arXiv:2112.05943v2 [math.NA] 14 Dec 2021

A strongly mass conservative method for the coupled
Brinkman-Darcy flow and transport

Lina Zhao* and Shuyu Sunf

December 15, 2021

Abstract

In this paper, a strongly mass conservative and stabilizer free scheme is designed and analyzed
for the coupled Brinkman-Darcy flow and transport. The flow equations are discretized by using
a strongly mass conservative scheme in mixed formulation with a suitable incorporation of the
interface conditions. In particular, the interface conditions can be incorporated into the discrete
formulation naturally without introducing additional variables. Moreover, the proposed scheme
behaves uniformly robust for various values of viscosity. A novel upwinding staggered DG scheme
in mixed form is exploited to solve the transport equation, where the boundary correction terms are
added to improve the stability. A rigorous convergence analysis is carried out for the approximation
of the flow equations. The velocity error is shown to be independent of the pressure and thus
confirms the pressure-robustness. Stability and a priori error estimates are also obtained for the
approximation of the transport equation; moreover, we are able to achieve a sharp stability and
convergence error estimates thanks to the strong mass conservation preserved by our scheme. In
particular, the stability estimate depends only on the true velocity on the inflow boundary rather
than on the approximated velocity. Several numerical experiments are presented to verify the
theoretical findings and demonstrate the performances of the method.

Keywords: discontinuous Galerkin methods; mixed finite element method; Brinkman-Darcy flow;
pressure-robustness; mass conservation; coupled flow and transport.

1 Introduction

Coupling Brinkman and Darcy models describes the interaction of flow and transport phenomena in
two different domains separated by an interface. This model has been used in the hydrology and
biological applications and typical examples include subsurface flow, hydraulic fractures and perfusion
of soft living tissues. A great amount of effort has been devoted to the devising of efficient numerical
schemes for the coupled flow and transport. In [35], primal discontinuous Galerkin methods with
interior penalty are developed to solve the coupled system of flow and reactive transport. In [36], a
mixed finite element element is exploited to approximate the Stokes-Darcy system and a local dis-
continuous Galerkin method is used to discretize the transport equation. In [34], a stabilized mixed
finite element method in conjunction with velocity-pressure-concentration formulation is exploited
to discretize the coupled Stokes-Darcy flow and transport. In [1, 2], a primal mixed finite element
method in conjunction with vorticity-velocity-pressure formulation is used for the discretization of the
Brinkman-Darcy flow and a conforming finite element method is used for the discretization of the non-
linear transport equation. In the works presented in [38, 11], the authors are devoted to the analysis
of partitioned time stepping methods for the conforming discretizations on the two subdomains. In
addition to the aforementioned works, there are also a surge of works that have been dedicated to
the devising and analysis of numerical schemes for the Stokes-Darcy flow and/or transport, see, e.g.,
(23,9, 33, 5, 12, 18, 28, 25, 16, 41].
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There are some typical difficulties in the devising of an efficient and accurate scheme for the coupled
Brinkman-Darcy flow and transport problem considered in this paper. In a nutshell, the Brinkman
equations model both the Stokes problem and the Darcy problem in porous media, and the devising
of a uniformly stable scheme for both the Stokes problem and the Darcy problem is challenging due to
the different inherent natures of these two equations. It becomes even more challenging for the coupled
Brinkman-Darcy flow as one also needs to balance the Brinkman problem and Darcy problem with a
suitable treatment for the interface conditions. The way to enforce the interface conditions also needs
a careful design. Another typical issue posed is the mass conservation, which is of great importance in
the context of transport equation. The devising of a numerical scheme which can overcome the afore-
mentioned difficulties is a challenging task and it hinges on a dedicate balancing of the finite element
spaces used. Classical techniques that have been developed to overcome the difficulties encountered
in the design of uniformly robust schemes for the Brinkman problem include nonconforming methods
with H(div; Q)-conforming velocity [29, 20], H(div;)-conforming discontinuous Galerkin methods
[21, 22] and parameter free H(div; Q2)-conforming HDG methods [15]. A common ingredient shared by
these methods is to relax the tangential continuity of velocity; indeed, a H (div ;Q)-conforming space
is employed to approximate the velocity. An alternative approach is to modify the right hand side of
classical finite element methods by using divergence-free velocity reconstruction operator, and a lot
of works has been developed in this direction, see, for example, [26, 27, 24, 14, 30, 3]. Devising a
uniformly robust scheme for the coupled Brinkman-Darcy flow and meanwhile preserving the global
mass conservation of the method without resorting to additional variables are not easy tasks, and one
must carefully design the approximation spaces so that the interface conditions can be incorporated
into the discrete formulation naturally.

Therefore, the purpose of this paper is to devise and analyze a strongly mass conservative scheme of
arbitrary polynomial orders for the coupled Brinkman-Darcy flow and transport. The Brinkman equa-
tions are discretized by using a carefully designed staggered DG method in conjunction with velocity
gradient-velocity-pressure formulation and the Darcy equations are discretized by using mixed finite
element method, this choice of spaces makes our scheme capable of handling the interface conditions
without resorting to additional variables. More precisely, the interface conditions can be imposed into
the discrete formulation naturally by replacing the Brinkman’s normal velocity by the Darcy’s normal
velocity. It should be noted that the choice of the spaces for the Brinkman equation should be carefully
designed so that the resulting scheme is uniformly robust for various feasible values of viscosity. The
key ingredient is to use a locally H(div ;Q)-conforming space to approximate the Brinkman velocity.
The transport equation is discretized by using an upwinding staggered DG method, where the bound-
ary correction terms are exploited to improve the stability. The proposed scheme possesses many
desirable features, which makes it attractive. First, it is globally mass conservative and the interface
conditions can be imposed without resorting to additional variables. Second, it is uniformly robust
for various feasible values of viscosity. Third, the normal continuity of velocity is satisfied exactly
at the discrete level. Fourth, no penalty term or stabilization term is needed, which is advantageous
over other DG methods since choosing a suitable stabilization parameter could be tricky for certain
situation. A rigorous convergence analysis is carried out for the Brinkman-Darcy flow equations. In
addition, we also analyze the stability and convergence error estimates for the concentration and the
diffusive flux in the transport equation, where the stability estimate depends only on the true velocity
on the inflow boundary rather than on the approximated velocity. The error results from a combi-
nation of the upwinding staggered DG discretization error and the error from the discretization of
the Brinkman-Darcy velocity. The resulting convergence error estimates for the transport equation
are of order O(h**1), where k is the polynomial order used for the discretization. To the best of our
knowledge, our proposed method appears to be the first in the literature, that offers a robust behavior
with respect to viscosity for the coupling of Brinkman-Darcy flow and transport without resorting to
additional variables to enforce the interface conditions.

The rest of the paper is organized as follows. In the next section, we present the model flow-transport
problem. The flow discretization is given in Section 3, and the corresponding convergence error esti-
mates are provided in Section 4. The transport discretization and its error analysis are presented in
Section 5. Several numerical experiments are presented in Section 6. Finally, the conclusions are given
in Section 7.
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2 Model problem

In our model we consider a fluid region Qp C R? in which the flow is governed by the Brinkman
equations (2.1)-(2.3) and a porous medium Qp C R? in which Darcy flow equations (2.4)-(2.5) hold.
These two regions are separated by an interface I', through which exchange of fluid velocities and
pressures occurs; see Figure 1 for an illustration of the computational domain. The flow model reads
as follows:

¢ 'L=Vup inQp, (2.1)
—V-L—l—auB—i—VpB:fB inQB, .
V~uB =0 in QB (23)
and
UD+KDV]9D:fD n QD, (24)
V"U,D :f in QD. (25)

Here € is the effective viscosity constant, the inverse of « is the permeability tensor constant divided by
viscosity and Kp is a symmetric and positive definite permeability tensor divided by viscosity (which
is also called hydraulic conductivity). fp € L*(Q5)?, fp € L?*(2p)? and f € L?(Q2p) are given data.

We assume that 2 has a Lipschitz continuous boundary split into two disjoint sub-boundaries with
positive measure, i.e., 00 = ' UTp, where I'p = 0Qp\I' and T'p = 9Qp\I'. Following [2], we adopt
the following interface conditions:

up-mp=ug-ng onl, (2.6)

PD = PB onT, (2.7)

where np denotes the unit outward normal vector to 2. Similarly, we use np to represent the unit
outward normal vector to 2p. To close the system, we define the following boundary conditions

ILng=0 onl'pUIl, up-mp=g1 onlp, wup-mp=gs onlp.

In addition, we require fQB pp dx = 0 to ensure the unique solvability.
The Brinkman-Darcy flow system is coupled with the transport equation in Q = Qg U Qp

dci + V- (cu—KVe)=g¢s+efT —cf™ V(zt) € Qx(0,T), (2.8)

where T is the final simulation time, c¢(x,t) is the concentration of a certain chemical component of
interest, 0 < ¢, < ¢(x) < ¢* is the porosity of the medium in Qp (it is set to 1 in Qp), K(x,t)
is the diffusion-dispersion tensor assumed to be symmetric and positive definite with smallest and
largest eigenvalues Kpin and Kpax, respectively, s(z,t) is a source term, and wu is the velocity field
defined by u|q, = u;,i = B, D. ¢ in the source term is the injected concentration. In addition, we let
fT=max{f,0} and f~ = max{—f,0}, it follows f = fT — f~. We remark that f is only defined for
Qp and we can simply take f =0 in Qp. In general, the diffusion-dispersion tensor can be a function
of the Darcy velocity; for simplicity of discussion in this paper, we assume that the diffusion-dispersion
tensor is a given value. The model is completed by the initial condition

c(x,0) = (x) VzeQ
and the boundary conditions

(cu — KVc)-n = (cpu)-n onliy,
(KVe) - n=0 onToy.

Here, ¢y, is the inflow concentration, Iy, := {2 € 02 : u-n < 0} and Ty := {x € 90 : u-n > 0},
and m is the unit outward normal vector to 9f2.
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Figure 1: The profile of the computational domain.

The following compatibility condition holds

/ 91d3+/ g2 ds = f dx.
I'p I'p Qp

We can infer from Stokes’ theorem that

/ ggds—i—/up-npds: f dx,
'p r Qp

thereby, we have

/uD-nD ds:/ g1 ds. (2.9)
r I's

Before closing this section, we introduce some notation that will be used throughout the paper. Let D C
R% d =1,2. By (-,-)p, we denote the standard scalar product in L?(D) : (p,q)p := [, p ¢ dz. When
D coincides with €2, the subscript 2 will be dropped. We use the same notation for the scalar product
in L*(D)? and in L*(D)?*2. More precisely, (€, w)p := Y., (€', w’) for &, w € L*(D)? and (¢,()p :=
S Z?Zl(¢i=j,§i7j)[) for ¢, € L?(D)**?. The associated norm is denoted by || - [lo,p. Given an
integer m > 0 and n > 1, W™™(D) and W3"" (D) denote the usual Sobolev space provided the norm
and semi-norm [[vllwmn0) = {Xjem D o)} [olwmon(p) = (X jp1mm 1D 0l En ()} /" 1
n = 2 we usually write H™(D) = W™2(D) and H§*(D) = WJ*(D), vl zm(py = lv][wm.2(py and
|v|frm (D) = [v|lwm.2(p). In the sequel, we use C' to represent a generic positive constant independent

of the mesh size which may have different values at different occurrences.
For O C R?, we define

H(div;0) := {v € L*(0)? : V-v € L*(0)}

whose norm is given by

[N

lollavo = (00 + IV -l o)
In addition, we define the subspace Hy r(div; O) by
Hor(div;O) :={v € H(div;O);v-n=0o0nT}.
For 0 < s < oo, we let
Hé(div; 0) := {v € L*(0)* |V -v € H*(0)}.

The following space is also defined for later use
L3(0) = {0 € L2(0): [ qdz =0}
o

and for w C R, we define

H&,w(Qi) ={qe Hl(Qi);q =0onw}.
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3 The new scheme for Brinkman-Darcy flow

In this section, we will derive the discrete formulation for the coupled Brinkman-Darcy flow. The
proposed method should be uniformly robust with respect to viscosity and stabilizer free. The key
idea lies in a delicate balancing of the finite element spaces involved.

First, we introduce the meshes and the spaces exploited in the definition of the new scheme. To
simplify the presentation, we employ the same types of meshes for Qp and Qp. Following [40, 43],
we first let T, (i = B, D) be the initial partition of the domain 2; into non-overlapping triangular
or quadrilateral meshes. We require that 7,,; be aligned with I'. We let 7, ; be the set of all edges
excluding the interface edges in the initial partion 7, ; and fgm- C Fpr,i be the subset of all interior
edges of ;. In addition, we use Fj, r to represent the set of edges lying on the interface I'. For each
primal element E in the initial partition 7, ;, we select an interior point v and create new edges by
connecting v to all the vertices of the primal element. For simplicity, we select v as the center point.
This process will divide E into the union of subtriangles, where the subtriangle is denoted as 7, and we
rename the union of these triangles by S(v). We remark that S(v) is the triangular or rectangular mesh
in the initial partition. Moreover, we will use Fy; ; to denote the set of all the new edges generated by
this subdivision process and use 7},; to denote the resulting quasi-uniform triangulation, on which our
basis functions are defined. Here the triangulation 7y ; satisfies standard mesh regularity assumption
(cf. [7]) and we define T, = T5.5 U Tp.p. In addition, we let F; := Fpr i U Fargy FP = 'Fgr,i U Faiis
Fpr = Fpr,B UFpr.p UFpL 1, ]-'ST = ]-'ST)B U ]-'ST)D UFpnr and Fg := Fq,8 U Fai,p. For each triangle
T € Th.i, we let h, be the diameter of 7 and h; = max{h,,7 € T ;}, and we define h = max{hp,hp}.
Also, we let he denote the length of edge e € F;. This construction is illustrated in Figure 2, where
the black solid lines are edges in Fp,; and the red dotted lines are edges in Fy; ;. For each interior
edge e € fz?r,iv we use D(e) to denote the union of the two triangles in 7, ; sharing the edge e, and
for each boundary edge e € (Fp,; U }'hﬁp)\}"gm, we use D(e) to denote the triangle in 73 ; having the
edge e, see Figure 2.

For each edge e, we define a unit normal vector n. as follows: If e € F; \]:ZQ , then n. is the unit
normal vector of e pointing towards the outside of ;. If e € F?, an interior edge, we then fix n. as
one of the two possible unit normal vectors on e. When there is no ambiguity, we use n instead of
n. to simplify the notation. For k > 1, 7 € T, and e € Fy,, we define P*(7) and P*(e) as the spaces
of polynomials of degree up to order k£ on 7 and e, respectively. For a scalar or vector function v

belonging to the broken Sobolev space, its jump and average on e € F; are defined as

v v
[v], :=v1 —ve, {o},:= %,

where v; = v,,7 = 1,2 and 71, 72 are the two triangles in 7, ; having the edge e. For the boundary
edges, i.e., edges belong to I' U 9Q, we simply define [v], = vy and {v}, = vi. We can omit the
subscript e when it is clear which edge we are referring to. In the following, we use V} and div, to
represent the element-wise defined gradient and divergence operators.

Now we are ready to define the finite element spaces that will be used for the numerical approxima-
tion. First, the locally H (div; Qp)-conforming space for the approximation of up is defined by

HP :={v : v|, € P*(1)>,V1 € Thp;[v-n], =0,Ve € Fu p}.
The finite dimensional space used for the approximation of L is defined by

WP :={G : G|, € P*(1)**?,V1 € Ty, 5; [Gn], = 0,Ve € For B
[(Gn)-t], =0,Ye € Fg,3;Gn =0 on dQp}.

The locally H!(Qp)-conforming space for the approximation of pp is defined by
QF =14 : qlr € PX(r),¥1 € Thpi [dl. = 0,Ye € 7, 5}

and

Qh ={q : qGQf;/ q dz = 0}.

Qp
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e)‘

Figure 2: Schematics of the meshes. Primal meshes (left), dual meshes and simplicial meshes (right).
The solid lines represent the primal edges and the dashed lines represent the dual edges.

For later analysis, we define the following mesh dependent semi-norm for any gg € Qf andvg € H ,]f

lasli:= > h'llasllse+ D IVasls -

ecFa,B TE€Th,B
losllz:= > IVoslle,+ >, b wsllge+ Y. h'll(ws-t)] 5.
T€Th,B e€FP,. gUFnr e€EFal,B

Note that |lgz||, is a norm on QY.
Following [6], we specify the degrees of freedom for QF as follows:

(SD1) For e € Fpr g U Fp.r, we have
¢e(q) == (¢,pr)e i € P¥(e). (3.1)
(SD2) For each 7 € Tp, g, we define
¢r(@) = (¢, pe—1)r  Vpr—1 € P*7H(7). (3.2)

We employ mixed finite element method for the Darcy region. To this end, we define the finite
element subspace H ,? for the approximation of up by

HP = {v € H(div;Qp) : v|, € P*(1)%, V1 € Th.p},

where we can take the Brezzi-Douglas-Marini (BDM) space (cf. [4]).
The finite element subspace for pp is given by the piecewise polynomials of degree k — 1, that is,

QE ={qe L*(Qp) : q|, € Pkil(T),VT €Thp}-

In addition, let IIj, 1,,4 = B, D be the piecewise L2-projection onto P*(e) for all e belonging to T';
such that for all ¢ € L*(T;)

(’Q/J - Hh,FiQ/JuX)e =0 VX S Pk(e),e S 1—‘1
and define
H£g2 ={veH,v-n=Ir,920onTp}.

Now we are ready to derive the discrete formulation. Multiplying (2.1) by a test function G € WP
and performing integration by parts yield

(e 'L,Gg)a, = (Vup,GB)a,
- ¥ ((GBn, (up -n)n + (up -t)t)af—(divGB,uB)T)

767-}1,3

Z (IGsn], (up -n)n). — (div LGB, uB)ag,

66]‘—41,3
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where we use the decomposition u = (u-n)n+ (u-t)t and the facts that [(Gpn)-t] |.=0,Ve € Fa B,
[Gpn] |.=0,Ve € ]:;?r,B and Ggng = 0 on 90p.
Multiplying (2.2) by a test function vg € HP and performing integration by parts lead to

— (divL,vB)a, + (cup,vB)o, + (VpB,vB)ag

=— Y (@n,[vp)e— D ((Im)-t,[vs-t])e + (L, Vive)a,
e€F), B e€Fa1,B
+ (aup,vp)a, + Z (lve-n].pB)e + Z (vB -m,pp)e — (PB,divrVE)as = (FB,VB)as-
86.7:17»,‘,3 86.7:}11{‘

Multiplying (2.3) by a test function ¢g € QY and performing integration by parts yield

(V- up,qs)os = (up - np,qp)ry; + Z (up -mp,qB)e + Z (up - n,[g8])e — (uB, Vigs)as
e€EFh T e€Fq1,B

= (91,4B)rs — Z (up -np,qp)e + Z (up - n,[gs])e — (uB, Vrap)as =0,

ee}‘h,l‘ EEJ:dl,B

where we use the interface condition up -ng = up - np (cf. (2.6)) in the second equality.
Multiplying (2.4) by a test function vp € H, /30 and performing integration by parts, we can obtain

(Kp'up,vp)ap + (Vpp,vp)a, = (Kp'up,vp)a, + Z (vp -m,pp)e — (pp,divop)a,
e€Fnr

= (Kp'up,vp)a, + Y (vp mp,ps)e — (pp,divup)a,
86.7:}11{‘

= (.fDa'UD)va

where we use pg = pp (cf. (2.7)) in the second equality.
Based on the above derivations, we define the following bilinear forms for brevity

Bi(upn,Gp)= Y ([Gsn], (upn-n)n). — (diviGp, upn)op,

66]‘—41,3
By(Ln,vp) =~ Y (Lan,[vsl)e— Y ((Lan)-t,[vs - t])e + (Ln, Vavs)as,,
eG]-'ST,B e€Fal,B
bi(pemve)= > (lvs-nl.psr)et >, (VB m.pBR)e — (PB4 AV AVE)O,,
e€EFpr,B eEFh,r
bn(upn, qs)=— Y (upn-n,[g8])e + (wpn Vias)as,
ecFa,B

An(vp,ppn) = (PD,h, V- UD)ap,

In(pe.nvp) = > (VD ND,PB.#)e.
GE]“h,,F

We are ready to propose the following discrete formulation for the coupled Brinkman-Darcy system
(2.1)-(2.7): Find (Lp,up n,pB,10) € VV,{3 X H,]f x Q%) and (up,p,pp,n) € H,’I:?g2 X Q? such that

(e 'Ly, Gg)a, — Bi(upn, Gg) + (Kp'up n,vp)as

+1n(pB,h,vD) — An(vp,pD,0) = (fD,YD)0p, (3.3)
Bp(Lp,vB) + (aup,n,vB)ay + by (P8, v8) + An(uph,qp) = (fB,vB)as + (f,qp)an, (3.4)
—In(gs,up,n) —bn(usn,q8) = —(91,4B)r5 (3.5)

for all (Gg,vp,qs) € WP x HE x Q) and (vp,qp) € H}?O x QP. Hereafter, uy, is the velocity field
defined by wplq, = wipn,i = B, D.
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We introduce some properties that will be used later. First, integration by parts implies the following
adjoint properties

Bh(GB,vB)ZB;(UB,GB) V(GB,’UB) EW}? XHhB, (36)
bu(vp,qp) = by (ap,v8)  Y(vp,qp) € Hy x Q.
Following [6], we have the following inf-sup condition

bn(vB,qB)
0,05

llgalln < Cint sup Vg € QY. (3.8)

’UBGHB B
g lval

Next, we introduce some interpolation operators that will be useful for the convergence analysis.
We define the projection operator IIBPM : H(div; Qp) N LP(Qp) — HP,p > 2 by following [4]
(v —TIBPMy) . pr)e =0 Vpg € P¥(e) and each edge e C 97,7 € Th.p,
(v— IBPMy, Vpk-1)r =0 Vpr_1 € Pkil(T),T € Th.p,
(v —IBPMy curlb), =0 Vb€ B* (1), 7 € Th.p,
where B¥*1(7) = {p € P*1(7); p o= 0} = A A2 A3 P¥=2(7). Here \;, i = 1,2,3 are the barycentric

coordinates of .
It satisfies the following commutative properties

V. -mEPM = p, v

where P, is the L2-orthogonal projection onto Q. The following convergence error estimates hold
(see, e.g., [4, 10])

[v = TIPPMollg 0, < CR**H0[lks1,0, Yo € B (Qp)?, (3.9)
IV - (v = IP"Mo)[fo.0,, < CR¥||V - 0|k0, Vo € H*(div; Qp), (3.10)
lg = Prdlloor < CH* M dllkir0, Vg € HH(Qp). (3.11)

In addition, we define a projection operator IIj, for W2 following [39], which satisfies
B,(I,L — L,v)=0 Yvec HP (3.12)
and the following interpolation error estimate holds
IL =TI Llo.0p < Ch* ™ Liki1.0,. (3.13)

To facilitate later analysis, we also define the following two projection operators (cf. [42]). Let
I, : H'(Q5) = QF be defined by

_ k
—4H%)e — ) pr, I
(Ihq q(b) 0 VpeP (6) Ve € Fpr U Fhr

3.14
(In—0,6)s =0 Y6 € P*1(r),¥r € Tap 314
and Jy, : L2(Qp)2 N HY?9(Qp)? — HP, § > 0 be defined by
Jw —v)-n,0)e =0 VYo e PEe),Ve e Fu g,
((Jn ) m, ) ¢ © dL,B (3.15)

(Jpv —v,0), =0 V¢ € P*Y(1)2, V7 € Th 5.

It is easy to see that I, and Jj, are well defined polynomial preserving operators. In addition, the
following approximation properties hold for ¢ € H**1(Qp) and v € H**1(Qp)? (cf. [7, 6])

lg = Ingllo.os < CR**glhtr,05, (3.16)
v = Jnvllo.as < CR* ! vlki1.0,- (3.17)
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By the definitions of I}, and Jj, it readily holds
by(pp — Inpp,v) =0 Yo € Hy,
bp(up — Jpup,q) =0 Vq € QE,
Bi(up — Jhup,G) =0 VG e Wp.
Following [39], we have for any v € H'(Qp)?

[Jhvllz < Cllvll1as,
| Jnvl

0,Qp S C”’U”LQB'

(3.18)
(3.19)
(3.20)

(3.21)
(3.22)

To verify the mass conservation of the proposed scheme, we first show that fr Up,-Np ds = fr up -

np ds. Note that
V.-upydr = f dx,
QD QD

which yields

/ uD7h-nDds+/uD,h-nDds:/ f dx.
FD r QD

Hence,

/uD7h-nDds+/uD7h-nDds=/ ggds—l—/up-npds,
T'p r T'p r

/upﬁ-nDds:/uD-nDds.
r r

which implies

(3.23)

We remark that the property (3.23) is crucial for the proof of the mass conservation. For simplicity,

we assume that f is a polynomial function hereafter and belongs to Q.

Lemma 3.1. (strong mass conservation). The interface condition (2.6) is satisfied exactly for the

discrete solution, i.e.,
upp-Mp =upp-np onl.
In addition, up, € H(div;Q), V-upp =0 and V-upp = f. It holds
upp -np=Ilyry,g1 onlp
and
Ve(u—up)=0 inQ.

Proof. First, note that (3.5) holds for any ¢p € QF. Indeed, we have from (2.9) and (3.23)

/uDyh-nDds:/uD~nDds:/ gldS,
r r I's

which implies that (3.5) holds for any gg = ¢, where ¢ is a constant.
From (3.5) and the adjoint property (3.7), we can infer that

- Z (up,h-mD,qB)e — Z ([us,n-n],q8)e — Z (wB,h " MB,qB)e
ee]:h,l" ee]-‘pr,B 66]:)1,1"

+ Y (48 V-upn)r =—(hry01,q8)r, Va5 € QF.

767-}1,3

(3.24)

(3.25)
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We can take ¢p in line with (3.1)-(3.2) such that

(gBsPr)e = —(upn-np —ura01,0k)e Vi € PF(e),e € T,

(gB,pK)e = —([up,p - 1], Pr)e Vpi € P¥(e),e € Fpr5\I's,
(¢B,pK)e = (UBh -nD —upp 1D, PK)e VD € PF(e),e € Fur,
(g8, Pk—1)r = (V- uBh, Pr—1)r Vpr—1 € P*7Y(1), T € Th.B.

(
Then we can infer from (3.25) that

Y lusn-np—upn-noli.+ > Iuss-nlll5.+ > IV-upali,

e€EFn,r eG]-'ST,B T€Th,B
+ > lupn-np —uryalli. =0,
eel'p
which yields
UB MDD =UDh* ND onF,
[[u31h~n]]e =0 VGE}—pﬂB\FB,

V-upp|r=0 VT € Th,B,
ugh N le=Unrzg1 e VeeTls.

Hence, up p, is divergence free in g, the interface condition (2.6) is satisfied exactly and up p-n =
I, rp91 on I'p. Finally, taking gp = V- up,, — f and vp = 0 in (3.4) implies that V- up ) = f.
Thus, (3.24) holds.

O

Remark 3.1. Thanks to the special choice of the finite element spaces, we are able to achieve a
H(div ; Q)-conforming velocity over the whole domain. This choice also benefits the treatment of inter-
face conditions. Indeed, the interface conditions can be imposed exactly without resorting to additional
variables. Importantly, the proposed scheme satisfies the mass conservation exvactly. These desirable
merits make our scheme a good candidate for the simulation of the coupled flow and transport. For the
sake of simplicity, we adopt the interface conditions (2.6)-(2.7), and our scheme can also be extended
to solve the coupling of Brinkman-Darcy flow with Beavers-Joseph-Saffman interface conditions.

Since uy, is the L?-orthogonal projection of w on the boundary, we have from the approximation
properties of II, 1,7 = B, D that

[(w — un) - nflo,00 < CRF|u| k1,00 (3.26)
Theorem 3.1. (unique solvability). There exists a unique solution to (3.3)-(3.5).

Proof. As (3.3)-(3.5) is a square linear system, uniqueness implies existence. Thus, it suffices to show
the uniqueness. To this end, we set fp = fp =0 and f = g1 = 0. Then taking Gp = Ly, vp = up,p,
4B = PB.h, Vp = up, and gp = ppp in (3.3)-(3.5) and summing up the resulting equations, we can
obtain

_1 -1 1
le 2 Lull§ o, + 1K upnllf a, + lo?upnlf o, = 0.

Thus, we can infer that Ly, =0 and up , = up = 0.
On the other hand, we have from (3.4), the inf-sup condition (3.8) and the adjoint property (3.7)
that

b b
IpB.nlln < C sup WOBPB1) _ o gy, BhPBRVB)

et Lidd =0.
vpEHP lvslloos vpEHP lvslloon

Since ||pg,plln defines a norm on @Y, it follows that pg,, = 0.
Finally, we have from the inf-sup condition (cf. [32]) and (3.3) that

=0.

V.
I allony <C sup P2 Y U)o
wper?  |[Dldiv.ap

Hence pp,;, = 0. Therefore, the proof is completed. o
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4 A priori error estimate

In this section, we will prove the convergence error estimates for all the variables measured in proper
norms. In particular, the velocity error is shown to be independent of the pressure variable. To this
end, we first prove the following inf-sup condition, which will play an important role for later analysis.

Lemma 4.1. There exists a positive constant C' independent of the meshsize such that

V .
0.9n < C sup %
veHo r(divi0p)  [Vldiv.op

llq]

for any q € L*(Qp).
Proof. Consider the boundary value problem
Az=gq inQp,

z=0 onlp,
Vz-n=0 onl.

The weak formulation reads: Find z € Hj 1 (€p) such that

(Vz,Vw)a, = —(q,w)a,- (4.1)

The Lax-Milgram lemma implies that (4.1) has a unique solution z € Hj_ (2p). In addition, we
have HZ||27QD < C”Q”QQD'

Let 6 := Vz, we have V- & = ¢ in Qp, in addition 6 - n = 0 on I', which yields & € Ho r(div; Qp).
Then we have

sup (V-6,9)ap lall§ qp
6€Ho,r(diviQ2p) H&Hdiv,ﬂu - H&Hdiv,ﬂp

> Cllgllo.cp-

O

The following error equations can be easily obtained by performing integration by parts on the
discrete formulation (3.3)-(3.5)

(e YL - Ly),Gp)ay — Bi(up —up i, Gg) + (Kp'(up —up ), vn)ap,

+ I(pB — pB,H, VD) — An(vp,pD —PD,K) = 0, (4.2)
Bp(L — Ly, vp) + (a(up —uBn),vB)ag + by (pB — PB.A, VB) + An(up —up h,qp) =0,  (4.3)
—In(gs,up —upp) —bp(up —upp,qp) =0 (4.4

for all (Gp,vg,qp) € WP x HP x Q) and (vp,qp) € H,’ZO x QP.

Lemma 4.2. Let (Lp,upn,pB.n) € W,? X H,]f x Q% and (upn,pp.n) € H,?g2 X Qf be the discrete
solution of (3.3)-(3.5). Then, there exists a positive constant C independent of the mesh size such that

_1
e 2 (I, L — Lp)[lo.0p + K52 (TP Mup —upp)loopn + a2 (Jous — upn)loos
<c(|e L - L) 09 ).

— [IBDM

_ 1 1
0.05 + 1Kp2(IT*PMup —up)lloap + la? (Jyus — up)|

Proof. Taking Gg = lI,G — G, vB = Jyup — uBh, ¢ = InPB — PB.A, UD
qp = Prpp — pp.p in (4.2)-(4.4) and summing up the resulting equations yield

up — uD,h;

(e YL — L), L — Ly)a, + (Kp' (up —up p), T°"Mup —up 1)ap

+(a(up —upn), Jyup —upnlos + Y (°"Mup —upp) -np.pp —pon)e
e€Fnr (45)

- Z ((up —up,n) mp, Inpe —PB.R)e =0,
86.7:}11{‘
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where we employ (3.6), (3.7), (3.12) and (3.18)-(3.20).
We can infer from the definitions of Ij, and IIBPM that

> ((MPPMup —up ) np,ps —pen)e — Y (wp —wups) mp,Inps —pe.p)e = 0.
eE]:h,p ee]:h,l"

Therefore, (4.5) can be rewritten as

(e YL — Ly), T, L — Ly)a, + (Kp' (up —up 1), TP°Mup —up p)a,

+ (a(up —upnh), Jhup —upp)oy =0,

which coupled with Young’s inequality leads to

_ 1
le=2 (L — Ly)|2 o), + 1K p2 (PP Maup —up p)|26, + o (Jous —upn)lia,

_1
< (e ML - L) gy, + 1Kp* PMup —up)E g, + o (Jrus — up)lia, ).

Therefore, the proof is completed.
O

Lemma 4.3. Let (Lp,upn,pB.n) € W,F X H,]f x Q% and (upn,pp,n) € H,?g2 X Qf be the discrete
solution of (3.3)-(3.5). Then, the following convergence estimates hold

IPrpp — po.wlloon < Cllup —upillo.op,

0,93)7

1
| InpB — pB.Rll00s < C(HHhL — Lyllo,an + tdhaxlla® (up — up))|

IV - (up —upn)log, = IV ([T*"Mup —up)|

0,Qp>

where amax 1S the mazimum eigenvalue of «.

Proof. Note that pp , € L3(Qp) and Inpp € L3(Qp) (cf. (3.14)), thereby Inps —pp.n € L3(p), then
it is well known that the following inf-sup condition holds (cf. [19])

V-v, I —
lInps —pB.1ll00s <C  sup v, Inpe — prn)as
veHY (Qp)? [v]l1,05

)

where we can estimate the numerator of the right-hand side by the Cauchy-Schwarz inequality, (3.12),
(3.19) and (4.3)

(V v, Inpg — P )y = Z (v-n, [Inps —pB1])e — Z (v, V(Inps — PB,1))~

e€Fal,B T7€Th,B
= —bn(v, Inpp — pB,8) = —br(Jnv, InpB — PB.1H)
= Bh(HhL — Ly, Jh'v) =+ (a(uB — UB,h)a th)QB

1 1
< O(HHhL — Lillo.agllJnvllz + adax]|a?2 (up — up.p)llo.0p ||th|\o,szB>-

The above estimates coupled with (3.21) and (3.22) lead to

o)

Next, we prove the error estimate for [|Prpp — pp.nllo.q,. We have from Lemma 4.1 that

i 1
I InpB — PB.Rl0.08 < C(HHhL — Lpllo,0p + @hax]|@? (up —upp)|

P - V-
IPrpp — pD.1ll00p < C sup (Prpp — PD.Ay V- V)0
vEHo,r(div;Qp) Hdeiv,QD

A P —
_c sup r(v,Prpp pD,h).
veHo r (divi2p) lvllaiv,0p

(4.6)
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Following [17, Section 4.2], we can infer that there exists a Fortin interpolation operator IT¥" which
satisfies

Ah(’U—HF’U,q):O VQnga

T vldiv0n < Cllvllaivas-
Therefore, we have from (4.2) and (4.6) that

A,(MF v, Prpp — pp.n)

IPrpp — po.wll0,0n < C sup

veHo r(divi2p) lvllaiv.0n
—C  sw (Kp'(up —ups), M"v)ay,
vEH(,r(diviQp) Hdeiv,QD

< CIKp (wp —up.p)losn-
On the other hand, we can deduce from (4.3) that

(V- (I*"Mup —up i), qp)a, =0 Vap € QF,

(MBPMyp —up p) |ap= 0. Therefore, we have

which implies V -
IV (up —upp)loge, = IV - AIPPMup —up)loap,-
O

Combining Lemmas 4.2 and 4.3, and the interpolation error estimates (3.9)-(3.11), (3.13) and (3.16)-
(3.17) leads to the next theorem.

Theorem 4.1. Assume that (L,u) € H*1(Qp)2*% x (H*1(Q)2 N H*(div;Qp)) and (ps,pp) €
HkJrl(QB) X HkJrl(QD). Let (Lh7'UzB,h7pB.,h) € W}? X H}? X Q% and (’U,D_’h,ppﬁh) € H£g2 X QhD be the
discrete solution of (3.3)-(3.5), then the following estimates hold
_1
e (L = Li)llo.cs + 165" (wn = wpn)lo.0n + llo? (wp = wsn) o0
< O (F Ly + lullin).

_1
1o = poallocs < CHH (e L Iksvon + llullers + Ippleien )

_1
lpe — pB.alloas < ChFT ((1 + € 2)||Lllk+1.05 + |k + |\pB||k+1,szB),

0,00 < ChF||V - up

[V (up —upn)l kQp -

Remark 4.1. We can observe from Theorem 4.1 that the convergence error estimate for velocity up
is independent of the pressure variable pg, which demonstrates the pressure-robustness of the proposed
scheme. The study of the pressure-robust schemes for incompressible flow is important from a practical
point of view, see, e.g, [15, 14, 30, 37].

5 Upwinding staggered DG method for transport equation

In this section, we devise a new staggered DG scheme for the transport equation, where the upwinding
fluxes as well as the boundary correction terms are exploited to improve the performance of the scheme.
For this purpose, we first define the spaces that will be used for the approximation of the transport
equation:

Uy := {¢nl- € P*(r),V7 € Ta: [¢n], = 0,Ve € F3,},
Wh = {qh|7' S Pk(T)QaVT € 7717 [[qh : nﬂe = O’ve € ]:dl}'
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For any ¢y, € Uy, we define

HonllZ e = D IVenlZ, + S hs

O,e*
TETH ecFal
Following [13, Lemma 3.1], we have the following trace inequality
pnllo.oe < Clignllin  Yén € Un. (5.1)
We rewrite the transport equation by introducing the diffusive flux
z=—-KVec (5.2)
Then we can recast the transport equation (2.8) into the following first-order system
pci +V-(cu+z)=¢s+eft —cf” inQ, (5.3)
(cu+2z) - n=cpu-n only,,
z-n=0 ongyu. (5.5

Multiplying (5.2) by a test function 1p € W}, and performing integration by parts yield

(K™'z,90) = > (e, V) + > (¢, [] - me)e = 0. (5.6)

TETh ecFpr

Then multiplying (5.3) by a test function ¢ € Uy, and performing integration by parts imply that

@5+ e )= S sz Vo), + 3 [Faluen ds+ 3 [z onclal ds

TE€TH ecFaq e€Fq 57)
+ (u e Q)Fouc = ((bsu Q) - (Cinu ‘N, Q)Fin (Cf 7q)7

where we use the upwinding flux to define ¢, namely

~ ¢ |n ifu-n,>0 (outflow),
C |y ifu-n. <0 (inflow).

Here 7, and 75 are the two triangles sharing the common edge e and n. points from 71 to 7».
Thereby, we can rewrite the second term in (5.7) as

> [Fdunds= 3 [geblaunds+g >[Il lun as

e€Fal e€Fa ee]:dl

Then the discrete formulation for (5.2)-(5.5) reads as follows: Find (zn,¢r) € Wy, x Uy, such that

(K™ 20, %) = Ty (cn, 9) = 0, (5.9)

0
(¢%7 q) + (cnf™5q) + Tn(zn, q) — (wncn, Vq) + Sn(cn, q) + (unch - n, q)r,,

%((“—uh) nen, ry, = (05,9) — (cnw-n,Qr, + (Ef,q)  (5.10)

for any (v, q) € Wi, x Uy. Note that the last two terms on the left-hand side of (5.10) are the boundary
correction terms, which are used to improve the stability estimate. Here, the bilinear forms are defined
by

1
+ (=) - men a)r,., —

Tl ) = Y (e V-4 — 3 (en [9] - ),

TEThH e€Fpr
Th(zn ) = = Y (20, V)r + Y (21, [a])e,
TETH e€Fa

dewd) = Y [Hedladwonds+ s 3 [ fodldlu-n| ds

e€Fq; ee]-'dl
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The initial condition ¢ (-, 0) is defined as cp(+,0) = ¢, where ¢, is the L%-orthogonal projection of .
Integration by parts implies the discrete adjoint property

Th(¥,q) =Ty (q, %) V(,q) € Wi x Up. (5.11)
Let
Aw, (zn,cns ¥, an) = (K 'z, ) — Ty (cn, ¥n) + (fb%, qn) + (enf ™ q) + Th(zn, qn)

— (e, Van) + S(6n,00) + (0t 1,00+ 5 (= ) Bk @)
- %((U — Up) - MCh, GR)Ty, -
Then, it follows from (5.9)-(5.10) that
Aw,, (215 cnstbn, an) = (65, qn) — (w1, 0)ry, + (EF 7 an).- (5.12)

Replacing (zp,cp) by (2,¢) in (5.12), we can infer that the weak solution (z, ¢) satisfies

Au(za C; ¢h7 Qh) = (¢Sv Qh) - (Cinu 'n, qh)rin + (éf"r’ qh)a

where
_ . Oc _
Au(z, ¢, qn) = (K z,901) — Ty (e, ¥n) + (¢§, an) + (¢f " an) + Th(z,qn) — (uc, Vap)
+ Sn(e,qn) + (cu -, qn)r,,, -
Thus
Au(z,60n,qn) — A, (Zhschi Y, qn) =0 Y(¢Pn,qn) € Wiy x U,. (5.13)

Similar to (3.8), the following inf-sup condition holds

T )
lglline < C sup (Y, )

2% 9) e, (5.14)
pew, ¥l

The following lemma is found to be useful for later analysis (cf. [8]).

Lemma 5.1. Suppose that for all T > 0
T
X2(T) + R(T) < A(T) + 2/ B(t)x(t) dt,
0
where R, A and B are nonnegative functions. Then

T
X2+ R(T) < sup AY2(t) +/ B(t) dt.
0<t<T 0

For later analysis, we define

T
(cns z)|I% = 16 2en(T)|3 + 2 / Y222 dt.

Theorem 5.1. (stability). Let (zp,cn) € Wy, x Uy, be the discrete solution of (5.9)-(5.10). Then, the
following stability result holds

1

T 1 T .
len 2l < (113 + [ (unl i, + (@ fap) de) + [ fobsloar. (315)
0 0
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Proof. From the definition of A, (+,+;+,-) and (5.11), we have

Oc
A, (zh, cn; zn,cn) = (K ' zn, 21) — Tii (cn, 2n) + (¢6—:’ cn) + (enf ™ cn) + Th(zn, cn)

— (uhch, Vch) + Sh(ch, Ch) + (uh - e, Ch)rout

1
+ 5 ((uw —wup) - nep, cp)ro,, — 5((” —UpR) - NCh, Ch )Ty,

0
= (K™Y zn20) + (6557 en) — (wncn, Ven) + (cnf ™ cn) + Salcn,cr)
1

1
+ (uh " NCh, Ch)Fout + 5((’“’ - uh) " NCh, Ch)Fout - 5

[N

((’LL — uh) *Nncp, Ch)F;n-

The third term on the right-hand side can be recast into the following form via integration by parts

1 1
(wnen, Ven) = 3 > (un-n,c)or — 3 > (3, V- up),

T€TH TE€ETH

1 1
= Z (un -, [en] fen e + E(Uh "M, ChCh)on — 5(0;2” V- uy),

e€Fa
where we use the fact that uy, € H(div; Q).

Thus, we have

_1 de 1 -
Auh(zhacmzha%):HK 2zh|\3+(¢8—:, Q(Ci,V-Uh)Jr(Chf ,Ch)

1
23 3 [l ] ds+ e menar,, — gl nence,
ee]:dz

cn) +

Integrating over T yields

T T
_1 Jc 1 B
/ Auy s cnizsen) e = | (||K Eanl o (95 en) + 5 (e V) + (e en)
1
+ = Z /[[chﬂ |lup - n| ds+ = (u nch,ch)pout—2(u nch, Ch)r, )dt
EGde
(5.16)

1 1 T 1 1 T T
= sUste D= ok ©IR) + [ 1K a5 [ @V + [ o) @

/ 2 /[[ch]] [un -l ds + 5 / (|- nlch, cn)oq dt.

ecFa

Therefore, it follows from (5.12) that

T T T
1 1 _1 1 _
(loten(DIE = loten @) + [ 1K 2zl ae+g [ @ wyars [ @) a

|
/ Z /[[Ch]] lup - n| ds dt + - / (Ju-nlcn, cn)oq dt

e€Fq;

N | =

(5.17)

- / ((65,00) + (@F 1 cn) — (cante- moen)r,) dt.

f, we can deduce that

(c

1
2

Note that V- uyp, |oy,=0and V - uy, |o,=

L, . 1
5 (e, V- un) + (enf 7Ch)—{ 2

Furthermore, an application of the Cauchy-Schwarz inequality implies

%f)ﬂ])u V'thoa
(Ch, )QD, V-up <0.

)< @ N TDE, < 5 (@ an + (@0 ay):

(éf+7ch =35
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Therefore, we can infer that

1, 1 E— 1, 1 e )

sloten @B+ [ 1K b} < Jlota@ B+ 5 [ ((uenl i, + @ 5a, ) de
0 0

(5.18)

T
1 1
+/ I6¥sllolié enllo dt,
0

where we use Young’s inequality for the last term on the right-hand side of (5.17).
Recall that ¢y, (0) is L?-orthogonal projection of ¢, thereby it holds

162 cn(0)lo < (&) 1°]lo,

Then an application of Lemma 5.1 completes the proof.
O

Remark 5.1. We can observe from Theorem 5.1 that our stability estimate is sharp in the sense that
there is no undetermined constant in front of the right-hand side, which benefits from the strong mass
conservation of the proposed scheme. On the other hand, the introduction of the boundary correction
terms &((w — up) - ncp, @)ro,. and —5((w — up) - ney, q)r,, improves the stability estimate for the
transport equation. Indeed, the stability estimate depends on the exact velocity on the inflow boundary
rather than on the approrimated velocity.

In the proof of the next lemma, we still use I}, and Jj, to represent the interpolation error estimates
which follows the same definitions given in (3.14) and (3.15) but extended to the global domain €.

Theorem 5.2. Let (zp,cn) € Wy, x Uy, be the discrete solution of (5.9)-(5.10). Then, the following
convergence error estimate holds

T
[(c=cn,z—zn)lc < C(thrlHCHC(O,T;H"“(Q)) + th(/ (lellk+1 + lleelltr
0
1
 2llss + el + Ipless + € HIEIksnan + lulliion) dt)),
where
llelleqo,rmm(e) = omax, el zm -

Proof. We can infer from (5.13) that

Auh, (Zh — th, Cp — Ihc; Zh — th, Cp — Ihc) = Au(z — th, Cc — Ihc; Zh — th, Cp — Ihc)

5.19
+ Au(th, Ine;, z, — Jpz, cp — Ihc) — Auh (th, Inc; zp — Jpz,cp — Ihc). ( )
Proceeding similarly to (5.16), we have
T 1 1 9
/O Aw, (zn = Jnz,en = Inc; zn — Jnz,en = Inc) = 516 (cn — Ine)(T) 5
1 2 T 1 2 1 r 2
- 2(Cp — IpcC 0 2(Zn — JnZ)|lp T 5 Ch —1dpC)™, V - Up
6t e = )OI + [ 1K H = B2l + 5 [ (o =100V )
T 1 (T ) (5.20)
—|—/ (e — Ine)*, f7) + —/ Z [en — Inc]” |up - n| ds
0 2 0 ecFa €

1 T
+ 5/ (lu - n|(en — Inc), cn — Inc)aq dt.
0
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The first term on the right-hand side of (5.19) can be rewritten as follows by using the definitions of
Ih and Jh

Au(z — th, Cc — IhC; Zp — th, Ch — Ihc)

d(c— I
= (K Yz = Jyz),zn — Jnz) + (QS(T}L),C;L — Ipe) — (u(e — Ine), V(en — Inc))
5
+ Sh(e = Ine,en, — Ine) + (u - n(c — Inc),cn — Inc)r,,, == ZLi'
i=1

Now we estimate L;,7 = 1,...,5. First, the Cauchy-Schwarz inequality yields

Ly < |K7Y2(z = Jn2)llo| K2 (20 — Jnz) o,

Ly — (¢8(c— Ic) —Ipe)

D) e 1) < (0921 2D o2 1o

The inf-sup condition (5.14) and the error equation (5.13) imply that
len = Tnellune < CR P 1K = 21)lo. (5:21)

Then an application of the Cauchy-Schwarz inequality implies

4
Z u(c— Inc), V(ey, — Inc)) Z /{{C—Ihc}} [en — Inc]u - n ds
=3 e€Fq
4= Z /[[c_fhcﬂ [en — Inc] |u - n| ds
eE]:dL
C(llullp=@llc = Inello+ > llullz=@h'?lle = Inclo.e)len
eeFaqr
Clllullze@lle = Tncllo+ D Nullpe@h?lle = Incllo.) 1K (z = z1)|o-
ecFq

The trace inequality (5.1) implies that

< CK__ HK (z—zh)Ho

min

llen — Inclloro, < Clien —

Let u denote the average value of u over e € Ty, then we can infer from the definition of I, (5.1)
and (5.21) that

WEY2(z = z1)lo,

Ls; = ((¢c = Inc)(u — @) - n,cp, — Ino)r,,, < C( Z hL/2||e —

e€lout

where we use 7, to represent the element having the edge e, i.e., e C J7.
It remains to show the upper bound for the last two terms on the right-hand side of (5.19). First,
we have

Au(JhZ,IhC; Zh — th,ch — Ihc) — Auh(JhZ IhC' Zp — th Cp — Ihc)

—((w — up)Ine, V(en — Inc)) Z /{[Ihc}} len, — Inc] (w —up) - m ds

ecFa

+ = Z /[[Ihcﬂ [en — Inc] |(w — wp) - m| ds + ((w — wn) - nlye, cn — Inc)r,.,
eE]:dL

1 1
- 5((u —up) -nlpe,ep, — Inc)r,,, + 5((u —up) - nlpc,cn — Inc)r,, -
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The first term on the right-hand side can be written as follows by using integration by parts
— ((uw —up)Inc, V(cy — Ipc))
(V- ((uw—wup)Inc), ey — Inc) — Z ((uw—up) -n[Inc], {cn — Incl)e
eEFq1

= > ((w—up) - nfInc}, [en — Incl)e — ((w — un) - nlnc, cn — Inc)oq.
ecFa

Thus, we have

Au(th, Ihc; Zh — th, Chp — Ihc) — Auh (th, Ihc; Zph — th, Cp — Ihc)

1
= (V- ((u—up)Inc),cn — Inc) — 5((U —uy) - nlye,cn — Inc)oq

£33 [ el Ten— el [(u—wn) -m] ds

ecFa”°
— > ((w—un) -n [l fen — Inch)e == > Ri.
e€EFq

i=1
Ry can be estimated by using integration by parts and the Cauchy-Schwarz inequality
Ry = (V(Ipe)(u —up), cp — Ine) + (IneV - (u — up), cp, — Inc)
< IV (Ine) | 1= (@l = wallol|6"*(cr = Ine) o,

where we use the fact that V- (u — up) = 0.
The Cauchy-Schwarz inequality, (5.1) and (5.21) imply

1
|Ra| = §|((u —uy) - nlye, e — Inc)oq| < §||IhCHL°°(80)H(U —up) - nllo.sallcn — Incllo.o0

< C|[nell Lo a0yl (w — un) - nllo.oallch — Incll1,n,«
< Clnell oo | (w — un) - n|
We can deduce from the Cauchy-Schwarz inequality that

0,00 K (z = zn)|lo-

eEFq v €

R3 + R4 = % Z [[Ihc]] [[Ch — Ihcﬂ |(u — uh) ’I’I,| ds — Z ((’LL — uh) 'n [[Ihc]] ) {{Ch — Ihc}})e
ecFaq

<C Y lle=Incllpll(w —un) - nllo.cllen — Incllo.-
ecFa

Thus, the inverse inequality leads to
Ry+Ryi <C Y lellwro(e)h?[[(w—wun) - nlloe 6" (cn — Tnc)o-
eeFaqr

Then, integrating over ¢ for both sides of (5.19) and using (5.20) imply that

1, . A , 1. . . [T .
§H¢f(1hc—6h)(T)Ho+/o I\K‘f(th—zh)lloS§II¢§(Ihc—Ch)(0)Ho+/O (Q_Li+ ) Ri).

i=1 i=1
An appeal to Lemma 5.1 implies that

1 T 1
(e = en iz = 20) e < (10 e =) O+ [ (3 helltu=wn) -l )}

e€Fy

1 _1 d(c— Ijc
+ = wnllo + 1% (2 = Jnz) o + |1 K %<z—zh>no+n%no
lle=Tnello + (3 helle = Incllf)* + 11w = wn) - nllo.on) dt).

ecFy,

19
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Then an appeal to the triangle inequality, (3.9), (3.16), (3.17), Theorem 4.1 and (3.26) completes the

proof.
O

Now we briefly introduce the fully discrete scheme for (5.9)-(5.10) based on the backward Euler

scheme. We introduce a partition of the time interval [0,7] into subintervals [t,,tn4+1],0 < n <
N(N is an integer) and denote the time step size by At = % Using the backward Euler scheme in

time, we get the fully discrete scheme as follows: Find (2], ¢} ™) € W}, x Uy, such that

(K2 ™) = T (™) = 0, (5.22)

n+1
& —cP
(¢hTtha q) ( +1f q) + Th( ’ﬂ-‘rl,q) (uhCZ"rl Vq) + Sh( ’ﬂ-‘rl’ Q) =+ (uhcz-‘rl n, q)Fout
1 n 1 n n A
+ 5((11‘ - uh) ) nCthl’ q)Fout - _((u - uh) nCthla q)Fin = (¢S +17 Q) - (Cinu "n, q)Fin + (Cera q)

(5.23)

2

for any (v, q) € W), x Up,.
We can show the following stability result for the fully discrete scheme.

Theorem 5.3. Let (2}, cf) € Wy, x Uy, be the discrete solution of (5.22)-(5.23). Then the following
stability result holds

N N N
200 3K H R 4 st el R < (30 AtloFs R+ Y At n, ),

n=0 n=0
N
+ AU o, + 87IICNR)
n=0
Proof. First, we have
n+l gnlondl ntl —1/2 _n+12 CZH_CZ n41 1 il
Au, (2,70 527 0 ):HK z, o+ (o A )+2(( )2,V - up)
b5 S0 T e+ (G )+ (e ),

EGde

1 n+1 1 n+1 n+l1

= 5(un-n, (q ))asz+§((u—uh)'nch s Cn " o
1

— 5w —un)- nep e,

where we exploit integration by parts for (upcy ™!, Vepth).

Noting that (a — b)a = w, we can deduce that

|22 R o (l0d e R = 63eRlB + 0% (6 = eIR) + 5 ()2, ¥ - i)

2
£y ST e mle + (e 4 g (el () )on
eEF a1
= (¢Sn+17cz+1) (Clnu n, CZJ’_l) Tin (Cf+ n+1)'
Then proceeding similarly to (5.18), we can infer that
el 3 oM 1
1323 4 g (l9h eI — 65 IZ) < 3 o sm 13 + ot n.r,
1 A = .n
+ 5@ ey —|I¢ [

2
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Making a summation for n from 0 to N and using the discrete Gronwall inequality imply that
N N N
1 1 1
2063 K2 R+ o R < o 3D Atlorsm B+ Y A n i,
n=0 n=0 n=0

N
+ AU o, + 87IICNR)

n=0

Therefore, the proof is completed.
O

Remark 5.2. In the above theorem, we have showed the unconditional stability for the fully discrete
scheme. Proceeding similarly to Theorem 5.2, and using the discrete Gronwall inequality and Taylor’s
expansion for the time discretization, we are able to prove the optimal convergence rates for the fully
discrete scheme, which are omitted here for simplicity.

6 Numerical experiments

In this section we present several numerical experiments to verify the proposed theories. We exploit
the backward Euler scheme for the time discretization. In the first two tests given below, we take the
final simulation time 7 = 0.1 and the time step size is At = 1073, In addition, we set ¢ = 1 for all
the tests and the interface conditions (2.6)-(2.7) are satisfied exactly for all the tests. The polynomial
order for all the tests are chosen as k = 1. In the first three tests, the grids used for the Brinkman
discretization in Qg are obtained by first partitioning the domain into rectangles and then dividing
each rectangle into the union of triangles by connecting the center point to all the vertices. We also
use the same grid for the Darcy region 2p. The transport grid in Q is the grid used for the flow
discretization.

6.1 Example 1

In the first example we set Qp = (0,1/2) x (0,1) and Qp = (1/2,1) x (0,1). The velocity field is
continuous across the interface and the exact solution is defined by
(y(y — 1)(122° — 8z + 1)) /4 2
— , =x(1/2 - 1-
“ {<x<2x 12y 1)/4 pp Z a2 =y

and

us = {I2(1/2—$)2y2(1_y)2 pp =2(1/2 = x)*(y — 1/2).

?(1/2 - z)*y*(1—y)*

The true solution for the transport equation is defined by ¢ = t(cos(nz) + cos(my))/m. The inflow
concentration ¢, is achieved by evaluating the true concentration at I'y,. We let Kp = a = 1. The
convergence history for L? errors of all the variables against the meshsize is displayed in Table 1-
Table 4, where various values of K and € are exploited. We can observe that optimal convergence rates
can be achieved for different values of €. As it is well known, the Brinkman equations can describe the
Stokes equations and Darcy equations depending on the values of €; our numerical results indicate that
the proposed scheme can behave uniformly robust for both the Stokes and Darcy limits. In addition,
if we take K to be a small number, the convergence rate for L?-error of z will degenerate to first
order. This can be explained as follows: we use the superconvergence for || Irc— cpl|1,n,% in (5.21) that

depends on K12

min

constant on K.

the control of diffusive flux will be lost due to the dependence of the regularity
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Mesh || [le**(L — Ly)llo,ep | llup —wupmloey | llpe —pa.nlloop
k hT Error Order Error Order Error Order
1 2 6.238e-04 N/A 7.21e-05 N/A 3.97e-04 N/A
4 1.364e-04 2.19 1.27e-05 2.50 9.31e-05 2.09

8 3.33e-05 2.03 2.90e-06 2.12 2.32e-05 2.00

16 8.30e-06 2.00 7.10e-07 2.03 5.80e-06 1.99

32 2.10e-06 2.00 1.75e-07 2.01 1.45e-06 1.99

Table 1: Convergence history for Example 6.1 with K =1,e =1.

Mesh [| [lup —up,nllo.ep | IPb —pp,nrllo,ep llc = cnllo Iz — znllo
k hT Error Order Error Order Error Order Error order
1 2 1.10e-02 N/A 4.60e-03 N/A 9.77e-04 N/A 3.70e-03 NA

4 2.90e-03 1.94 2.40e-03 0.95 2.48e-04 1.98 9.36e-04 1.98
8 7.24e-04 1.98 1.20e-03 0.99 6.23e-05 1.99 2.35e-04 1.99
16 1.81e-04 1.99 6.03e-04 0.99 1.56e-05 1.99 5.87e-05 1.99
32 4.54e-05 1.99 3.02e-04 0.99 3.90e-06 1.99 1.47e-05 1.99

Table 2: Convergence history for Example 6.1 with K =1,e =1.

6.2 Example 2

In the second example we set Q5 = (0,1/2) x (0,1) and Qp = (1/2,1) x (0,1) and the velocity field
is again continuous across the interface. The exact solution is defined by

i eI

and

x? Sin(2ﬂ'x)2y2 Sin(ﬂ'y)2 , pp=x(1/2— :Z?)Q(y —1/2).

{:c2 sin(2mx)?y? sin(7y)?
up =

The exact solution for transport equation is defined to be the same as Example 6.1. Welet Kp = a = 1.
The convergence history for L? errors of all the variable against the meshsize is displayed in Table 5-
Table 8. Various values of K and € are employed to test the robustness of the scheme. Similarly, we
can observe that optimal convergence rates can be achieved for different values of € and the scheme
is uniformly robust for both the Stokes limit and Darcy limit. In addition, we can achieve second
order convergence for diffusive flux when K = 1 and the convergence rate will degenerate to first order
when K is small. This example once again highlights that the proposed scheme is uniformly robust
for various values of viscosity.

6.3 Example 3

In this example, the exact solution is unknown. This example illustrates the capability of the proposed
method in the simulation of the groundwater flow. We consider Qp = (0,1) x (1/2,1) and Qp =
(0,1) x (0,1/2). The Brinkman region represents a lake or a river, and the Darcy region represents
an aquifer. We let the parameters set as K = 107°, Kp = 1072, ¢ = 0.1, a = 1 and ¢, = 0.
fB = fp =0and f =0. The time step size is chosen to be At = 10~3. Brinkman velocity is imposed
everywhere on 0€)p and it is set to be zero on the top and right boundary. On the left boundary we
let up = ( W, 0). Zero normal velocity (up - n = 0) is imposed on the left and right boundary
of Qp and Darcy pressure is imposed on the bottom, i.e., p(xz,0) = —0.05. In addition, the initial
condition for c is defined by

CcC =

0 1 if \/(z —0.1)2 + (y — 0.7)2 < 0.1,
0 otherwise.

Although imposing Dirichlet boundary condition for Brinkman velocities is not covered in our analysis,
we can modify the proposed scheme to adapt to this case. It should be noted that Ln = 0 is imposed
on I' in order to ensure the unique solvability of the solution.
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Mesh || e '2(L — Lu)llo,ey | llus —usnlloay | Ilpe —pealloag
k hT Error Order Error Order Error Order
T 2 7.62¢-07 N/A 9.66e-04  N/A | 5.48¢-04 N/A
4 2.99e-07 1.34 2.31e-04 2.06 1.75e-04 1.65
8 1.06e-07 1.50 5.59e-05 2.05 4.63e-05 1.92
16 3.62e-08 1.55 1.38e-05 2.02 1.17e-05 1.98
32 1.24e-08 1.55 3.40e-06 2.00 2.90e-06 1.99
Table 3: Convergence history for Example 6.1 with K = 0.001,e = 1073.
Mesh || [lup —up,nllo.ep | IPb —pPp.1lloep lle = enllo Iz = znllo
k h~T Error Order Error Order Error Order Error order
1 2 9.00e-03 N/A 4.60e-03 N/A 9.17e-04 N/A 7.74e-06 NA
4 2.40e-03 1.93 2.40e-03 0.95 2.34e-04 1.97 3.75e-06 1.04
8 6.04e-04 1.97 1.20e-03 0.99 5.97e-05 1.97 2.85e-06 1.02
16 1.52e-04 1.99 6.03e-04 0.99 1.52e-05 1.97 7.94e-07 1.21
32 3.83e-05 1.99 3.02e-04 0.99 3.90e-06 1.98 2.88e-07 1.46
Table 4: Convergence history for Example 6.1 with K = 0.001,¢ = 1078,

23

The profiles of the computed concentration at different time instants ¢t = 1,3,6 are displayed in
Figure 3-Figure 5. We can observe that the concentration propagates from the surface water region to
the groundwater region.
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Figure 4: Concentration at ¢t = 3 for Example 6.3.
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Figure 3: Concentration at ¢ = 1 for Example 6.3.
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Mesh || e '2(L — Lu)llo,ey | llus —usnlloay | Ilpe —pealloag

k hT Error Order Error Order Error Order
1 2 5.87e-02 N/A 6.00e-03 N/A 2.36e-02 N/A
4 2.00e-02 1.55 1.10e-03 2.39 4.90e-03 2.26

8 4.90e-03 2.01 2.54e-04 2.17 1.40e-03 1.76

16 1.20e-03 1.99 6.18e-05 2.04 3.65e-04 1.98

32 3.11e-04 1.99 1.53e-05 2.01 9.08e-05 2.00

Table 5: Convergence history for Example 6.2 with K =1,e = 1.

Mesh || [lup —wp.nllo.op | Ipp —pp.rlloop lle = enllo Iz = znllo
k h~1 Error Order Error Order Error Order Error order
1 2 1.40e-01 N/A 1.34e-02 N/A 1.00e-03 N/A 5.00e-03 NA
4 4.53e-02 1.63 4.50e-03 1.56 2.62e-04 1.96 1.40e-03 1.84
8 1.16e-02 1.96 1.60e-03 1.50 6.58e-05 1.99 3.64e-04 1.96
16 2.90e-03 1.99 6.60e-04 1.27 1.65e-05 1.99 9.16e-05 1.99
32 7.33e-04 1.99 3.09e-04 1.09 4.12e-06 1.99 2.30e-05 1.99

Table 6: Convergence history for Example 6.2 with K = 1,e = 1.
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Figure 5: Concentration at ¢ = 6 for Example 6.3.
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6.4 Example 4

In this example, the exact solution is also unknown. The computational domain corresponds to the
rectangle Q = (0,12) x (0,6), where the Brinkman domain (with a maximum height of 4) is on the
top and the Darcy subdomain (with a maximum height of 2.25) on the bottom. The two subdomains
are separated by a step-polygonal interface and we use triangular meshes as the primal partition; see
Figure 6 for an illustration. Note that the triangular meshes are generated using distmesh2d, cf. [31]
and we use finer meshes near the interface. Each initial triangular mesh is subdivided into the union of
triangles for the construction of the method. We let € = 1, the permeability Kp is selected as random
numbers between 1072 and 1076, and K = o = 1. On the top segment of I'z, normal velocities are set
to be zero, whereas on the left and right hand sides of the Brinkman domain we prescribe the following
conditions

up-n = i(y—4)(8—y) and up-n = 1—36(y—4)(8—y),
respectively. Zero normal velocities are imposed for the vertical boundaries of 2p and Dirichlet
pressure is imposed on the bottom, i.e., p(x,0) = —103. In addition, we let fg = fp = 0 and f = 0.
The parameters are set as ¢ = 1,s = 0.01 and ¢;, = 1 for the transport equation. The time step
size is chosen to be At = 1073. The approximated velocity and pressure are shown in Figure 7. The
approximated concentration at time 7' = 1,5, 10,20 are shown in Figure 8 and we can observe that
the concentration propagates to the right.
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Mesh || e '2(L — Lu)llo,ey | llus —usnlloay | Ilpe —pealloag
k hT Error Order Error Order Error Order
T 2 2.79¢-05 N/A 3.59¢-02 N/A | 4.90e-03 N/A
4 1.05e-05 1.42 7.40e-03 2.28 9.23e-04 2.41
8 3.73e-06 1.49 1.80e-03 2.02 2.37e-04 1.96
16 1.28e-06 1.55 4.45e-04 2.02 5.97e-05 1.99
32 4.45e-07 1.52 1.10e-04 2.02 1.49e-05  2.00
Table 7: Convergence history for Example 6.2 with K = 0.001,e = 10738.
Mesh || [lup —up,nllo.ep | IPb —pPp.1lloep lle = enllo Iz = znllo
k h~T Error Order Error Order Error Order Error order
1 2 1.24e-01 N/A 1.08e-02 N/A 2.40e-03 N/A 4.13e-05 NA
4 4.33e-02 1.52 4.00e-03 1.43 8.86e-04 1.43 2.99e-05 0.47
8 1.12e-02 1.95 1.50e-03 1.43 | 3.95e-04  1.59 | 2.16e-05  0.47
16 2.90e-03 1.99 6.45e-04 1.21 7.95e-05 1.89 1.13e-05 0.94
32 7.07e-04 1.99 3.07e-04 1.07 1.74e-05 2.19 4.28e-06 1.39
Table 8: Convergence history for Example 6.2 with K = 0.001,¢ = 1078,

25

Figure 6: Profile of the meshes used for Example 6.4. The meshes for Qp (left) and the meshes for

Qp.
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Figure 7: Velocity magnitude wy, (left) and pressure (right) for Example 6.4.
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Figure 8: Concentration at t =1 and ¢ = 5 for Example 6.4.

ch
6
5 1.5
1 4
3 1
0.5 2
0.5
1
0 0 0
0 2 4 6 8 10 12

Figure 9: Concentration at ¢ = 10 and t = 20 for Example 6.4.

7 Conclusion

In this paper we have designed a strongly mass conservative scheme for the Brinkman-Darcy flow,
where the interface conditions are enforced naturally in the discrete formulation. Theoretical analysis
indicates that the proposed scheme is exactly divergence free in the Brinkman region and it is robust for
both the Stokes limit and Darcy limit. Taking advantage of the mass conservation property, we design
an upwinding staggered DG method for the transport equation, where the boundary correction terms
are introduced to improve the stability estimate. Several numerical experiments illustrate that our
scheme is indeed robust for both the Stokes limit and Darcy limit; in addition, optimal convergence
rates can be achieved for various values of e. It is worth mentioning that the proposed scheme is
pressure-robust and strongly mass conservative, which makes it a good candidate for the numerical
simulation of coupled flow and transport.
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