leq \widetilde eu + 1.

Proof. Observe that the partial multiplicities of rev1( - \widehat T ) =  - \lambda \widehat T at 0 are

1, 1, . . . , 1\underbrace{}  \underbrace{}  
r2

because \widehat T is invertible. Then, the result follows from combining Theorem 2.6 with
equation (2.3) when d = 2.

Finally, we remark that if we are given a low rank representation P2 = LU\ast ,
where L \in \BbbC m\times r2 , U \in \BbbC n\times r2 have both rank r2 but their columns are not necessarily
orthonormal, then a direct computation shows that\Biggl[ 

 - Ir2 \lambda U\ast 

\lambda L \lambda P1 + P0

\Biggr] 
\in \BbbC [\lambda ](r2+m)\times (r2+n)

is a strongly minimal linearization of P (\lambda ) = P0 + \lambda P1 + \lambda 2P2 and that Corollary 3.7
also holds for this linearization.

4. Constructing strongly minimal linearizations of self-conjugate poly-
nomial matrices. The main purpose of this section is to prove that the strongly
minimal linearization (3.9) of the matrix polynomial P (\lambda ) developed in Theorem 3.2
inherits the structure of P (\lambda ) for any of the four structures considered in this work.
In the last part of this section, we compare this result with those available in the
literature for structure preserving GLR-strong linearizations of structured polynomial
matrices.

We briefly recall the four structures of interest in this paper and their properties.
In these definitions, note that if P (\lambda ) is the square complex polynomial matrix in
(3.1), then

[P (\lambda )]\ast := P \ast 
0 + P \ast 

1 \lambda + \cdot \cdot \cdot + P \ast 
d \lambda 

d
.

The considered self-conjugate structures are as follows:
1. Hermitian polynomial matrices, satisfying [P (\lambda )]\ast = P (\lambda ).
2. Skew-Hermitian polynomial matrices, satisfying [P (\lambda )]\ast =  - P (\lambda ).
3. Para-Hermitian polynomial matrices, satisfying [P (\lambda )]\ast = P ( - \lambda ).
4. Para-skew-Hermitian polynomial matrices, satisfying [P (\lambda )]\ast =  - P ( - \lambda ).

For polynomial matrices with real coefficients one uses the names (para-)symmetric
and (para-)skew-symmetric, instead. In the literature focused on polynomial matrices,
para-Hermitian and para-symmetric polynomial matrices are called \ast -even and T-even,
respectively, while para-skew-Hermitian and para-skew-symmetric polynomial matrices
are called \ast -odd and T-odd, respectively, [37], and all of them are called generically
alternating polynomial matrices [38].
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We first point out that the block Hankel matrix T defined in (3.5) and its com-
pression (3.7) inherit particular properties from the self-conjugate structures defined
above.

Lemma 4.1. Let P (\lambda ) \in \BbbC [\lambda ]m\times m be a polynomial matrix as in (3.1). Let us
define the scaling matrix S := diag(( - 1)(d - 1)Im, . . . , ( - 1)2Im, - Im). Then the block
Hankel matrix T in (3.5) satisfies the following equations:

1. for Hermitian P (\lambda ): P \ast 
i = Pi and T \ast = T ;

2. for skew-Hermitian P (\lambda ): P \ast 
i =  - Pi and T \ast =  - T ;

3. for para-Hermitian P (\lambda ): P \ast 
i = ( - 1)iPi and (ST )\ast = ST ;

4. for para-skew-Hermitian P (\lambda ): P \ast 
i = ( - 1)(i+1)Pi and (ST )\ast =  - ST .

The left and right transformations U and V of Theorem 3.2 can then be chosen as
U = V in the Hermitian and skew-Hermitian cases and as U = SV in the para-
Hermitian and para-skew-Hermitian cases.

Proof. The different symmetries of the series of coefficient matrices Pi trivially
yield the four types of symmetries of T mentioned in Lemma 4.1. For the compression
(3.7), we can then choose U = V in the Hermitian and skew-Hermitian cases because T
is normal, and we can choose U = SV in the para-Hermitian and para-skew-Hermitian
cases because ST is then normal.

Lemma 4.1 implies that in the decomposition of Theorem 3.2, it suffices to construct
a transformation V that compresses the columns of T in order to obtain a rank r
factorization

(4.1) U\ast TV =

\biggl[ 
0 0

0 \widehat T
\biggr] 
=

\biggl[ 
0 0
0 U\ast 

2TV2

\biggr] 
,

where \widehat T is r \times r and is invertible. This then leads to the following theorem.

Theorem 4.2. Let P (\lambda ) \in \BbbC [\lambda ]m\times m be a polynomial matrix as in (3.1), with a
Hermitian, skew-Hermitian, para-Hermitian, or para-skew-Hermitian structure. Let
U, V be the unitary matrices appearing in (3.7), where U = V in the Hermitian and
skew-Hermitian cases, and U = SV in the para-Hermitian and para-skew-Hermitian
cases with S := diag(( - 1)(d - 1)Im, . . . , ( - 1)2Im, - Im). Then the linear polynomial
system matrix

\widehat Ls(\lambda ) :=

\Biggl[ \widehat As(\lambda )  - \widehat Bs(\lambda )\widehat Cs(\lambda ) \widehat Ds(\lambda )

\Biggr] 
,

defined in Theorem 3.2, is a strongly minimal linearization of P (\lambda ) with the same
self-conjugate structure as P (\lambda ).

Proof. Let us denote the original pencil in (3.4) as

Ls(\lambda ) = L0 + \lambda L1;

then we have the following properties in the four self-conjugate cases:
1. for Hermitian P (\lambda ),

L\ast 
0 = L0 and L\ast 

1 = L1;

2. for skew-Hermitian P (\lambda ),

L\ast 
0 =  - L0 and L\ast 

1 =  - L1;
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3. for para-Hermitian P (\lambda ),

L\ast 
0diag(S, Im) = diag(S, Im)L0 and L\ast 

1diag(S, Im) =  - diag(S, Im)L1;

4. for para-skew-Hermitian P (\lambda ),

L\ast 
0diag(S, Im) =  - diag(S, Im)L0 and L\ast 

1diag(S, Im) = diag(S, Im)L1.

If we choose U = V in the first two cases, and U = SV in the last two cases, then we
obtain for the transformed pair of matrices

\~L0 := diag(U\ast , Im)L0diag(V, Im) and \~L1 := diag(U\ast , Im)L1diag(V, Im)

the following properties:
1. for Hermitian P (\lambda ),

\~L\ast 
0 = \~L0 and \~L\ast 

1 = \~L1;

2. for skew-Hermitian P (\lambda ),

\~L\ast 
0 =  - \~L0 and \~L\ast 

1 =  - \~L1;

3. for para-Hermitian P (\lambda ),

\~L\ast 
0 = \~L0 and \~L\ast 

1 =  - \~L1;

4. for para-skew-Hermitian P (\lambda ),

\~L\ast 
0 =  - \~L0 and \~L\ast 

1 = \~L1;

and moreover, the first m(d - 1) - r columns and rows of \~L0 and \~L1 are zero because
of (4.1). The pencil \~Ls(\lambda ) thus has the same self-conjugate structure as P (\lambda ), and so

does the deflated pencil \widehat Ls(\lambda ). The strong minimality follows from Theorem 3.2.

Remark 4.3. If in Theorem 4.2 the polynomial matrix P (\lambda ) \in \BbbR [\lambda ]m\times m has
real coefficients and is symmetric, skew-symmetric, para-symmetric, or para-skew-
symmetric, then we can take V and U to be real. So, \widehat Ls(\lambda ) also has real coefficients
and the same structure as P (\lambda ).

The use of strongly minimal linearizations allows us to prove in Theorem 4.2 a
much stronger result for the considered classes of structured polynomial matrices than
those available in the literature for GLR-strong linearizations for the same structures
(see, for instance, [8, 13, 20, 31, 37, 38]). We emphasize that Theorem 4.2 provides a
simple recipe for constructing a structure preserving strongly minimal linearization for
any polynomial matrix with the considered structures. In contrast, such generality is
not possible by using GLR-strong linearizations. For instance, it is shown in [37, 38]
that there exist para-symmetric and para-skew-symmetric polynomial matrices of
even degree for which there do not exist any GLR-strong linearizations with the same
structure. Moreover, it is proved in [13, section 7] that structure preserving GLR-strong
linearizations of size dm\times dm do not exist for m\times m polynomial matrices P (\lambda ) of even
degree d possessing any of the self-conjugate structures studied in this paper whenever
P (\lambda ) has an odd number of left minimal indices and an odd number of right minimal
indices. Note that dm\times dm is precisely the size of all explicitly and easily constructible
families of GLR-strong linearizations available in the literature for m \times m matrix
polynomials of degree d, as, for instance, ``vector space linearizations"" [21, 31, 36, 37],
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``Fiedler-like linearizations"" [5, 8, 9], and ``block Kronecker linearizations"" [14, 20]. Thus,
the result in [13, section 7] proves that there exist self-conjugate structured polynomial
matrices that cannot be linearized in these families in a structure preserving way. In
fact, some of these families of GLR-strong linearizations present other drawbacks as,
for instance, the ones considered in [31, 37] are not valid for any singular polynomial
matrix [12] or require certain nonsingularity conditions on the coefficients of the
polynomial matrix or on the location of its eigenvalues.

The following example illustrates the discussion in the previous paragraph.

Example 4.4. Consider the para-symmetric regular polynomial matrix

(4.2) P (\lambda ) = \lambda 2

\biggl[ 
1 0
0 0

\biggr] 
 - 

\biggl[ 
0 0
0 1

\biggr] 
= \lambda 2P2 + P0.

It is proved via a neat rank argument in [38, Example 1.4] that P (\lambda ) does not admit any
para-symmetric GLR-strong linearization nor any para-skew-symmetric GLR-strong
linearization. However, by using Theorem 4.2 we can easily construct a para-symmetric
strongly minimal linearization of P (\lambda ) as follows. Note that, in this case, T = P2,
S =  - I2, and we can take V =

\bigl[ 
0 1
1 0

\bigr] 
and U =  - V . Thus,

diag(UT , I2)Ls(\lambda ) diag(V, I2) = diag(UT , I2)

\Biggl[ 
 - P2 \lambda P2

\lambda P2 P0

\Biggr] 
diag(V, I2)

=

\left[ 
0 0 0 0
0 1  - \lambda 0
0 \lambda 0 0
0 0 0  - 1

\right] 

and

\widehat Ls(\lambda ) =

\left[ 
1  - \lambda 0
\lambda 0 0
0 0  - 1

\right] 

is a para-symmetric strongly minimal linearization of P (\lambda ). It is obvious that P (\lambda )

and \widehat Ls(\lambda ) have the same finite eigenvalues with the same partial multiplicities because
both have \lambda = 0 as unique finite eigenvalue with partial multiplicity 2. Observe
that P (\lambda ) has also an eigenvalue at infinity with partial multiplicity 2. This infinite

structure can be recovered from \widehat Ls(\lambda ) by using Theorem 2.6 or, better, the simpler
Corollary 3.7 specific for quadratic polynomials. For this purpose, note that, with the

notation of Corollary 3.7, rP = 2 and r2 = 1. Moreover, rev1\widehat Ls(\lambda ) has only one partial
multiplicity at 0 equal to 1. So, u = 1 in Corollary 3.7, which yields that rev2P (\lambda ) has
2 as its unique partial multiplicity at 0. Note that P (\lambda ) in (4.2) is also symmetric. It
is easy to construct infinitely many symmetric GLR-strong linearizations of P (\lambda ) [31].
All of them necessarily have size 4\times 4. In contrast, the symmetric strongly minimal
linearization constructed by using Theorem 4.2 has size 3\times 3.

Remark 4.5. We remark that the procedure presented in Theorem 3.2 has an
interpretation in terms of strongly minimal linear realizations of strictly proper rational
matrices that have all its poles at 0. To see that, we apply the change of variable
\lambda = 1/\mu to the system matrix\Biggl[ 

\lambda E  - F \lambda G

\lambda H 0

\Biggr] 
:=

\Biggl[ \widehat As(\lambda )  - \widehat Bs(\lambda )\widehat Cs(\lambda ) 0

\Biggr] 
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and we multiply it by \mu . Then, we obtain a new linear polynomial system matrix\Biggl[ 
E  - \mu F G

H 0

\Biggr] 
,

whose transfer function matrix is

(4.3) H(\mu F  - E) - 1G = P2 \mu 
 - 1 + P3 \mu 

 - 2 + \cdot \cdot \cdot + Pd \mu 
 - (d - 1).

It can be proved that the new system is also strongly minimal. This means that
the triple \{ E  - \mu F, - G,H\} is a strongly minimal linear realization of the strictly
proper transfer function in (4.3), which has all its poles at \mu = 0. Moreover, the
minimal degree of det(E - \mu F ) is known to be r = rank(T ), since, according to (3.10),\widehat As(0) =  - F =  - \widehat T is nonsingular.

In this section and the previous one, we have focused on polynomial matrices. We
give a general procedure for the construction of strongly minimal linearizations of
arbitrary strictly proper rational matrices in section 5.

5. Constructing strongly minimal linearizations of strictly proper ratio-
nal matrices. Strictly proper rational matrices Rsp(\lambda ) \in \BbbC (\lambda )m\times n can be represented
via a Laurent expansion around the point at infinity:

(5.1) Rsp(\lambda ) := R - 1\lambda 
 - 1 +R - 2\lambda 

 - 2 +R - 3\lambda 
 - 3 + \cdot \cdot \cdot .

In this section, we obtain strongly minimal linearizations for strictly proper rational
matrices represented as in (5.1) by using the algorithm in [29, section 3.4], as we
explain in what follows. Let the block Hankel matrix H and shifted block Hankel
matrix H\sigma associated with Rsp(\lambda ) be denoted as
(5.2)

H :=

\left[ 
R - 1 R - 2 . . . R - k

R - 2 ..
.

R - k - 1

... ..
.

..
. ...

R - k R - k - 1 . . . R - 2k+1

\right] 
  , H\sigma :=

\left[ 
R - 2 R - 3 . . . R - k - 1

R - 3 ..
.

R - k - 2

... ..
.

..
. ...

R - k - 1 R - k - 2 . . . R - 2k

\right] 
.

Then for sufficiently large k the rank rf of H equals the total polar degree of the finite
poles, i.e., the sum of the degrees of the denominators in the Smith--McMillan form of
Rsp(\lambda ) [32]. We assume in what follows that we are taking such a sufficiently large k.
The general theory for Hankel based realizations of proper rational matrices in [29,
section 3.4] implies that the following Rosenbrock linear system matrix in Theorem
5.1 is a strongly minimal linearization for the strictly proper rational matrix Rsp(\lambda ).

Theorem 5.1. Let Rsp(\lambda ) \in \BbbC (\lambda )m\times n be a strictly proper rational matrix as in
(5.1). Let H and H\sigma be the block Hankel matrices in (5.2), and let rf := rank(H). Let
U :=

\bigl[ 
U1 U2

\bigr] 
and V :=

\bigl[ 
V1 V2

\bigr] 
be unitary matrices such that

(5.3) U\ast HV =

\biggl[ \widehat H 0
0 0

\biggr] 
=

\biggl[ 
U\ast 
1HV1 0
0 0

\biggr] 
,

where \widehat H is rf \times rf and invertible. Let us now partition the matrices U1 and V1 as
follows:

(5.4) U1 =

\biggl[ 
U11

U21

\biggr] 
and V1 =

\biggl[ 
V11

V21

\biggr] 
,
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where the matrices U11 and V11 have dimension m\times rf and n\times rf , respectively. Then

(5.5) Lsp(\lambda ) :=

\Biggl[ 
U\ast 
1H\sigma V1  - \lambda \widehat H \widehat HV \ast 

11

U11
\widehat H 0

\Biggr] 

is a strongly minimal linearization for Rsp(\lambda ). In particular, Rsp(\lambda ) = U11
\widehat H(\lambda \widehat H  - 

U\ast 
1H\sigma V1)

 - 1 \widehat HV \ast 
11.

Remark 5.2. The algorithm in [29, section 3.4] actually constructs a minimal

state-space realization Rsp(\lambda ) = \widetilde C( \widetilde A - \lambda I) - 1 \widetilde B in the classical sense of Rosenbrock,
which can be easily transformed into a minimal state-space realization of the form
Rsp(\lambda ) = C(A - \lambda E) - 1B with E invertible. We emphasize that, given any minimal
state-space realization, the associated linear polynomial system matrix

\bigl[ 
A - \lambda E  - B

C 0

\bigr] 
is a strongly minimal linearization of Rsp(\lambda ) due to the minimality of the realization
and the invertibility of E.

6. Constructing strongly minimal linearizations of self-conjugate strictly
proper rational matrices. If a strictly proper rational matrix Rsp(\lambda ) \in \BbbC (\lambda )m\times m

has one of the four self-conjugate structures considered in this paper, we use Theorem
5.1 and the ideas developed in [15, Remarks 6.6 and 8.4] to construct strongly mininimal
self-conjugate linearizations for Rsp(\lambda ). First, notice that the block Hankel matrices
H and H\sigma in (5.2) have the following self-conjugate property depending on that of
Rsp(\lambda ).

Lemma 6.1. Let Rsp(\lambda ) \in \BbbC (\lambda )m\times m be a strictly proper rational matrix as in
(5.1). Let us define the scaling matrix S := diag( - Im, ( - 1)2Im, . . . , ( - 1)kIm). Then
the block Hankel matrices H and H\sigma in (5.2) satisfy the following equations:

1. for Hermitian Rsp(\lambda ): R\ast 
 - i = R - i, H

\ast = H, and H\ast 
\sigma = H\sigma ;

2. for skew-Hermitian Rsp(\lambda ): R\ast 
 - i =  - R - i, H

\ast =  - H, and H\ast 
\sigma =  - H\sigma ;

3. for para-Hermitian Rsp(\lambda ): R\ast 
 - i = ( - 1)iR - i, (SH)\ast =  - SH, and (SH\sigma )

\ast =
SH\sigma ;

4. for para-skew-Hermitian Rsp(\lambda ): R\ast 
 - i = ( - 1)(i+1)R - i, (SH)\ast = SH, and

(SH\sigma )
\ast =  - SH\sigma .

For each of these cases, the left and right transformations U and V in (5.3) can be
chosen as U = V in the Hermitian and skew-Hermitian cases and as U = SV in the
para-Hermitian and para-skew-Hermitian cases.

Proof. The different symmetries of the series of coefficient matrices Ri trivially
yield the four types of symmetries of H and H\sigma . For the rank compression (5.3), we
can then choose U = V in the Hermitian and skew-Hermitian cases because H is
normal, and we can choose U = SV in the para-Hermitian and para-skew-Hermitian
cases because SH is then normal.

We now can use Lemma 6.1 and Theorem 5.1 to obtain the following struc-
tured strongly minimal linearizations of strictly proper rational matrices for the four
considered structures.

Theorem 6.2. Let Rsp(\lambda ) \in \BbbC (\lambda )m\times m be a strictly proper rational matrix as in
(5.1), and let H and H\sigma be the associated block Hankel matrices appearing in (5.2). Let
U, V be the unitary matrices appearing in (5.3), where U = V if Rsp(\lambda ) is Hermitian
or skew-Hermitian, and U = SV if Rsp(\lambda ) is para-Hermitian or para-skew-Hermitian,
and where S := diag( - Im, ( - 1)2Im, . . . , ( - 1)kIm). Finally, let U1, V1 be the km\times rf
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matrices formed by the first rf columns of U and V , respectively, \widehat H be the rf \times rf
matrix defined in (5.3), and U11, V11 be the m\times rf matrices defined in (5.4).

1. If Rsp(\lambda ) is Hermitian, then \widehat H\ast = \widehat H, H\ast 
\sigma = H\sigma , and

Lsp(\lambda ) :=

\Biggl[ 
V \ast 
1 H\sigma V1  - \lambda \widehat H \widehat HV \ast 

11

V11
\widehat H 0

\Biggr] 

is a Hermitian strongly minimal linearization of Rsp(\lambda ).

2. If Rsp(\lambda ) is skew-Hermitian, then \widehat H\ast =  - \widehat H, H\ast 
\sigma =  - H\sigma , and

Lsp(\lambda ) :=

\Biggl[ 
V \ast 
1 H\sigma V1  - \lambda \widehat H \widehat HV \ast 

11

V11
\widehat H 0

\Biggr] 

is a skew-Hermitian strongly minimal linearization of Rsp(\lambda ).

3. If Rsp(\lambda ) is para-Hermitian, then \widehat H\ast =  - \widehat H, (SH\sigma )
\ast = SH\sigma , and

Lsp(\lambda ) :=

\Biggl[ 
V \ast 
1 SH\sigma V1  - \lambda \widehat H \widehat HV \ast 

11

 - V11
\widehat H 0

\Biggr] 

is a para-Hermitian strongly minimal linearization of Rsp(\lambda ).

4. If Rsp(\lambda ) is para-skew-Hermitian, then \widehat H\ast = \widehat H, (SH\sigma )
\ast =  - SH\sigma , and

Lsp(\lambda ) :=

\Biggl[ 
V \ast 
1 SH\sigma V1  - \lambda \widehat H \widehat HV \ast 

11

 - V11
\widehat H 0

\Biggr] 

is a para-skew-Hermitian strongly minimal linearization of Rsp(\lambda ).

Proof.
1. If Rsp(\lambda ) is Hermitian, then Lemma 6.1 and (5.3) imply that H\ast = H, H\ast 

\sigma =

H\sigma , U1 = V1, and U11 = V11. The result then follows from \widehat H = V \ast 
1 HV1 = \widehat H\ast 

and (5.5).
2. If Rsp(\lambda ) is skew-Hermitian, then Lemma 6.1 and (5.3) imply that H\ast =  - H,

H\ast 
\sigma =  - H\sigma , U1 = V1, and U11 = V11. The result then follows from \widehat H =

V \ast 
1 HV1 =  - \widehat H\ast and (5.5).

3. If Rsp(\lambda ) is para-Hermitian, then Lemma 6.1 and (5.3) imply that (SH)\ast =
 - SH, (SH\sigma )

\ast = SH\sigma , U1 = SV1, and U11 =  - V11. The result then follows

from \widehat H = V \ast 
1 SHV1 =  - \widehat H\ast and (5.5).

4. If Rsp(\lambda ) is para-skew-Hermitian, then Lemma 6.1 and (5.3) imply that
(SH)\ast = SH, (SH\sigma )

\ast =  - SH\sigma , U1 = SV1, and U11 =  - V11. The result then

follows from \widehat H = V \ast 
1 SHV1 = \widehat H\ast and (5.5).

7. Constructing strongly minimal linearizations of arbitrary and self-
conjugate rational matrices. For any given rational matrix R(\lambda ) \in \BbbC (\lambda )m\times n we
assume that we have an additive decomposition into its polynomial part P (\lambda ) and its
strictly proper part Rsp(\lambda ) as in (2.1). That is,

(7.1) R(\lambda ) = P (\lambda ) +Rsp(\lambda ).

For the Laurent expansion given in (1.3), this corresponds to

P (\lambda ) := R0 +R1\lambda + \cdot \cdot \cdot +Rd\lambda 
d, Rsp(\lambda ) := R - 1\lambda 

 - 1 +R - 2\lambda 
 - 2 +R - 3\lambda 

 - 3 + \cdot \cdot \cdot .
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In this section, we obtain strongly minimal linearizations for arbitrary and structured
rational matrices by combining strongly minimal linearizations for both parts. The
construction for the polynomial part was given in sections 3 and 4, and for the strictly
proper part in sections 5 and 6.

We emphasize that for both the unstructured case and the self-conjugate structured
cases considered in this paper, we provide a completely general construction of strongly
minimal linearizations, which in the structured cases preserve the structure. This
means that the construction is valid for any rational matrix, unstructured or with the
considered structures. To the best of our knowledge, this generality improves all the
results previously available in the literature for the studied self-conjugate structures, as,
for instance, those in [10, 11, 15, 24], which do not construct structured linearizations for
all structured rational matrices. An important restriction in this setting appears in the
recent works [10, 11, 15], where for those structured rational matrices whose polynomial
part has even degree, structure preserving strong linearizations are constructed only
if the leading coefficient Rd is nonsingular, which implies that R(\lambda ) must be regular.
The use of the new concept of strongly minimal linearization is the reason why our
approach is fully general.

Once we have strongly minimal linearizations for both the polynomial part and
the strictly proper part of a given rational matrix, it is straightforward to construct a
strongly minimal linearization for the sum, as shown below.

Theorem 7.1. Let R(\lambda ) \in \BbbC (\lambda )m\times n be an arbitrary rational matrix, i.e., regular
or singular. Let R(\lambda ) = P (\lambda ) + Rsp(\lambda ), where P (\lambda ) is the polynomial part of R(\lambda )
and Rsp(\lambda ) is the strictly proper part of R(\lambda ). Let

(7.2) \widehat Ls(\lambda ) :=

\Biggl[ \widehat As(\lambda )  - \widehat Bs(\lambda )\widehat Cs(\lambda ) \widehat Ds(\lambda )

\Biggr] 
and Lsp(\lambda ) :=

\Biggl[ 
Asp(\lambda )  - Bsp(\lambda )

Csp(\lambda ) 0

\Biggr] 

be strongly minimal linearizations of P (\lambda ) and Rsp(\lambda ) as described in Theorems 3.2
and 5.1, respectively. Then

(7.3) L(\lambda ) :=

\left[ \widehat As(\lambda ) 0  - \widehat Bs(\lambda )
0 Asp(\lambda )  - Bsp(\lambda )\widehat Cs(\lambda ) Csp(\lambda ) \widehat Ds(\lambda )

\right] 

is a strongly minimal linearization of R(\lambda ).

Proof. The transfer function of L(\lambda ) is clearly

\widehat Ds(\lambda ) + \widehat Cs(\lambda ) \widehat As(\lambda )
 - 1 \widehat Bs(\lambda ) + Csp(\lambda )Asp(\lambda )

 - 1Bsp(\lambda ) = P (\lambda ) +Rsp(\lambda ) = R(\lambda ).

The strong minimality of L(\lambda ) follows from the fact that the subsystems \widehat Ls(\lambda ) and
Lsp(\lambda ) are strongly minimal and have no common poles. Observe, in particular, that\widehat As(\lambda ) is unimodular and that the first degree coefficient of Asp(\lambda ) is invertible.

For the construction of self-conjugate strongly minimal linearizations of structured
rational matrices we proceed in the same way and obtain the following result.

Theorem 7.2. Let R(\lambda ) \in \BbbC (\lambda )m\times m be an arbitrary rational matrix, i.e., regular
or singular, which has one of the following structures: Hermitian, skew-Hermitian,
para-Hermitian, or para-skew-Hermitian. Let R(\lambda ) = P (\lambda ) +Rsp(\lambda ), where P (\lambda ) is
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the polynomial part of R(\lambda ) and Rsp(\lambda ) is the strictly proper part of R(\lambda ). Let

(7.4) \widehat Ls(\lambda ) :=

\Biggl[ \widehat As(\lambda )  - \widehat Bs(\lambda )\widehat Cs(\lambda ) \widehat Ds(\lambda )

\Biggr] 
and Lsp(\lambda ) :=

\Biggl[ 
Asp(\lambda )  - Bsp(\lambda )

Csp(\lambda ) 0

\Biggr] 

be strongly minimal linearizations of P (\lambda ) and Rsp(\lambda ) as described in Theorems 4.2
and 6.2, respectively, according to the corresponding structure of R(\lambda ). Then

(7.5) L(\lambda ) :=

\left[ \widehat As(\lambda ) 0  - \widehat Bs(\lambda )
0 Asp(\lambda )  - Bsp(\lambda )\widehat Cs(\lambda ) Csp(\lambda ) \widehat Ds(\lambda )

\right] 

is a strongly minimal linearization of R(\lambda ) with the same self-conjugate structure as
R(\lambda ).

Proof. L(\lambda ) is a strongly minimal linearization of R(\lambda ) by using the same proof as
that of Theorem 7.1. The fact that the self-conjugate structures of R(\lambda ) and L(\lambda ) are

the same follows from the fact that the self-conjugate structures of \widehat Ls(\lambda ) and Lsp(\lambda )
coincide with that of R(\lambda ).

Remark 7.3. Note that Remark 5.2 implies that in Theorems 7.1 and 7.2 one can
use the linear polynomial system matrix associated with any minimal state-space
realization of Rsp(\lambda ) (with the required structure in the structured case) as the strongly
minimal linearization Lsp(\lambda ). That is, though Theorems 7.1 and 7.2 refer to Theorems
5.1 and 6.2 for constructing the strongly minimal linearizations of Rsp(\lambda ), which
are based on the Laurent expansion of Rsp(\lambda ) around infinity, any other method for
constructing minimal state-space realizations of Rsp(\lambda ) is valid as well.

8. Algorithmic aspects. The constructive proofs given in the earlier sections
in fact lead to possible algorithms for computing strongly minimal linearizations of
rational matrices, provided the Laurent expansion (1.3) is given up to the term R - 2k,
or any minimal state-space realization is available for the strictly proper part (with
the adequate structure in the structured cases). The two decompositions that are
required for the construction of the linearizations from the Laurent expansion are the
rank factorizations of the constant matrices T in (3.7) and H in (5.3). Moreover, only
the right transformation has to be computed in the self-conjugate structured cases
considered in this paper.

It is worth pointing out also that both factorizations only require constructing
unitary transformations that ``compress"" the rows and columns of a given matrix,
which can be obtained by two QR factorizations in the unstructured case and by
only one in the structured cases. Highly efficient algorithms that exploit the special
block-Hankel structure (which under block-row reversion becomes block-Toeplitz) of T
and H can be found in the literature [30, 53]. We have not imposed conditions on the
normal rank of the rational matrix nor on its size (it may be square or rectangular) nor
on the ranks of the coefficients of the Laurent expansion, although the self-conjugate
structures impose that the rational matrices are square in the considered structured
cases. We emphasize that this lack of extra conditions is in contrast to any other
previous approach in the literature for linearizing structured rational and polynomial
matrices.

Once a strongly minimal linearization of a rational matrix is constructed, the
results in subsection 2.1 guarantee that it contains the complete list of structural data
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of the rational matrix and that the left/right eigenvectors or the left/right minimal
bases of the rational matrix can be very easily recovered from those of the linearization.
Thus, the complete information of the rational matrix can be computed by applying
to the linearization standard classical algorithms for regular [43] or singular [49]
generalized eigenvalue problems. In addition, in the self-conjugate structured cases,
one can use some of the structured algorithms that have been developed for structured
generalized eigenvalue problems as, for instance, those in [7, 33, 40, 41, 42, 47]. The
use of structured algorithms is usually more efficient and has the key advantage of
preserving in floating point arithmetic the symmetries of the zeros and poles, the
relationships between left and right eigenvectors, and the fact that the left and right
minimal indices are equal to each other and that the left and right minimal bases are
closely related to each other.

9. Conclusions and future work. In this paper we looked at strongly minimal
linearizations for any given rational matrix R(\lambda ), preserving the structure whenever we
have a specific type of self-conjugate structure on R(\lambda ). We showed that there always
exist strongly minimal linearizations that have the same self-conjugate structure as
R(\lambda ). These results were known for the case of proper rational matrices [15, 24], but
were extended here to rational matrices that are not proper. Moreover, the derivation
is new and is based on arguments that are very similar for the strictly proper part
and the polynomial part of the rational matrix. The proofs are also constructive and
lead to efficient algorithms for the construction of strongly minimal linearizations both
in the unstructured and in the structured cases. The algorithms proposed in this
paper are also known to be numerically stable. As a consequence, one would hope
that the computed linearizations can be shown to correspond to a nearby polynomial
or rational matrix, even in the case that the matrices T and H are poorly conditioned.
Such a result is not immediate, but has been obtained for certain types of structured
linearizations [17]. It remains an open problem for the linearizations presented here.
The fact that the proposed construction of structure preserving strongly minimal
linearizations is valid for any structured rational matrix improves significantly all the
results available in the literature for constructing other classes of structured preserving
linearizations of the structured rational and polynomial matrices considered in this
paper, which are not valid for all rational or polynomial matrices (see, for instance,
[10, 11, 13, 15, 20, 37] and the references therein). Interesting future work motivated
by the results in this paper may include the extension of the construction of structured
strongly minimal linearizations to other classes of structured rational or polynomial
matrices and to rational matrices whose polynomial part is expressed in bases different
from the monomial basis.
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