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Abstract. We consider a small stochastic perturbation of an optimal velocity car-following model. We give
a detailed analysis of behavior near a collision singularity. We show that collision is impossible in a simplified

model without noise, and then show that collision is asymptotically unlikely over large time intervals in the

presence of small noise, with the large time interval scaling like the square of the reciprocal of the strength
of the noise. Our calculations depend on careful boundary-layer analyses.

1. Introduction

The imminent revolution in autonomous driving technologies has led to a wide range of challenges in mod-
elling and understanding the effect of autonomous vehicles. Air quality and environment [LHZ21,SCC+19],
control of bulk traffic [GGLP20], fuel usage [CGYW19], parking [BMSN18], traffic safety [YY19], and a
range of other issues [GS15] are likely to be affected by adoption of autonomous vehicles (cf. [GP06]).

Our interest here is a mathematical analysis of stochasticity in adaptive cruise control. Platooning in
autonomous vehicles [LLH17] can have significant effect on long-distance vehicle efficiency by managing air
resistance and drag [MM07]. Platooning depends on a sequence of vehicles establishing optimal following
distances and velocities, and requires establishing tight inter-vehicle controls [KC11,ZSSB19].

While platooning and car-following are (usually) designed to implement deterministic car-following con-
trols, stochasticity is intrinsic to real physical systems. Different vehicles in a platoon may have slightly
different characteristics, and one might think of randomness across vehicle “types”. Secondly, wind and road
conditions may generate forces which are best modelled as random processes. This latter type of stochasticity
will be our focus here.

Letting x be the position of a following vehicle, which is following a (rightward-travelling) preceding vehicle
whose position is x(p), one might build upon currently-accepted models for adaptive cruise control and add
noise, with the dynamics (see Section 2) as

(1) ẍt = −α

{
ẋt − V

(
x

(p)
t − xt
d

)}
− β ẋt − ẋ(p)

t(
x

(p)
t − xt

)2 + εẆt

where α, β, and d are positive constants, V is an appropriate function (which will be specified in (2)), W
is a standard Brownian motion, and ε is a parameter modelling the strength of random forces. Informally,
the first two terms reflect control forces which cause the following vehicle to follow the preceding vehicle at
a preferred distance (the first term, with α) and to match the velocity ẋ(p) of the preceding vehicle (the
second term, with β). The preceding vehicle car could in fact be the lead car in a platoon, or in fact one in
a sequence of platooning vehicles (which would correspond to a recursive sequence of equations of the type
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(1), replacing x with the position x(n) of the n-th vehicle in the platoon and replacing x(p) with the position
x(n−1) of the n− 1-st vehicle in the platoon), and perhaps also indexing the Brownian motion by n.

Mathematically, the deterministic part of the dynamics of (1) reflects a collection of effects; see Section
2. We are interested in the interactions between these effects and noise. Random perturbations can sooner
or later drive dynamical systems into a range of states [FW98], and in particular might lead to collisions
in a platoon. We are interested in understanding how this can happen. We are in particular interested in
small-noise asymptotics, in the regime where ε ↘ 0 in (1). Random effects of road and wind are in most
cases likely to be small. Mathematically, small-noise asymptotics often give an understanding of features
which are robust to diffusive perturbations [FW98].

2. Background and Focus

The classic optimal velocity model [BHN+94, BHN+95], corresponding to (1) with β = ε = 0, captures
the forces needed to follow a preceding vehicle at a fixed distance. The function V , usually required to be
smooth, monotone increasing, and bounded, is often taken to be

(2) V (x)
def
= tanh(x− 2)− tanh(−2); x ∈ R

see Figure 1. The function V transforms the following distance x
(p)
t − xt (in a rightward-travelling platoon,

x
(p)
t > xt) into reference velocity which the following vehicle tries to match. By inverting this transformation

(see (13)), we can get a following distance which is a fixed point for the velocity of the preceding vehicle (and
which would represent a fixed point of the dynamics of a platoon). The parameter d captures the sensitivity
of the reference velocity with respect to the following distance. The (positive) coefficient α implies that this
effect has relaxation time 1/α. The β term in (1), which alternately has form

− β(
x

(p)
t − xt

)2

{
ẋt − ẋ(p)

t

}
,

models a force which directly tries to match the velocity of the preceding vehicle. This occurs with in-

stantaneous relaxation time
(
x

(p)
t − xt

)2

/β; as the following distance becomes small, this relaxation time

decreases, and a singularity occurs at collision [GHR61]. The deterministic optimal-velocity follow-the-leader
model; i.e., (1) with ε = 0 combines both of these effects [CPT21]. If V were to be linear, (1) would be
similar to a proportional-integral-derivative controller [Wil99]. The β term makes the system more robust
as it directly models relaxation to the velocity of the preceding vehicle [HT98,JWZ01,TK13].

A platoon of vehicles following (1) (with x(n) being the position of the n-th vehicle, and (x(n), x(n−1))
taking the place of (x, x(p)) in (1)) has been studied from a number of perspectives of stability (see [CHM58,
JWZ01, KS58, WW11]). String stability seeks to understand large-scale effects of stability in car-following
dynamics by analysing a closed “ring” of vehicles [BHN+95,GGS+20]. Starting with (1), one can also build
macroscopic models of traffic flow and congestion, and understand stability of such macroscopic behavior
[SH07, TKH10, TS14]. A important current research thrust is to understand various types of macrosopic
behavior and stability when only a few vehicles in a platoon follow dynamics such as (1) [CSSW17,SCDM+18,
TM15]; i.e., the effect of partial penetration of autonomous vehicles.

Our main focus here is the effect of noise (and uncertainty) on car-following models. The effect of random
perturbations of traffic velocity upon road capacity has been (empirically) quantified for car-following models
(viz. [Kra98]; cf. [JN03]). Ideas from physics of droplet clusters have also been used in modelling empirical
traffic observations [MKL05]. Uhlenbeck-Ornstein processes have been used to model fluctuations (similar
to the diffusive term in (1)) in driver behavior [LTZ14], explaining some instabilities and oscillations in
observed data (see also [YLK+18], and see [NLT+19] for an analysis of stability in the face of Cox-Ingersoll-
Ross nonnegative perturbations). See also [MS20a,MS20b].

In contrast to interests in stability (which focus on platoon behavior near equilibrium), our main interest

in this paper is collisions; where xt = x
(p)
t in (1). If β = ε ≡ 0 (the optimal velocity model of [BHN+94,

BHN+95]), the dynamics of (1) are continuous in a neighborhood of a collision and thus can be solved
backward to identify states evolving to collision (see Figure 2).

2



Figure 1. Function V

Figure 2. Solutions

We will see (in Section 3) that the singularity (the β term in (1)) in fact precludes collision in the absence
of noise (we have not found a rigorous proof of this in the existing literature, so have included one here); as
the following vehicle gets closer to the preceding vehicle, it decelerates quickly enough to prevent collision
(see Figure 2).

To simplify our focus even more, let’s assume that the preceding vehicle has constant velocity v◦; let’s
assume that

x
(p)
t

def
= v◦t t > 0

3



for some v◦ in

(3) (0, V (∞)) = (0, 1 + tanh(2)) = (0, 1.96)

i.e., the preceding starts at the origin and travels rightward with velocity v◦. The restriction (3) allows us
to invert V at v◦ (see (13)); V (∞) represents the maximum allowable velocity in our car-following model
(abstractly, one can rescale time and space to ensure that v◦ is in the interval (3), changing the constants
α, β, and d in the process). We also denote the initial position of the following vehicle by −x◦ with x◦ > 0;
the following vehicle starts distance x◦ “behind” the preceding vehicle. Let’s transform (1) by the Galilean
change of coordinates

(4) Xε
t

def
= v◦t− xt and Y εt

def
= v◦ − ẋt,

so Xε and Y ε are the position and velocity of the following vehicle behind the preceding vehicle (i.e., the
following distance). Then (1) becomes the R2-valued1 Ito stochastic differential equation

(5)

dXε
t = Y εt dt

dY εt =

{
−α

{
V

(
Xε
t

d

)
− v◦ + Y εt

}
− β Y εt

(Xε
t )2

}
dt− εdWt

(Xε
0 , Y

ε
0 ) = (x◦, y◦).

Here

(6) y◦
def
= v◦ − ẋ0.

Tracing back to (4), collision in (5) corresponds to Xε
t = 0. Fixing an underlying probability triple (Ω,F ,P)

(with associated expectation operator E), we assume that W is a Brownian motion (on (Ω,F ,P)) with
respect to a right-continuous filtration {Ft}t≥0.

The main focus of this paper is near-collision dynamics. From an applied standpoint, a mathematical
understanding of near-collision dynamics in (5) can give tools and a framework to understand various trade-
offs and optimal collision-avoidance strategies. From a mathematical standpoint, we are interested in the
interaction between noise and singularity in (5); similar questions of interaction between noise and singu-
larities are found in molecular dynamics [Mor88], and typically involve careful analyses of boundary layers
[dJF96,Sow05].

Some prior works address questions of collision in deterministic models from different perspectives. For
human-driven vehicles, [Dav03] uses simulation of the optimal velocity model (and several modifications) to
study the effect of different values of driver’s reaction time on likelihoods of collision. Similarly, simulation of
several microscopic acceleration models [HM08] have suggested quantifiable relationships between variations
in safety conditions and macroscopic traffic patterns (in which collisions are allowed). Finally, [Dav14]
considers the dynamics of autonomous vehicles, and shows that, under the assumption of stability, collision
does not happen for parameters in certain ranges.

Our efforts are organized as follows. In Section 3, we develop rigorous boundary-layer analysis for the
deterministic system arising from (5) with ε = 0. This depends on a transformation of coordinates near
collision. Our main result in this section, Theorem 3.4, is that collisions cannot happen in (5) with ε = 0. In
Section 4, we consider small-noise asymptotics of (5) (i.e., ε ↘ 0). A number of the techniques and results
of Section 4 are modifications of the deterministic calculations of Section 3. The main result of this section,
Theorem 4.4, is that collision is unlikely over long time intervals for small ε, with the length of the time
interval growing as ε ↘ 0. Our arguments of Section 4 heavily depend on rigorous tools from stochastic
analysis and our results represent provable bounds. We furthermore hope that our arguments will generalize
to a range of other types of singular terms in collision-avoidance models [ASY15,GHR61].

We note that a number of Lyapunov-based results have been proven away from the collision region (where
one could compare behavior with a linearized system) [TS14,Dav14]. Our results strongly depend on initial
conditions of the following vehicle; our background interest is in the boundary layer near collision. Our results
can be modified to cover regimes where the following vehicle is asymptotically close to the lead vehicle (cf.
[Dav14,TS14]).

This work is based on the results of [Mat21].

1We endow R2 with its standard linear operations and norm
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3. Collisions in Deterministic Dynamics

Let’s start by writing (5), with ε = 0, in the framework of an ordinary differential equation. Define the
state space

(7) S
def
= (0,∞)× R.

The boundary

(8) ∂S = {0} × R
where x = 0 corresponds to collision. Defining B : S→ R2 by

(9) B(z)
def
=
(
y,−α

{
V
(x
d

)
− v◦ + y

}
− β y

x2

)
, z = (x, y) ∈ S

consider the ODE

(10) żt = B(zt)

starting at

(11) z0 = (x0, y0) = z◦
def
= (x◦, y◦) ∈ S

with y◦ as in (6). We write zt = (xt, yt); this is the dynamics of (5) with ε = 0. Since B is smooth on S,
standard ODE theory ensures that (10) has a unique solution on a maximal forward interval

(12) [0, T ) ⊂ R+

of definition.
We are interested in understanding how collisions can occur in the model (10). In light of the state space

(7) and its boundary (8), questions of collision in (10) correspond to questions of hitting the boundary ∂S of
S and the maximal time T . This motivates a careful boundary layer analysis of the dynamical model (10).

We first of all understand the global structure of (10), writing it as a damped Hamiltonian system, thus
giving us some macroscopic bounds. We then show that T in (12) must in fact be infinite (precluding
collision in finite time). We do this by assuming the converse (that T <∞) and then precluding a number
of ways in which collision could occur. In the final case, we have to carefully understand the effect of the
singularity in (10) at x = 0. We analyze this case by understanding the invariant manifold of a solution of
(10) and showing that it cannot intersect ∂S. We then additionally show global asymptotic stability by an
argument involving the Poincaré-Bendixon theorem,

Let’s start by understanding some global properties of (10). Since V : (0,∞)→ (0, V (∞)) is an invertible
transformation, the dynamics (10) has a unique equilibrium point at (x∞, 0) ∈ S, where

(13) x∞ = d · V −1(v◦) = d
{

2 + tanh−1(v◦ + tanh(−2))
}
,

which is well-defined under the assumption that v◦ is in (3). Namely, if the preceding vehicle has constant
velocity v◦, the system (5) (with ε = 0, or alternately (10)) selects x∞ as the proper following distance (and
does so with velocity v◦).

Let’s next consider a more global understanding of the dynamics of (10). Define

H(x, y)
def
=

1

2
y2 + P (x) (x, y) ∈ R2

where

P (x)
def
= α

∫ x

x′=x∞

{
V

(
x′

d

)
− v◦

}
dx′; x ∈ R

see Figure 3. Since

P ′(x) = α
{
V
(x
d

)
− v◦

}
, x > 0

we can write the dynamics (10) as a damped Hamiltonian system

(14)

ẋt = yt =
∂H

∂y
(xt, yt)

ẏt = −P ′(xt)− αyt − β
yt
x2
t

= −∂H
∂x

(xt, yt)−
{
α+

β

x2
t

}
yt

5



Figure 3. Potential P and contour plot of H

for t ∈ [0, T ).
We can explicitly calculate

P (x) = −αd
2

log

(
1− tanh2

(
2− x

d

)
1− tanh2

(
2− x∞

d

))+ α (tanh(2)− v◦) (x− x∞).

Remark 3.1. The monotonicity of V implies that V (x/d) − v◦ < 0 if x < x∞ and V (x/d) − v◦ > 0 if
x > x∞. Thus P is increasing on (x∞,∞), decreasing on interval (0, x∞) and has a minimum at x∞.
Furthermore limx↗∞ P (x) =∞.

We then have

Proposition 3.2. The point (x∞, 0) is the unique equilibrium point of (10). Secondly, the function H is
nonincreasing along the trajectory of (10), and strictly decreasing if and only if (x◦, y◦) 6= (x∞, 0)

Proof. An explicit calculation shows that (x∞, 0) is indeed the unique equilibrium point of (10).
For t ∈ [0, T ),

(15)
dH

dt
(xt, yt) = ẋt

∂H

∂x
(xt, yt) + ẏt

∂H

∂y
(xt, yt) = −

{
α+

β

x2
t

}
y2
t ≤ 0

so H is nonincreasing.
Assume now that H is strictly decreasing along trajectories of (14). This is impossible if (x◦, y◦) is the

fixed point (x∞, 0), so necessarily (x◦, y◦) 6= (x∞, 0). On the other hand, assume that (x◦, y◦) 6= (x∞, 0),
and then assume that H is not strictly decreasing. Then there is a nonempty (t1, t2) ⊂ (0,∞) on which
H(xt, yt) is constant for t ∈ (t1, t2). From (15), this means that yt = 0 for t ∈ (t1, t2). From (14), we then
have that x takes on a constant value xc on (t1, t2). This means that (xc, 0) is a fixed point and thus must
be the unique fixed point (x∞, 0). This violates our assumption, so necessarily H must be strictly decreasing
along trajectories of (14). �

Geometrically, Proposition 3.2 implies that the sublevel sets of H are invariant under the dynamics of (10).
Define

(16) h◦
def
= H(x◦, y◦)

which is the initial value of H(xt, yt). Define

ȳ
def
=
√

2(h◦ + 1) and x̄
def
=

(
P
∣∣∣
(x∞,∞)

)−1

(h◦ + 1)

and fix (x, y) ∈ S. Recall Remark 3.1. If x > x̄, then the fact that P is increasing on (x∞,∞) implies that

H(x, y) ≥ P (x) > P (x̄) = h◦ + 1
6



Similarly, if |y| > ȳ, the nonnegativity of P allows us to write

H(x, y) ≥ 1
2y

2 > 1
2 ȳ

2 = h◦ + 1.

Thus

(17) {(x, y) ∈ S : H(x, y) ≤ h◦} ⊂ {(x, y) ∈ S : H(x, y) ≤ h◦ + 1} ⊂ (0, x̄]× [−ȳ, ȳ]

(we will here only use the fact that the leftmost set of (17) is contained in the rightmost set; in Section 4,
the extra margin of h◦ + 1, as opposed to h◦, will give us a margin to allow for noise). See Figure 3.

Proposition 3.2 hence implies that

(18) (xt, yt) ∈ (0, x̄]× [−ȳ, ȳ]

for all 0 ≤ t < T .
We can now organize some standard calculations to understand a bit more about collision.

Lemma 3.3. If T <∞,

(19) lim
t↗T

xt = 0.

Proof. Fix an increasing sequence (tn)n∈N of times in [0, T ) such that limn↗∞ tn = T . Keeping (18) in
mind and using the fact that [0, x̄]× [−ȳ, ȳ] is a compact subset of R2, we can find a subsequence (tnk)k∈N
of (tn)n∈N such that (x∗, y∗) = limk→∞(xtnk , ytnk ) exists (as a limit in R2); it also follows that (x∗, y∗) is in

the closure S̄ of S. If (x∗, y∗) ∈ S, a solution of (10) can be constructed from (x∗, y∗) backward and forward
in time. By the uniqueness of the backward solution, we in fact have that limt↗T (xt, yt) = (x∗, y∗). The
existence of the forward solution contradicts the definition of T ; this implies that (x∗, y∗) 6∈ S, so in fact
(x∗, y∗) ∈ S̄ \ S = ∂S.

To summarize, every increasing sequence (tn)n∈N converging to T has a subsequence (tnk)k∈N such that
limk↗∞ xtnk = 0. The claim follows. �

The asymptotics of (19) amount to collision in finite time; recall (8). A boundary-region analysis near ∂S
will preclude this case. The main result of this section is

Theorem 3.4. We have that T =∞ and the equilibrium solution (xt, yt) ≡ (x∞, 0) (defined in (13)) of the
dynamical model (10) is globally asymptotically stable.

We will formalize the proof of this at the end of the section.
For now (prior to the proof of Theorem 3.4), let’s assume that

(20) T <∞;

We will show that this leads to a contradiction.
Let’s also fix

(21) x−
def
= min{x◦, x∞},

(with x∞ as in (13)); we are interested in the dynamics of (10) in the boundary region

(0, x−)× R
to the left of the initial condition and the fixed point (x∞, 0). Define

(22) ť
def
= sup

{
t < T : xt ≥ 1

2x−
}

;

since x◦ >
1
2x− (by (21)), assumption (20) and Lemma 3.3 imply that ť is well-defined. Informally, x̌t is the

last time that the solution of (10) is to the right of 1
2x−.

Let’s write
R = L ∪ U

where

R
def
=
(
0, 1

2x−
)
× R, L

def
=
(
0, 1

2x−
)
× (−∞, 0), and U

def
=
(
0, 1

2x−
)
× [0,∞),

partitioning
(
0, 1

2x−
)
× R into “upper” and “lower” parts (see Figure 4). By definition (22) of ť,

(23) (xt, yt) ∈ R t ∈ (ť, T )
7



Figure 4. Boundary regions for deterministic dynamics

We have

Lemma 3.5. The upper set U is invariant for {(xt, yt); t ∈ (ť, T )}; if (xt′ , yt′) ∈ U for some t′ ∈ (ť, T ),
then (xt, yt) ∈ U for t ∈ [t′, T ).

Proof. Assume not; then there is a nonempty [t′, t′′) ⊂ (ť, T ) such that (xt′ , yt′) ∈ U but (xs, ys) 6∈ U for
s ∈ (t′, t′′). By (23), we then have that (xs, ys) ∈ R \U = L for s ∈ (t′, t′′). Letting s↘ t′, we thus have that

(xt′ , yt′) ∈ U ∩ L̄ =
(
0, 1

2x−
)
× {0}.

By definition of L, yt < 0 for t ∈ (t′, t′′), so by continuity ẏt′ ≤ 0. However, (10) implies that

ẏt′ = −α
{
V
(xt′
d

)
− v◦

}
> 0

since xt′ < x∞. This is a contradiction, and the claim thus holds. �

We also have

Lemma 3.6. If (xt′ , yt′) ∈ U, then xt ≥ xt′ for t ∈ (t′, T ).

Proof. Assuming that (xt′ , yt′) ∈ U, Lemma 3.5 implies that (xt, yt) ∈ U for t ∈ (t′, T ), so

xt = xt′ +

∫ t

s=t′
ysds ≥ xt′

for t ∈ (t′, T ). �

Taken together, we get

Lemma 3.7. We have that

(24) (xt, yt) ∈ L

for all t ∈ [ť, T ), and

(25) yT−
def
= lim

t↗T
yt ≤ 0.

Proof. If (xt, yt) ∈ U, Lemmas 3.5 and 3.6 contradict the fact that limt↗T xt = 0 (Lemma 3.3). Equation
(25) follows from (24). �

Furthermore,

Lemma 3.8. The map t 7→ yt has strictly positive derivative on (ť, T ).
8



Proof. If (xt, yt) ∈ L, then P ′(xt) < 0 and by (14) we have

ẏt = −P ′(xt)−
{
α+

β

x2
t

}
yt > 0

and the result follows. �

Lemma 3.8 implies that

yť = yT − −
∫ T
s=ť

ẏsds < yT − ≤ 0.

Collecting things together, we must in fact have that

lim
t↗T

(xt, yt) = (0, y∗)

for some y∗ ∈ (yť, 0], with y strictly increasing on (ť, T ).
Let’s now try to parametrize the integral curve t ∈ (ť, T ) 7→ (xt, yt). In view of Lemma 3.8, we should be

able to locally write

(26) xt = ϕ(yt), t ∈ (ť, T )

for some function ϕ (which we will in fact construct in a moment), and if so and ϕ is differentiable,

(27)

yt = ẋt = ϕ′(yt)ẏt = ϕ′(yt)

{
−α

{
V
(xt
d

)
− v◦ + yt

}
− β yt

x2
t

}
= ϕ′(yt)

{
−α

{
V

(
ϕ(yt)

d

)
− v◦ + yt

}
− β yt

ϕ2(yt)

}
.

Let’s formalize this by defining

f(y,Φ)
def
=

−y
α
{
V
(

Φ
d

)
− v◦ + y

}
+ β y

Φ2

=
−y

P ′(Φ) + {α+ β/Φ2}y
. (y,Φ) ∈ (−∞, 0)× (0, x−)

Since P ′ < 0 on (0, x−) and α and β are also positive, f is well-defined.
Let’s now again appeal to the abstract theory of solutions of ODE’s. Since (yť, xť) ∈ (−∞, 0) × (0, x−),

there is a maximal interval (y−, y+) ⊂ (−∞, 0) containing yť such that the ODE

(28)
ϕ′(y) = f(y, ϕ(y))

ϕ(yť) = xť

has a unique solution on (y−, y+). By (22), we have that xť = 1
2x−. By definition of the domain of

f , ϕ(y) ∈ (0, x−) for y ∈ (y−, y+) and thus P ′(ϕ(y)) < 0 for y ∈ (y−, y+). Since (y−, y+) ⊂ (−∞, 0),
f(y, ϕ(y)) < 0 for y ∈ (y−, y+); thus ϕ is strictly decreasing on (y−, y+).

Lemma 3.9. We have that

inf
y∈[yť,y+)

ϕ(y) > 0.

Proof. Let’s define a reference curve

R(y)
def
=

{(
1
2x−

)−1
+

1

β
(y − yť)

}−1

for y ∈ [yť, 0). R(yť) = 1
2x− = ϕ(yť); we will see that R acts as a lower bound for ϕ on [yť, y+). We also

have that
Ṙ(y)

R2(y)
= − 1

β

for y ∈ (yť, 0).
Let’s now define

ξ(y)
def
=

(
1

ϕ(y)
− 1

R(y)

)+

=

(
1

ϕ(y)
− 1

R(y)

)
1{1/ϕ(y)>1/R(y)} =

(
1

ϕ(y)
− 1

R(y)

)
1{ϕ(y)<R(y)}

9



for y ∈ [yť, y+), which measures the amount by which 1/ϕ is larger than 1/R. If y ∈ (yť, y+) and ϕ(y) < R(y),
then

ξ̇(y) =

(
Ṙ(y)

R2(y)
− ϕ′(y)

ϕ2(y)

)
=

− 1

β
− −y

αϕ2(y)
{
V
(
ϕ(y)
d

)
− v◦ + y

}
+ βy


=

 (−y)

β(−y) + αϕ2(y)(−y)− αϕ2(y)
{
V
(
ϕ2(y)
d

)
− v◦

} − 1

β

 .

Since ϕ is decreasing on [yť, y+),
ϕ(y) ≤ ϕ(yť) = xť = 1

2x− < x∞

for y ∈ [yť, y+), so

V

(
ϕ(y)

d

)
− v◦ ≤ V

(x∞
d

)
− v◦ = 0

for y ∈ [yť, y+). Again using the fact that [yť, y+) ⊂ (−∞, 0), we have that

αϕ2(y)(−y)− αϕ2(y)

{
V

(
ϕ(y)

d

)
− v◦

}
> 0

and hence
(−y)

β(−y) + αϕ2(y)(−y)− αϕ2(y)
{
V
(
ϕ2(y)
d

)
− v◦

} <
1

β

for y ∈ [yť, y+). Hence

ξ̇(y) ≤ 0

if y ∈ [yť, y+) and ϕ(y) < R(y). Thus ξ is decreasing on [yť, y+). Since

ξ(yť) =

(
1

xť
− 1

xť

)+

= 0,

we in fact have that ξ ≤ 0 on [yť, y+). Thus ϕ ≥ R on [yť, y+) and consequently

inf
[yť,y+)

ϕ(y) ≥ inf
[yť,0)

R(y) ≥
{(

1
2x−

)−1
+

1

β
(−yť)

}−1

> 0,

giving the claim. �

We can now verify that collision is impossible in the deterministic model of (10).

Proof of Theorem 3.4. Uniqueness allows us to formalize (26). In light of Lemma 3.8, y is in fact a bijection
from [ť, T ) to [yť, yT −) with continuous inverse. Inverting this on the interval [yť, y+)∩ [yť, yT −) and noting
that the continuous image of a connected set is connected, we get that

y
∣∣−1

[ť,T )
([yť, y+) ∩ [yť, yT −)) = [ť, T ′)

for some T ′ ≤ T . From (27),
(ϕ(yt), yt)

satisfies (10) for t ∈ [ť, T ′) and thus must agree with (xt, yt) in [ť, T ′).
We will show that our standing assumption of (20) leads to a contradiction. Assume first that T ′ < T .

This then implies that (xT ′ , yT ′) exists and is in fact equal to (xT ′−, yT ′−). By definition of T ′, we must
then have that (xT ′−, yT ′−) ∈ ∂ ((0, x−)× (−∞, 0)). Since T ′ < T , we must also have that (xT ′ , yT ′) ∈ S.
By Lemma 3.7, we must also have that (xT ′ , yT ′) ∈ L. However,

∂ ((0, x−)× (−∞, 0)) ∩ L = ∅
which is a contradiction. On the other hand, if T ′ = T , then

lim
t↗T ′

ϕ(yt) = lim
t↗T

xt = 0,

which is precluded by Lemma 3.9.
10



Figure 5. Noisy perturbations of dynamics

To show the global and asymptotic stability of the equilibrium solution, recall (18). The orbit of the flow
(xt, yt) is forward complete and contained in [0, x̄] × [−ȳ, ȳ]. In light of the Poincaré-Bendixson theorem
[CL55], the ω-limit set of (xt, yt) is either a fixed point or a periodic orbit. By Proposition 3.2, (x∞, 0) is
the unique fixed point. The function H must be periodic along periodic orbits, but if (x◦, y◦) 6= (x∞, 0),
t 7→ H(xt, yt) must be strictly decreasing on [0, T ) (again, by Proposition 3.2). This precludes the existence
of periodic orbits, implying the claimed asymptotic stability. �

4. Collisions in Stochastic Dynamics

We next consider the effect of small stochasticity in (5). In the deterministic case, we showed that the
system (10) never hits the collision boundary (8) (more precisely, we showed that the maximal interval of
definition of (12) was all of R+). We want to prove similar results here. We will first of all understand how
to construct the solution of (5); we will carefully regularize the singularity in (5) and then use standard tools
from the theory of stochastic differential equations to construct approximate solutions. This will allow us
to formalize a usable definition of the solution of (5), which allow us to prove global bounds on the solution
of (5). We will then prove the analogue of Theorem 3.4, showing that collision is unlikely over long time
intervals (where the length of the time interval grows as size of the noise becomes small). See Figure 5

Let’s start by regularizing the collision singularity in (5). This will allow us to appeal to standard results
on existence and uniqueness (see [Oks13]). For each δ > 0, define

cδ(y)
def
=


1
δ if y > 1

δ

y if − 1
δ ≤ y ≤

1
δ

− 1
δ if y < − 1

δ ,

which is a Lipshitz-continuous truncation of the map y 7→ y at ±1/δ (see Figure 6). Let’s use standard
notation

x ∨ y def
= max{x, y} and x ∧ y def

= min{x, y}

for x and y in R. The map (x, y) 7→ cδ(y)/x2∨δ2 is then a bounded and Lipshitz-continuous function on R2;
it is the product of two bounded Lipshitz-continuous functions.

11



Figure 6. Cutoff cδ

For each ε > 0 and δ > 0, consider the stochastic differential equation

dXε,δ
t = Y ε,δt dt

dY ε,δt =

−α
{
V

(
Xε,δ
t

d

)
− v◦ + Y ε,δt

}
− β

cδ

(
Y ε,δt

)
(Xε,δ

t )2 ∨ δ2

 dt− εdWt

(Xε,δ
0 , Y ε,δ0 ) = (x◦, y◦).

t ≥ 0

For each δ > 0, let’s define, analogously to (9), B(δ) : R2 → R2 as

B(δ)(z)
def
=

(
y,−α

{
V
(x
d

)
− v◦ + y

}
− β cδ(y)

x2 ∨ δ2

)
; z = (x, y) ∈ R2

then Zε,δt
def
=
(
Xε,δ
t , Y ε,δt

)
satisfies, analogously to (10), the integral equation

(29) Zε,δt = z◦ +

∫ t

0

B(δ)(Zε,δs )ds− εeWt t ≥ 0

for all t > 0, where z◦ is as in (11) and e
def
= (0, 1).

We want to understand the dynamics of (29) as a an approximation of the solution of (5). For each ε > 0,
we show that (29) has an appropriate limit as δ ↘ 0 on S of (7). We do this by developing a collection of
consistency results on increasing subsets of S. This then allows us to rigorously define a solution of (5) up
to a time when the solution exits S. Using this definition, we can mimic some of the arguments of Section
3. We prove a probabilistic global bound using a Hamiltonian-type function. We then construct a stochastic
barrier function which will allow us to control the behavior of (29) when it is near to the collision boundary
∂S. Appropriately combined, we can then show that collision is unlikely in (5).

We carefully defined the vector field B(δ) to agree with B of (9) on the set

Aδ
def
= [δ,∞)× [−1/δ, 1/δ] .

Let’s define the slightly smaller set

aδ
def
= [2δ,∞)× [−1/2δ, 1/2δ] ;

see Figure 7 (in fact, aδ = A2δ, but the aδ’s and Aδ’s play slightly different roles, and we will thus use distinct
notation). Note that aδ+ ⊂ aδ− if δ− < δ+ (i.e., δ 7→ aδ is decreasing in δ), and

S = lim
δ↘0

aδ =
⋃
δ>0

aδ.

we should be able to construct a solution of (5) by sequentially piecing together solutions of (29). We expect,
however, that a result similar to Proposition 3.2 should allow us to effectively restrict our calculations to a

12



Figure 7. Sets where relaxed dynamics agree with desired ones.

set like (18). We are ultimately interested in ε ↘ 0 asymptotics, but want to carry out calculations on the
regularized process Zδ,ε.

To organize our thoughts, let’s define

τε,δ
def
= inf

{
t ≥ 0 : Zε,δt 6∈ aδ

}
(inf ∅ def

= ∞)

Since τε,δ is the first time that Zε,δ enters an open set, it is a stopping time with respect to {Ft}t≥0 (which
is assumed to be right-continuous).

We in fact have a consistency result;

Proposition 4.1. for 0 < δ− < δ+, we P-a.s. have that

• If τε,δ+ <∞, then τε,δ+ < τε,δ−

• If τε,δ+ =∞, then τε,δ− =∞
and

(30)
Z
ε,δ+

t∧τε,δ+
= Z

ε,δ−

t∧τε,δ+
t ≥ 0

τε,δ+ = inf
{
t ∈
[
0, τε,δ−

)
: Z

ε,δ−
t 6∈ aδ+

}
. (inf ∅ def

= ∞)

Proof. Let’s write

(31) Z
ε,δ+
t − Zε,δ−t =

∫ t

0

{
B(δ+)(Zε,δ+s )−B(δ−)(Zε,δ−s )

}
ds

which shows that Zε,δ+ − Zε,δ− is differentiable in t. Also note that

(32) aδ+ ⊂ Aδ+ ∩ aδ− ⊂ Aδ− ;

we will use some stopping time argument to show that Zε,δ+ agrees with Zε,δ− until it leaves Aδ+ ∩ aδ− .
That will form the basis of the proof of the results.

Define

ν̄
def
= min

{
δ+ − δ−,

1

δ−
− 1

δ+

}
.

Suppose that z+ = (x+, y+) ∈ Aδ+ ∩ aδ− and z− = (x−, y−) in R2 is such that ‖z+ − z−‖ ≤ ν̄. Then (since
z+ ∈ Aδ+),

x− ≥ x+ − ‖z+ − z−‖ ≥ δ+ − ν̄ ≥ δ− and |y−| ≤ |y+|+ ‖z+ − z−‖ ≤
1

δ+
+ ν̄ ≤ 1

δ−
.

13



so (x−, y−) ∈ Aδ− . Then B(δ+)(z+) = B(z+) and B(δ−)(z−) = B(z−). Let’s quantify the difference between
B(z−) and B(z+) by defining

(33) K(33)
def
= sup

z+∈Aδ+∩aδ−
z−∈Aδ−
z− 6=z+

‖B(z−)−B(z+)‖
‖z− − z+‖

(which is bounded from above by the Lipshitz coefficient of B
∣∣
Aδ−

).

Fix now ν ∈ (0, ν̄), L > 0, and ς > 0 (the parameters ε, δ+ and δ− are fixed in this proof), and define

σ1 = inf
{
t ≥ 0 : Z

ε,δ+
t 6∈ Aδ+ ∩ aδ−

}
σ2,ν = inf

{
t ≥ 0 :

∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥ > ν
}
∧ σ1

Eςt
def
=

{∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

+ ς2
}1/2

e−K(33)t t ≥ 0

Differentiating Eς with respect to time (recall (31)), we have that

Ėςt =


〈
Z
ε,δ+
t − Zε,δ−t ,B(δ+)(Z

ε,δ+
s )−B(δ−)(Z

ε,δ−
t )

〉
{∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

+ ς2
}1/2

−K(33)

{∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

+ ς2
}1/2

}
e−K(33)t

If 0 < t < σ2,ν ,

Ėςt ≤


K(33)

∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

{∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

+ ς2
}1/2

−K(33)

{∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥2

+ ς2
}1/2

}
e−K(33)t ≤ 0

and thus ∥∥∥Zε,δ+σ2,ν∧L − Z
ε,δ−
σ2,ν∧L

∥∥∥ exp
[
−K(33) {σ2,ν ∧ L}

]
≤ Eςσ2,ν

≤ Eς0 = ς.

Rearranging, we get that ∥∥∥Zε,δ+σ2,ν∧L − Z
ε,δ−
σ2,ν∧L

∥∥∥ ≤ ς exp
[
K(33) {σ2,ν ∧ L}

]
.

Letting ς ↘ 0, we get that ∥∥∥Zε,δ+σ2,ν∧L − Z
ε,δ−
σ2,ν∧L

∥∥∥ = 0.

Finally letting L↗∞, we get that ∥∥∥Zε,δ+σ2,ν
− Zε,δ−σ2,ν

∥∥∥ = 0.

on the set where σ2,ν <∞. This is impossible if σ2,ν < σ1, so σ2,ν = σ1 (P-a.s.), so

sup
0≤t<σ1

∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥ ≤ ν.
Letting ν ↘ 0, we have that

(34) sup
0≤t<σ1

∥∥∥Zε,δ+t − Zε,δ−t

∥∥∥ = 0.

We next claim that

(35) τε,δ+ < σ1 ≤ τε,δ− .
14



If t < τ ε,δ+ , then Z
ε,δ+
t ∈ aδ+ . In light of the first inclusion in (32), we have that σ1 ≥ τε,δ+ . If τε,δ+ <∞,

then Z
ε,δ+

τε,δ+
= Z

ε,δ+

τε,δ+−
∈ aδ+ (by continuity of Zε,δ+ and the fact that aδ+ is closed). In fact, aδ+ is

contained in the interior of Aδ+ ∩ aδ− , so the continuity of Zε,δ+ implies that there is a ν > 0 such that

Z
ε,δ+
t ∈ Aδ+ ∩ aδ− for t ∈ [τε,δ+ , τε,δ+ + ν); thus σ1 ≥ τε,δ+ + ν. The left-hand inequality of (35) follows. If

t < σ1, then Z
ε,δ−
t = Z

ε,δ+
t ∈ Aδ+ ∩ aδ− ⊂ aδ− (in light of (34)); so the right-hand claim of (35) follows. The

chain (35) of inequalities directly proves the first two claim of Proposition 4.1, and, when combined with
(34), also gives us the first claim of (30).

Define

τ̂
def
= inf

{
t ∈
[
0, τε,δ−

)
: Z

ε,δ−
t 6∈ aδ+

}
with the right-hand side being∞ upon taking inf ∅ (the standard convention). If t < τ ε,δ+ (and thus in turn

t < σ1), Z
ε,δ−
t = Z

ε,δ+
t ∈ aδ+ (from the first claim of (30)); thus τ̂ ≥ τε,δ+ . From (35), we conversely have

that

τε,δ+ = inf
{
t ∈ [0, σ1) : Z

ε,δ+
t 6∈ aδ+

}
= inf

{
t ∈ [0, σ1) : Z

ε,δ−
t 6∈ aδ+

}
≥ τ̂

with these inequalities trivially holding with the convention that inf ∅ def
= ∞. This gives us the last claim of

(30). �

Let’s now define

(36) τε
def
= sup

m≥1
τε,

1/m;

since τε is a supremum of a countable collection of stopping times, it too is a stopping time. In light of the
first claims of Proposition 4.1, τε = limm↗∞ τε,1/m, P-a.s. Let’s next piece together the Zε,δ’s on [0, τε),
being careful to do so in a way which will preserve various properties [EK09]. Let’s add a cemetery state to
formalize what happens after τε. Namely, fix a point ? not in S, and define

S?
def
= S ∪ {?}.

and endow S with the standard topology of one-point compactifications; this will allow us to rigorously frame
our existence and uniqueness results on S of (29). For each positive integer m, let’s then define

Ẑε,mt
def
=

{
Z
ε,1/m
t if t < τε,1/m

? if t ≥ τε,1/m

allowing us to separate killing from the singularity at ∂S.

Theorem 4.2. Fix ε > 0. For each t ≥ 0, Ẑεt
def
= limm↗∞ Ẑε,mt is P-a.s. well-defined (in the topology of

S?). For each δ > 0, we P-a.s. have that

(37)

Ẑεt∧τε,δ = Zε,δ
t∧τε,δ . t ≥ 0

Ẑεt∧τε,δ = z◦ +

∫ t∧τε,δ

s=0

B(Ẑεs )ds− εeWt∧τε,δ

τε,δ = inf
{
t ∈ [0, τε) : Ẑεt 6∈ aδ

}
. (inf ∅ def

= ∞)

In particular, Ẑε is the solution of (5) on [0, τε).

Proof of Theorem 4.2. If t < τε, then t < τε,1/m for some positive integer m (the first claim of Proposition
4.1 being in this case a strict inequality). For each positive integer m′ > m, t < τε,1/m < τε,1/m

′ P-a-s., so

Ẑε,m
′

t = Z
ε,1/m′

t = Z
ε,1/m
t

P-a.s. (use the definition of Ẑε,m
′

and then the first claim of (30)). Thus Ẑεt is well-defined if t < τε. If
t ≥ τε, then t > τε,1/m P-a.s. for all positive integers m (the inequality in the first claim of Proposition 4.1

being strict), so Ẑε,mt = ? P-a.s. for all positive integers m. Thus Ẑεt is well-defined if t ≥ τε.
15



For δ > 0 and then any positive integer m with m > 1/δ (so that 1/m < δ and hence τε,δ < τε,1/m P-a.s.
by the first claim of Proposition 4.1, we then have that

(38) Ẑε,m
t∧τε,δ = Z

ε,1/m

t∧τε,δ = Zε,δ
t∧τε,δ

for each t ≥ 0, P-a.s. (using the first claim of (30)). Taking limits in m, we get the first claim of (37). From
(38) and the dynamics of Zε,δ, we have that

Ẑεt∧τε,δ = Zε,δ
t∧τε,δ = z◦ +

∫ t∧τε,δ

s=0

B(δ)(Zε,δs )ds− εeWt∧τε,δ

= z◦ +

∫ t∧τε,δ

s=0

B(Zε,δs )ds− εeWt∧τε,δ = z◦ +

∫ t∧τε,δ

s=0

B(Ẑεs )ds− εeWt∧τε,δ

which is the second claim of (37).
Define

τ̂
def
= inf

{
t ∈ [0, τε) : Ẑεt 6∈ aδ

}
with the right-hand side being ∞ upon taking inf ∅ (the standard convention). If t < τε,δ, then the first

claim of (37) implies that Ẑεt = Zε,δt ∈ aδ, implying that τ̂ ≥ τε,δ. Let’s again fix an integer m > 1/δ (so that
δ > 1/m). From the last claim of (30) and the first claim of (37)), we have that

τε,δ = inf
{
t ∈
[
0, τε,

1/m
)

: Z
ε,1/m
t 6∈ aδ

}
= inf

{
t ∈
[
0, τε,

1/m
)

: Ẑεt 6∈ aδ
}
≥ τ̂ ,

with these inequalities trivially holding with the convention that inf ∅ def
= ∞. This gives us the last claim of

(37). �

Since the limit Ẑεt is well-defined P-a.s. for each t, Ẑεt is adapted. For t ∈ [0, τε), let’s write Ẑεt = (Xε
t , Y

ε
t );

the pair (Xε, Y ε) satisfies (5) up to (but not including) τε.
To proceed, let’s prove a stochastic complement to Proposition 3.2 (and recall (16)). For ε > 0, define

(39) τH,ε
def
= inf {t ∈ [0, τε) : H(Xε

t .Y
ε
t ) > h◦ + 1} (with inf ∅ def

= ∞)

Since the τε,1/m’s are strictly increasing in m,

(40)
{
τH,ε < t

}
=
⋃
s∈Q
s<t

∞⋃
m=1

(
{H(Xε

s .Y
ε
s ) > h◦ + 1} ∩ {τε,1/m > s}

)
∈ Ft

(with Q being the set of rational numbers) for each t > 0, and hence (using the assumption that the filtration
{F}t≥0 is right-continuous)

(41)
{
τH,ε ≤ t

}
=
⋂
t′>t
t′∈Q

{
τH,ε < t′

}
∈ Ft+ = Ft

so τH,ε is indeed a stopping time with respect to the filtration {Ft}t≥0. In light of (17), we thus have that

(42) |Y εt | ≤ ȳ

for 0 ≤ t < τH,ε ∧ τε.

Theorem 4.3. We have that

lim
ε→0

ε
√
L→0

P
{
τH,ε < L

}
= 0.

In other words, as ε ↘ 0 and L potentially becomes large, but such that L = o
(
ε−2
)
, where o(·) is little o

notation, then P
{
τH,ε < L

}
becomes small.
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Proof of Theorem 4.3. Using the second claim of (37), let’s apply Ito’s formula to the Hamiltonian function
H. Fix a positive integer m; we get (similarly to (15))
(43)

H
(
Xε
t∧τε,1/m , Y

ε
t∧τε,1/m

)
= h◦−

∫ t∧τε,1/m

s=0

{
α(Y εs )2 +

βY εs cδ(Y
ε
s )

(Xε
s )2 ∨ (1/m)

2

}
ds−ε

∫ t∧τε,1/m

s=0

Y εs dWs+
1
2ε

2(t∧τε,1/m),

for t ≥ 0. If τH,ε < L ∧ τε,1/m, then H
(
Xε
τH,ε∧L∧τε,1/m , Y

ε
τH,ε∧L∧τε,1/m

)
≥ h◦ + 1. Using (43), we can write

H
(
Xε
τH,ε∧L∧τε,1/m , X

ε
τH,ε∧L∧τε,1/m

)
≤ h◦ − ε

∫ τH,ε∧L∧τε,1/m

s=0

Y εs dWs +
1

2
ε2(τH,ε ∧ L ∧ τε,1/m)

≤ h◦ + ε

∣∣∣∣∣
∫ τH,ε∧L∧τε,1/m

s=0

Y εs dWs

∣∣∣∣∣+
1

2
ε2(τH,ε ∧ L ∧ τε,1/m)

≤ h◦ + ε

∣∣∣∣∣
∫ τH,ε∧L∧τε,1/m

s=0

Y εs dWs

∣∣∣∣∣+
1

2
ε2L;

we have used here the fact that (Y εs )2 and Y εs cδ(Y
ε
s ) in (43) are nonnegative. Combining things and assuming

that ε2L ≤ 1, we have that{
τH,ε < L ∧ τε,1/m

}
⊂

{
h◦ + ε

∣∣∣∣∣
∫ τH,ε∧L∧τε,1/m

0

Y εs dWs

∣∣∣∣∣+
1

2
≥ 1 + h◦

}
⊂

{
ε

∣∣∣∣∣
∫ τH,ε∧L∧τε,1/m

0

Y εs dWs

∣∣∣∣∣ ≥ 1

2

}
.

Using (42), we can further write

P
{
τH,ε < L ∧ τε,1/m

}
≤ P

{
ε

∣∣∣∣∣
∫ τH,ε∧L∧τε,1/m

0

Y εs dWs

∣∣∣∣∣ ≥ 1

2

}
≤ 4ε2E

(∫ τH,ε∧L∧τε,1/m

s=0

Y εs dWs

)2


= 4ε2E

[∫ τH,ε∧L∧τε,1/m

0

(Y εs )
2
ds

]
≤ 4ε2ȳ2L,

where equality on the right follows from Ito’s isometry. Letting m→∞, the claim follows. �

Our main result shows that collisions are unlikely, with the same type of asymptotics as Theorem 4.3 (and
indeed the proof will use Theorem 4.3).

Theorem 4.4. Let τε be as of (36). We have that

lim
ε→0

ε
√
L→0

P {τε < L} = 0.

As with Theorem 4.3, we want to do so by applying the tools of stochastic analysis to the middle claim of
(37).

Our proof has several key components. Firstly, (42) tells us that we can essentially localize our calculations
to R × [−ȳ, ȳ]. Secondly, the ideas of (26) and (27) suggest that we compare (Xε, Y ε) to a (vertical)
reference manifold parametrized by Y ε; the ODE (28) will serve as our guide in constructing it. We will
then carefully create a (smooth) danger function which quantifies proximity to collision by comparing it
to the reference manifold. Mathematically, the danger function will be nonincreasing along curves of the
dominant (deterministic) part of (5); this will allow us to bound the likelihood of collision from above.

Let’s start by setting

(44) x†
def
= min

{
x◦, dV

−1 (v◦/2)
}

;

this is similar to (21), but allows for an extra margin around x∞. Consider the ODE

(45)
φ′†(y) = −

φ2
†(y)

αφ2
†(y) + β

y ∈ R

φ†(−ȳ) = x†.
17



(which is the analogue of (28)). Let’s also define

(46) φ
def
=

(
1

x†
+

2ȳ

β

)−1

.

Lemma 4.5. The ODE (45) is well-defined on R. The solution φ† is decreasing. Furthermore

(47) inf
|y|≤ȳ

φ†(y) ≥ φ

(with φ as in (46)).
There is a K(48) > 0 such that

(48) |φ†(y)| ≤ K(48) and
∣∣φ′†(y)

∣∣ ≤ K(48) and
∣∣φ′′† (y)

∣∣ ≤ K(48)

for all y ∈ [−ȳ, ȳ].

A lower bound on φ† in fact naturally follows by uniqueness and the fact that the only fixed point of (45)
is at 0; the statement of Lemma 4.5 gives some more precise bounds.

Proof of Lemma 4.5. Define

(49) f(y)
def
= − y2

αy2 + β
y ∈ R

so that the ODE (45) is

(50) φ′†(y) = f(φ†(y)).

Note that

(51) |f(y)| ≤ y2

αy2
=

1

α

for y ∈ R so f is in fact bounded. Next note that

f ′(y) = − 2y

αy2 + β
+

2αy3

(αy2 + β)
2 y ∈ R2

Young’s inequality implies that

|y| = 1√
αβ

∣∣∣(y√α)(
√
β)
∣∣∣ ≤ 1

2
√
αβ

{
αy2 + β

}
|y|3/2 =

1

α3/4(3β)1/4

∣∣∣(y√α)3/2(3β)1/4
∣∣∣ ≤ 1

α3/4(3β)1/4

{
3

4
(y
√
α)3/2×4/3 +

1

4
(3β)1/4×4

}
=

1

4

(
33

α3β

)1/4 {
αy2 + β

}
for all y ∈ R. Thus

(52) |f ′(y)| ≤ 2|y|
αy2 + β

+
(2α)

{
|y|3/2

}2

(αy2 + β)
2 ≤ 1√

αβ

αy2 + β

αy2 + β
+
α

8

(
33

α3β

)1/2
(αy2 + β)2

(αy2 + β)2
≤ 1√

αβ
+
α

8

(
33

α3β

)1/2

for all y ∈ R, implying that f is Lipshitz. We now have that (45) is well-defined on all of R. Since f of (49)
is negative, the solution φ of (50) is decreasing.

Define

y+
def
= inf {y ∈ [−ȳ,∞) : φ†(y) = 0} (inf ∅ def

= ∞)

For y ∈ (−ȳ, y+),

d

dy
φ−1
† (y) = − φ̇†(y)

φ2
†(y)

=
1

αφ2
†(y) + β

≤ 1

β
.

For y ∈ [−ȳ, y+), we thus have that

1

φ†(y)
− 1

φ†(−ȳ)
≤ 1

β
(y + ȳ)

18



(compare with the proof of Lemma 3.9) which implies that

(53) φ†(y) >

(
1

x†
+
y + ȳ

β

)−1

for y ∈ [−ȳ, y+). If y+ <∞, we can take y ↗ y+ in (53) and arrive at the contradiction

0 = lim
y↗y+

φ†(y) ≥
(

1

x†
+
y+ + ȳ

β

)−1

.

Thus y+ =∞ and we consequently have (53) for all y ≥ −ȳ; this implies (47).
To see the second bound of (48), combine (50) and (51). To see the third bound of (48), differentiate (50)

to get
φ′′† (y) = f ′(φ†(y))φ′†(y) = f ′(φ†(y))f(φ†(y))

and then combine (51) and (52). The first bound of (48) comes from the second bound and the boundary
condition of (45). �

Let’s now flatten φ† to the right of zero, with a transition region which depends on various system
parameters. Define

(54) $†
def
=

αv◦/2

α+ 4β/φ2
.

Let % : R→ [0, 1] in C∞ be nonincreasing function and such that % : (−∞, 0] 7→ 1 and % : [1,∞) 7→ 0. Define

(55) φ(y)
def
= %

(
y

$†

)
φ†(y) +

{
1− %

(
y

$†

)}
φ†($†) = %

(
y

$†

)
{φ†(y)− φ†($†)}+ φ†($†)

Lemma 4.6. The function φ is nonincreasing and inf |y|≤ȳ φ(y) ≥ φ, where φ is defined in (46). We have
that

(56) φ′(y) =

{
− 1
α+β/φ2(y) if y ∈ [−ȳ, 0]

0 if y ∈ [$†, ȳ].

There is a K(57) > 0 such that

(57) |φ(y)| ≤ K(57) and |φ′(y)| ≤ K(57) and |φ′′(y)| ≤ K(57)

for y ∈ [−ȳ, ȳ].

This result still holds in the case that $† > ȳ.

Proof of Lemma 4.6. Since φ† is nonincreasing, y 7→ φ†(y) − φ†($†) is nonnegative on [−ȳ, $†]. Since % is
also nonnegative, the second representation of (55) implies that φ(y) ≥ φ†($†) for y ∈ [−ȳ, $†]. Since φ(y)
is constant on [$†, ȳ], the second claim follows from (53).

The first bound of (57) follows from the corresponding bound of (48) Taking one then two derivatives of
φ, we have

(58)

φ′(y) = %

(
y

$†

)
φ′†(y) +

1

$†
%′
(
y

$†

)
{φ†(y)− φ†($†)}

φ′′(y) = %

(
y

$†

)
φ′′† (y) +

2

$†
%′
(
y

$†

)
φ′†(y) +

1

$2
†
%′′
(
y

$†

)
{φ†(y)− φ†($†)}

The claimed derivatives of (56) follow from the first equality of (58) which also implies that φ is nonin-
creasing. The bounds on the first two derivatives of φ follow from (58) and (48). �

Let’s now define the function

D(x, y)
def
= φ(y)− x

for (x, y) ∈ R × R, which measures the distance of the point (x, y) to the left of the graph of φ and thus
quantifies the danger of a collision; see Figure 8.

Lemma 4.7. If t < τε, t ≤ τH,ε, and Xε
t ≤ 1

2φ, then D(Xε
t , Y

ε
t ) ≥ 1

2φ.
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Figure 8. Danger function D

Proof. Under the stated assumptions, |Y εt | ≤ ȳ and thus

D(Xε
t , Y

ε
t ) = φ(Y εt )−Xε

t ≥ φ− 1
2φ = 1

2φ.

�

This converts proximity to the boundary to values of D. We will show that D(Xε
t , Y

ε
t ) is likely remain small,

implying that Xε is unlikely to be small, i.e., collision is unlikely.
Let’s next define

∆(x, y)
def
= (max {D(x, y), 0})2

which focuses on the positive part of D. We note that ∆ is in C1(R) and in fact has a piecewise-continuous
second derivative.

Define now (similar to (39))

τD,ε = inf
{
t ∈ [0, τε) : Xε

t <
1
2φ
}

(with inf ∅ def
= ∞).

Similar to (40) and (41),

{
τD,ε ≤ t

}
=
⋂
t′>t
t′∈Q


⋃
s∈Q
s<t′

∞⋃
m=1

({
Xε
s <

1
2φ
}
∩ {τε,1/m > s}

) ∈ Ft+ = Ft

so τD,ε is indeed a stopping time with respect to {Ft}t≥0.
We can now prove

Proposition 4.8. We have that

lim
ε→0

ε
√
L→0

P
{
τD,ε < L ∧ τH,ε

}
= 0.

Define

(59) δ̄(59)
def
= min

{
1

2ȳ
,
φ

4

}
.

Then {
(x, y) ∈ S : x ≥ 1

2φ and H(x, y) ≤ h◦ + 1
}
⊂
[

1
2φ,∞

)
× [−ȳ, ȳ] ⊂ aδ̄(59)

.

Using the last equality of (37),

(60) τD,ε ∧ τH,ε ≤ τε,δ̄(59) .
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Proof of Proposition 4.8. By (60), we have that τD,ε ∧ τH,ε ≤ τε,δ̄(59) and we can use the second equality of
(37) setting δ to be δ̄(59).

If τD,ε < L ∧ τH,ε, then τD,ε <∞ and thus Xε
τD,ε∧τH,ε∧L = 1

2φ, and consequently (by Lemma 4.7)

D (Xε
τD,ε∧τH,ε∧L, Y

ε
τD,ε∧τH,ε∧L) ≥ 1

2φ.

Thus

(61)

P
{
τD,ε < L ∧ τH,ε

}
≤ P

{
∆ (Xε

τD,ε∧τH,ε∧L, Y
ε
τD,ε∧τH,ε∧L) > 1

4φ
2
}

≤ 4

φ2E [∆ (Xε
τD,ε∧τH,ε∧L, Y

ε
τD,ε∧τH,ε∧L)] .

Let’s now use Ito’s formula on ∆. Since x 7→ (x+)2 is not twice differentiable (thus precluding a direct
application of Ito’s rule), let’s approximate. Define

s(x)
def
=


0 if x < −1

2(x+ 1) if −1 ≤ x < 0

2 if x ≥ 0

For ς > 0, define

sς(x)
def
= s (x/ς)

s(−1)
ς (x)

def
=

∫ x

x1=−∞
sς(x1)dx1 =

{
0 if x < −ς∫ x
x1=−ς sς(x1)dx1 if x ≥ −ς

s(−2)
ς (x)

def
=

∫ x

x2=−∞

{∫ x2

x1=−∞
sς(x1)dx1

}
dx2 =

{
0 if x < −ς∫ x
x1=−ς(x− x1)sς(x1)dx1 if x ≥ −ς

pointwise (for x ∈ R). Then ṡ
(−2)
ς ≡ s

(−1)
ς and s̈

(−2)
ς ≡ sς . For ς ∈ (0, 1), we also have that

(62)

0 ≤ sς(x) ≤ 21[−1,∞)(x)

0 ≤ s(−1)
ς (x) ≤ 2(x+ 1)+

0 ≤ s(−2)
ς (x) ≤

{
(x+ 1)+

}2

lim
ς↘0

sς(x) = 21[0,∞)(x)

lim
ς↘0

s(−1)
ς (x) = 2x+

lim
ς↘0

s(−2)
ς (x) = {x+}2

for each x ∈ R.
Let’s now use Ito’s formula to write

s(−2)
ς (∆ (Xε

τD,ε∧τH,ε∧L, Y
ε
τD,ε∧τH,ε∧L)) = s(−2)

ς (∆(x◦, y◦))

+

∫ τD,ε∧τH,ε∧L

s=0

s(−1)
ς (D(Xε

s , Y
ε
s ))z(Xε

s , Y
ε
s )ds

− ε
∫ τD,ε∧τH,ε∧L

s=0

s(−1)
ς (D(Xε

s , Y
ε
s ))φ′(Y εs )dWs

+ ε2

∫ τD,ε∧τH,ε∧L

s=0

s(−1)
ς (D(Xε

s , Y
ε
s ))φ′′(Y εs )ds

+ 1
2ε

2

∫ τD,ε∧τH,ε∧L

s=0

sς (D(Xε
s , Y

ε
s )) (φ′(Y εs ))

2
ds

where

z(x, y)
def
= φ′(y)

{
−α

{
V
(x
d

)
− v◦ + y

}
− β y

x2

}
− y = −φ′(y)

{
α
{
V
(x
d

)
− v◦

}
+

{
α+

β

x2

}
y

}
− y
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for all x > 0 and y ∈ R. Letting ς ↘ 0 and using (62), the bounds of (57), and dominated convergence, we
get that

(63)

∆ (Xε
τD,ε∧τH,ε∧L, Y

ε
τD,ε∧τH,ε∧L) = ∆(x◦, y◦)

+ 2

∫ τD,ε∧τH,ε∧L

s=0

D(Xε
s , Y

ε
s )1[0,∞)(D(Xε

s , Y
ε
s s))z(Xε

s , Y
ε
s )ds

− 2ε

∫ τD,ε∧τH,ε∧L

s=0

D(Xε
s , Y

ε
s )1[0,∞)(D(Xε

s , Y
ε
s ))φ′(Y εs )dWs

+ ε2

∫ τD,ε∧τH,ε∧L

s=0

D(Xε
s , Y

ε
s )1[0,∞)(D(Xε

s , Y
ε
s ))φ′′(Y εs )ds

+ 1
2ε

2

∫ τD,ε∧τH,ε∧L

s=0

1[0,∞)(D(Xε
s , Y

ε
s )) (φ′(Y εs ))

2
ds

Optional sampling implies that

E

[∫ τD,ε∧τH,ε∧L

s=0

D(Xε
s , Y

ε
s )1[0,∞)(D(Xε

s , Y
ε
s ))φ′(Y εs )dWs

]
= 0.

Using (57), we have that

E

[
ε2

∫ τD,ε∧τH,ε∧L

s=0

1[0,∞)(D(Xε
s , Y

ε
s )) (φ′(Y εs ))

2
ds

]
≤ K2

(57)ε
2L.

We also have that
D(Xε

s , Y
ε
s ) ≤ φ(Y εs ) ≤ φ(−ȳ) = x†

for s ∈ [0, τD,ε∧ τH,ε∧L) (since φ is decreasing on [−ȳ, ȳ] by Lemma 4.6, Xε
s > 0 for s ∈ [0, τD,ε∧ τH,ε∧L),

and using (45)). Thus

E

[∣∣∣∣∣ε2

∫ τD,ε∧τH,ε∧L

s=0

D(Xε
s , Y

ε
s )1[0,∞)(D(Xε

s , Y
ε
s ))φ′′(Y εs )ds

∣∣∣∣∣
]
≤ x†K(57)ε

2L.

Let’s finally look at the first term on the right of (63). Fix s ∈ [0, τD,ε ∧ τH,ε ∧ L) and assume that
D(Xε

s , Y
ε
s ) ≥ 0 (keeping in mind the term 1[0,∞)(D(Xε

s , Y
ε
s ))). We claim that then

(64) z(Xε
s , Y

ε
s ) ≤ 0.

Firstly, if Y εs ≥ $†, then φ′(Y εs ) = 0 (recall (56)) and Y εs is positive, so

z(Xε
s , Y

ε
s ) = −Y εs ≤ 0.

We next observe that

(65) Xε
s ≤ φ(Y εs ) ≤ φ(−ȳ) = x† ≤ dV −1 (v◦/2)

(since D(Xε
s , Y

ε
s ) ≥ 0, φ is nonincreasing, using the initial condition (45) of φ, and then using the definition

(44) of x†), thus implying that

(66) V

(
Xε
s

d

)
− v◦ ≤ 1

2v◦ − v◦ = − 1
2v◦ ≤ 0.

Assume next that Y εs ≤ 0. From the first inequality of (65), we have that

α+
β

(Xε
s )2
≥ α+

β

φ2(Y εs )
.

Using this and the last inequality of (66) (and noting that −αφ′(Y εs ) ≥ 0 and −Y εs φ′(Y εs ) ≤ 0), we have that

z(Xε
s , Y

ε
s ) = −αφ′(Y εs )

{
V

(
Xε
s

d

)
− v◦

}
− Y ε

{
φ′(Y εs )

{
α+

β

(Xε
s )

2

}
+ 1

}

≤ 0− Y εs
{
φ′(Y εs )

{
α+

β

φ2(Y εs )

}
+ 1

}
= 0
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(using the fact that φ is nonincreasing and Y εs is assumed to be negative), where we have used the ODE for
φ† (i.e., the first case of (56)).

Thirdly, assume that 0 ≤ Y εs ≤ $†. In this case,

α+
β

(Xε
s )2
≤ α+

β
φ2
/4

(Since s ≤ τD,ε, Xε
s ≥ 1

2φ), and thus

z(Xε
s , Y

ε
s ) ≤ −φ′(Y εs )

{
α
{
− 1

2v◦
}

+

{
α+

4β

φ2

}
$†

}
= 0

(using the assumption that Y εs is positive, the fact that −φ′(Y εs ) > 0, using the first inequality of (66), and
using the definition (54) of $†),

In light of (64), the claim follows from (61). �

We can now prove our main result.

Proof of Theorem 4.4. Let’s first write

(67) P {τε < L} ≤ P
{
τH,ε ≤ L

}
+ P

{
τε < L, τH,ε > L

}
≤ P

{
τH,ε ≤ L

}
+ P

{
τε < L ∧ τH,ε

}
.

Let’s bound the final term on the right of (67). Assume that τε < L ∧ τH,ε. From (60), the last equality
of (37) and this assumption, we have the chain

(68) τH,ε ∧ τD,ε < τε,δ̄(59) < τε < τH,ε ∧ L

of inequalities.
If τD,ε ≥ τH,ε, then τH,ε = τH,ε ∧ τD,ε < τH,ε ∧ L, which is contradiction. Thus τD,ε < τH,ε and hence

τD,ε = τH,ε ∧ τD,ε < τH,ε ∧ L

Combining things together, we have that

P {τε < L} ≤ P
{
τH,ε ≤ L

}
+ P

{
τD,ε < L ∧ τH,ε

}
.

Using Theorem 4.3 and Proposition 4.8, the result follows. �

5. Extensions

Our analysis of the simplified and stylized noisy leader-follower dynamics of (5) can hopefully be extended
to shed light on a number of more complex problems. Dynamics near collisions for platoons might be
considered by first of all adding some small time-varying noise to the lead velocity v◦, and then using
information about how noise propagates through a pair of vehicles to a an entire platoon. Mathematically
some ideas from the theory of time-varying Hamiltonians might be used in place of (15). Some ideas from
string stability calculations (see the references listed in Section 2) might organize these calculations. Most
of our deterministic and stochastic boundary-analyses are likely to have a higher-dimensional counterpart;
only the Poincaré-Bendixson calculations of Theorem 3.4 is likely to require a major overhaul (and that part
of Theorem 3.4 is in fact a statement of long-term stability).

One might also develop an abstract analysis of collision-avoidance terms to understand broad classes of
collision-avoidance dynamics. The work of [ASY15,GHR61] might serve as a guide in such an undertaking.

Finally, we believe that our main stochastic result, Theorem 4.4, might be tightened. Our deterministic
analysis of Section 3, and in particular Theorem 3.4, preclude collision in finite time. Continuity with
respect to the ε of noise in (5) thus implies bounds on the likelihood of collision in any finite time interval,
and large-deviations type estimates should be available. The presence of a stable point (i.e., the final claim of
Theorem 3.4) suggests that collision times should be exponentially large [FW98]. Part of the motivation of
our analysis, by comparison with a large-deviations approach, is a collection of boundary-region calculations
which can be used when the follower vehicle is close to the lead vehicle. A more global analysis which would
combine large-deviations type asymptotics and boundary analysis near collisions might be of independent
interest.
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