
ar
X

iv
:2

00
9.

13
37

7v
2

 [
m

at
h.

N
A

]
 2

5
A

pr
 2

02
3

CONVERGENCE OF GRADIENT-BASED BLOCK COORDINATE

DESCENT ALGORITHMS FOR NON-ORTHOGONAL JOINT

APPROXIMATE DIAGONALIZATION OF MATRICES∗

JIANZE LI† , KONSTANTIN USEVICH‡ , AND PIERRE COMON§

Abstract. In this paper, we propose a gradient-based block coordinate descent (BCD-G) frame-
work to solve the joint approximate diagonalization of matrices defined on the product of the complex
Stiefel manifold and the special linear group. Instead of the cyclic fashion, we choose a block op-
timization based on the Riemannian gradient. To update the first block variable in the complex
Stiefel manifold, we use the well-known line search descent method. To update the second block
variable in the special linear group, based on four kinds of different elementary transformations, we
construct three classes: GLU, GQU and GU, and then get three BCD-G algorithms: BCD-GLU,
BCD-GQU and BCD-GU. We establish the global and weak convergence of these three algorithms
using the Lojasiewicz gradient inequality under the assumption that the iterates are bounded. We
also propose a gradient-based Jacobi-type framework to solve the joint approximate diagonalization
of matrices defined on the special linear group. As in the BCD-G case, using the GLU and GQU
classes of elementary transformations, we focus on the Jacobi-GLU and Jacobi-GQU algorithms and
establish their global and weak convergence. All the algorithms and convergence results described
in this paper also apply to the real case.

Key words. blind source separation, joint approximate diagonalization of matrices, block
coordinate descent, Jacobi-G algorithm, convergence analysis, manifold optimization

AMS subject classifications. 49M30, 65F99, 90C30, 15A23

1. Introduction. Let 1 ≤ m ≤ n. Given a complex matrix Z ∈ Cn×m, we de-
note by ZT, Z∗ and ZH its transpose, conjugate and conjugate transpose, respectively.
We shall also use (·)� to denote either (·)T or (·)H. A complex matrix A ∈ C

n×n

is called Hermitian if AH = A. It is called complex symmetric if AT = A. Let
{A(ℓ)}1≤ℓ≤L ⊆ Cn×n be a set of complex matrices. The well-known blind source sep-
aration (BSS) problem [17, 18, 36, 43] can be formulated as finding a full column rank

matrix Z ∈ Cn×m to make the matrices W (ℓ) = Z�A(ℓ)Z ∈ Cm×m simultaneously as
diagonal as possible. A natural idea is to solve the joint approximate diagonalization
of matrices (JADM) problem, which consists in minimizing

(1.1) f(Z) =

L
∑

ℓ=1

‖ offdiag{W (ℓ)}‖2,

where Z ∈ Cn×m is a full column rank matrix, and offdiag{·} is the zero diagonal
operator, setting all the diagonal elements of a square matrix in Cm×m to zero.

Note that, the set of full-column rank matrices is not closed (the limit of a sequence
of full column rank matrices can be rank deficient), and therefore problem (1.1) is ill-
posed. For example, for a full column rank matrix Z ∈ Cn×m and nonzero λ ∈ C, we
have limλ→0 f(λZ) = limλ→0 |λ|4f(Z) = 0. To tackle this issue, it is first necessary to

∗Submitted to the editors on Nov. 3, 2021; revised July 1st, 2022; revised Nov. 25, 2022.
Funding: This work was supported in part by the National Natural Science Foundation

of China (No. 11601371), the Guangdong Basic and Applied Basic Research Foundation (No.
2021A1515010232), and Agence Nationale de Recherche (ANR-19-CE23-0021).

†Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen,
China (lijianze@gmail.com).

‡Université de Lorraine, CNRS, CRAN, Nancy, France (konstantin.usevich@cnrs.fr).
§Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, France (pierre.comon@gipsa-lab.fr).

1

http://arxiv.org/abs/2009.13377v2
mailto:lijianze@gmail.com
mailto:konstantin.usevich@cnrs.fr
mailto:pierre.comon@gipsa-lab.fr

2 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

use scale- and permutation-invariant cost functions [4, 49]. Second, the set of matrices
Z must be restricted to a smaller closed subset. Several possibilities can be envisaged,
e.g., a restriction to the special linear group SLm(C) in the square case m = n. In
this paper, we follow the latter approach as it will be discussed later.

Problem (1.1) has been widely used in BSS and Independent component analysis
(ICA) [14, 18, 6, 7], and has the following well-known special cases:

• joint approximate diagonalization of Hermitian matrices (JADM-H) [42, 36]:

(·)� = (·)H, A(ℓ) ∈ Cn×n is Hermitian for 1 ≤ ℓ ≤ L;
• joint approximate diagonalization of complex symmetric matrices (JADM-

CS) [36]: (·)� = (·)T, A(ℓ) ∈ C
n×n is complex symmetric for 1 ≤ ℓ ≤ L;

• joint approximate diagonalization of real symmetric matrices (JADM-RS)

[4, 5]: over real Z, (·)� = (·)T, A(ℓ) ∈ Rn×n is real symmetric for 1 ≤ ℓ ≤ L.
Many classic approaches use prewhitening to reduce the problem (1.1) to orthog-

onal (and square) diagonalization case [12, 13, 17, 25, 26, 27, 28, 45]. This, however,
results in a two-step procedure, which may not be optimal in the statistical sense
and may suffer more from noise. Therefore, the non-orthogonal joint diagonalization
attracted considerable interest in the literature. In particular, to solve the JADM-RS
problem, Jacobi-type algorithms were introduced based on the LU and QR decom-
positions in [5], and on the Givens transformations, hyperbolic transformations, and
diagonal transformations in [43, Eq. (9)]. To solve the JADM-H problem, Jacobi-type
algorithms were proposed based on the LU decomposition in [36, 37], and based on the
QL decomposition in [42]. To solve the JADM-CS problem, a Jacobi-type algorithm
was proposed based on the LU decomposition in [35, 36]. However, to our knowledge,
there was no theoretical result about the convergence of these Jacobi-type algorithms
in the literature. In addition, mostly the square (m = n) case was considered.

In this paper, we consider the general rectangular case of (1.1), with Z restricted
to a SLm(C)-like subset. By using a reformulation of the problem, we develop opti-
mization algorithms on manifolds, and provide convergence results. An overview of
the contributions is provided in the rest of the section.

1.1. Search space and reformulations of the problem. Let GLm(C)
def
=

{X ∈ Cm×m, det(X) 6= 0} (resp. SLm(C)
def
= {X ∈ GLm(C), det(X) = 1}) be the

general (resp. special) linear group. We define the rectangular special linear set as

RSL(m,n,C)
def
= {Z ∈ C

n×m,ZHZ ∈ SLm(C)}.(1.2)

Every matrix in RSL(m,n,C) is of full column rank, and, moreover this set is closed.
Thus the problem of rank deficiency or trivial solution at 0 does not appear when
optimizing (1.1) over RSL(m,n,C), since λZ /∈ RSL(m,n,C) if |λ| 6= 1. Still, this
remains a difficult optimization problem, since the feasible region RSL(m,n,C) is
neither convex nor compact, and the function f(Z) is a quartic polynomial. In what
follows, we provide a reformulation of the problem for two scenarios.

• General (rectangular) case. Let St(m,n,C)
def
= {Y ∈ Cn×m,Y HY = Im} be

the complex Stiefel manifold. We have the following simple result:

Lemma 1.1. A complex matrix Z ∈ RSL(m,n,C) if and only if there exist
Y ∈ St(m,n,C) and X ∈ SLm(C) such that Z = Y X.

By Lemma 1.1, problem (1.1) over RSL(m,n,C) is equivalent to minimizing

(1.3) f : St(m,n,C) × SLm(C) → R
+, (Y ,X) 7→

L
∑

ℓ=1

‖ offdiag{W (ℓ)}‖2,

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 3

where W (ℓ) = (Y X)�A(ℓ)(Y X) ∈ Cm×m.
• Square case (second reformulation). This is a special case of (1.3), when we

assume Y ∗ ∈ St(m,n,C) to be fixed (for example, it is found in advance by
some other method, e.g., PCA [16, 17, 18], which is a common procedure for

dimensionality and noise reduction). Denote B(ℓ) = Y �
∗A

(ℓ)Y ∗ for 1 ≤ ℓ ≤
L. Then the cost function (1.3) becomes

(1.4) g : SLm(C) → R
+, X 7→ g(X) =

L
∑

ℓ=1

‖ offdiag{W (ℓ)}‖2,

where W (ℓ) = X�B(ℓ)X ∈ Cm×m. Alternatively, this case may appear when
m = n in (1.1). Indeed, RSL(m,m,C) = {Z ∈ Cm×m, | det(Z)| = 1}, and
since (1.1) is invariant with respect to multiplication by a unimodular scalar,
we can optimize it over SLm(C) instead.

1.2. Contributions. In this paper, to solve problem (1.3), which is defined on
the product of St(m,n,C) and SLm(C), the gradient-based block coordinate descent
(BCD-G) algorithms (Algorithm 1) will be proposed in Subsection 2.1 (more detailedly
in Subsection 5.2), which chooses a block optimization based on the Riemannian
gradient. This is similar to the gradient-based way of choosing index pairs in the
Jacobi-G algorithms on the orthogonal group [21, 25] or unitary group [45]. Then
their global convergence1 and weak convergence2 will be established in Section 8 using
the Lojasiewicz gradient inequality [24, 31, 2, 44], under the assumption that the
iterates ωk are bounded, that is, there exists a universal positive constant Mω > 0
such that

(1.5) ‖ωk‖ ≤ Mω

always holds for all k ≥ 1.
To solve problem (1.4), which is defined on the special linear group SLm(C), the

gradient-based Jacobi-type (Jacobi-G) algorithms will be proposed in Subsection 2.1
(more detailedly in Subsection 5.2), which can be seen as non-orthogonal analogues of
the Jacobi-G algorithms on orthogonal group [21, 25] or unitary group [45]. Then their
global and weak convergence will be established in Section 8 using the Lojasiewicz
gradient inequality, under the assumption that the iterates Xk are bounded, that is,
there exists a universal positive constant MX > 0 such that

(1.6) ‖Xk‖ ≤ MX

always holds for all k ≥ 1. To our knowledge, this is the first time that the theoretical
convergence is established for the Jacobi-type algorithms on SLm(C).

1.3. Organization. The paper is organized as follows. In Section 2, we present
the BCD-G and Jacobi-G algorithms, define four kinds of elementary transformations
and give a summary of the main results. In Section 3, we recall the basics of first-
order geometries on the Stiefel manifold St(m,n,C) and special linear group SLm(C),
as well as the convergence results related to Lojasiewicz inequality. In Section 4, we
show the details of how to use the line search descent method to update the first block
variable in St(m,n,C). In Section 5, we define four kinds of elementary functions and

1For any starting point, the iterates converge to a limit point as a whole sequence.
2Every accumulation point is a stationary point, i.e., the Riemannian gradient is equal to 0.

4 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

present the details of three subalgorithms. In Section 6 and Section 7, we present the
details of four kinds of elementary transformations for JADM problem. In Section 8,
we prove our main results about the global and weak convergence of BCD-G and
Jacobi-G algorithms. In Section 9, some experiments are conducted to compare the
proposed algorithms. Section 10 concludes this paper with some final remarks and
possible future work.

2. Gradient-based algorithmic framework and a summary of results.

2.1. BCD-G and Jacobi-G algorithms. Suppose that {Mi}1≤i≤d are smooth
manifolds. To minimize a smooth function

(2.1) f̃ : M1 ×M2 × · · · ×Md −→ R
+,

a popular approach is the block coordinate descent (BCD) algorithm [9, 32, 33, 47,
48, 29]. In this method, only one block variable is updated at each iteration, while
other block variables are fixed; in other words, the problem (2.1) is decomposed into
a sequence of lower-dimensional optimization problems. In the BCD algorithm, there
are different ways to choose blocks for optimization, including the essentially cyclic,
cyclic, random fashions [47, 48] and the so-called maximum block improvement (MBI)
method [15, 30].

If d = 2, M1 = St(m,n,C) and M2 = SLm(C), then problem (2.1) reduces to
our cost function (1.3). For ω = (Y ,X) ∈ St(m,n,C) × SLm(C), we denote

f1,X : Y 7→ f(Y ,X), f2,Y : X 7→ f(Y ,X),(2.2)

as the two restricted functions, which are defined on St(m,n,C) and SLm(C), re-

spectively. For simplicity, we denote their Riemannian gradients3 as gradf1(ω)
def
=

gradf1,X(Y) and grad f2(ω)
def
= grad f2,Y (X), and the Riemannian gradient of f in

(1.3) at ω as grad f(ω). To minimize the function (1.3), we now propose the following
gradient-based block coordinate descent (BCD-G) algorithm in Algorithm 1.

Algorithm 1: BCD-G algorithm

1: Input: A starting point ω0 = (Y 0,X0), a positive constant 0 < υ <
√

2/2.
2: Output: Sequence of iterates ωk = (Y k,Xk).
3: for k = 1, 2, · · · , do
4: Choose tk = 1 or 2 such that the Riemannian gradients satisfy

(2.3) ‖ gradftk(ωk−1)‖ ≥ υ‖ gradf(ωk−1)‖;

5: if tk = 1 then

6: Update Y k using the line search descent method (cf. Subsection 4.2);
7: Set Xk = Xk−1;
8: else

9: Set Y k = Y k−1;
10: Update Xk using elementary transformations (cf. Subalgorithm 1a to 1c).
11: end if

12: end for

3See [3, Section 3.6] and Section 3 for a detailed definition.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 5

In each iteration of Algorithm 1, instead of the frequently used cyclic or random
fashion to choose the block for optimization, we choose the block tk = 1 or 2 satisfying
the inequality4 (2.3). Since the Riemannian gradients are related as

grad f(ω) = (grad f1(ω), gradf2(ω)),(2.4)

we have that ‖ gradf(ω)‖2 = ‖ gradf1(ω)‖2 + ‖ gradf2(ω)‖2. Therefore, in each
iteration, if 0 < υ <

√
2/2, we can always choose tk = 1 or 2 such that the inequality

(2.3) is satisfied, and thus Algorithm 1 is well defined.
In Algorithm 1, to update Y k, we choose the line search descent method [2,

3, 38, 39, 40], which will be detailedly presented in Section 4. To update Xk, as
in Jacobi-type methods, we use four kinds of elementary transformations (will be
detailed introduced in Subsection 2.3), including the Givens plane, plane upper trian-
gular, plane lower triangular and plane diagonal transformations5. We group these
elementary transformations into three classes (GLU, GQU and GU) motivated by
well-known matrix decompositions, which give rise to three different variants of Algo-
rithm 1 (BCD-GLU, BCD-GQU and BCD-GU). We recall the matrix decompositions
and related Lie groups in Subsection 2.2, before introducing the elementary transfor-
mations and their classes in Subsection 2.3.

Similarly to Algorithm 1, we propose optimization algorithms for minimization of
the cost function (1.4) for the square case (second reformulation on SLm(C)). In these
algorithms, Xk is updated with four elementary transformations, and therefore they
are Jacobi-type algorithms. We summarize these gradient-based Jacobi-type (Jacobi-
G) algorithms in Algorithm 2.

Algorithm 2: Jacobi-G algorithm

1: Input: A starting point X0.
2: Output: Sequence of iterates {Xk}k≥1.
3: for k = 1, 2, · · · , do
4: Update Xk using elementary transformations (cf. Subalgorithm 1a to 1b).
5: end for

Algorithm 2 can be seen as a non-orthogonal analogue of the Jacobi-G algorithm
in [21, 25, 45]. As with BCD-G, two types of Jacobi-G exist: Jacobi-GLU and Jacobi-
GQU, based on GLU and GQU classes of elementary transformations, respectively.
Roughly speaking, these algorithms are variants of Algorithm 1, where only Xk is
updated.

2.2. Matrix decompositions and matrix groups. A matrix X ∈ Cm×m is
said to be upper triangular if Xij = 0 for i > j. Let UTm(C) ⊆ GLm(C) be the
upper triangular subgroup. Let EUTm(C) = UTm(C)∩SLm(C), i.e., the set of upper
triangular matrices with determinant equal to 1. Similarly, we let LTm(C) ⊆ Cm×m

be the lower triangular subgroup and ELTm(C) = LTm(C)∩SLm(C). Let Um(C) ⊆
Cm×m be the unitary group, and SUm(C) ⊆ Um(C) be the special unitary group.

We first discuss the matrix decompositions of SLm(C).

4The inequality (2.3) can be seen as a block coordinate analogue of [21, Eq. (3.3)] and [25, Eq.
(10)].

5The reason why we use plane diagonal transformations will be shown in Section 5.

6 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

• Any matrix X ∈ SLm(C) has the LU decomposition [19] X = LU with
L ∈ LTm(C) and U ∈ UTm(C). We use the shorthand notation

SLm(C) = ELTm(C) •EUTm(C),(2.5)

where A • B denotes the set of all matrix product for matrices coming from
two matrix sets A and B. The decomposition (2.5) motivates the GLU class,
which includes the plane lower triangular, plane upper triangular and plane
diagonal transformations (Subalgorithm 1a), and is used in BCD-GLU and
Jacobi-GLU algorithms.

• Any matrix X ∈ SLm(C) has the QU decomposition6 X = QU with Q ∈
SUm(C) and U ∈ UTm(C), which can be compactly written as

SLm(C) = SUm(C) •EUTm(C).(2.6)

The decomposition (2.6) motivates the GQU class, which includes the Givens
plane, plane upper triangular and plane diagonal transformations (Subalgo-
rithm 1b), and is used in BCD-GQU and Jacobi-GQU algorithms.

The decompositions mentioned above can be used to parameterize RSL(m,n,C).
Indeed, Lemma 1.1 in the compact notation can be written as

RSL(m,n,C) = St(m,n,C) • SLm(C),

which gives rise to LU- and QU-based decompositions of RSL(m,n,C):

RSL(m,n,C) = St(m,n,C) •ELTm(C) •EUTm(C),(2.7)

RSL(m,n,C) = St(m,n,C) • SUm(C) •EUTm(C).(2.8)

Moreover, for RSL(m,n,C), a third decomposition is possible, using the fact that
St(m,n,C) • SUm(C) = St(m,n,C). Then the equation (2.8) can be simplified as

RSL(m,n,C) = St(m,n,C) •EUTm(C),(2.9)

which can also be interpreted as applying the QU decomposition to a rectangular
matrix from RSL(m,n,C). This gives rise to the third class GU, which only includes
the plane upper triangular and plane diagonal transformations (Subalgorithm 1c),
and is used in BCD-GU.

2.3. Elementary transformations. Let us introduce a few more matrix groups.
An upper triangular matrix X is said to be unipotent if it satisfies Xii = 1 for
1 ≤ i ≤ m. Let SUTm(C) ⊆ EUTm(C) be the upper unipotent subgroup of unipo-
tent upper triangular matrices. Similarly, we let SLTm(C) ⊆ ELTm(C) be the lower
unipotent subgroup. Finally, a diagonal matrix X ∈ Cm×m is said to be a diag-
onal transformation if the product of all the diagonal elements is equal to 1. Let
Dm(C) ⊆ GLm(C) be the set of diagonal transformation matrices.

The elementary transformations are based on the following 2 × 2 matrices:

SUT2(C) =

{[

1 z

0 1

]

, z ∈ C

}

, SLT2(C) =

{[

1 0
z 1

]

, z ∈ C

}

, D2(C) =

{[

z 0
0 1

z

]

, z ∈ C∗

}

,

as well as the 2 × 2 matrices from SU2(C).

6This is also called QR decomposition in the literature.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 7

Let (i, j) be a pair of indices satisfying 1 ≤ i < j ≤ m. We introduce an operator
Ei,j : C2×2 → Cm×m sending Ψ to X ∈ Cm×m satisfying

[

Xii Xij

Xji Xjj

]

=

[

Ψ11 Ψ12

Ψ21 Ψ22

]

,

{

Xℓℓ = 1, if ℓ 6∈ {i, j},
Xkℓ = 0, otherwise.

Now we define the following four elementary transformations on SLm(C):

• Q(i,j,Ψ) def
= Ei,j(Ψ): Givens plane transformation for Ψ ∈ SU2(C);

• U (i,j,Ψ) def
= Ei,j(Ψ): plane upper triangular transformation for Ψ ∈ SUT2(C);

• L(i,j,Ψ) def
= Ei,j(Ψ): plane lower triangular transformation for Ψ ∈ SLT2(C);

• D(i,j,Ψ) def
= Ei,j(Ψ): plane diagonal transformation for Ψ ∈ D2(C).

Remark 2.1. These elementary transformations have all been used in the litera-
ture. The Givens transformations Q(i,j,Ψ) were used very often in the Jacobi-type
algorithms for joint approximate diagonalization of matrices or tensors by orthogo-
nal or non-orthogonal transformations [18, 25, 45, 6, 5, 42]. Triangular transforma-

tions U (i,j,Ψ) and L(i,j,Ψ) also appeared many times in the Jacobi-type algorithms on
SLm(C) or SLm(R) [4, 5, 35, 36, 37]. In the real case, the diagonal transformation

D(i,j,Ψ) was once used in [43].

The iterates Xk in Algorithm 1 and Algorithm 2 are updated multiplicatively
as Xk = Xk−1P k, where P k is an elementary transformation for a pair of indices
(ik, jk) belonging to one of the following three classes. These three classes are inspired
by equations (2.7), (2.8), (2.9) and by a similar idea as in [21, 25, 45]. We call them
the GLU (based on LU decomposition), GQU (based on QU decomposition) and GU
transformations, respectively.

• GLU class: P k = L(ik,jk,Ψ
∗

k
), U (ik,jk,Ψ

∗

k
) or D(ik,jk,Ψ

∗

k
);

• GQU class: P k = Q(ik,jk,Ψ
∗

k
), U (ik,jk,Ψ

∗

k
) or D(ik,jk,Ψ

∗

k
);

• GU class: P k = U (ik,jk,Ψ
∗

k
) or D(ik,jk,Ψ

∗

k
).

The choice of the pair (ik, jk), the matrix Ψ∗
k and the particular type of transforma-

tions in each class will be given in Subalgorithm 1a, Subalgorithm 1b and Subalgo-
rithm 1c. The algorithms and their convergence results are summarized in Table 1.

Table 1

A summary of the proposed algorithms

Model
Proposed
algorithms

Location
Elementary
transformations

Global
convergence

Weak
convergence

First reformulation (1.3)
on St(m,n,C) × SLm(C)

BCD-GLU Algorithm 1 &
Subalgorithm 1a

L,U ,D

Theorem 8.1 Theorem 8.2

BCD-GQU Algorithm 1 &
Subalgorithm 1b

Q,U ,D

BCD-GU Algorithm 1 &
Subalgorithm 1c

U ,D

Second reformulation (1.4)
on SLm(C)

Jacobi-GLU Algorithm 2 &
Subalgorithm 1a

L,U ,D
Theorem 8.3 Theorem 8.4

Jacobi-GQU Algorithm 2 &
Subalgorithm 1b

Q,U ,D

Remark 2.2. While the algorithms and convergence results described in this paper
are provided for complex matrices, complex Stiefel manifold St(m,n,C) and complex
special linear group SLm(C), they also remain valid in the real case.

8 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

3. Geometries on St(m,n,C) and SLm(C).

3.1. Notations. Let 1 ≤ m ≤ n. For a complex matrix Z ∈ Cn×m and a
complex number z ∈ C, we write the real and imaginary parts as Z = Zℜ + iZℑ and
z = ℜ(z) + iℑ(z), respectively. For complex matrices Z1,Z2 ∈ Cn×m, we introduce
the following real-valued inner product

(3.1) 〈Z1,Z2〉ℜ
def
= 〈Zℜ

1 ,Z
ℜ
2 〉 + 〈Zℑ

1 ,Z
ℑ
2 〉 = ℜ

(

tr(ZH

1Z2)
)

,

which makes C
n×m a real Euclidean space of dimension 2nm. Let h : Cn×m → R

be a differentiable function and Z ∈ Cn×m. We denote by ∂h
∂Zℜ ,

∂h
∂Zℑ ∈ Rn×m the

matrix Euclidean derivatives of h with respect to real and imaginary parts of Z. The
Wirtinger derivatives [1, 11, 23] are defined as

∂h

∂Z∗
def
=

1

2

(

∂h

∂Zℜ + i
∂h

∂Zℑ

)

,
∂h

∂Z

def
=

1

2

(

∂h

∂Zℜ − i
∂h

∂Zℑ

)

.

Then the Euclidean gradient of h with respect to the inner product (3.1) becomes

(3.2) ∇h(Z) =
∂h

∂Zℜ + i
∂h

∂Zℑ = 2
∂h

∂Z∗ .

For real matrices Z1,Z2 ∈ Rn×m, we see that (3.1) becomes the standard inner
product, and (3.2) becomes the standard Euclidean gradient. We denote by S2 ⊆ R3

the unit sphere, and C∗ = C\{0}.

3.2. Riemannian gradient on St(m,n,C). For a matrix C ∈ Cm×m, we de-

note sym(C)
def
= 1

2 (C + CH) and skew(C)
def
= 1

2 (C −CH). Let TY St(m,n,C) be the

tangent space to St(m,n,C) at a point Y ∈ St(m,n,C). Let Y ⊥ ∈ Cn×(n−m) be an
orthogonal complement of Y , that is, [Y ,Y ⊥] ∈ Cn×n is a unitary matrix. By [34,
Definition 6], we know that

TY St(m,n,C) = {V ∈ C
n×m

,V = Y C + Y ⊥B,C ∈ C
m×m

,C
H +C = 0,B ∈ C

(n−m)×m},

which is a (2nm − m2)-dimensional vector space. The orthogonal projection of a
matrix ξ ∈ Cn×m onto TY St(m,n,C) is

(3.3) Proj
Y
ξ = (In − Y Y H)ξ + Y skew(Y Hξ) = ξ − Y sym(Y Hξ).

We denote Proj⊥
Y
ξ

def
= ξ − Proj

Y
ξ. Let p : St(m,n,C) → R be a differentiable

function, and Y ∈ St(m,n,C). Note that St(m,n,C) is an embedded submanifold
of the Euclidean space Cn×m. By equation (3.3), we have the Riemannian gradient
of p at Y as:

grad p(Y) = Proj
Y
∇p(Y) = ∇p(Y) − Y sym(Y H∇p(Y)).(3.4)

By [3, Example 5.4.2], the exponential map at Y is defined as

Exp
Y

: TY St(m,n,C)−→ St(m,n,C)(3.5)

V 7−→ [Y ,V]exp

([

Y
H
V −V

H
V

Im Y
H
V

])[

exp
(

−Y
H
V
)

0m×m

]

,

where exp(·) is the matrix exponential function [3, 8, 20].

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 9

3.3. Riemannian gradient on SLm(C). Let slm(C)
def
= {X ∈ Cm×m, tr(X) =

0} be the Lie algebra [8] of the complex special linear group SLm(C). Then the tangent
space to SLm(C) at a point X ∈ SLm(C) can be constructed [8, Eq. (3.7),(3.8)] by

(3.6) TXSLm(C) = {XΩ,Ω ∈ slm(C)}.

Let sum(C)
def
= {X ∈ Cm×m,XH = −X, tr(X) = 0} be the Lie algebra of the special

unitary group SUm(C). Then the tangent space to SUm(C) at a point X ∈ SUm(C)
can be constructed [8, Eq. (3.15)] by TXSUm(C) = {XΩ,Ω ∈ slm(C)}.

Let TXSLm(C) be the tangent space to SLm(C) at a point X ∈ SLm(C) as in
(3.6). For tangent matrices V 1,V 2 ∈ TXSLm(C), we use the left invariant [3], [4,
Eq. (6.2)] Riemannian metric

〈V 1,V 2〉X def
=
〈

X−1V 1,X
−1V 2

〉

ℜ = ℜ
(

tr(V H

1 (XXH)−1V 2)
)

.

Let g : SLm(C) −→ R+ be a differentiable function, and X ∈ SLm(C). Then the
Riemannian gradient of g at X is the orthogonal projection [4, Lemma 6.2] of its
Euclidean gradient ∇g(X) to TXSLm(C), that is,

grad g(X) = X

(

XH∇g(X) − tr(XH∇g(X))

n
In

)

.(3.7)

We denote Λ(X)
def
= X−1 grad g(X) ∈ slm(C) for X ∈ SLm(C), which will be fre-

quently used in this paper.
In what follows, we will use the following exponential map

(3.8) Exp
X

: TXSLm(C) → SLm(C), XΩ 7→ X exp(Ω),

where exp(·) is the matrix exponential function [3, 8, 20]. For any tangent matrix
V ∈ TXSLm(C), we have the following relationship between Exp

X
in (3.8) and the

Riemannian gradient [3, Eq. (3.31)]:

(3.9) 〈V , grad g(X)〉X =

(

d

dt
g(Exp

X
(tV))

)∣

∣

∣

∣

t=0

,

which will be used in the proof of Lemma 5.1.

3.4. Tangent spaces to other matrix groups. A matrix X ∈ Cm×m is said
to be strictly upper triangular if Xij = 0 for i ≥ j. Let sutm(C) ⊆ Cm×m be
the set of strictly upper triangular matrices. Then the tangent space to SUTm(C)
at a point X ∈ SUTm(C) can be constructed [8, Eq. (3.11)], [4, Section 6.4] by
TXSUTm(C) = {XΩ,Ω ∈ sutm(C)}. Similar as above, we let sltn(C) ⊆ C

m×m be
the set of strictly lower triangular matrices. Then the tangent space to SLTm(C) at
a point X ∈ SLTm(C) can be constructed by TXSLTm(C) = {XΩ,Ω ∈ sltm(C)}.
Let dm(C) ⊆ C

m×m be the set of diagonal traceless matrices. Then the tangent space
to Dm(C) at a point X ∈ Dm(C) can be constructed by TXDm(C) = {XΩ,Ω ∈
dm(C)}. In particular, for the case m = 2, we have

sut2(C) =

{[

0 z

0 0

]

, z ∈ C

}

, slt2(C) =

{[

0 0
z 0

]

, z ∈ C

}

, d2(C) =

{[

z 0
0 −z

]

, z ∈ C

}

.

10 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

3.5. Inequalities for convergence analysis. We recall some definitions and
results about the Lojasiewicz gradient inequality [24, 31, 2, 44]. These results were
used in [26, 45] to prove the global convergence of Jacobi-G algorithms on the orthog-
onal and unitary groups, and will be used in this paper as well.

Definition 3.1 ([41, Definition 2.1]). Let M ⊆ Rd be a Riemannian submani-
fold, and ϕ : M → R be a differentiable function. The function ϕ : M → R is said
to satisfy a Lojasiewicz gradient inequality at x ∈ M, if there exist δ > 0, ζ ∈ (0, 1

2]
and a neighborhood U in M of x such that for all y ∈ U , it follows that

(3.10) |ϕ(y) − ϕ(x)|1−ζ ≤ δ‖ gradϕ(y)‖.
Lemma 3.2 ([41, Proposition 2.2]). Let M ⊆ Rd be an analytic submanifold7

and ϕ : M → R be a real analytic function. Then ϕ satisfies a Lojasiewicz gradient
inequality (3.10) at any x ∈ M.

Theorem 3.3 ([41, Theorem 2.3]). Let M ⊆ Rd be an analytic submanifold and
{xk}k≥1 ⊆ M. Suppose that ϕ is real analytic and, for large enough k,
(i) there exists σ > 0 such that

ϕ(xk) − ϕ(xk+1) ≥ σ‖ gradϕ(xk)‖‖xk+1 − xk‖;

(ii) gradϕ(xk) = 0 implies that xk+1 = xk.
Then, if x∗ is an accumulation point of {xk}k≥1, it is the limit point.

Since the special linear group SLm(C) is not compact, the iterates {ωk}k≥1 in
Algorithm 1 for cost function (1.3) may have no accumulation point. However, if
there exists an accumulation point, we have the following result about its global
convergence, which is a direct consequence of Theorem 3.3 and inequality (2.3).

Lemma 3.4. Suppose that, in Algorithm 1 for cost function (1.3), the iterates
{ωk}k≥1 satisfy that, for large enough k,
(i) there exists σ > 0 such that

(3.11) f(ωk−1) − f(ωk) ≥ σ‖ gradftk(ωk−1)‖‖ωk − ωk−1‖;

(ii) gradftk(ωk−1) = 0 implies that ωk = ωk−1.
Then, if ω∗ is an accumulation point of the iterates {ωk}k≥1, it is the limit point.

We also have the following result about its weak convergence, which can be proved
easily by inequality (2.3) and the fact that f(ω) ≥ 0.

Lemma 3.5. In Algorithm 1 for cost function (1.3), if there exists η > 0 such that

(3.12) f(ωk−1) − f(ωk) ≥ η‖ gradftk(ωk−1)‖2

always holds, then limk→∞ gradf(ωk−1) = 0. In particular, if ω∗ is an accumulation
point of the iterates {ωk}k≥1, then ω∗ is a stationary point of f .

4. Line search descent method on St(m,n,C). Let f be the cost function
(1.3) defined on the product of St(m,n,C) and SLm(C). Let ωk−1 = (Y k−1,Xk−1)
and p = f1,Xk−1

be the first restricted function. Denote X = Xk−1 for simplicity.
Then the restricted function p can be expressed as

(4.1) p : St(m,n,C) → R
+, Y 7→

L
∑

ℓ=1

‖ offdiag{W (ℓ)}‖2,

7See [22, Definition 2.7.1] or [26, Definition 5.1] for a definition of an analytic submanifold.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 11

where W (ℓ) = X�Y �A(ℓ)Y X, and (·)� = (·)T or (·)H. In this section, we adopt the
line search descent [2, 3, 38, 39, 40] method on St(m,n,C) to find the next iterate
Y k for the restricted function p in (4.1).

4.1. Riemannian gradient. We first present a lemma, which can be obtained
by direct calculations. This result will help us to obtain the Riemannian gradient of
the restricted function p in (4.1).

Lemma 4.1. Let A ∈ Cn×n and the function p̃ be defined as

p̃ : Cn×m → R
+, Z 7→ ‖ offdiag{W}‖2,

where W = Z�AZ. Denote V = AZ = [v1, · · · ,vm] ∈ Cn×m and V = A�Z =
[v̄1, · · · , v̄m] ∈ Cn×m. Denote Z = [z1, · · · , zm]. Then the Euclidean gradient is

∇p̃(Z) = 2

∑

j 6=1

vjv
H

j z1, · · · ,
∑

j 6=m

vjv
H

j zm

+ 2

∑

j 6=1

v̄j(v̄j)
Hz1, · · · ,

∑

j 6=m

v̄j(v̄j)
Hzm

 .

In particular, it satisfies

ZZH∇p̃(Z) = 2ZΥ(W),(4.2)

where Υ(W) ∈ Cm×m is defined as

(4.3) Υ(W)
def
=

{

W offdiag{W}H + WH offdiag{W }, if (·)� = (·)H;

W ∗ offdiag{W }T + WH offdiag{W }, if (·)� = (·)T.

Lemma 4.2. Let W (ℓ) and the function p be as in (4.1). Then the Euclidean
gradient satisfies

Y H∇p(Y) = 2(XH)−1
L
∑

ℓ=1

Υ(W (ℓ))XH,(4.4)

where Υ(W (ℓ)) is as in (4.3).

Proof. By the product rule, we see that ∇p(Y) = ∇p̃(Y X)XH. Then, by equa-
tion (4.2), we have that

XXHY H∇p(Y) = Y HY X(Y X)H∇p̃(Y X)XH = 2Y HY X

L
∑

ℓ=1

Υ(W (ℓ))XH.

Note that X is invertible. The proof is complete.

Now, by equations (4.4) and (3.4), we see that the Riemannian gradient of the
function p in (4.1) satisfies

Y H gradp(Y) = (XH)−1
L
∑

ℓ=1

Υ(W (ℓ))XH −X

L
∑

ℓ=1

Υ(W (ℓ))HX−1.(4.5)

12 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

4.2. Line search descent method. We now begin to present more details
about the line search descent method [2, 3, 38, 39, 40] on St(m,n,C). In this method,
we choose the next iteration as

(4.6) Y k = Exp
Y k−1

(tk−1V k−1),

where V k−1 is the search direction, tk−1 is the step size and Exp
Y k−1

is the ex-
ponential map defined in (3.5). We always choose the search direction V k−1 such
that

(4.7) 〈grad p(Y k−1),V k−1〉Y k−1
≤ −δs‖ gradp(Y k−1)‖‖V k−1‖,

where 0 < δs < 1 is a fixed positive constant. We say that the step size tk−1 satisfies
the Armijo condition8, if

p(Y k) ≤ p(Y k−1) + δwtk−1〈grad p(Y k−1),V k−1〉Y k−1
,(4.8)

where 0 < δw < 1 is a fixed positive constant. We say that the step size tk−1 satisfies
the curvature condition, if

〈grad p(Y k),DExp
Y k−1

(tk−1V k−1)[V k−1]〉Y k
≥ δc〈grad p(Y k−1),V k−1〉Y k−1

,(4.9)

where δw < δc < 1 is a fixed positive constant. The conditions (4.8) and (4.9) are
known collectively as the Wolfe conditions. As in the Euclidean space case [38, Lemma
3.1], it was shown [39, 40] that we can always choose the step size tk−1 such that the
conditions (4.8) and (4.9) are both satisfied. It is not difficult to see that there exists
Me > 0 such that

‖Exp
Y

(V 1) − Exp
Y

(V 2)‖ ≤ Me‖V 1 − V 2‖,

for any Y ∈ St(m,n,C) and V 1,V 2 ∈ TY St(m,n,C). Then the next result follows
directly.

Lemma 4.3. If we choose the next iterate Y k as in (4.6) such that the conditions
(4.7) and (4.8) are both satisfied, then we have

p(Y k−1)− p(Y k) ≥ δsδw‖ grad p(Y k−1)‖‖tk−1V k−1‖ ≥ σp‖ grad p(Y k−1)‖‖Y k − Y k−1‖,

where σp = (δsδw)/Me.

We also have the next result, a simple corollary of the proof in [39, Theorem 2].

Lemma 4.4. If we choose the next iterate Y k as in (4.6) such that the conditions
(4.7), (4.8) and (4.9) are all satisfied, then we have

(4.10) p(Y k−1) − p(Y k) ≥ ηp‖ gradp(Y k−1)‖2,

where ηp > 0 is a fixed positive constant.

5. Elementary functions and three subalgorithms. In this section, we de-
fine four kinds of elementary functions and present the details of three subalgorithms.

8It is also known as the first Wolfe condition in the literature.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 13

5.1. Elementary functions and their derivatives. Let g : SLm(C) → R+

be a differentiable function, X ∈ SLm(C) and z = x + iy. Corresponding to the four
elementary transformations, we define the following four elementary functions :

(5.1)

h
(U)
(i,j),X (x, y) = h

(U)
(i,j),X(Ψ)

def
= g(XU (i,j,Ψ)), Ψ ∈ SUT2(C), z ∈ C;

h
(L)
(i,j),X (x, y) = h

(L)
(i,j),X(Ψ)

def
= g(XL(i,j,Ψ)), Ψ ∈ SLT2(C), z ∈ C;

h
(D)
(i,j),X (x, y) = h

(D)
(i,j),X(Ψ)

def
= g(XD(i,j,Ψ)), Ψ ∈ D2(C), z ∈ C∗;

h
(Q)
(i,j),X (c, s1, s2) = h

(Q)
(i,j),X(θ, φ) = h

(Q)
(i,j),X(Ψ)

def
= g(XQ(i,j,Ψ)),Ψ ∈ SU2(C), (c, s1, s2) ∈ S2, (θ, φ) ∈ R

2.

In the above last equation, as in [18, 45], we parameterize Ψ ∈ SU2(C) as

Ψ = Ψ(c, s1, s2) =

[

c −s
s∗ c

]

=

[

c −(s1 + is2)
s1 − is2 c

]

=

[

cos θ − sin θeiφ

sin θe−iφ cos θ

]

,

where (c, s1, s2) ∈ S2 and (θ, φ) ∈ R2.

Recall that Λ(X)
def
= X−1 grad g(X) ∈ slm(C) in Subsection 3.3, and denote

Λ = Λ(X) for simplicity. We now show the relationships between the Riemann-
ian gradients of the four elementary functions defined in (5.1) and the Riemannian
gradient of the function g at X ∈ SLm(C). The proof is postponed to Appendix A.

Lemma 5.1. The Riemannian gradients of the elementary functions defined in
(5.1) at the identity matrix I2 can be expressed as follows:

(i) gradh
(Q)
(i,j),X (I2) =

[

i
2
ℑ (Λii −Λjj) 1

2
ℜ (Λij −Λji) + i

2
ℑ (Λij + Λji)

−
1
2
ℜ (Λij −Λji) + i

2
ℑ (Λij + Λji) −

i
2
ℑ (Λii −Λjj)

]

;

(ii) gradh
(U)
(i,j),X (I2) =

[

0 Λij

0 0

]

; (iii) gradh
(L)
(i,j),X(I2) =

[

0 0
Λji 0

]

;

(iv) gradh
(D)
(i,j),X (I2) =

[

ℜ (Λii −Λjj) 0
0 ℑ (Λii −Λjj)

]

.

The following lemma can be easily obtained from Lemma 5.1.

Lemma 5.2. The partial derivatives of the elementary functions defined in (5.1)
satisfy

(i) ∂h
(Q)
(i,j),X(I2)

def
= ∂h

(Q)
(i,j),X(1, 0, 0) = [0, −ℜ (Λij −Λji) , −ℑ (Λij + Λji)]

T;

(ii) ∂h
(U)
(i,j),X(I2)

def
= ∂h

(U)
(i,j),X(0, 0) = [ℜ (Λij) , ℑ (Λij)]

T;

(iii) ∂h
(L)
(i,j),X(I2)

def
= ∂h

(L)
(i,j),X(0, 0) = [ℜ (Λji) , ℑ (Λji)]

T;

(iv) ∂h
(D)
(i,j),X(I2)

def
= ∂h

(D)
(i,j),X(0, 0) = [ℜ (Λii −Λjj) , ℑ (Λii −Λjj)]

T.

5.2. Three subalgorithms. Let f be the cost function (1.3). Let ωk−1 =
(Y k−1,Xk−1) be the (k−1)-th iterate produced by Algorithm 1, and g : SLm(C) → R

be the restricted function f2,Y k−1
defined as in (2.2). Let (ik, jk) be a pair of indices

satisfying 1 ≤ ik < jk ≤ m. For simplicity, we denote

(5.2)
h
(Q)
k = h

(Q)
(ik,jk),Xk−1

, h
(U)
k = h

(U)
(ik,jk),Xk−1

,

h
(L)
k = h

(L)
(ik,jk),Xk−1

, h
(D)
k = h

(D)
(ik,jk),Xk−1

.

14 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

Based on the three classes of elementary transformations, the subalgorithms to up-
date Xk in Algorithm 1 are summarized in Subalgorithm 1a, Subalgorithm 1b and
Subalgorithm 1c, respectively. In these three cases, as in Subsection 2.1, we call
Algorithm 1 the BCD-GLU, BCD-GQU and BCD-GU algorithms, respectively.

Subalgorithm 1a: The subalgorithm to update Xk based on GLU class

1: Input: Current iterate Xk−1, a fixed positive constant 0 < ε <
√

2
3m(m−1) .

2: Output: New iterate Xk.
3: Choose an index pair (ik, jk) and an elementary function hk such that9

(5.3) ‖∂hk(I2)‖ ≥ ε‖Λ(Xk−1)‖,

where hk = h
(U)
k , h

(L)
k or h

(D)
k ;

4: Compute Ψ∗
k that minimizes the elementary function hk, satisfying Update

rule 6.4 and 6.5 (will be shown in Section 6);

5: Update Xk = Xk−1P k, where P k = U (ik,jk,Ψ
∗

k
),L(ik,jk,Ψ

∗

k
) or D(ik,jk,Ψ

∗

k
).

Subalgorithm 1b: The subalgorithm to update Xk based on GQU class

1: Input: Current iterate Xk−1, a fixed positive constant 0 < ε <
√

3−
√
5

3m(m−1) .

2: Output: New iterate Xk.
3: Choose an index pair (ik, jk) and an elementary function hk satisfying the

inequality (5.3), where hk = h
(Q)
k , h

(U)
k or h

(D)
k ;

4: Compute Ψ∗
k that minimizes the elementary function hk, satisfying Update

rule 6.4, 6.5 and 7.3 (will be shown in Sections 6 and 7);

5: Update Xk = Xk−1P k, where P k = Q(ik,jk,Ψ
∗

k
),U (ik,jk,Ψ

∗

k
) or D(ik,jk,Ψ

∗

k
).

Subalgorithm 1c: The subalgorithm to update Xk based on GU class

1: Input: Current iterate Xk−1, a fixed positive constant 0 < ε <
√

1
m(m−1) .

2: Output: New iterate Xk.
3: Choose an index pair (ik, jk) and an elementary function hk satisfying the

inequality (5.3), where hk = h
(U)
k or h

(D)
k ;

4: Compute Ψ∗
k that minimizes the elementary function hk, satisfying Update

rule 6.4 and 6.5 (will be shown in Section 6);

5: Update Xk = Xk−1P k, where P k = U (ik,jk,Ψ
∗

k
) or D(ik,jk,Ψ

∗

k
).

In the following result, we will show that Subalgorithm 1a and Subalgorithm 1b
are both well-defined. The proof is postponed to Appendix A.

Proposition 5.3. (i) In Subalgorithm 1a, we can always choose an index pair

(ik, jk) and an elementary function hk = h
(U)
k , h

(L)
k or h

(D)
k such that the inequality

(5.3) is satisfied.
(ii) In Subalgorithm 1b, we can always choose an index pair (ik, jk) and an elementary

function hk = h
(Q)
k , h

(U)
k or h

(D)
k such that the inequality (5.3) is satisfied.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 15

In BCD-GU algorithm, we always choose a starting point X0 ∈ EUTm(C). Let
eutm(C) ⊆ Cm×m be the set of upper triangular matrices with the trace equal to 0.
Then the tangent space to EUTm(C) at a point X ∈ EUTm(C) can be constructed
[4, 8] by TXEUTm(C) = {XΩ,Ω ∈ eutm(C)}, which is useful to the proof of the
following result. The proof is postponed to Appendix A.

Proposition 5.4. In Subalgorithm 1c, we can always choose an index pair (ik, jk)

and an elementary function hk = h
(U)
k or h

(D)
k such that the inequality (5.3) is satis-

fied.

6. Plane triangular and diagonal transformations for JADM problem.

Let f be the cost function (1.3). Let ωk−1 = (Y k−1,Xk−1) and g : SLm(C) → R be

the restricted function f2,Y k−1
as in Subsection 5.2. Denote B(ℓ) = Y �

k−1A
(ℓ)Y k−1

for 1 ≤ ℓ ≤ L, where (·)� = (·)T or (·)H. Then g can be expressed as

(6.1) g : SLm(C) → R
+, X 7→

L
∑

ℓ=1

‖ offdiag{W (ℓ)}‖2,

where W (ℓ) = X�B(ℓ)X for 1 ≤ ℓ ≤ L. In this section, we will first calculate the
Riemannian gradient of g in (6.1), and the partial derivatives of elementary functions

h
(U)
k , h

(L)
k and h

(D)
k in (5.2). Then, we will prove that inequalities (3.11) and (3.12)

are both satisfied in the plane triangular and diagonal transformations.

6.1. Riemannian gradient. Let g and W (ℓ) be as in (6.1). Then, by equations
(4.2) and (3.7), we have the Euclidean gradient and Riemannian gradient of g at
X ∈ SLm(C) as follows:

∇g(X) = 2(XH)−1
L
∑

ℓ=1

Υ(W (ℓ)),(6.2)

grad g(X) = 2X

L
∑

ℓ=1

(

Υ(W (ℓ)) − tr(Υ(W (ℓ)))

n
In

)

,(6.3)

where Υ(W (ℓ)) is defined as in equation (4.3).

Remark 6.1. In the real case, the Euclidean gradient in (6.2) was earlier derived
in [4, Eq. (6.3)] and [10, Section 2.3]. In this paper, we extend it to problem (6.1) in
the complex case and calculate the Riemannian gradient (6.3) as well.

6.2. Elementary functions. Let W (ℓ) = X�
k−1B

(ℓ)Xk−1 for 1 ≤ ℓ ≤ L. Let

(6.4) ̺
def
=

{

1, if (·)� = (·)H;

−1, if (·)� = (·)T.

Denote (i, j) = (ik, jk) for simplicity. Now we use the following notations:

• α1
def
=

L
∑

ℓ=1

∑

p6=j

(

|W(ℓ)
ip |2 + |W(ℓ)

pi |2
)

,

α2
def
=

L
∑

ℓ=1

∑

p6=j

(

W
(ℓ,ℜ)
ip W

(ℓ,ℜ)
jp + W

(ℓ,ℑ)
ip W

(ℓ,ℑ)
jp + W

(ℓ,ℜ)
pi W

(ℓ,ℜ)
pj + W

(ℓ,ℑ)
pi W

(ℓ,ℑ)
pj

)

,

α3
def
=

L
∑

ℓ=1

∑

p6=j

(

̺
(

W
(ℓ,ℑ)
ip W

(ℓ,ℜ)
jp − W

(ℓ,ℜ)
ip W

(ℓ,ℑ)
jp

)

+ W
(ℓ,ℜ)
pi W

(ℓ,ℑ)
pj − W

(ℓ,ℑ)
pi W

(ℓ,ℜ)
pj

)

.

16 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

• β1
def
=

L
∑

ℓ=1

∑

p6=i

(

|W(ℓ)
jp |2 + |W(ℓ)

pj |2
)

,

β2
def
=

L
∑

ℓ=1

∑

p6=i

(

W
(ℓ,ℜ)
ip W

(ℓ,ℜ)
jp + W

(ℓ,ℑ)
ip W

(ℓ,ℑ)
jp + W

(ℓ,ℜ)
pi W

(ℓ,ℜ)
pj + W

(ℓ,ℑ)
pi W

(ℓ,ℑ)
pj

)

,

β3
def
=

L
∑

ℓ=1

∑

p6=i

(

̺
(

W
(ℓ,ℜ)
ip W

(ℓ,ℑ)
jp − W

(ℓ,ℑ)
ip W

(ℓ,ℜ)
jp

)

+ W
(ℓ,ℑ)
pi W

(ℓ,ℜ)
pj − W

(ℓ,ℜ)
pi W

(ℓ,ℑ)
pj

)

.

• γ1
def
=

L
∑

ℓ=1

∑

p6=i,j

(

|W(ℓ)
ip |2 + |W(ℓ)

pi |2
)

, γ2
def
=

L
∑

ℓ=1

∑

p6=i,j

(

|W(ℓ)
jp |2 + |W(ℓ)

pj |2
)

.

Then we can get the following results by direct calculations.

Lemma 6.2. Let the function g be as in (6.1). Then

(i) the elementary function h
(U)
k in (5.2) and its optimal solution (x∗

k, y
∗
k) satisfy

h
(U)
k (x, y) − h

(U)
k (0, 0) = α1x

2 + 2α2x + α1y
2 + 2α3y,

h
(U)
k (x∗

k, y
∗
k) − h

(U)
k (0, 0) = − 1

α1

(

α2
2 + α2

3

)

,(6.5)

∂h
(U)
k (0, 0) = 2[α2, α3]T.

(ii) the elementary function h
(L)
k in (5.2) and its optimal solution (x∗

k, y
∗
k) satisfy

h
(L)
k (x, y) − h

(L)
k (0, 0) = β1x

2 + 2β2x + β1y
2 + 2β3y,

h
(L)
k (x∗

k, y
∗
k) − h

(L)
k (0, 0) = − 1

β1

(

β2
2 + β2

3

)

,

∂h
(L)
k (0, 0) = 2[β2, β3]T.

(iii) the elementary function h
(D)
k in (5.2) and its optimal solution (x∗

k, y
∗
k) satisfy

h
(D)
k (x, y) − h

(D)
k (1, 0) = γ1(x2 + y2) + γ2

1

x2 + y2
− γ1 − γ2,

h
(D)
k (x∗

k, y
∗
k) − h

(D)
k (1, 0) = − (

√
γ1 −

√
γ2)

2
,

∂h
(D)
k (1, 0) = 2[γ1 − γ2, 0]T.

Remark 6.3. In the real case, the solution x∗
k in (6.5) was earlier derived in [5,

Eq. (7)]. In the complex case, the solution z∗k = x∗
k + iy∗k in (6.5) was earlier derived

in [46, Eq. (8)].

Update rule 6.4. In Algorithm 1 for cost function (1.3), when the elementary

function hk = h
(U)
k , we see that x∗

k = 0 if α1 6= 0 and α2 = 0. It is not possible that

α1 = 0 and α2 6= 0. If α1 = α2 = 0, we set x∗
k = 0. In the case of hk = h

(L)
k , we make

the similar update rules for the value of y∗k.

Update rule 6.5. Let 0 < ςD < 1
4 be a small positive constant. In Algorithm 1 for

cost function (1.3), if hk = h
(D)
k , we always set y∗k = 0. Moreover, we determine x∗

k

based on the following rules.
• If γ1 = γ2 = 0, we set x∗

k = 0.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 17

• Let ̟
def
= γ2

γ1

. If ̟ ∈ [0, ςD), we set x∗
k = 1

2 . If ̟ ∈ (1
ςD

,+∞], we set x∗
k = 2.

• Otherwise, if ̟ ∈ [ςD, 1
ςD

], we set x∗
k =

4√
̟, which is the minimum point.

6.3. Inequalities for global convergence. It will be seen that f(ωk) ≤ f(ωk−1)

always holds in Algorithm 1. We denote M0
def
= f(ω0) in Algorithm 1 for cost function

(1.3). Then we have that γ1 +γ2 ≤ M0 = f(ω0). In the following result, we will show
an inequality, which is helpful to establish inequality (3.11) when elementary function

hk = h
(D)
k . The proof is postponed to Appendix B.

Lemma 6.6. In Algorithm 1 for cost function (1.3), there exists ιD > 0 such that

(6.6) g(Xk−1) − g(Xk) ≥ ιD‖Λ(Xk−1)‖‖Ψ∗
k − I2‖,

whenever the elementary function hk = h
(D)
k .

Note that

‖Xk −Xk−1‖ ≤ ‖Ψ∗
k − I2‖‖Xk−1‖,(6.7)

‖ grad g(Xk−1)‖ ≤ ‖Λ(Xk−1)‖‖Xk−1‖.(6.8)

Let ιD be as in (6.6), and Mω be as in the condition (1.5). Let σD = ιD/M2
ω > 0.

Then the next result follows directly from Lemma 6.6, inequalities (6.7) and (6.8).

Corollary 6.7. In Algorithm 1 for cost function (1.3), if the iterates remain
bounded, i.e., the condition (1.5) is satisfied, then

(6.9) g(Xk−1) − g(Xk) ≥ σD‖ gradg(Xk−1)‖‖Xk −Xk−1‖,

whenever the elementary function hk = h
(D)
k .

As for inequality (6.6), we now show a similar result for the cases of elementary

functions h
(L)
k and h

(U)
k . The proof is also postponed to Appendix B.

Lemma 6.8. In Algorithm 1 for cost function (1.3), there exists ιLU > 0 such
that

(6.10) g(Xk−1) − g(Xk) ≥ ιLU‖Λ(Xk−1)‖‖Ψ∗
k − I2‖,

whenever the elementary function hk = h
(L)
k or h

(U)
k .

Let ιLU be as in (6.10) and σLU = ιLU/M2
ω > 0. Similar as for Corollary 6.7, the

next result follows directly from Lemma 6.8, inequalities (6.7) and (6.8).

Corollary 6.9. In Algorithm 1 for cost function (1.3), if the iterates remain
bounded, i.e., the condition (1.5) is satisfied, then

g(Xk−1) − g(Xk) ≥ σLU‖ grad g(Xk−1)‖‖Xk −Xk−1‖,

whenever the elementary function hk = h
(L)
k or h

(U)
k .

6.4. Inequalities for weak convergence. In this subsection, we show an in-
equality, which will be helpful to establish inequality (3.12). The proof is postponed
to Appendix B.

18 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

Lemma 6.10. In Algorithm 1 for cost function (1.3), if the iterates remain bounded,
i.e., the condition (1.5) is satisfied, then there exists κ > 0 such that

‖Ψ∗
k − I2‖ ≥ κ‖Λ(Xk−1)‖,

whenever the elementary function hk = h
(D)
k , h

(L)
k or h

(U)
k .

By Lemma 6.6, Lemma 6.8 and Lemma 6.10, we can easily get the following
results by setting ηD = (κιD)/M2

ω and ηLU = (κιLU)/M2
ω.

Corollary 6.11. In Algorithm 1 for cost function (1.3), if the iterates remain
bounded, i.e., the condition (1.5) is satisfied, then

(6.11) g(Xk−1) − g(Xk) ≥ min(ηD, ηLU)‖ grad g(Xk−1)‖2,

whenever the elementary function hk = h
(D)
k , h

(L)
k or h

(U)
k .

7. Givens plane transformations for JADM problem. Let the function g
be as in (6.1). Let W (ℓ) = X�

k−1B
(ℓ)Xk−1 for 1 ≤ ℓ ≤ L as in Subsection 6.2, where

(·)� = (·)T or (·)H. Let ̺ be as in (6.4). Denote (i, j) = (ik, jk) for simplicity. Define

Γ(i,j,Xk−1) def
=

̺

2

L
∑

ℓ=1

ℜ
(

zi,j(W
(ℓ))zH

i,j(W
(ℓ))
)

∈ R
3×3,(7.1)

where

zi,j(W)
def
=

{
[

Wjj − Wii, Wij + Wji, −i(Wij − Wji)
]T

, if (·)� = (·)H;
[

Wij + Wji, Wii − Wjj , i(Wii + Wjj)
]T

, if (·)� = (·)T.

Denote

c0
def
=

1
2

∑L
ℓ=1

∣

∣

∣W
(ℓ)
jj − W

(ℓ)
ii

∣

∣

∣

2

, if (·)� = (·)H;

− 1
2

∑L
ℓ=1

∣

∣

∣W
(ℓ)
ij + W

(ℓ)
ji

∣

∣

∣

2

, if (·)� = (·)T.

7.1. Elementary function. As in [45, Eq. (4.4)], we denote the unit vector

r
def
=
[

2c2 − 1, −2cs1, −2cs2
]T

= [cos 2θ, − sin 2θ cosφ, − sin 2θ sinφ]
T
,(7.2)

where c ∈ R+, s = s1 + is2 ∈ C, c2 + |s|2 = 1, and θ, φ ∈ R are two angles. Then we
can get the following result10 by direct calculations.

Lemma 7.1. In Algorithm 1 for cost function (1.3), the elementary function h
(Q)
k

satisfies

h
(Q)
k (c, s1, s2) − h

(Q)
k (1, 0, 0) = −

(

rTΓ(i,j,Xk−1)r − c0

)

,(7.3)

where Γ(i,j,Xk−1) ∈ R3×3 is as in equation (7.1).

10In the (·)� = (·)H case, this expression was first formulated in [13].

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 19

Denote Γ = Γ(i,j,Xk−1) for simplicity. It follows by equations (7.2) and (7.3) that

h
(Q)
k (c, s1, s2) − h

(Q)
k (1, 0, 0) = − (q(θ, φ) − c0) ,(7.4)

where

q(θ, φ)
def
=

1

2

(

Γ11 − Γ22 cos
2
φ− Γ33 sin

2
φ− Γ23 sin(2φ)

)

cos(4θ)

− (Γ12 cos φ+ Γ13 sinφ) sin(4θ) +
1

2

(

Γ11 + Γ22 cos
2
φ+ Γ33 sin

2
φ+ Γ23 sin(2φ)

)

.(7.5)

Note that, by Lemma 7.1 and equation (7.2), we have

∂h
(Q)
k (I2) = −4[0, Γ12, Γ13]T.(7.6)

Remark 7.2. By equation (7.4), we see that h
(Q)
k (θ + π/2, φ) = h

(Q)
k (θ, φ) for any

θ, φ ∈ R. Therefore, we can always choose θ∗ ∈ [−π/4, π/4].

Update rule 7.3. In Algorithm 1 for cost function (1.3), we set a positive constant

ςQ > 0. If hk = h
(Q)
k , we find the eigenvector u of Γ corresponding to the largest

eigenvalue. Define two vectors vi,j
def
= [Γ12, Γ13]

T ∈ R2 and wi,j
def
= [u2, u3]

T ∈ R2.
• If it holds that

(7.7) |〈vi,j ,wi,j〉| ≥ ςQ‖vi,j‖‖wi,j‖,

then we find φ∗ and θ∗ by setting r = u, and Ψ∗
k = Ψ(θ∗, φ∗);

• Otherwise, we set [cosφ∗, sinφ∗]T = vi,j/‖vi,j‖, and then calculate θ∗, which
maximizes the restricted function q(θ, φ∗).

7.2. Inequalities for global convergence. We first present a lemma, which
will help us to prove Lemma 7.5.

Lemma 7.4. Let α, β ∈ R be two constants. For θ ∈ [−π
4 ,

π
4], we define a function

p(θ)
def
= α cos(4θ) + β sin(4θ). If θ∗ ∈ [−π

4 ,
π
4] satisfies p(θ∗) = max p(θ), then we have

p(θ∗) − p(0) ≥ 2
√

2|β|
∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

.

Lemma 7.5. Let the function q(θ, φ) be as in equation (7.5). Suppose that φ∗ and
θ∗ are determined as in Update rule 7.3. Then we have

q(θ∗, φ∗) − q(0, 0) ≥ 2
√

2ςQ

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

‖vi,j‖,

where ςQ is the positive constant defined in Update rule 7.3.

Proof. By Update rule 7.3, we see that

(7.8) |〈vi,j , [cosφ∗ sinφ∗]T〉| ≥ ςQ‖vi,j‖

always holds. By Lemma 7.4 and the above inequality (7.8), we get that

q(θ∗, φ∗) − q(0, 0) = q(θ∗, φ∗) − q(0, φ∗) ≥ 2
√

2

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

|Γ12 cosφ∗ + Γ13 sinφ∗|

≥ 2
√

2ςQ

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

‖vi,j‖.

The proof is complete.

20 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

As for inequality (6.6), we now show a similar result for the case of elementary

functions h
(Q)
k , which will be helpful to establish inequality (3.11).

Lemma 7.6. In Algorithm 1 for cost function (1.3), there exists ιQ > 0 such that

(7.9) g(Xk−1) − g(Xk) ≥ ιQ‖Λ(Xk−1)‖‖Ψ∗
k − I2‖,

whenever the elementary function hk = h
(Q)
k .

Proof. We only prove the case (·)� = (·)H, the other case being similar. By
Lemma 7.5 and equation (7.6), we get that

h
(Q)
k (0, 0) − h

(Q)
k (θ∗, φ∗) ≥ 2

√
2ςQ

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

‖vi,j‖ =
ςQ
4

2
√

2

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

‖∂h(Q)
k (I2)‖

≥ ςQε

4
‖Q(i,j,Ψ∗

k
) − Im‖‖Λ(Xk−1)‖.

We can set ιQ = (ςQε)/4. The proof is complete.

Let ιQ be as in (7.9) and Mω be as in condition (1.5). Let σQ = ιQ/M2
ω > 0. As

for Corollary 6.7, the next result follows directly from Lemma 7.6, inequalities (6.7)
and (6.8).

Corollary 7.7. In Algorithm 1 for cost function (1.3), if the iterates remain
bounded, i.e., the condition (1.5) is satisfied, then

g(Xk−1) − g(Xk) ≥ σQ‖ grad g(Xk−1)‖‖Xk −Xk−1‖,

whenever the elementary function hk = h
(Q)
k .

7.3. Inequalities for weak convergence. If the condition (1.5) is satisfied, it is

easy to see that there exists a positive constant MΓ > 0 such that ‖Γ(i,j,Xk−1)‖ ≤ MΓ

always holds in Algorithm 1. In this subsection, we first show an inequality, which
will be helpful to establish inequality (3.12).

Lemma 7.8. In Algorithm 1 for cost function (1.3), if the iterates remain bounded,
i.e., the condition (1.5) is satisfied, then there exists κQ > 0 such that

(7.10) ‖Ψ∗
k − I2‖ ≥ κQ‖Λ(Xk−1)‖,

whenever the elementary function hk = h
(Q)
k .

Proof. If vi,j and wi,j satisfy inequality (7.7), then inequality (7.10) can be proved
by a similar method as for [45, Lemma 7.2]. Otherwise, if we set [cosφ∗ sinφ∗]T =
vi,j/‖vi,j‖ and find θ∗ based on φ∗, then

| sin(4θ∗)| =
|Γ12 cosφ∗ + Γ13 sinφ∗|

√

(Γ12 cosφ∗ + Γ13 sinφ∗)2 + 1
4

(

Γ11 − Γ22 cos2 φ∗ − Γ33 sin2 φ∗ − Γ23 sin(2φ∗)
)2

≥
√

Γ2
12 + Γ2

13

2
√

5MΓ

=
‖∂h(Q)

k (I2)‖
8
√

5MΓ

≥ ε

8
√

5MΓ

‖Λ(Xk−1)‖.

Note that

‖Ψ∗
k − I2‖ = 2

√
2

∣

∣

∣

∣

sin(
θ∗
2

)

∣

∣

∣

∣

≥
√

2

4
| sin(4θ∗)|.

We only need to set κQ =
√
2ε

32
√
5MΓ

in this case. The proof is complete.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 21

By Lemma 7.6, Lemma 7.8, inequalities (6.7) and (6.8), we can now easily get
the following result by setting ηQ = (κQιQ)/M2

ω.

Corollary 7.9. In Algorithm 1 for cost function (1.3), if the iterates remain
bounded, i.e., the condition (1.5) is satisfied, then

g(Xk−1) − g(Xk) ≥ ηQ‖ gradg(Xk−1)‖2,

whenever the elementary function hk = h
(Q)
k .

8. Convergence analysis. In this section, based on the inequalities derived in
Sections 6 and 7, we will prove our main results about the global and weak convergence
of the BCD-G and Jacobi-G algorithms formulated in Subsection 2.1.

8.1. Convergence analysis of BCD-G algorithms. We now prove the fol-
lowing results about the global and weak convergence of BCD-G algorithms.

Theorem 8.1. In BCD-GLU, BCD-GQU and BCD-GU algorithms for cost func-
tion (1.3), if the iterates remain bounded, i.e., the condition (1.5) is satisfied, then
the iterates {ωk}k≥1 converge to a point ω∗.

Proof. We first prove the case of BCD-GLU algorithm. By Corollaries 6.7 and 6.9,
we see that

(8.1) g(Xk−1) − g(Xk) ≥ min(σD, σLU)‖ grad g(Xk−1)‖‖Xk −Xk−1‖,

whenever the elementary function hk = h
(D)
k , h

(U)
k or h

(L)
k . By the above inequality

(8.1) and Lemma 4.3, we have that

(8.2) f(ωk−1) − f(ωk) ≥ min(σD, σLU , σp)‖ gradftk(ωk−1)‖‖ωk − ωk−1‖

always holds in BCD-GLU algorithm, which is the inequality (3.11) in Lemma 3.4, if
we set σ = min(σD, σLU , σp). Therefore, if ω∗ is an accumulation point of the iterates
{ωk}k≥1 produced by BCD-GLU algorithms, it is the limit point. Note that the
iterates {ωk}k≥1 remain bounded by condition (1.5). There exists an accumulation
point ω∗ such that the iterates {ωk}k≥1 converge to ω∗. For other two cases of
BCD-GQU and BCD-GU algorithms, by Lemma 4.3, Corollary 6.7, Corollary 6.9 and
Corollary 7.7, we can similarly prove that the inequality (3.11) is always satisfied,
if we set σ = min(σD, σLU , σQ, σp) and min(σD, σLU , σp), respectively. The proof is
complete.

To help the readers better understand the proof of Theorem 8.1, we now summa-
rize in Figure 1 the proof structure of Theorem 8.1 for BCD-GLU algorithm. Other
two cases of BCD-GQU and BCD-GU algorithms are similar.

Theorem 8.2. In BCD-GLU, BCD-GQU and BCD-GU algorithms for cost func-
tion (1.3), if the iterates remain bounded, i.e., the condition (1.5) is satisfied, and ω∗
is an accumulation point of the iterates {ωk}k≥1, then ω∗ is a stationary point of the
cost function (1.3).

Proof. We first prove the case of BCD-GLU algorithm. By Corollary 6.11, we see
that

(8.3) g(Xk−1) − g(Xk) ≥ min(ηD, ηLU)‖ grad g(Xk−1)‖2,

22 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

Corollary 6.9

Lemma 6.6

Inequality (8.1) Inequality (8.2) Theorem 8.1

Lemma 4.3

Lemma 3.4

Theorem 3.3 Inequality (2.3)

Lemma 6.8

Corollary 6.7

Fig. 1. Proof structure of Theorem 8.1 for BCD-GLU algorithm.

whenever the elementary function hk = h
(D)
k , h

(U)
k or h

(L)
k . By the above inequality

(8.3) and Lemma 4.4, we have that

(8.4) f(ωk−1) − f(ωk) ≥ min(ηD, ηLU , ηp)‖ gradftk(ωk−1)‖2

always holds in BCD-GLU algorithm, which is the inequality (3.12) in Lemma 3.5,
if we set η = min(ηD, ηLU , ηp). Therefore, if ω∗ is an accumulation point of the
iterates {ωk}k≥1 produced by BCD-GLU algorithm, then ω∗ is a stationary point.
For other two cases of BCD-GQU and BCD-GU algorithms, by Corollary 6.11 and
Corollary 7.9, we can similarly prove that the inequality (3.12) is always satisfied,
if we set η = min(ηD, ηLU , ηQ, ηp) and min(ηD, ηLU , ηp), respectively. The proof is
complete.

To help the readers better understand the proof of Theorem 8.2, we now summa-
rize in Figure 2 the proof structure of Theorem 8.2 for BCD-GLU algorithm. Other
two cases of BCD-GQU and BCD-GU algorithms are similar.

Lemma 6.8 Inequality (8.3) Inequality (8.4) Theorem 8.2

Lemma 3.5Corollary 6.11

Lemma 6.10Lemma 6.6

Lemma 4.4

Inequality (2.3)

Fig. 2. Proof structure of Theorem 8.2 for BCD-GLU algorithm.

8.2. Convergence analysis of Jacobi-G algorithms. Similar as in Subsec-
tion 8.1, we have the following results about the global and weak convergence of
Jacobi-G algorithms. We omit the detailed proofs here.

Theorem 8.3. In Jacobi-GLU and Jacobi-GQU algorithms for cost function (1.4),
if the iterates remain bounded, i.e., the condition (1.6) is satisfied, then the iterates
{Xk}k≥1 converge to a point X∗.

Theorem 8.4. In Jacobi-GLU and Jacobi-GQU algorithms for cost function (1.4),
if the iterates remain bounded, i.e., the condition (1.6) is satisfied, and X∗ is an ac-
cumulation point of the iterates {Xk}k≥1, then X∗ is a stationary point of the cost
function (1.4).

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 23

Remark 8.5. We propose two natural variants of Jacobi-GLU and Jacobi-GQU
algorithms, which will be called Jacobi-GLU-M and Jacobi-GQU-M algorithms, re-
spectively. In these two algorithms, in each iteration, among all the index pairs (ik, jk)
and elementary functions hk satisfying inequality (5.3), we choose (ik, jk) and hk such
that the cost function obtains the largest reduction. It is clear that Theorems 8.3
and 8.4 also apply to these two new variants.

Remark 8.6. In Jacobi-GLU and Jacobi-GQU algorithms, a more natural way of
choosing the index pair (ik, jk) is according to a cyclic ordering. In fact, this cyclic
way has often been used in the literature [36, 42, 46]. In this case, we call them the
Jacobi-CLU and Jacobi-CQU algorithms, respectively.

9. Numerical experiments. In the BCD-G and Jacobi-G algorithms of this
paper, there exist several parameters to be adjusted, including the positive constant
υ in inequality (2.3), the stepsize tk−1 in equation (4.6), the positive constant ε in
inequality (5.3), ςD > 0 in Update rule 6.5, and ςQ > 0 in Update rule 7.3. In this
section, we choose different values for the positive constant ε in inequality (5.3), while
fixing other parameters as small positive constants. We set (·)� = (·)H in both the
cost functions (1.3) and (1.4). All the algorithms run at most 1000 iterations. All the
randomly generated complex matrices are uniformly distributed. All the computations
are done using MATLAB R2019a. The numerical experiments are conducted on a PC
with an Intel CoreTM i5 CPU at 2.11 GHz and 8.00 GB of RAM in 64bt Windows
operation system.

Example 9.1. For the following sets of complex matrices, we run BCD-GLU and
BCD-GQU algorithms to minimize the cost function (1.3). The values of cost function
(1.3) in the iterations are shown in Figure 3. The positive constant υ in inequality
(2.3) is fixed to 0.001. For the positive constant ε in inequality (5.3), we choose
different values. For example, BCD-GLU 0.5 means the BCD-GLU algorithm with

ε = 0.5
√

2
3m(m−1) . If ε = 0, we denote the BCD-GLU and BCD-GQU algorithms by

BCD-CLU and BCD-CQU, respectively. The starting point is ω0 = (In×m, Im).
(i) We set n = 5, m = 3, and randomly generate complex matrices {Aℓ}1≤ℓ≤3 ⊆ C5×5.
(ii) We set n = 10, m = 8, randomly generate a complex matrix X ∈ C10×10, and set

A(ℓ) = XH(I10 + eTℓ eℓ)X for 1 ≤ ℓ ≤ 5.
(iii) We set n = 10, m = 8, randomly generate a complex upper triangular matrix

X ∈ UT10(C), complex diagonal matrices {Dℓ}1≤ℓ≤5 ⊆ C10×10, and set A(ℓ) =

XHDℓX for 1 ≤ ℓ ≤ 5.
(iv) We set n = 10, m = 8, randomly generate a complex nonsingular matrix X ∈
SL10(C), complex diagonal matrices {Dℓ}1≤ℓ≤5 ⊆ C10×10, and set A(ℓ) = XHDℓX

for 1 ≤ ℓ ≤ 5.

Example 9.2. For the following sets of complex matrices, we run eight Jacobi-
type algorithms to minimize the cost function (1.4). Here, we denote by Jacobi-GQ
the gradient-based Jacobi-type algorithm on the unitary group proposed in [45], and
by Jacobi-CQ the Jacobi-type algorithm on the unitary group with a cyclic ordering.
Note that Jacobi-GQ and Jacobi-CQ find the iterates only in Um(C), not in SLm(C).
The values of cost function (1.4) in the iterations are shown in Figure 4. We choose
the starting point X0 = Im.
(i) We randomly generate two complex matrices {Aℓ}1≤ℓ≤2 ⊆ C5×5.

(ii) We randomly generate a complex matrix X ∈ C10×10, and set A(ℓ) = XH(I10 +
eTℓ eℓ)X for 1 ≤ ℓ ≤ 10.

24 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

5 10 15 20 25 30 35 40 45 50
Iterations

100

101

C
os

t f
un

ct
io

n
va

lu
e

GLU 0.5
GLU 0.2
CLU
GQU 0.5
GQU 0.2
CQU

(i)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

100

101

102

C
os

t f
un

ct
io

n
va

lu
e

GLU 0.5
GLU 0.2
CLU
GQU 0.5
GQU 0.2
CQU

(ii)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

C
os

t f
un

ct
io

n
va

lu
e

GLU 0.5
GLU 0.2
CLU
GQU 0.5
GQU 0.2
CQU

(iii)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

100

101

102

103

104

105

106

107

108

109

C
os

t f
un

ct
io

n
va

lu
e

GLU 0.5
GLU 0.2
CLU
GQU 0.5
GQU 0.2
CQU

(iv)

Fig. 3. Experimental results for BCD-G algorithms in Example 9.1.

0 50 100 150 200 250 300 350 400 450 500
Iterations

100

101

C
os

t f
un

ct
io

n
va

lu
e

GLU-M 0.5
GLU 0.5
CLU
GQU-M 0.5
GQU 0.5
CQU
GQ 0.5
CQ

(i)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

100

101

102

103

104

105

C
os

t f
un

ct
io

n
va

lu
e

GLU-M 0.5
GLU 0.5
CLU
GQU-M 0.5
GQU 0.5
CQU
GQ 0.5
CQ

(ii)

Fig. 4. Experimental results for Jacobi-type algorithms in Example 9.2.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 25

From the above numerical experiments, we can see that: (i) in Example 9.1, com-
pared with BCD-GLU algorithms, the BCD-GQU algorithms generally have better
performances; (ii) in Example 9.2, compared with Jacobi-GQU algorithms, the Jacobi-
GLU algorithms generally have better performances; (iii) in Example 9.2, compared
with the Jacobi-GQ and Jacobi-CQ algorithms on Um(C), the Jacobi-type algorithms
on SLm(C) considered in this paper always obtain much smaller cost function values,
and they also need more iterations to attain steady state values of cost functions.

10. Conclusions. In this paper, to solve JADM problem (1.1), which is impor-
tant in BSS problem, we formulate two different equivalent formulations, i.e., prob-
lem (1.3) defined on St(m,n,C) × SLm(C), and problem (1.4) defined on SLm(C).
Then, for these two approaches, based on the Riemannian gradients, we propose three
BCD-G algorithms and two Jacobi-G algorithms, and establish their global and weak
convergence, under the condition that the iterates are bounded. An interesting ques-
tion is, in the BCD-G and Jacobi-G algorithms, whether one can find a method to
guarantee both the boundedness of the iterates and the inequalities (3.11) and (3.12)
for global and weak convergence. If so, then one can get rid of the dependence of
convergence results on the condition that the iterates are bounded.

Appendix A. Proofs in Section 5. Before the proof of Lemma 5.1, we need
to show a lemma, which is similar as equation (3.9) and can be directly obtained from
[3, Eq. (3.31)].

Lemma A.1. Let exp : C2×2 → GL2(C) be the matrix exponential function [3, 8,
20] sending ∆ to exp(∆).
(i) If h : SU2(C) → R is a differentiable function and ∆ ∈ su2(C) = TI2

SU2(C), we
have that

(A.1) 〈∆, gradh(I2)〉I2
=

(

d

dt
h(exp(t∆))

)∣

∣

∣

∣

t=0

.

(ii) If h : SUT2(C) → R is a differentiable function and ∆ ∈ sut2(C) = TI2
SUT2(C),

we have the relationship (A.1).
(iii) If h : SLT2(C) → R is a differentiable function and ∆ ∈ slt2(C) = TI2

SLT2(C),
we have the relationship (A.1).
(iv) If h : D2(C) → R is a differentiable function and ∆ ∈ d2(C) = TI2

D2(C), we
have the relationship (A.1).

Proof of Lemma 5.1. Define a projection operator Pi,j : Cm×m → C2×2 extract-
ing a submatrix of X ∈ Cm×m as in [45, Eq. (3.7)], and PT

i,j : C2×2 → Cm×m

the conjugate operator. For the elementary function h
(Q)
(i,j),X defined in (5.1), if

∆ ∈ su2(C) = TI2
SU2(C), we have that

〈∆, gradh
(Q)
(i,j),X(I2)〉I2

=

(

d

dt
h
(Q)
(i,j),X(exp(t∆))

)∣

∣

∣

∣

t=0

(by Lemma A.1(i))

=

(

d

dt
g(XQ(i,j,exp(t∆)))

)∣

∣

∣

∣

t=0

=

(

d

dt
g(Exp

X
(XPT

i,j(∆)t))

)∣

∣

∣

∣

t=0

= 〈XPT

i,j(∆), grad g(X)〉X (by equation (3.9)) = 〈∆,Pi,j(Λ)〉I2
,

where Exp
X

is the map defined in (3.8). Note that ∆ ∈ su2(C) and gradh
(Q)
(i,j),X(I2) ∈

su2(C). The result can be obtained by direct calculations. For other three elementary

functions h
(U)
(i,j),X , h

(L)
(i,j),X and h

(D)
(i,j),X , similar as the above case, we can obtain the

26 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

results by Lemma A.1(ii), Lemma A.1(iii) and Lemma A.1(iv), respectively. The
proof is complete.

We need a simple lemma before the proofs of Proposition 5.3 and Proposition 5.4.

Lemma A.2. (i) If z1, z2 ∈ C, then

|z1 − z2|2 + |z2|2 ≥ 3 −
√

5

2
(|z1|2 + |z2|2).

(ii) If {zi}1≤i≤m ⊆ C satisfy
∑

1≤i≤m zi = 0, then

∑

1≤i<j≤m

|zi − zj |2 = m
∑

1≤i≤m

|zi|2.

Proof of Proposition 5.3. (i) We first prove the existence of such an index pair
(ik, jk) and an elementary function hk in Subalgorithm 1a. By Lemma 5.2, Lemma A.2
and Λ = Λ(Xk−1) ∈ slm(C), we have that

∑

1≤ik<jk≤m

(

‖∂h(U)
k (I2)‖2 + ‖∂h(L)

k (I2)‖2 + ‖∂h(D)
k (I2)‖2

)

=
∑

1≤ik<jk≤m

(

|Λikjk |2 + |Λjkik |2
)

+ m
∑

1≤ik≤m

|Λikik |2 ≥ ‖Λ‖2.

Therefore, there exist an index pair (ik, jk) and an elementary function hk = h
(U)
k , h

(L)
k

or h
(D)
k such that 3

2m(m− 1)‖∂hk(I2)‖2 ≥ ‖Λ‖2.
(ii) We now prove the existence in Subalgorithm 1b. Similar as above, we get that

∑

1≤ik<jk≤m

(

‖∂h(Q)
k (I2)‖2 + ‖∂h(U)

k (I2)‖2 + ‖∂h(D)
k (I2)‖2

)

=
∑

1≤ik<jk≤m

(

|Λ∗
ikjk − Λjkik |2 + |Λikjk |2 + |Λikik − Λjkjk |2

)

≥ 3 −
√

5

2

∑

1≤ik<jk≤m

(

|Λikjk |2 + |Λjkik |2
)

+ m
∑

1≤ik≤m

|Λikik |2 ≥ 3 −
√

5

2
‖Λ‖2.

Therefore, there exists an index pair (ik, jk) and an elementary function hk = h
(Q)
k , h

(U)
k

or h
(D)
k such that 3

3−
√
5
m(m− 1)‖∂hk(I2)‖2 ≥ ‖Λ‖2. The proof is complete.

Proof of Proposition 5.4. Note that the starting point X0 ∈ EUTm(C) in Subal-
gorithm 1c. We see that Xk ∈ EUTm(C) for all k ∈ N. By Lemma 5.2, Lemma A.2
and Λ = Λ(Xk−1) ∈ eutm(C), we get that

∑

1≤ik<jk≤m

(

‖∂h
(U)
k (I2)‖

2 + ‖∂h
(D)
k (I2)‖

2
)

=
∑

1≤ik<jk≤m

(

|Λikjk |2 + |Λikik − Λjkjk |2
)

=
∑

1≤ik<jk≤m

|Λikjk |
2 +m

∑

1≤ik≤m

|Λikik |
2 ≥ ‖Λ‖2.

Therefore, there exist an index pair (ik, jk) and an elementary function hk = h
(U)
k or

h
(D)
k such that m(m− 1)‖∂hk(I2)‖2 ≥ ‖Λ‖2. The proof is complete.

Appendix B. Proofs in Section 6.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 27

Proof of Lemma 6.6. We now prove the inequality (6.6) by Lemma 6.2(iii) in
three different cases shown in Update rule 6.5.

• If γ1 = γ2 = 0, it is clear that the inequality (6.6) is satisfied for any ιD > 0.

• If ̟ ∈ [0, ςD), we get that

h
(D)
k (1, 0) − h

(D)
k (x∗

k, y
∗
k) =

3

4
γ1(1 − 4̟) =

3(1 − 4̟)

8(1 −̟)
|∂h(D)

k (1, 0)|

≥ 3(1 − 4̟)ε

8(1 −̟)
‖Λ(Xk−1)‖ =

3(1 − 4̟)ε

4
√

5(1 −̟)

√
5

2
‖Λ(Xk−1)‖

≥ 3(1 − 4̟)ε

4
√

5(1 −̟)
‖Λ(Xk−1)‖‖Ψ∗

k − I2‖ ≥ 3(1 − 4ςD)ε

4
√

5
‖Λ(Xk−1)‖‖Ψ∗

k − I2‖.

• If ̟ ∈ (1
ςD

,+∞], we similarly get the above inequality.

• If ̟ ∈ [ςD, 1
ςD

], it is easy to verify that

(B.1)
4√
γ1γ2 ≥

4
√
ςD
2

(
√
γ1 +

√
γ2) .

Then, we get that

h
(D)
k (1, 0) − h

(D)
k (x∗

k, y
∗
k) = (

√
γ1 −

√
γ2)

2
=

1

2
|∂h(D)

k (1, 0)|
∣

∣

√
γ1 −

√
γ2
∣

∣

√
γ1 +

√
γ2

≥ ε 4√ςD

4
‖Λ(Xk−1)‖

∣

∣

√
γ1 −

√
γ2
∣

∣

4√γ1γ2
(by equation (B.1))

≥ ε 4
√
ςD

4
‖Λ(Xk−1)‖

∣

∣

4√
γ1 − 4√

γ2
∣

∣

(√
γ1 +

√
γ2
)1/2

4√γ1γ2

≥ ε 4
√
ςD

4
‖Λ(Xk−1)‖|x∗

k − 1|
√

1 +
1

x∗
k
2 ≥ ε 4

√
ςD

4
‖Λ(Xk−1)‖‖Ψ∗

k − I2‖.

Now we set ιD = min(3(1−4ςD)ε

4
√
5

,
ε

4√
ςD
4). The proof is complete.

Proof of Lemma 6.8. We prove that the inequality (6.10) is satisfied in two cases.

• If hk = h
(U)
k , by Lemma 6.2(i), we see that

g(Xk−1) − g(Xk) = h
(U)
k (0, 0) − h

(U)
k (x∗

k, y
∗
k) =

1

α1
(α2

2 + α2
3)

=
1

2
‖∂h(U)

k (0, 0)‖‖(x∗
k, y

∗
k)‖ ≥ ε

2
‖Λ(Xk−1)‖‖Ψ∗

k − I2‖.

• If hk = h
(L)
k , by Lemma 6.2(ii), we see that

g(Xk−1) − g(Xk) = h
(L)
k (0, 0) − h

(L)
k (x∗

k, y
∗
k) =

1

β1
(β2

2 + β2
3)

=
1

2
‖∂h(L)

k (0, 0)‖‖(x∗
k, y

∗
k)‖ ≥ ε

2
‖Λ(Xk−1)‖‖Ψ∗

k − I2‖.

Now we set ιLU = ε
2 . The proof is complete.

28 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

Proof of Lemma 6.10. If hk = h
(U)
k , we have

‖Ψ∗
k − I2‖2 =

α2
2 + α2

3

α2
1

≥ ‖∂h(U)
k (0, 0)‖2
4M2

α

≥ ε2

4M2
α

‖Λ(Xk−1)‖2,

where Mα is a fixed positive constant always satisfying |α1| ≤ Mα. The case hk = h
(L)
k

is similar. Now we prove the hk = h
(D)
k case. If ̟ ∈ [0, ςD), we have that

‖Ψ∗
k − I2‖2 =

5

4
≥ 5

4

1

4(γ2
1 + γ2

2)
‖∂h(D)

k (1, 0)‖2 ≥ 5

4

ε2

4M2
0

‖Λ(Xk−1)‖2.

The case ̟ ∈ (1
ςD

,+∞] is similar. If ̟ ∈ [ςD, 1
ςD

], we have

‖Ψ∗
k − I2‖2 ≥ (1 − x∗

k)2 ≥ γ2
1(1 −̟)2

M2
0M2

̟

=
‖∂h(D)

k (1, 0)‖2
4M2

0M
2
̟

≥ ε2

4M2
0M2

̟

‖Λ(Xk−1)‖2,

where M̟ is a fixed positive constant always satisfying (1 +
√
̟)(1 +

4√
̟) ≤ M̟.

We only need to set κ2 to be the minimum of all the above corresponding positive
constants. The proof is complete.

Acknowledgment. The authors would like to thank the three anonymous re-
viewers and the editor for their helpful suggestions and comments, which significantly
improved the presentation of the article.

REFERENCES

[1] T. E. Abrudan, J. Eriksson, and V. Koivunen, Steepest descent algorithms for optimiza-

tion under unitary matrix constraint, IEEE Transactions on Signal Processing, 56 (2008),
pp. 1134–1147.

[2] P.-A. Absil, R. Mahony, and B. Andrews, Convergence of the iterates of descent methods

for analytic cost functions, SIAM Journal on Optimization, 16 (2005), pp. 531–547.
[3] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds,

Princeton University Press, 2009.
[4] B. Afsari, Gradient flow-based matrix joint diagonalization for independent component analy-

sis, University of Maryland, College Park, 2004. Master’s thesis.
[5] B. Afsari, Simple LU and QR based non-orthogonal matrix joint diagonalization, in Interna-

tional Conference on Independent Component Analysis and Signal Separation, Springer,
2006, pp. 1–7.

[6] B. Afsari, What can make joint diagonalization difficult?, in ICASSP, vol. III, Honolulu, Apr.
2007, pp. 1377–1380.

[7] R. André, X. Luciani, and E. Moreau, A new class of block coordinate algorithms for the

joint eigenvalue decomposition of complex matrices, Signal Processing, 145 (2018), pp. 78–
90.

[8] A. Baker, Matrix groups: An introduction to Lie group theory, Springer Science & Business
Media, 2012.

[9] D. P. Bertsekas, Nonlinear programming, Athena Scientific, second ed., 1999.
[10] F. Bouchard, B. Afsari, J. Malick, and M. Congedo, Approximate joint diagonaliza-

tion with Riemannian optimization on the general linear group, SIAM Journal on Matrix
Analysis and Applications, 41 (2020), pp. 152–170.

[11] D. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE
Proceedings H-Microwaves, Optics and Antennas, 130 (1983), pp. 11–16.

[12] J. Cardoso and A. Souloumiac, Blind beamforming for non-gaussian signals, IEE Proceed-
ings F (Radar and Signal Processing), 6 (1993), pp. 362–370.

[13] J.-F. Cardoso and A. Souloumiac, Jacobi angles for simultaneous diagonalization, SIAM
Journal on Matrix Analysis and Applications, 17 (1996), pp. 161–164.

[14] G. Chabriel, M. Kleinsteuber, E. Moreau, H. Shen, P. Tichavsky, and A. Yeredor,
Joint matrices decompositions and blind source separation: A survey of methods, identifi-

cation, and applications, IEEE Signal Processing Magazine, 31 (2014), pp. 34–43.

GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS 29

[15] B. Chen, S. He, Z. Li, and S. Zhang, Maximum block improvement and polynomial optimiza-

tion, SIAM Journal on Optimization, 22 (2012), pp. 87–107.
[16] P. Comon, Independent Component Analysis, in Higher Order Statistics, J.-L. Lacoume, ed.,

Elsevier, Amsterdam, London, 1992, pp. 29–38.
[17] P. Comon, Independent component analysis, a new concept?, Signal Processing, 36 (1994),

pp. 287–314.
[18] P. Comon and C. Jutten, eds., Handbook of Blind Source Separation, Academic Press, Oxford,

2010.
[19] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, third ed.,

1996.
[20] B. Hall, Lie groups, Lie algebras, and representations: an elementary introduction, vol. 222,

Springer, 2015.
[21] M. Ishteva, P.-A. Absil, and P. Van Dooren, Jacobi algorithm for the best low multilinear

rank approximation of symmetric tensors, SIAM Journal on Matrix Analysis and Appli-
cations, 2 (2013), pp. 651–672.

[22] S. Krantz and H. Parks, A Primer of Real Analytic Functions, Birkhäuser Boston, 2002.
[23] S. G. Krantz, Function theory of several complex variables, vol. 340, American Mathematical

Soc., 2001.
[24] S. law Lojasiewicz, Ensembles semi-analytiques, IHES notes, (1965).
[25] J. Li, K. Usevich, and P. Comon, Globally convergent Jacobi-type algorithms for simultane-

ous orthogonal symmetric tensor diagonalization, SIAM Journal on Matrix Analysis and
Applications, 39 (2018), pp. 1–22.

[26] J. Li, K. Usevich, and P. Comon, On approximate diagonalization of third order symmetric

tensors by orthogonal transformations, Linear Algebra and its Applications, 576 (2019),
pp. 324–351.

[27] J. Li, K. Usevich, and P. Comon, On the convergence of jacobi-type algorithms for inde-

pendent component analysis, in 2020 IEEE 11th Sensor Array and Multichannel Signal
Processing Workshop (SAM), IEEE, 2020, pp. 1–5.

[28] J. Li, K. Usevich, and P. Comon, Jacobi-type algorithm for low rank orthogonal approxima-

tion of symmetric tensors and its convergence analysis, Pacific Journal of Optimization,
17 (2021), pp. 357–379.

[29] J. Li and S. Zhang, Polar decomposition based algorithms on the product of Stiefel manifolds

with applications in tensor approximation, Journal of the Operations Research Society of
China, (2023).

[30] Z. Li, A. Uschmajew, and S. Zhang, On convergence of the maximum block improvement

method, SIAM Journal on Optimization, 25 (2015), pp. 210–233.
[31] S. Lojasiewicz, Sur la géométrie semi- et sous-analytique, Annales de l’institut Fourier, 43

(1993), pp. 1575–1595.
[32] Z.-Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex

differentiable minimization, Journal of Optimization Theory and Applications, 72 (1992),
pp. 7–35.

[33] Z.-Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods:

a general approach, Annals of Operations Research, 46 (1993), pp. 157–178.
[34] J. H. Manton, Modified steepest descent and Newton algorithms for orthogonally constrained

optimisation. part i. the complex Stiefel manifold, in Proceedings of the Sixth International
Symposium on Signal Processing and its Applications, vol. 1, IEEE, 2001, pp. 80–83.

[35] V. Maurandi, C. De Luigi, and E. Moreau, Fast jacobi like algorithms for joint diagonal-

ization of complex symmetric matrices, in 21st European Signal Processing Conference
(EUSIPCO 2013), IEEE, 2013, pp. 1–5.

[36] V. Maurandi and E. Moreau, A decoupled Jacobi-like algorithm for non-unitary joint diago-

nalization of complex-valued matrices, IEEE Signal Processing Letters, 21 (2014), pp. 1453–
1456.

[37] V. Maurandi, E. Moreau, and C. De Luigi, Jacobi like algorithm for non-orthogonal joint

diagonalization of hermitian matrices, in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 6196–6200.

[38] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,
2006.

[39] W. Ring and B. Wirth, Optimization methods on Riemannian manifolds and their application

to shape space, SIAM Journal on Optimization, 22 (2012), pp. 596–627.
[40] H. Sato and T. Iwai, A new, globally convergent Riemannian conjugate gradient method,

Optimization, 64 (2015), pp. 1011–1031.
[41] R. Schneider and A. Uschmajew, Convergence results for projected line-search methods on

30 JIANZE LI, KONSTANTIN USEVICH AND PIERRE COMON

varieties of low-rank matrices via lojasiewicz inequality, SIAM Journal on Optimization,
25 (2015), pp. 622–646.

[42] M. Sørensen, P. Comon, S. Icart, and L. Deneire, Approximate tensor diagonalization by

invertible transforms, in 2009 17th European Signal Processing Conference, Eurasip, 2009,
pp. 500–504.

[43] A. Souloumiac, Nonorthogonal joint diagonalization by combining givens and hyperbolic ro-

tations, IEEE Transactions on Signal Processing, 57 (2009), pp. 2222–2231.
[44] A. Uschmajew, A new convergence proof for the higher-order power method and generaliza-

tions, Pacific Journal of Optimization, 11 (2015), pp. 309–321.
[45] K. Usevich, J. Li, and P. Comon, Approximate matrix and tensor diagonalization by unitary

transformations: convergence of jacobi-type algorithms, SIAM Journal on Optimization,
30 (2020), pp. 2998–3028.

[46] K. Wang, X.-F. Gong, and Q.-H. Lin, Complex non-orthogonal joint diagonalization based

on LU and LQ decompositions, in International Conference on Latent Variable Analysis
and Signal Separation, Springer, 2012, pp. 50–57.

[47] S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3–
34.

[48] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization

with applications to nonnegative tensor factorization and completion, SIAM Journal on
Imaging Sciences, 6 (2013), pp. 1758–1789.

[49] A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application

in blind source separation, IEEE Transactions on Signal Processing, 50 (2002), pp. 1545–
1553.

	1 Introduction
	1.1 Search space and reformulations of the problem
	1.2 Contributions
	1.3 Organization

	2 Gradient-based algorithmic framework and a summary of results
	2.1 BCD-G and Jacobi-G algorithms
	2.2 Matrix decompositions and matrix groups
	2.3 Elementary transformations

	3 Geometries on St(m,n,C) and SLm(C)
	3.1 Notations
	3.2 Riemannian gradient on St(m,n,C)
	3.3 Riemannian gradient on SLm(C)
	3.4 Tangent spaces to other matrix groups
	3.5 Inequalities for convergence analysis

	4 Line search descent method on St(m,n,C)
	4.1 Riemannian gradient
	4.2 Line search descent method

	5 Elementary functions and three subalgorithms
	5.1 Elementary functions and their derivatives
	5.2 Three subalgorithms

	6 Plane triangular and diagonal transformations for JADM problem
	6.1 Riemannian gradient
	6.2 Elementary functions
	6.3 Inequalities for global convergence
	6.4 Inequalities for weak convergence

	7 Givens plane transformations for JADM problem
	7.1 Elementary function
	7.2 Inequalities for global convergence
	7.3 Inequalities for weak convergence

	8 Convergence analysis
	8.1 Convergence analysis of BCD-G algorithms
	8.2 Convergence analysis of Jacobi-G algorithms

	9 Numerical experiments
	10 Conclusions
	Appendix A. Proofs in sec:Jacobigrota
	Appendix B. Proofs in sec:triandiagorotation
	Acknowledgment
	References

