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Abstract

In this paper, a strongly mass conservative and stabilizer free scheme is designed and analyzed

for the coupled Brinkman-Darcy flow and transport. The flow equations are discretized by using

a strongly mass conservative scheme in mixed formulation with a suitable incorporation of the

interface conditions. In particular, the interface conditions can be incorporated into the discrete

formulation naturally without introducing additional variables. Moreover, the proposed scheme

behaves uniformly robust for various values of viscosity. A novel upwinding staggered DG scheme

in mixed form is exploited to solve the transport equation, where the boundary correction terms are

added to improve the stability. A rigorous convergence analysis is carried out for the approximation

of the flow equations. The velocity error is shown to be independent of the pressure and thus

confirms the pressure-robustness. Stability and a priori error estimates are also obtained for the

approximation of the transport equation; moreover, we are able to achieve a sharp stability and

convergence error estimates thanks to the strong mass conservation preserved by our scheme. In

particular, the stability estimate depends only on the true velocity on the inflow boundary rather

than on the approximated velocity. Several numerical experiments are presented to verify the

theoretical findings and demonstrate the performances of the method.

Keywords: discontinuous Galerkin methods; mixed finite element method; Brinkman-Darcy flow;
pressure-robustness; mass conservation; coupled flow and transport.

1 Introduction

Coupling Brinkman and Darcy models describes the interaction of flow and transport phenomena in
two different domains separated by an interface. This model has been used in the hydrology and
biological applications and typical examples include subsurface flow, hydraulic fractures and perfusion
of soft living tissues. A great amount of effort has been devoted to the devising of efficient numerical
schemes for the coupled flow and transport. In [35], primal discontinuous Galerkin methods with
interior penalty are developed to solve the coupled system of flow and reactive transport. In [36], a
mixed finite element element is exploited to approximate the Stokes-Darcy system and a local dis-
continuous Galerkin method is used to discretize the transport equation. In [34], a stabilized mixed
finite element method in conjunction with velocity-pressure-concentration formulation is exploited
to discretize the coupled Stokes-Darcy flow and transport. In [1, 2], a primal mixed finite element
method in conjunction with vorticity-velocity-pressure formulation is used for the discretization of the
Brinkman-Darcy flow and a conforming finite element method is used for the discretization of the non-
linear transport equation. In the works presented in [38, 11], the authors are devoted to the analysis
of partitioned time stepping methods for the conforming discretizations on the two subdomains. In
addition to the aforementioned works, there are also a surge of works that have been dedicated to
the devising and analysis of numerical schemes for the Stokes-Darcy flow and/or transport, see, e.g.,
[23, 9, 33, 5, 12, 18, 28, 25, 16, 41].
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There are some typical difficulties in the devising of an efficient and accurate scheme for the coupled
Brinkman-Darcy flow and transport problem considered in this paper. In a nutshell, the Brinkman
equations model both the Stokes problem and the Darcy problem in porous media, and the devising
of a uniformly stable scheme for both the Stokes problem and the Darcy problem is challenging due to
the different inherent natures of these two equations. It becomes even more challenging for the coupled
Brinkman-Darcy flow as one also needs to balance the Brinkman problem and Darcy problem with a
suitable treatment for the interface conditions. The way to enforce the interface conditions also needs
a careful design. Another typical issue posed is the mass conservation, which is of great importance in
the context of transport equation. The devising of a numerical scheme which can overcome the afore-
mentioned difficulties is a challenging task and it hinges on a dedicate balancing of the finite element
spaces used. Classical techniques that have been developed to overcome the difficulties encountered
in the design of uniformly robust schemes for the Brinkman problem include nonconforming methods
with H(div ; Ω)-conforming velocity [29, 20], H(div ; Ω)-conforming discontinuous Galerkin methods
[21, 22] and parameter free H(div ; Ω)-conforming HDG methods [15]. A common ingredient shared by
these methods is to relax the tangential continuity of velocity; indeed, a H(div ; Ω)-conforming space
is employed to approximate the velocity. An alternative approach is to modify the right hand side of
classical finite element methods by using divergence-free velocity reconstruction operator, and a lot
of works has been developed in this direction, see, for example, [26, 27, 24, 14, 30, 3]. Devising a
uniformly robust scheme for the coupled Brinkman-Darcy flow and meanwhile preserving the global
mass conservation of the method without resorting to additional variables are not easy tasks, and one
must carefully design the approximation spaces so that the interface conditions can be incorporated
into the discrete formulation naturally.
Therefore, the purpose of this paper is to devise and analyze a strongly mass conservative scheme of

arbitrary polynomial orders for the coupled Brinkman-Darcy flow and transport. The Brinkman equa-
tions are discretized by using a carefully designed staggered DG method in conjunction with velocity
gradient-velocity-pressure formulation and the Darcy equations are discretized by using mixed finite
element method, this choice of spaces makes our scheme capable of handling the interface conditions
without resorting to additional variables. More precisely, the interface conditions can be imposed into
the discrete formulation naturally by replacing the Brinkman’s normal velocity by the Darcy’s normal
velocity. It should be noted that the choice of the spaces for the Brinkman equation should be carefully
designed so that the resulting scheme is uniformly robust for various feasible values of viscosity. The
key ingredient is to use a locally H(div ; Ω)-conforming space to approximate the Brinkman velocity.
The transport equation is discretized by using an upwinding staggered DG method, where the bound-
ary correction terms are exploited to improve the stability. The proposed scheme possesses many
desirable features, which makes it attractive. First, it is globally mass conservative and the interface
conditions can be imposed without resorting to additional variables. Second, it is uniformly robust
for various feasible values of viscosity. Third, the normal continuity of velocity is satisfied exactly
at the discrete level. Fourth, no penalty term or stabilization term is needed, which is advantageous
over other DG methods since choosing a suitable stabilization parameter could be tricky for certain
situation. A rigorous convergence analysis is carried out for the Brinkman-Darcy flow equations. In
addition, we also analyze the stability and convergence error estimates for the concentration and the
diffusive flux in the transport equation, where the stability estimate depends only on the true velocity
on the inflow boundary rather than on the approximated velocity. The error results from a combi-
nation of the upwinding staggered DG discretization error and the error from the discretization of
the Brinkman-Darcy velocity. The resulting convergence error estimates for the transport equation
are of order O(hk+1), where k is the polynomial order used for the discretization. To the best of our
knowledge, our proposed method appears to be the first in the literature, that offers a robust behavior
with respect to viscosity for the coupling of Brinkman-Darcy flow and transport without resorting to
additional variables to enforce the interface conditions.
The rest of the paper is organized as follows. In the next section, we present the model flow-transport

problem. The flow discretization is given in Section 3, and the corresponding convergence error esti-
mates are provided in Section 4. The transport discretization and its error analysis are presented in
Section 5. Several numerical experiments are presented in Section 6. Finally, the conclusions are given
in Section 7.
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2 Model problem

In our model we consider a fluid region ΩB ⊂ R
2 in which the flow is governed by the Brinkman

equations (2.1)-(2.3) and a porous medium ΩD ⊂ R
2 in which Darcy flow equations (2.4)-(2.5) hold.

These two regions are separated by an interface Γ, through which exchange of fluid velocities and
pressures occurs; see Figure 1 for an illustration of the computational domain. The flow model reads
as follows:

ǫ−1L = ∇uB in ΩB, (2.1)

−∇ · L+ αuB +∇pB = fB in ΩB, (2.2)

∇ · uB = 0 in ΩB (2.3)

and

uD +KD∇pD = fD in ΩD, (2.4)

∇ · uD = f in ΩD. (2.5)

Here ǫ is the effective viscosity constant, the inverse of α is the permeability tensor constant divided by
viscosity and KD is a symmetric and positive definite permeability tensor divided by viscosity (which
is also called hydraulic conductivity). fB ∈ L2(ΩB)

2, fD ∈ L2(ΩD)2 and f ∈ L2(ΩD) are given data.
We assume that Ω has a Lipschitz continuous boundary split into two disjoint sub-boundaries with

positive measure, i.e., ∂Ω = ΓB ∪ ΓD, where ΓB = ∂ΩB\Γ and ΓD = ∂ΩD\Γ. Following [2], we adopt
the following interface conditions:

uD · nB = uB · nB on Γ, (2.6)

pD = pB on Γ, (2.7)

where nB denotes the unit outward normal vector to ΩB. Similarly, we use nD to represent the unit
outward normal vector to ΩD. To close the system, we define the following boundary conditions

LnB = 0 on ΓB ∪ Γ, uB · nB = g1 on ΓB, uD · nD = g2 on ΓD.

In addition, we require
∫
ΩB

pB dx = 0 to ensure the unique solvability.
The Brinkman-Darcy flow system is coupled with the transport equation in Ω = ΩB ∪ ΩD

φct +∇ · (cu−K∇c) = φs+ ĉf+ − cf− ∀(x, t) ∈ Ω× (0, T ), (2.8)

where T is the final simulation time, c(x, t) is the concentration of a certain chemical component of
interest, 0 < φ∗ ≤ φ(x) ≤ φ∗ is the porosity of the medium in ΩD (it is set to 1 in ΩB), K(x, t)
is the diffusion-dispersion tensor assumed to be symmetric and positive definite with smallest and
largest eigenvalues Kmin and Kmax, respectively, s(x, t) is a source term, and u is the velocity field
defined by u|Ωi = ui, i = B,D. ĉ in the source term is the injected concentration. In addition, we let
f+ = max{f, 0} and f− = max{−f, 0}, it follows f = f+ − f−. We remark that f is only defined for
ΩD and we can simply take f = 0 in ΩB. In general, the diffusion-dispersion tensor can be a function
of the Darcy velocity; for simplicity of discussion in this paper, we assume that the diffusion-dispersion
tensor is a given value. The model is completed by the initial condition

c(x, 0) = c0(x) ∀x ∈ Ω

and the boundary conditions

(cu−K∇c) · n = (cinu) · n on Γin,

(K∇c) · n = 0 on Γout.

Here, cin is the inflow concentration, Γin := {x ∈ ∂Ω : u · n < 0} and Γout := {x ∈ ∂Ω : u · n ≥ 0},
and n is the unit outward normal vector to ∂Ω.
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Figure 1: The profile of the computational domain.

The following compatibility condition holds
∫

ΓB

g1 ds+

∫

ΓD

g2 ds =

∫

ΩD

f dx.

We can infer from Stokes’ theorem that
∫

ΓD

g2 ds+

∫

Γ

uD · nD ds =

∫

ΩD

f dx,

thereby, we have
∫

Γ

uD · nD ds =

∫

ΓB

g1 ds. (2.9)

Before closing this section, we introduce some notation that will be used throughout the paper. LetD ⊂
R

d, d = 1, 2. By (·, ·)D, we denote the standard scalar product in L2(D) : (p, q)D :=
∫
D p q dx. When

D coincides with Ω, the subscript Ω will be dropped. We use the same notation for the scalar product
in L2(D)2 and in L2(D)2×2. More precisely, (ξ,w)D :=

∑2
i=1(ξ

i, wi) for ξ,w ∈ L2(D)2 and (ψ, ζ)D :=∑2
i=1

∑2
j=1(ψ

i,j , ζi,j)D for ψ, ζ ∈ L2(D)2×2. The associated norm is denoted by ‖ · ‖0,D. Given an

integer m ≥ 0 and n ≥ 1, Wm,n(D) and Wm,n
0 (D) denote the usual Sobolev space provided the norm

and semi-norm ‖v‖Wm,n(D) = {
∑

|ℓ|≤m ‖Dℓv‖nLn(D)}
1/n, |v|Wm,n(D) = {

∑
|ℓ|=m ‖Dℓv‖nLn(D)}

1/n. If

n = 2 we usually write Hm(D) = Wm,2(D) and Hm
0 (D) = Wm,2

0 (D), ‖v‖Hm(D) = ‖v‖Wm,2(D) and
|v|Hm(D) = |v|Wm,2(D). In the sequel, we use C to represent a generic positive constant independent
of the mesh size which may have different values at different occurrences.
For O ⊂ R

2, we define

H(div;O) := {v ∈ L2(O)2 : ∇ · v ∈ L2(O)}

whose norm is given by

‖v‖div,O :=
(
‖v‖20,O + ‖∇ · v‖20,O

) 1
2

.

In addition, we define the subspace H0,Γ(div;O) by

H0,Γ(div;O) := {v ∈ H(div;O);v · n = 0 on Γ}.

For 0 ≤ s <∞, we let

Hs(div;O) := {v ∈ L2(O)2 | ∇ · v ∈ Hs(O)}.

The following space is also defined for later use

L2
0(O) := {q ∈ L2(O);

∫

O

q dx = 0}

and for ω ⊂ R, we define

H1
0,ω(Ωi) := {q ∈ H1(Ωi); q = 0 on ω}.
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3 The new scheme for Brinkman-Darcy flow

In this section, we will derive the discrete formulation for the coupled Brinkman-Darcy flow. The
proposed method should be uniformly robust with respect to viscosity and stabilizer free. The key
idea lies in a delicate balancing of the finite element spaces involved.
First, we introduce the meshes and the spaces exploited in the definition of the new scheme. To

simplify the presentation, we employ the same types of meshes for ΩB and ΩD. Following [40, 43],
we first let Tu,i (i = B,D) be the initial partition of the domain Ωi into non-overlapping triangular
or quadrilateral meshes. We require that Tu,i be aligned with Γ. We let Fpr,i be the set of all edges
excluding the interface edges in the initial partion Tu,i and F0

pr,i ⊂ Fpr,i be the subset of all interior
edges of Ωi. In addition, we use Fh,Γ to represent the set of edges lying on the interface Γ. For each
primal element E in the initial partition Tu,i, we select an interior point ν and create new edges by
connecting ν to all the vertices of the primal element. For simplicity, we select ν as the center point.
This process will divide E into the union of subtriangles, where the subtriangle is denoted as τ , and we
rename the union of these triangles by S(ν). We remark that S(ν) is the triangular or rectangular mesh
in the initial partition. Moreover, we will use Fdl,i to denote the set of all the new edges generated by
this subdivision process and use Th,i to denote the resulting quasi-uniform triangulation, on which our
basis functions are defined. Here the triangulation Th,i satisfies standard mesh regularity assumption
(cf. [7]) and we define Th = Th,B ∪ Th,D. In addition, we let Fi := Fpr,i ∪ Fdl,i, F

0
i := F0

pr,i ∪ Fdl,i,

Fpr := Fpr,B ∪ Fpr,D ∪ Fh,Γ, F
0
pr := F0

pr,B ∪ F0
pr,D ∪ Fh,Γ and Fdl := Fdl,B ∪ Fdl,D. For each triangle

τ ∈ Th,i, we let hτ be the diameter of τ and hi = max{hτ , τ ∈ Th,i}, and we define h = max{hB, hD}.
Also, we let he denote the length of edge e ∈ Fi. This construction is illustrated in Figure 2, where
the black solid lines are edges in Fpr,i and the red dotted lines are edges in Fdl,i. For each interior
edge e ∈ F0

pr,i, we use D(e) to denote the union of the two triangles in Th,i sharing the edge e, and

for each boundary edge e ∈ (Fpr,i ∪ Fh,Γ)\F
0
pr,i, we use D(e) to denote the triangle in Th,i having the

edge e, see Figure 2.
For each edge e, we define a unit normal vector ne as follows: If e ∈ Fi \ F

0
i , then ne is the unit

normal vector of e pointing towards the outside of Ωi. If e ∈ F0
i , an interior edge, we then fix ne as

one of the two possible unit normal vectors on e. When there is no ambiguity, we use n instead of
ne to simplify the notation. For k ≥ 1, τ ∈ Th and e ∈ Fh, we define P k(τ) and P k(e) as the spaces
of polynomials of degree up to order k on τ and e, respectively. For a scalar or vector function v
belonging to the broken Sobolev space, its jump and average on e ∈ Fi are defined as

JvKe := v1 − v2, {{v}}e :=
v1 + v2

2
,

where vj = vτj , j = 1, 2 and τ1, τ2 are the two triangles in Th,i having the edge e. For the boundary
edges, i.e., edges belong to Γ ∪ ∂Ω, we simply define JvKe = v1 and {{v}}e = v1. We can omit the
subscript e when it is clear which edge we are referring to. In the following, we use ∇h and div h to
represent the element-wise defined gradient and divergence operators.
Now we are ready to define the finite element spaces that will be used for the numerical approxima-

tion. First, the locally H(div; ΩB)-conforming space for the approximation of uB is defined by

HB
h := {v : v|τ ∈ P k(τ)2, ∀τ ∈ Th,B; Jv · nKe = 0, ∀e ∈ Fdl,B}.

The finite dimensional space used for the approximation of L is defined by

WB
h : = {G : G|τ ∈ P k(τ)2×2, ∀τ ∈ Th,B; JGnKe = 0, ∀e ∈ F0

pr,B,

J(Gn) · tKe = 0, ∀e ∈ Fdl,B;Gn = 0 on ∂ΩB}.

The locally H1(ΩB)-conforming space for the approximation of pB is defined by

QB
h := {q : q|τ ∈ P k(τ), ∀τ ∈ Th,B; JqKe = 0, ∀e ∈ F0

pr,B}

and

Q0
h := {q : q ∈ QB

h ;

∫

ΩB

q dx = 0}.
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B D

S( )

D(e)

Figure 2: Schematics of the meshes. Primal meshes (left), dual meshes and simplicial meshes (right).
The solid lines represent the primal edges and the dashed lines represent the dual edges.

For later analysis, we define the following mesh dependent semi-norm for any qB ∈ QB
h and vB ∈ HB

h

‖qB‖
2
h : =

∑

e∈Fdl,B

h−1
e ‖ JqBK ‖20,e +

∑

τ∈Th,B

‖∇qB‖
2
0,τ ,

‖vB‖
2
Z : =

∑

τ∈Th,B

‖∇vB‖
2
0,τ +

∑

e∈F0
pr,B∪Fh,Γ

h−1
e ‖ JvBK ‖20,e +

∑

e∈Fdl,B

h−1
e ‖ J(vB · t)tK ‖20,e.

Note that ‖qB‖h is a norm on Q0
h.

Following [6], we specify the degrees of freedom for QB
h as follows:

(SD1) For e ∈ Fpr,B ∪ Fh,Γ, we have

φe(q) := (q, pk)e ∀pk ∈ P k(e). (3.1)

(SD2) For each τ ∈ Th,B, we define

φτ (q) := (q, pk−1)τ ∀pk−1 ∈ P k−1(τ). (3.2)

We employ mixed finite element method for the Darcy region. To this end, we define the finite
element subspace HD

h for the approximation of uD by

HD
h := {v ∈ H(div; ΩD) : v|τ ∈ P k(τ)2, ∀τ ∈ Th,D},

where we can take the Brezzi-Douglas-Marini (BDM) space (cf. [4]).
The finite element subspace for pD is given by the piecewise polynomials of degree k − 1, that is,

QD
h := {q ∈ L2(ΩD) : q|τ ∈ P k−1(τ), ∀τ ∈ Th,D}.

In addition, let Πh,Γi , i = B,D be the piecewise L2-projection onto P k(e) for all e belonging to Γi

such that for all ψ ∈ L2(Γi)

(ψ −Πh,Γiψ, χ)e = 0 ∀χ ∈ P k(e), e ∈ Γi

and define

HD
h,g2 := {v ∈ HD

h ,v · n = Πh,ΓDg2 on ΓD}.

Now we are ready to derive the discrete formulation. Multiplying (2.1) by a test function GB ∈ WB
h

and performing integration by parts yield

(ǫ−1L,GB)ΩB = (∇uB,GB)ΩB

=
∑

τ∈Th,B

(
(GBn, (uB · n)n+ (uB · t)t)∂τ − (divGB,uB)τ

)

=
∑

e∈Fdl,B

(JGBnK , (uB · n)n)e − (div hGB,uB)ΩB ,
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where we use the decomposition u = (u ·n)n+(u · t)t and the facts that [(GBn) · t] |e= 0, ∀e ∈ Fdl,B,
[GBn] |e= 0, ∀e ∈ F0

pr,B and GBnB = 0 on ∂ΩB.

Multiplying (2.2) by a test function vB ∈ HB
h and performing integration by parts lead to

− (divL,vB)ΩB + (αuB ,vB)ΩB + (∇pB,vB)ΩB

= −
∑

e∈F0
pr,B

(Ln, JvBK)e −
∑

e∈Fdl,B

((Ln) · t, JvB · tK)e + (L,∇hvB)ΩB

+ (αuB,vB)ΩB +
∑

e∈Fpr,B

(JvB · nK , pB)e +
∑

e∈Fh,Γ

(vB · n, pB)e − (pB, div hvB)ΩB = (fB ,vB)ΩB .

Multiplying (2.3) by a test function qB ∈ Q0
h and performing integration by parts yield

(∇ · uB, qB)ΩB = (uB · nB , qB)ΓB +
∑

e∈Fh,Γ

(uB · nB , qB)e +
∑

e∈Fdl,B

(uB · n, JqBK)e − (uB,∇hqB)ΩB

= (g1, qB)ΓB −
∑

e∈Fh,Γ

(uD · nD, qB)e +
∑

e∈Fdl,B

(uB · n, JqBK)e − (uB,∇hqB)ΩB = 0,

where we use the interface condition uB · nB = uD · nB (cf. (2.6)) in the second equality.
Multiplying (2.4) by a test function vD ∈ HD

h,0 and performing integration by parts, we can obtain

(K−1
D uD,vD)ΩD + (∇pD,vD)ΩD = (K−1

D uD,vD)ΩD +
∑

e∈Fh,Γ

(vD · n, pD)e − (pD, div vD)ΩD

= (K−1
D uD,vD)ΩD +

∑

e∈Fh,Γ

(vD · nD, pB)e − (pD, div vD)ΩD

= (fD,vD)ΩD ,

where we use pB = pD (cf. (2.7)) in the second equality.
Based on the above derivations, we define the following bilinear forms for brevity

B∗
h(uB,h,GB) =

∑

e∈Fdl,B

(JGBnK , (uB,h · n)n)e − (div hGB,uB,h)ΩB ,

Bh(Lh,vB) = −
∑

e∈F0
pr,B

(Lhn, JvBK)e −
∑

e∈Fdl,B

((Lhn) · t, JvB · tK)e + (Lh,∇hvB)ΩB ,

b∗h(pB,h,vB) =
∑

e∈Fpr,B

(JvB · nK , pB,h)e +
∑

e∈Fh,Γ

(vB · n, pB,h)e − (pB,h, div hvB)ΩB ,

bh(uB,h, qB) = −
∑

e∈Fdl,B

(uB,h · n, JqBK)e + (uB,h,∇hqB)ΩB ,

Ah(vD, pD,h) = (pD,h,∇ · vD)ΩD ,

Ih(pB,h,vD) =
∑

e∈Fh,Γ

(vD · nD, pB,h)e.

We are ready to propose the following discrete formulation for the coupled Brinkman-Darcy system
(2.1)-(2.7): Find (Lh,uB,h, pB,h) ∈WB

h ×HB
h ×Q0

h and (uD,h, pD,h) ∈ HD
h,g2

×QD
h such that

(ǫ−1Lh,GB)ΩB −B∗
h(uB,h,GB) + (K−1

D uD,h,vD)ΩD

+Ih(pB,h,vD)−Ah(vD, pD,h) = (fD,vD)ΩD , (3.3)

Bh(Lh,vB) + (αuB,h,vB)ΩB + b∗h(pB,h,vB) +Ah(uD,h, qD) = (fB ,vB)ΩB + (f, qD)ΩD , (3.4)

−Ih(qB,uD,h)− bh(uB,h, qB) = −(g1, qB)ΓB (3.5)

for all (GB,vB, qB) ∈ WB
h ×HB

h ×Q0
h and (vD, qD) ∈ HD

h,0 ×QD
h . Hereafter, uh is the velocity field

defined by uh|Ωi = ui,h, i = B,D.
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We introduce some properties that will be used later. First, integration by parts implies the following
adjoint properties

Bh(GB,vB) = B∗
h(vB,GB) ∀(GB,vB) ∈WB

h ×HB
h , (3.6)

bh(vB, qB) = b∗h(qB ,vB) ∀(vB , qB) ∈ HB
h ×QB

h . (3.7)

Following [6], we have the following inf-sup condition

‖qB‖h ≤ Cinf sup
vB∈HB

h

bh(vB , qB)

‖vB‖0,ΩB

∀qB ∈ Q0
h. (3.8)

Next, we introduce some interpolation operators that will be useful for the convergence analysis.
We define the projection operator ΠBDM : H(div; ΩD) ∩ Lp(ΩD) → HD

h , p > 2 by following [4]

((v −ΠBDMv) · n, pk)e = 0 ∀pk ∈ P k(e) and each edge e ⊂ ∂τ, τ ∈ Th,D,

(v −ΠBDMv,∇pk−1)τ = 0 ∀pk−1 ∈ P k−1(τ), τ ∈ Th,D,

(v −ΠBDMv, curl b)τ = 0 ∀b ∈ Bk+1(τ), τ ∈ Th,D,

where Bk+1(τ) = {p ∈ P k+1(τ); p |∂τ= 0} = λ1λ2λ3P
k−2(τ). Here λi, i = 1, 2, 3 are the barycentric

coordinates of τ .
It satisfies the following commutative properties

∇ ·ΠBDM = Ph∇·,

where Ph is the L2-orthogonal projection onto QD
h . The following convergence error estimates hold

(see, e.g., [4, 10])

‖v −ΠBDMv‖0,ΩD ≤ Chk+1‖v‖k+1,ΩD ∀v ∈ Hk+1(ΩD)2, (3.9)

‖∇ · (v −ΠBDMv)‖0,ΩD ≤ Chk‖∇ · v‖k,ΩD ∀v ∈ Hk(div; ΩD), (3.10)

‖q − Phq‖0,ΩD ≤ Chk+1‖q‖k+1,ΩD ∀q ∈ Hk+1(ΩD). (3.11)

In addition, we define a projection operator Πh for WB
h following [39], which satisfies

Bh(ΠhL−L,v) = 0 ∀v ∈ HB
h (3.12)

and the following interpolation error estimate holds

‖L−ΠhL‖0,ΩB ≤ Chk+1|L|k+1,ΩB . (3.13)

To facilitate later analysis, we also define the following two projection operators (cf. [42]). Let
Ih : H1(ΩB) → QB

h be defined by

(Ihq − q, φ)e = 0 ∀φ ∈ P k(e), ∀e ∈ Fpr,B ∪ Fh,Γ,

(Ihq − q, φ)τ = 0 ∀φ ∈ P k−1(τ), ∀τ ∈ Th,B
(3.14)

and Jh : L2(ΩB)
2 ∩H1/2+δ(ΩB)

2 → HB
h , δ > 0 be defined by

((Jhv − v) · n, ϕ)e = 0 ∀ϕ ∈ P k(e), ∀e ∈ Fdl,B,

(Jhv − v,φ)τ = 0 ∀φ ∈ P k−1(τ)2, ∀τ ∈ Th,B.
(3.15)

It is easy to see that Ih and Jh are well defined polynomial preserving operators. In addition, the
following approximation properties hold for q ∈ Hk+1(ΩB) and v ∈ Hk+1(ΩB)

2 (cf. [7, 6])

‖q − Ihq‖0,ΩB ≤ Chk+1|q|k+1,ΩB , (3.16)

‖v − Jhv‖0,ΩB ≤ Chk+1|v|k+1,ΩB . (3.17)
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By the definitions of Ih and Jh, it readily holds

b∗h(pB − IhpB,v) = 0 ∀v ∈ HB
h , (3.18)

bh(uB − JhuB, q) = 0 ∀q ∈ QB
h , (3.19)

B∗
h(uB − JhuB,G) = 0 ∀G ∈ WB

h . (3.20)

Following [39], we have for any v ∈ H1(ΩB)
2

‖Jhv‖Z ≤ C‖v‖1,ΩB , (3.21)

‖Jhv‖0,ΩB ≤ C‖v‖1,ΩB . (3.22)

To verify the mass conservation of the proposed scheme, we first show that
∫
Γ uD,h · nD ds =

∫
Γ uD ·

nD ds. Note that
∫

ΩD

∇ · uD,h dx =

∫

ΩD

f dx,

which yields
∫

ΓD

uD,h · nD ds+

∫

Γ

uD,h · nD ds =

∫

ΩD

f dx.

Hence,
∫

ΓD

uD,h · nD ds+

∫

Γ

uD,h · nD ds =

∫

ΓD

g2 ds+

∫

Γ

uD · nD ds,

which implies
∫

Γ

uD,h · nD ds =

∫

Γ

uD · nD ds. (3.23)

We remark that the property (3.23) is crucial for the proof of the mass conservation. For simplicity,
we assume that f is a polynomial function hereafter and belongs to QD

h .

Lemma 3.1. (strong mass conservation). The interface condition (2.6) is satisfied exactly for the
discrete solution, i.e.,

uB,h · nD = uD,h · nD on Γ.

In addition, uh ∈ H(div; Ω), ∇ · uB,h = 0 and ∇ · uD,h = f . It holds

uB,h · nB = Πh,ΓBg1 on ΓB

and

∇ · (u − uh) = 0 in Ω. (3.24)

Proof. First, note that (3.5) holds for any qB ∈ QB
h . Indeed, we have from (2.9) and (3.23)

∫

Γ

uD,h · nD ds =

∫

Γ

uD · nD ds =

∫

ΓB

g1 ds,

which implies that (3.5) holds for any qB = c, where c is a constant.
From (3.5) and the adjoint property (3.7), we can infer that

−
∑

e∈Fh,Γ

(uD,h · nD, qB)e −
∑

e∈Fpr,B

(JuB,h · nK , qB)e −
∑

e∈Fh,Γ

(uB,h · nB, qB)e

+
∑

τ∈Th,B

(qB,∇ · uB,h)τ = −(Πh,ΓBg1, qB)ΓB ∀qB ∈ QB
h .

(3.25)
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We can take qB in line with (3.1)-(3.2) such that

(qB , pk)e = −(uB,h · nB −Πh,ΓBg1, pk)e ∀pk ∈ P k(e), e ∈ ΓB,

(qB , pk)e = −(JuB,h · nK , pk)e ∀pk ∈ P k(e), e ∈ Fpr,B\ΓB,

(qB , pk)e = (uB,h · nD − uD,h · nD, pk)e ∀pk ∈ P k(e), e ∈ Fh,Γ,

(qB , pk−1)τ = (∇ · uB,h, pk−1)τ ∀pk−1 ∈ P k−1(τ), τ ∈ Th,B.

Then we can infer from (3.25) that
∑

e∈Fh,Γ

‖uB,h · nD − uD,h · nD‖20,e +
∑

e∈F0
pr,B

‖ JuB,h · nK ‖20,e +
∑

τ∈Th,B

‖∇ · uB,h‖
2
0,τ

+
∑

e∈ΓB

‖uB,h · nB −Πh,ΓBg1‖
2
0,e = 0,

which yields

uB,h · nD = uD,h · nD on Γ,

JuB,h · nKe = 0 ∀e ∈ Fpr,B\ΓB,

∇ · uB,h |τ = 0 ∀τ ∈ Th,B,

uB,h · nB |e = Πh,ΓBg1 |e ∀e ∈ ΓB.

Hence, uB,h is divergence free in ΩB, the interface condition (2.6) is satisfied exactly and uB,h ·n =
Πh,ΓBg1 on ΓB. Finally, taking qD = ∇ · uD,h − f and vB = 0 in (3.4) implies that ∇ · uD,h = f .
Thus, (3.24) holds.

Remark 3.1. Thanks to the special choice of the finite element spaces, we are able to achieve a
H(div ; Ω)-conforming velocity over the whole domain. This choice also benefits the treatment of inter-
face conditions. Indeed, the interface conditions can be imposed exactly without resorting to additional
variables. Importantly, the proposed scheme satisfies the mass conservation exactly. These desirable
merits make our scheme a good candidate for the simulation of the coupled flow and transport. For the
sake of simplicity, we adopt the interface conditions (2.6)-(2.7), and our scheme can also be extended
to solve the coupling of Brinkman-Darcy flow with Beavers-Joseph-Saffman interface conditions.

Since uh is the L2-orthogonal projection of u on the boundary, we have from the approximation
properties of Πh,Γi , i = B,D that

‖(u− uh) · n‖0,∂Ω ≤ Chk+1‖u‖k+1,∂Ω. (3.26)

Theorem 3.1. (unique solvability). There exists a unique solution to (3.3)-(3.5).

Proof. As (3.3)-(3.5) is a square linear system, uniqueness implies existence. Thus, it suffices to show
the uniqueness. To this end, we set fD = fB = 0 and f = g1 = 0. Then taking GB = Lh, vB = uB,h,
qB = pB,h, vD = uD,h and qD = pD,h in (3.3)-(3.5) and summing up the resulting equations, we can
obtain

‖ǫ−
1
2Lh‖

2
0,ΩB

+ ‖K
−1

2

D uD,h‖
2
0,ΩD

+ ‖α
1
2uB,h‖

2
0,ΩB

= 0.

Thus, we can infer that Lh = 0 and uD,h = uB,h = 0.
On the other hand, we have from (3.4), the inf-sup condition (3.8) and the adjoint property (3.7)

that

‖pB,h‖h ≤ C sup
vB∈HB

h

bh(vB, pB,h)

‖vB‖0,ΩB

= C sup
vB∈HB

h

b∗h(pB,h,vB)

‖vB‖0,ΩB

= 0.

Since ‖pB,h‖h defines a norm on Q0
h, it follows that pB,h = 0.

Finally, we have from the inf-sup condition (cf. [32]) and (3.3) that

‖pD,h‖0,ΩD ≤ C sup
vD∈HD

h

(pD,h,∇ · vD)ΩD

‖vD‖div,ΩD

= 0.

Hence pD,h = 0. Therefore, the proof is completed.
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4 A priori error estimate

In this section, we will prove the convergence error estimates for all the variables measured in proper
norms. In particular, the velocity error is shown to be independent of the pressure variable. To this
end, we first prove the following inf-sup condition, which will play an important role for later analysis.

Lemma 4.1. There exists a positive constant C independent of the meshsize such that

‖q‖0,ΩD ≤ C sup
v∈H0,Γ(div;ΩD)

(∇ · v, q)ΩD

‖v‖div,ΩD

for any q ∈ L2(ΩD).

Proof. Consider the boundary value problem

∆z = q in ΩD,

z = 0 on ΓD,

∇z · n = 0 on Γ.

The weak formulation reads: Find z ∈ H1
0,ΓD

(ΩD) such that

(∇z,∇w)ΩD = −(q, w)ΩD . (4.1)

The Lax-Milgram lemma implies that (4.1) has a unique solution z ∈ H1
0,ΓD

(ΩD). In addition, we
have ‖z‖2,ΩD ≤ C‖q‖0,ΩD .
Let σ̂ := ∇z, we have ∇ · σ̂ = q in ΩD, in addition σ̂ ·n = 0 on Γ, which yields σ̂ ∈ H0,Γ(div; ΩD).

Then we have

sup
σ̂∈H0,Γ(div;ΩD)

(∇ · σ̂, q)ΩD

‖σ̂‖div,ΩD

≥
‖q‖20,ΩD

‖σ̂‖div,ΩD

≥ C‖q‖0,ΩD .

The following error equations can be easily obtained by performing integration by parts on the
discrete formulation (3.3)-(3.5)

(ǫ−1(L−Lh),GB)ΩB −B∗
h(uB − uB,h,GB) + (K−1

D (uD − uD,h),vD)ΩD

+ Ih(pB − pB,h,vD)−Ah(vD, pD − pD,h) = 0, (4.2)

Bh(L−Lh,vB) + (α(uB − uB,h),vB)ΩB + b∗h(pB − pB,h,vB) +Ah(uD − uD,h, qD) = 0, (4.3)

− Ih(qB ,uD − uD,h)− bh(uB − uB,h, qB) = 0 (4.4)

for all (GB,vB, qB) ∈WB
h ×HB

h ×Q0
h and (vD, qD) ∈ HD

h,0 ×QD
h .

Lemma 4.2. Let (Lh,uB,h, pB,h) ∈ WB
h ×HB

h × Q0
h and (uD,h, pD,h) ∈ HD

h,g2
× QD

h be the discrete
solution of (3.3)-(3.5). Then, there exists a positive constant C independent of the mesh size such that

‖ǫ−
1
2 (ΠhL−Lh)‖0,ΩB + ‖K

− 1
2

D (ΠBDMuD − uD,h)‖0,ΩD + ‖α
1
2 (JhuB − uB,h)‖0,ΩB

≤ C
(
‖ǫ−

1
2 (ΠhL−L)‖0,ΩB + ‖K

− 1
2

D (ΠBDMuD − uD)‖0,ΩD + ‖α
1
2 (JhuB − uB)‖0,ΩB

)
.

Proof. Taking GB = ΠhG − Gh, vB = JhuB − uB,h, qB = IhpB − pB,h, vD = ΠBDMuD − uD,h,
qD = PhpD − pD,h in (4.2)-(4.4) and summing up the resulting equations yield

(ǫ−1(L−Lh),ΠhL−Lh)ΩB + (K−1
D (uD − uD,h),Π

BDMuD − uD,h)ΩD

+ (α(uB − uB,h), JhuB − uB,h)ΩB +
∑

e∈Fh,Γ

((ΠBDMuD − uD,h) · nD, pB − pB,h)e

−
∑

e∈Fh,Γ

((uD − uD,h) · nD, IhpB − pB,h)e = 0,

(4.5)
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where we employ (3.6), (3.7), (3.12) and (3.18)-(3.20).
We can infer from the definitions of Ih and ΠBDM that

∑

e∈Fh,Γ

((ΠBDMuD − uD,h) · nD, pB − pB,h)e −
∑

e∈Fh,Γ

((uD − uD,h) · nD, IhpB − pB,h)e = 0.

Therefore, (4.5) can be rewritten as

(ǫ−1(L−Lh),ΠhL−Lh)ΩB + (K−1
D (uD − uD,h),Π

BDMuD − uD,h)ΩD

+ (α(uB − uB,h), JhuB − uB,h)ΩB = 0,

which coupled with Young’s inequality leads to

‖ǫ−
1
2 (ΠhL−Lh)‖

2
0,ΩB

+ ‖K
− 1

2

D (ΠBDMuD − uD,h)‖
2
0,ΩD

+ ‖α
1
2 (JhuB − uB,h)‖

2
0,ΩB

≤ C
(
‖ǫ−

1
2 (ΠhL−L)‖20,ΩB

+ ‖K
− 1

2

D (ΠBDMuD − uD)‖
2
0,ΩD

+ ‖α
1
2 (JhuB − uB)‖

2
0,ΩB

)
.

Therefore, the proof is completed.

Lemma 4.3. Let (Lh,uB,h, pB,h) ∈ WB
h ×HB

h × Q0
h and (uD,h, pD,h) ∈ HD

h,g2
× QD

h be the discrete
solution of (3.3)-(3.5). Then, the following convergence estimates hold

‖PhpD − pD,h‖0,ΩD ≤ C‖uD − uD,h‖0,ΩD ,

‖IhpB − pB,h‖0,ΩB ≤ C
(
‖ΠhL−Lh‖0,ΩB + α

1
2
max‖α

1
2 (uB − uB,h)‖0,ΩB

)
,

‖∇ · (uD − uD,h)‖0,ΩD = ‖∇ · (ΠBDMuD − uD)‖0,ΩD ,

where αmax is the maximum eigenvalue of α.

Proof. Note that pB,h ∈ L2
0(ΩB) and IhpB ∈ L2

0(ΩB) (cf. (3.14)), thereby IhpB −pB,h ∈ L2
0(ΩB), then

it is well known that the following inf-sup condition holds (cf. [19])

‖IhpB − pB,h‖0,ΩB ≤ C sup
v∈H1

0 (ΩB)2

(∇ · v, IhpB − pB,h)ΩB

‖v‖1,ΩB

,

where we can estimate the numerator of the right-hand side by the Cauchy-Schwarz inequality, (3.12),
(3.19) and (4.3)

(∇ · v, IhpB − pB,h)ΩB =
∑

e∈Fdl,B

(v · n, JIhpB − pB,hK)e −
∑

τ∈Th,B

(v,∇(IhpB − pB,h))τ

= −bh(v, IhpB − pB,h) = −bh(Jhv, IhpB − pB,h)

= Bh(ΠhL−Lh, Jhv) + (α(uB − uB,h), Jhv)ΩB

≤ C
(
‖ΠhL−Lh‖0,ΩB‖Jhv‖Z + α

1
2
max‖α

1
2 (uB − uB,h)‖0,ΩB‖Jhv‖0,ΩB

)
.

The above estimates coupled with (3.21) and (3.22) lead to

‖IhpB − pB,h‖0,ΩB ≤ C
(
‖ΠhL−Lh‖0,ΩB + α

1
2
max‖α

1
2 (uB − uB,h)‖0,ΩB

)
.

Next, we prove the error estimate for ‖PhpD − pD,h‖0,ΩD . We have from Lemma 4.1 that

‖PhpD − pD,h‖0,ΩD ≤ C sup
v∈H0,Γ(div;ΩD)

(PhpD − pD,h,∇ · v)ΩD

‖v‖div,ΩD

= C sup
v∈H0,Γ(div;ΩD)

Ah(v,PhpD − pD,h)

‖v‖div,ΩD

.

(4.6)
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Following [17, Section 4.2], we can infer that there exists a Fortin interpolation operator ΠF which
satisfies

Ah(v −ΠFv, q) = 0 ∀q ∈ QD
h ,

‖ΠFv‖div,ΩD ≤ C‖v‖div,ΩD .

Therefore, we have from (4.2) and (4.6) that

‖PhpD − pD,h‖0,ΩD ≤ C sup
v∈H0,Γ(div;ΩD)

Ah(Π
Fv,PhpD − pD,h)

‖v‖div,ΩD

= C sup
v∈H0,Γ(div;ΩD)

(K−1
D (uD − uD,h),Π

Fv)ΩD

‖v‖div,ΩD

≤ C‖K−1
D (uD − uD,h)‖0,ΩD .

On the other hand, we can deduce from (4.3) that

(∇ · (ΠBDMuD − uD,h), qD)ΩD = 0 ∀qD ∈ QD
h ,

which implies ∇ · (ΠBDMuD − uD,h) |ΩD= 0. Therefore, we have

‖∇ · (uD − uD,h)‖0,ΩD = ‖∇ · (ΠBDMuD − uD)‖0,ΩD .

Combining Lemmas 4.2 and 4.3, and the interpolation error estimates (3.9)-(3.11), (3.13) and (3.16)-
(3.17) leads to the next theorem.

Theorem 4.1. Assume that (L,u) ∈ Hk+1(ΩB)
2×2 × (Hk+1(Ω)2 ∩ Hk(div; ΩD)) and (pB, pD) ∈

Hk+1(ΩB)×Hk+1(ΩD). Let (Lh,uB,h, pB,h) ∈ WB
h ×HB

h ×Q0
h and (uD,h, pD,h) ∈ HD

h,g2
×QD

h be the
discrete solution of (3.3)-(3.5), then the following estimates hold

‖ǫ−
1
2 (L−Lh)‖0,ΩB + ‖K

− 1
2

D (uD − uD,h)‖0,ΩD + ‖α
1
2 (uB − uB,h)‖0,ΩB

≤ Chk+1
(
ǫ−

1
2 ‖L‖k+1,ΩB + ‖u‖k+1

)
,

‖pD − pD,h‖0,ΩD ≤ Chk+1
(
ǫ−

1
2 ‖L‖k+1,ΩB + ‖u‖k+1 + ‖pD‖k+1,ΩD

)
,

‖pB − pB,h‖0,ΩB ≤ Chk+1
(
(1 + ǫ−

1
2 )‖L‖k+1,ΩB + ‖u‖k+1 + ‖pB‖k+1,ΩB

)
,

‖∇ · (uD − uD,h)‖0,ΩD ≤ Chk‖∇ · uD‖k,ΩD .

Remark 4.1. We can observe from Theorem 4.1 that the convergence error estimate for velocity uB

is independent of the pressure variable pB, which demonstrates the pressure-robustness of the proposed
scheme. The study of the pressure-robust schemes for incompressible flow is important from a practical
point of view, see, e.g, [15, 14, 30, 37].

5 Upwinding staggered DG method for transport equation

In this section, we devise a new staggered DG scheme for the transport equation, where the upwinding
fluxes as well as the boundary correction terms are exploited to improve the performance of the scheme.
For this purpose, we first define the spaces that will be used for the approximation of the transport
equation:

Uh := {φh|τ ∈ P k(τ), ∀τ ∈ Th; JφhKe = 0, ∀e ∈ F0
pr},

Wh := {qh|τ ∈ P k(τ)2, ∀τ ∈ Th; Jqh · nKe = 0, ∀e ∈ Fdl}.
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For any φh ∈ Uh, we define

‖φh‖
2
1,h,∗ :=

∑

τ∈Th

‖∇φh‖
2
0,τ +

∑

e∈Fdl

h−1
e ‖ JφhK ‖20,e.

Following [13, Lemma 3.1], we have the following trace inequality

‖φh‖0,∂Ω ≤ C‖φh‖1,h ∀φh ∈ Uh. (5.1)

We rewrite the transport equation by introducing the diffusive flux

z = −K∇c. (5.2)

Then we can recast the transport equation (2.8) into the following first-order system

φct +∇ · (cu + z) = φs+ ĉf+ − cf− in Ω, (5.3)

(cu+ z) · n = cinu · n on Γin, (5.4)

z · n = 0 on Γout. (5.5)

Multiplying (5.2) by a test function ψ ∈Wh and performing integration by parts yield

(K−1z,ψ)−
∑

τ∈Th

(c,∇ · ψ)τ +
∑

e∈Fpr

(c, JψK · ne)e = 0. (5.6)

Then multiplying (5.3) by a test function q ∈ Uh and performing integration by parts imply that

(φ
∂c

∂t
, q) + (cf−, q)−

∑

τ∈Th

(uc+ z,∇q)τ +
∑

e∈Fdl

∫

e

Jc̃qKu · ne ds+
∑

e∈Fdl

∫

e

z · ne JqK ds

+ (u · nc, q)Γout
= (φs, q)− (cinu · n, q)Γin

+ (ĉf+, q),

(5.7)

where we use the upwinding flux to define c̃, namely

c̃ :=

{
c |τ1 if u · ne ≥ 0 (outflow),

c |τ2 if u · ne < 0 (inflow).
(5.8)

Here τ1 and τ2 are the two triangles sharing the common edge e and ne points from τ1 to τ2.
Thereby, we can rewrite the second term in (5.7) as

∑

e∈Fdl

∫

e

Jc̃qKu · n ds =
∑

e∈Fdl

∫

e

{{c}} JqKu · n ds+
1

2

∑

e∈Fdl

∫

e

JcK JqK |u · n| ds.

Then the discrete formulation for (5.2)-(5.5) reads as follows: Find (zh, ch) ∈Wh × Uh such that

(K−1zh,ψ)− T ∗
h (ch,ψ) = 0, (5.9)

(φ
∂ch
∂t

, q) + (chf
−, q) + Th(zh, q)− (uhch,∇q) + Sh(ch, q) + (uhch · n, q)Γout

+
1

2
((u− uh) · nch, q)Γout

−
1

2
((u− uh) · nch, q)Γin

= (φs, q) − (cinu · n, q)Γin
+ (ĉf+, q) (5.10)

for any (ψ, q) ∈Wh×Uh. Note that the last two terms on the left-hand side of (5.10) are the boundary
correction terms, which are used to improve the stability estimate. Here, the bilinear forms are defined
by

T ∗
h (ch,ψ) =

∑

τ∈Th

(ch,∇ ·ψ)τ −
∑

e∈Fpr

(ch, JψK · n)e,

Th(zh, q) = −
∑

τ∈Th

(zh,∇q)τ +
∑

e∈Fdl

(zh · n, JqK)e,

Sh(ch, q) =
∑

e∈Fdl

∫

e

{{ch}} JqKuh · n ds+
1

2

∑

e∈Fdl

∫

e

JchK JqK |uh · n| ds.
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The initial condition ch(·, 0) is defined as ch(·, 0) = c0h, where c
0
h is the L2-orthogonal projection of c0.

Integration by parts implies the discrete adjoint property

Th(ψ, q) = T ∗
h (q,ψ) ∀(ψ, q) ∈Wh × Uh. (5.11)

Let

Auh
(zh, ch;ψh, qh) = (K−1zh,ψh)− T ∗

h (ch,ψh) + (φ
∂ch
∂t

, qh) + (chf
−, q) + Th(zh, qh)

− (uhch,∇qh) + Sh(ch, qh) + (chuh · n, qh)Γout
+

1

2
((u− uh) · nch, qh)Γout

−
1

2
((u − uh) · nch, qh)Γin

.

Then, it follows from (5.9)-(5.10) that

Auh
(zh, ch;ψh, qh) = (φs, qh)− (cinu · n, qh)Γin

+ (ĉf+, qh). (5.12)

Replacing (zh, ch) by (z, c) in (5.12), we can infer that the weak solution (z, c) satisfies

Au(z, c;ψh, qh) = (φs, qh)− (cinu · n, qh)Γin
+ (ĉf+, qh),

where

Au(z, c;ψh, qh) = (K−1z,ψh)− T ∗
h (c,ψh) + (φ

∂c

∂t
, qh) + (cf−, qh) + Th(z, qh)− (uc,∇qh)

+ Sh(c, qh) + (cu · n, qh)Γout
.

Thus

Au(z, c;ψh, qh)−Auh
(zh, ch;ψh, qh) = 0 ∀(ψh, qh) ∈ Wh × Uh. (5.13)

Similar to (3.8), the following inf-sup condition holds

‖q‖1,h,∗ ≤ C sup
ψ∈Wh

Th(ψ, q)

‖ψ‖0
∀q ∈ Uh. (5.14)

The following lemma is found to be useful for later analysis (cf. [8]).

Lemma 5.1. Suppose that for all T > 0

χ2(T ) +R(T ) ≤ A(T ) + 2

∫ T

0

B(t)χ(t) dt,

where R,A and B are nonnegative functions. Then

√
χ2 +R(T ) ≤ sup

0≤t≤T
A1/2(t) +

∫ T

0

B(t) dt.

For later analysis, we define

‖(ch, zh)‖
2
c = ‖φ1/2ch(T )‖

2
0 + 2

∫ T

0

‖K−1/2zh‖
2
0 dt.

Theorem 5.1. (stability). Let (zh, ch) ∈ Wh × Uh be the discrete solution of (5.9)-(5.10). Then, the
following stability result holds

‖(ch, zh)‖c ≤
(
φ∗‖c0‖20 +

∫ T

0

((|u · n|, c2in)Γin
+ (ĉ2, f+)ΩD ) dt

) 1
2

+

∫ T

0

‖φ
1
2 s‖0 dt. (5.15)
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Proof. From the definition of Auh
(·, ·; ·, ·) and (5.11), we have

Auh
(zh, ch; zh, ch) = (K−1zh, zh)− T ∗

h (ch, zh) + (φ
∂ch
∂t

, ch) + (chf
−, ch) + Th(zh, ch)

− (uhch,∇ch) + Sh(ch, ch) + (uh · nch, ch)Γout

+
1

2
((u− uh) · nch, ch)Γout

−
1

2
((u− uh) · nch, ch)Γin

= (K−1zh, zh) + (φ
∂ch
∂t

, ch)− (uhch,∇ch) + (chf
−, ch) + Sh(ch, ch)

+ (uh · nch, ch)Γout
+

1

2
((u− uh) · nch, ch)Γout

−
1

2
((u − uh) · nch, ch)Γin

.

The third term on the right-hand side can be recast into the following form via integration by parts

(uhch,∇ch) =
1

2

∑

τ∈Th

(uh · n, c2h)∂τ −
1

2

∑

τ∈Th

(c2h,∇ · uh)τ

=
∑

e∈Fdl

(uh · n, JchK {{ch}})e +
1

2
(uh · n, chch)∂Ω −

1

2
(c2h,∇ · uh),

where we use the fact that uh ∈ H(div ; Ω).
Thus, we have

Auh
(zh, ch; zh, ch) = ‖K− 1

2 zh‖
2
0 + (φ

∂ch
∂t

, ch) +
1

2
(c2h,∇ · uh) + (chf

−, ch)

+
1

2

∑

e∈Fdl

∫

e

JchK2 |uh · ne| ds+
1

2
(u · nch, ch)Γout

−
1

2
(u · nch, ch)Γin

.

Integrating over T yields

∫ T

0

Auh
(zh, ch; zh, ch) dt =

∫ T

0

(
‖K− 1

2zh‖
2
0 + (φ

∂ch
∂t

, ch) +
1

2
(c2h,∇ · uh) + (chf

−, ch)

+
1

2

∑

e∈Fdl

∫

e

JchK2 |uh · n| ds+
1

2
(u · nch, ch)Γout

−
1

2
(u · nch, ch)Γin

)
dt

=
1

2
(‖φ

1
2 ch(T )‖

2
0 − ‖φ

1
2 ch(0)‖

2
0) +

∫ T

0

‖K− 1
2zh‖

2
0 +

1

2

∫ T

0

(c2h,∇ · uh) +

∫ T

0

(chf
−, ch) dt

+
1

2

∫ T

0

∑

e∈Fdl

∫

e

JchK2 |uh · n| ds+
1

2

∫ T

0

(|u · n|ch, ch)∂Ω dt.

(5.16)

Therefore, it follows from (5.12) that

1

2
(‖φ

1
2 ch(T )‖

2
0 − ‖φ

1
2 ch(0)‖

2
0) +

∫ T

0

‖K− 1
2zh‖

2
0 dt+

1

2

∫ T

0

(c2h,∇ · uh) dt+

∫ T

0

(c2h, f
−) dt

+
1

2

∫ T

0

∑

e∈Fdl

∫

e

JchK2 |uh · n| ds dt+
1

2

∫ T

0

(|u · n|ch, ch)∂Ω dt

=

∫ T

0

((φs, ch) + (ĉf+, ch)− (cinu · n, ch)Γin
) dt.

(5.17)

Note that ∇ · uh |ΩB= 0 and ∇ · uh |ΩD= f , we can deduce that

1

2
(c2h,∇ · uh) + (chf

−, ch) =

{
1
2 (c

2
h, f)ΩD , ∇ · uh ≥ 0,

− 1
2 (c

2
h, f)ΩD , ∇ · uh < 0.

Furthermore, an application of the Cauchy-Schwarz inequality implies

(ĉf+, ch) ≤ (ĉ2, f+)
1
2

ΩD
(c2h, f

+)
1
2

ΩD
≤

1

2

(
(ĉ2, f+)ΩD + (c2h, f

+)ΩD

)
.
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Therefore, we can infer that

1

2
‖φ

1
2 ch(T )‖

2
0 +

∫ T

0

‖K− 1
2 zh‖

2
0 ≤

1

2
‖φ

1
2 ch(0)‖

2
0 +

1

2

∫ T

0

(
(|u · n|, c2in)Γin

+ (ĉ2, f+)ΩD

)
dt

+

∫ T

0

‖φ
1
2 s‖0‖φ

1
2 ch‖0 dt,

(5.18)

where we use Young’s inequality for the last term on the right-hand side of (5.17).
Recall that ch(0) is L

2-orthogonal projection of c0, thereby it holds

‖φ
1
2 ch(0)‖0 ≤ (φ∗)

1
2 ‖c0‖0,

Then an application of Lemma 5.1 completes the proof.

Remark 5.1. We can observe from Theorem 5.1 that our stability estimate is sharp in the sense that
there is no undetermined constant in front of the right-hand side, which benefits from the strong mass
conservation of the proposed scheme. On the other hand, the introduction of the boundary correction
terms 1

2 ((u − uh) · nch, q)Γout
and − 1

2 ((u − uh) · nch, q)Γin
improves the stability estimate for the

transport equation. Indeed, the stability estimate depends on the exact velocity on the inflow boundary
rather than on the approximated velocity.

In the proof of the next lemma, we still use Ih and Jh to represent the interpolation error estimates
which follows the same definitions given in (3.14) and (3.15) but extended to the global domain Ω.

Theorem 5.2. Let (zh, ch) ∈ Wh × Uh be the discrete solution of (5.9)-(5.10). Then, the following
convergence error estimate holds

‖(c− ch, z − zh)‖c ≤ C
(
hk+1‖c‖C(0,T ;Hk+1(Ω)) + hk+1

(∫ T

0

(‖c‖k+1 + ‖ct‖k+1

+ ‖z‖k+1 + ‖u‖k+1 + ‖p‖k+1 + ǫ−
1
2 ‖L‖k+1,ΩB + ‖u‖k+1,∂Ω) dt

))
,

where

‖c‖C(0,T ;Hm(Ω)) = max
0≤t≤T

‖c(t)‖Hm(Ω).

Proof. We can infer from (5.13) that

Auh
(zh − Jhz, ch − Ihc; zh − Jhz, ch − Ihc) = Au(z − Jhz, c− Ihc; zh − Jhz, ch − Ihc)

+Au(Jhz, Ihc; zh − Jhz, ch − Ihc)−Auh
(Jhz, Ihc; zh − Jhz, ch − Ihc).

(5.19)

Proceeding similarly to (5.16), we have

∫ T

0

Auh
(zh − Jhz, ch − Ihc; zh − Jhz, ch − Ihc) =

1

2
(‖φ

1
2 (ch − Ihc)(T )‖

2
0

− ‖φ
1
2 (ch − Ihc)(0)‖

2
0) +

∫ T

0

‖K− 1
2 (zh − Jhz)‖

2
0 +

1

2

∫ T

0

((ch − Ihc)
2,∇ · uh)

+

∫ T

0

((ch − Ihc)
2, f−) +

1

2

∫ T

0

∑

e∈Fdl

∫

e

Jch − IhcK2 |uh · n| ds

+
1

2

∫ T

0

(|u · n|(ch − Ihc), ch − Ihc)∂Ω dt.

(5.20)
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The first term on the right-hand side of (5.19) can be rewritten as follows by using the definitions of
Ih and Jh

Au(z − Jhz, c− Ihc; zh − Jhz, ch − Ihc)

= (K−1(z − Jhz), zh − Jhz) + (φ
∂(c− Ihc)

∂t
, ch − Ihc)− (u(c− Ihc),∇(ch − Ihc))

+ Sh(c− Ihc, ch − Ihc) + (u · n(c− Ihc), ch − Ihc)Γout
:=

5∑

i=1

Li.

Now we estimate Li, i = 1, . . . , 5. First, the Cauchy-Schwarz inequality yields

L1 ≤ ‖K−1/2(z − Jhz)‖0‖K
−1/2(zh − Jhz)‖0,

L2 = (φ
∂(c− Ihc)

∂t
, ch − Ihc) ≤ (φ∗)1/2‖

∂(c− Ihc)

∂t
‖0‖φ

1/2(ch − Ihc)‖0.

The inf-sup condition (5.14) and the error equation (5.13) imply that

‖ch − Ihc‖1,h,∗ ≤ CK
−1/2
min ‖K−1/2(z − zh)‖0. (5.21)

Then an application of the Cauchy-Schwarz inequality implies

4∑

i=3

Li : = −(u(c− Ihc),∇(ch − Ihc)) +
∑

e∈Fdl

∫

e

{{c− Ihc}} Jch − IhcKu · n ds

+
1

2

∑

e∈Fdl

∫

e

Jc− IhcK Jch − IhcK |u · n| ds

≤ C(‖u‖L∞(Ω)‖c− Ihc‖0 +
∑

e∈Fdl

‖u‖L∞(e)h
1/2‖c− Ihc‖0,e)‖ch − Ihc‖1,h,∗

≤ C(‖u‖L∞(Ω)‖c− Ihc‖0 +
∑

e∈Fdl

‖u‖L∞(e)h
1/2‖c− Ihc‖0,e)‖K

−1/2(z − zh)‖0.

The trace inequality (5.1) implies that

‖ch − Ihc‖0,Γout
≤ C‖ch − Ihc‖1,h,∗ ≤ CK

− 1
2

min‖K
−1

2 (z − zh)‖0.

Let ū denote the average value of u over e ∈ Γout, then we can infer from the definition of Ih, (5.1)
and (5.21) that

L5 = ((c− Ihc)(u − ū) · n, ch − Ihc)Γout
≤ C(

∑

e∈Γout

h1/2e ‖c− Ihc‖0,e‖u‖1,∞,τe)‖K
−1/2(z − zh)‖0,

where we use τe to represent the element having the edge e, i.e., e ⊂ ∂τe.
It remains to show the upper bound for the last two terms on the right-hand side of (5.19). First,

we have

Au(Jhz, Ihc; zh − Jhz, ch − Ihc)−Auh
(Jhz, Ihc; zh − Jhz, ch − Ihc)

= −((u − uh)Ihc,∇(ch − Ihc)) +
∑

e∈Fdl

∫

e

{{Ihc}} Jch − IhcK (u− uh) · n ds

+
1

2

∑

e∈Fdl

∫

e

JIhcK Jch − IhcK |(u − uh) · n| ds+ ((u − uh) · nIhc, ch − Ihc)Γout

−
1

2
((u− uh) · nIhc, ch − Ihc)Γout

+
1

2
((u− uh) · nIhc, ch − Ihc)Γin

.
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The first term on the right-hand side can be written as follows by using integration by parts

− ((u− uh)Ihc,∇(ch − Ihc))

= (∇ · ((u − uh)Ihc), ch − Ihc)−
∑

e∈Fdl

((u− uh) · n JIhcK , {{ch − Ihc}})e

−
∑

e∈Fdl

((u − uh) · n {{Ihc}} , Jch − IhcK)e − ((u− uh) · nIhc, ch − Ihc)∂Ω.

Thus, we have

Au(Jhz, Ihc; zh − Jhz, ch − Ihc)−Auh
(Jhz, Ihc; zh − Jhz, ch − Ihc)

= (∇ · ((u− uh)Ihc), ch − Ihc)−
1

2
((u− uh) · nIhc, ch − Ihc)∂Ω

+
1

2

∑

e∈Fdl

∫

e

JIhcK Jch − IhcK |(u− uh) · n| ds

−
∑

e∈Fdl

((u− uh) · n JIhcK , {{ch − Ihc}})e :=

4∑

i=1

Ri.

R1 can be estimated by using integration by parts and the Cauchy-Schwarz inequality

R1 = (∇(Ihc)(u− uh), ch − Ihc) + (Ihc∇ · (u − uh), ch − Ihc)

≤ ‖∇(Ihc)‖L∞(Ω)‖u− uh‖0‖φ
1/2(ch − Ihc)‖0,

where we use the fact that ∇ · (u− uh) = 0.
The Cauchy-Schwarz inequality, (5.1) and (5.21) imply

|R2| =
1

2
|((u− uh) · nIhc, ch − Ihc)∂Ω| ≤

1

2
‖Ihc‖L∞(∂Ω)‖(u− uh) · n‖0,∂Ω‖ch − Ihc‖0,∂Ω

≤ C‖Ihc‖L∞(∂Ω)‖(u− uh) · n‖0,∂Ω‖ch − Ihc‖1,h,∗

≤ C‖Ihc‖L∞(∂Ω)‖(u− uh) · n‖0,∂Ω‖K
−1(z − zh)‖0.

We can deduce from the Cauchy-Schwarz inequality that

R3 +R4 =
1

2

∑

e∈Fdl

∫

e

JIhcK Jch − IhcK |(u − uh) · n| ds−
∑

e∈Fdl

((u− uh) · n JIhcK , {{ch − Ihc}})e

≤ C
∑

e∈Fdl

‖c− Ihc‖L∞(e)‖(u− uh) · n‖0,e‖ch − Ihc‖0,e.

Thus, the inverse inequality leads to

R3 +R4 ≤ C
∑

e∈Fdl

‖c‖W 1,∞(e)h
1/2‖(u− uh) · n‖0,e‖φ

1/2(ch − Ihc)‖0.

Then, integrating over t for both sides of (5.19) and using (5.20) imply that

1

2
‖φ

1
2 (Ihc− ch)(T )‖

2
0 +

∫ T

0

‖K− 1
2 (Jhz − zh)‖

2
0 ≤

1

2
‖φ

1
2 (Ihc− ch)(0)‖

2
0 +

∫ T

0

(

5∑

i=1

Li +

4∑

i=1

Ri).

An appeal to Lemma 5.1 implies that

‖(Ihc− ch, Jhz − zh)‖c ≤ C
(
‖φ

1
2 (Ihc− ch)(0)‖

2
0 +

∫ T

0

(
(
∑

e∈Fh

he‖(u− uh) · n‖
2
0,e)

1
2

+ ‖u− uh‖0 + ‖K−1
2 (z − Jhz)‖0 + ‖K− 1

2 (z − zh)‖0 + ‖
∂(c− Ihc)

∂t
‖0

+ ‖c− Ihc‖0 + (
∑

e∈Fh

he‖c− Ihc‖
2
0,e)

1
2 + ‖(u− uh) · n‖0,∂Ω

)
dt
)
.
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Then an appeal to the triangle inequality, (3.9), (3.16), (3.17), Theorem 4.1 and (3.26) completes the
proof.

Now we briefly introduce the fully discrete scheme for (5.9)-(5.10) based on the backward Euler
scheme. We introduce a partition of the time interval [0, T ] into subintervals [tn, tn+1], 0 ≤ n ≤
N(N is an integer) and denote the time step size by ∆t = T

N . Using the backward Euler scheme in

time, we get the fully discrete scheme as follows: Find (zn+1
h , cn+1

h ) ∈ Wh × Uh such that

(K−1zn+1
h ,ψ)− T ∗

h (c
n+1
h ,ψ) = 0, (5.22)

(φ
cn+1
h − cnh

∆t
, q) + (cn+1

h f−, q) + Th(z
n+1
h , q)− (uhc

n+1
h ,∇q) + Sh(c

n+1
h , q) + (uhc

n+1
h · n, q)Γout

+
1

2
((u− uh) · nc

n+1
h , q)Γout

−
1

2
((u − uh) · nc

n+1
h , q)Γin

= (φsn+1, q)− (cinu · n, q)Γin
+ (ĉf+, q)

(5.23)

for any (ψ, q) ∈ Wh × Uh.
We can show the following stability result for the fully discrete scheme.

Theorem 5.3. Let (znh , c
n
h) ∈ Wh × Uh be the discrete solution of (5.22)-(5.23). Then the following

stability result holds

2∆t

N∑

n=0

‖K− 1
2zn+1

h ‖20 + ‖φ
1
2 cN+1

h ‖20 ≤ C
( N∑

n=0

∆t‖φ
1
2 sn+1‖20 +

N∑

n=0

∆t(u · n, c2in)Γin

+

N∑

n=0

∆t(ĉ2, f+)ΩD + φ∗‖c0‖20

)
.

Proof. First, we have

Auh
(zn+1

h , cn+1
h ; zn+1

h , cn+1
h ) = ‖K−1/2zn+1

h ‖20 + (φ
cn+1
h − cnh

∆t
, cn+1

h ) +
1

2
((cn+1

h )2,∇ · uh)

+
1

2

∑

e∈Fdl

(
q
cn+1
h

y2
, |uh · n|)e + (cn+1

h f−, cn+1
h ) + (uh · ncn+1

h , cn+1
h )Γout

−
1

2
(uh · n, (cn+1

h )2)∂Ω +
1

2
((u − uh) · nc

n+1
h , cn+1

h )Γout

−
1

2
((u− uh) · nc

n+1
h , cn+1

h )Γin
.

where we exploit integration by parts for (uhc
n+1
h ,∇cn+1

h ).

Noting that (a− b)a = a2−b2+(a−b)2

2 , we can deduce that

‖K−1/2zn+1
h ‖20 +

1

2∆t
(‖φ

1
2 cn+1

h ‖20 − ‖φ
1
2 cnh‖

2
0 + ‖φ

1
2 (cn+1

h − cnh)‖
2
0) +

1

2
((cn+1

h )2,∇ · uh)

+
1

2

∑

e∈Fdl

(
q
cn+1
h

y2
, |uh · n|)e + (cn+1

h f−, cn+1
h ) +

1

2
(|u · n|, (cn+1

h )2)∂Ω

= (φsn+1, cn+1
h )− (cinu · n, cn+1

h )Γin
+ (ĉf+, cn+1

h ).

Then proceeding similarly to (5.18), we can infer that

‖K− 1
2zn+1

h ‖20 +
1

2∆t
(‖φ

1
2 cn+1

h ‖20 − ‖φ
1
2 cnh‖

2
0) ≤

1

2
‖φ

1
2 sn+1‖20 +

1

2
(u · n, c2in)Γin

+
1

2
(ĉ2, f+)ΩD +

1

2
‖φ

1
2 cn+1

h ‖20,
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Making a summation for n from 0 to N and using the discrete Gronwall inequality imply that

2∆t

N∑

n=0

‖K− 1
2zn+1

h ‖20 + ‖φ
1
2 cN+1

h ‖20 ≤ C
( N∑

n=0

∆t‖φ
1
2 sn+1‖20 +

N∑

n=0

∆t(u · n, c2in)Γin

+

N∑

n=0

∆t(ĉ2, f+)ΩD + φ∗‖c0‖20

)
.

Therefore, the proof is completed.

Remark 5.2. In the above theorem, we have showed the unconditional stability for the fully discrete
scheme. Proceeding similarly to Theorem 5.2, and using the discrete Gronwall inequality and Taylor’s
expansion for the time discretization, we are able to prove the optimal convergence rates for the fully
discrete scheme, which are omitted here for simplicity.

6 Numerical experiments

In this section we present several numerical experiments to verify the proposed theories. We exploit
the backward Euler scheme for the time discretization. In the first two tests given below, we take the
final simulation time T = 0.1 and the time step size is ∆t = 10−3. In addition, we set φ = 1 for all
the tests and the interface conditions (2.6)-(2.7) are satisfied exactly for all the tests. The polynomial
order for all the tests are chosen as k = 1. In the first three tests, the grids used for the Brinkman
discretization in ΩB are obtained by first partitioning the domain into rectangles and then dividing
each rectangle into the union of triangles by connecting the center point to all the vertices. We also
use the same grid for the Darcy region ΩD. The transport grid in Ω is the grid used for the flow
discretization.

6.1 Example 1

In the first example we set ΩB = (0, 1/2) × (0, 1) and ΩD = (1/2, 1) × (0, 1). The velocity field is
continuous across the interface and the exact solution is defined by

uD =

{
(y(y − 1)(12x2 − 8x+ 1))/4

(x(2x− 1)2(2y − 1))/4
, pD = x(1/2− x)2y(1− y)

and

uB =

{
x2(1/2− x)2y2(1− y)2

x2(1/2− x)2y2(1− y)2
, pB = x(1/2− x)2(y − 1/2).

The true solution for the transport equation is defined by c = t(cos(πx) + cos(πy))/π. The inflow
concentration cin is achieved by evaluating the true concentration at Γin. We let KD = α = 1. The
convergence history for L2 errors of all the variables against the meshsize is displayed in Table 1-
Table 4, where various values of K and ǫ are exploited. We can observe that optimal convergence rates
can be achieved for different values of ǫ. As it is well known, the Brinkman equations can describe the
Stokes equations and Darcy equations depending on the values of ǫ; our numerical results indicate that
the proposed scheme can behave uniformly robust for both the Stokes and Darcy limits. In addition,
if we take K to be a small number, the convergence rate for L2-error of z will degenerate to first
order. This can be explained as follows: we use the superconvergence for ‖Ihc− ch‖1,h,∗ in (5.21) that

depends on K
−1/2
min , the control of diffusive flux will be lost due to the dependence of the regularity

constant on K.
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Mesh ‖ǫ−1/2(L− Lh)‖0,ΩB
‖uB − uB,h‖0,ΩB

‖pB − pB,h‖0,ΩB

k h−1 Error Order Error Order Error Order
1 2 6.238e-04 N/A 7.21e-05 N/A 3.97e-04 N/A

4 1.364e-04 2.19 1.27e-05 2.50 9.31e-05 2.09
8 3.33e-05 2.03 2.90e-06 2.12 2.32e-05 2.00
16 8.30e-06 2.00 7.10e-07 2.03 5.80e-06 1.99
32 2.10e-06 2.00 1.75e-07 2.01 1.45e-06 1.99

Table 1: Convergence history for Example 6.1 with K = 1, ǫ = 1.

Mesh ‖uD − uD,h‖0,ΩD
‖pD − pD,h‖0,ΩD

‖c − ch‖0 ‖z − zh‖0

k h−1 Error Order Error Order Error Order Error order
1 2 1.10e-02 N/A 4.60e-03 N/A 9.77e-04 N/A 3.70e-03 NA

4 2.90e-03 1.94 2.40e-03 0.95 2.48e-04 1.98 9.36e-04 1.98
8 7.24e-04 1.98 1.20e-03 0.99 6.23e-05 1.99 2.35e-04 1.99
16 1.81e-04 1.99 6.03e-04 0.99 1.56e-05 1.99 5.87e-05 1.99
32 4.54e-05 1.99 3.02e-04 0.99 3.90e-06 1.99 1.47e-05 1.99

Table 2: Convergence history for Example 6.1 with K = 1, ǫ = 1.

6.2 Example 2

In the second example we set ΩB = (0, 1/2)× (0, 1) and ΩD = (1/2, 1)× (0, 1) and the velocity field
is again continuous across the interface. The exact solution is defined by

uD =

{
sin(2πx) cos(2πy)

sin(2πx) cos(2πy)
, pD = x(1/2− x)2y(1− y)

and

uB =

{
x2 sin(2πx)2y2 sin(πy)2

x2 sin(2πx)2y2 sin(πy)2
, pB = x(1/2− x)2(y − 1/2).

The exact solution for transport equation is defined to be the same as Example 6.1. We letKD = α = 1.
The convergence history for L2 errors of all the variable against the meshsize is displayed in Table 5-
Table 8. Various values of K and ǫ are employed to test the robustness of the scheme. Similarly, we
can observe that optimal convergence rates can be achieved for different values of ǫ and the scheme
is uniformly robust for both the Stokes limit and Darcy limit. In addition, we can achieve second
order convergence for diffusive flux when K = 1 and the convergence rate will degenerate to first order
when K is small. This example once again highlights that the proposed scheme is uniformly robust
for various values of viscosity.

6.3 Example 3

In this example, the exact solution is unknown. This example illustrates the capability of the proposed
method in the simulation of the groundwater flow. We consider ΩB = (0, 1) × (1/2, 1) and ΩD =
(0, 1) × (0, 1/2). The Brinkman region represents a lake or a river, and the Darcy region represents
an aquifer. We let the parameters set as K = 10−5, KD = 10−2, ǫ = 0.1, α = 1 and cin = 0.
fB = fD = 0 and f = 0. The time step size is chosen to be ∆t = 10−3. Brinkman velocity is imposed
everywhere on ∂ΩB and it is set to be zero on the top and right boundary. On the left boundary we

let uB = (y(3/2−y)
5 , 0). Zero normal velocity (uD · n = 0) is imposed on the left and right boundary

of ΩD and Darcy pressure is imposed on the bottom, i.e., p(x, 0) = −0.05. In addition, the initial
condition for c is defined by

c0 =

{
1 if

√
(x− 0.1)2 + (y − 0.7)2 < 0.1,

0 otherwise.

Although imposing Dirichlet boundary condition for Brinkman velocities is not covered in our analysis,
we can modify the proposed scheme to adapt to this case. It should be noted that Ln = 0 is imposed
on Γ in order to ensure the unique solvability of the solution.
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Mesh ‖ǫ−1/2(L− Lh)‖0,ΩB
‖uB − uB,h‖0,ΩB

‖pB − pB,h‖0,ΩB

k h−1 Error Order Error Order Error Order
1 2 7.62e-07 N/A 9.66e-04 N/A 5.48e-04 N/A

4 2.99e-07 1.34 2.31e-04 2.06 1.75e-04 1.65
8 1.06e-07 1.50 5.59e-05 2.05 4.63e-05 1.92
16 3.62e-08 1.55 1.38e-05 2.02 1.17e-05 1.98
32 1.24e-08 1.55 3.40e-06 2.00 2.90e-06 1.99

Table 3: Convergence history for Example 6.1 with K = 0.001, ǫ = 10−8.

Mesh ‖uD − uD,h‖0,ΩD
‖pD − pD,h‖0,ΩD

‖c − ch‖0 ‖z − zh‖0

k h−1 Error Order Error Order Error Order Error order
1 2 9.00e-03 N/A 4.60e-03 N/A 9.17e-04 N/A 7.74e-06 NA

4 2.40e-03 1.93 2.40e-03 0.95 2.34e-04 1.97 3.75e-06 1.04
8 6.04e-04 1.97 1.20e-03 0.99 5.97e-05 1.97 2.85e-06 1.02
16 1.52e-04 1.99 6.03e-04 0.99 1.52e-05 1.97 7.94e-07 1.21
32 3.83e-05 1.99 3.02e-04 0.99 3.90e-06 1.98 2.88e-07 1.46

Table 4: Convergence history for Example 6.1 with K = 0.001, ǫ = 10−8.

The profiles of the computed concentration at different time instants t = 1, 3, 6 are displayed in
Figure 3-Figure 5. We can observe that the concentration propagates from the surface water region to
the groundwater region.

Figure 3: Concentration at t = 1 for Example 6.3.

Figure 4: Concentration at t = 3 for Example 6.3.
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Mesh ‖ǫ−1/2(L− Lh)‖0,ΩB
‖uB − uB,h‖0,ΩB

‖pB − pB,h‖0,ΩB

k h−1 Error Order Error Order Error Order
1 2 5.87e-02 N/A 6.00e-03 N/A 2.36e-02 N/A

4 2.00e-02 1.55 1.10e-03 2.39 4.90e-03 2.26
8 4.90e-03 2.01 2.54e-04 2.17 1.40e-03 1.76
16 1.20e-03 1.99 6.18e-05 2.04 3.65e-04 1.98
32 3.11e-04 1.99 1.53e-05 2.01 9.08e-05 2.00

Table 5: Convergence history for Example 6.2 with K = 1, ǫ = 1.

Mesh ‖uD − uD,h‖0,ΩD
‖pD − pD,h‖0,ΩD

‖c − ch‖0 ‖z − zh‖0

k h−1 Error Order Error Order Error Order Error order
1 2 1.40e-01 N/A 1.34e-02 N/A 1.00e-03 N/A 5.00e-03 NA

4 4.53e-02 1.63 4.50e-03 1.56 2.62e-04 1.96 1.40e-03 1.84
8 1.16e-02 1.96 1.60e-03 1.50 6.58e-05 1.99 3.64e-04 1.96
16 2.90e-03 1.99 6.60e-04 1.27 1.65e-05 1.99 9.16e-05 1.99
32 7.33e-04 1.99 3.09e-04 1.09 4.12e-06 1.99 2.30e-05 1.99

Table 6: Convergence history for Example 6.2 with K = 1, ǫ = 1.

Figure 5: Concentration at t = 6 for Example 6.3.

6.4 Example 4

In this example, the exact solution is also unknown. The computational domain corresponds to the
rectangle Ω = (0, 12) × (0, 6), where the Brinkman domain (with a maximum height of 4) is on the
top and the Darcy subdomain (with a maximum height of 2.25) on the bottom. The two subdomains
are separated by a step-polygonal interface and we use triangular meshes as the primal partition; see
Figure 6 for an illustration. Note that the triangular meshes are generated using distmesh2d, cf. [31]
and we use finer meshes near the interface. Each initial triangular mesh is subdivided into the union of
triangles for the construction of the method. We let ǫ = 1, the permeability KD is selected as random
numbers between 10−3 and 10−6, and K = α = 1. On the top segment of ΓB, normal velocities are set
to be zero, whereas on the left and right hand sides of the Brinkman domain we prescribe the following
conditions

uB · n =
1

4
(y − 4)(8− y) and uB · n =

3

16
(y − 4)(8− y),

respectively. Zero normal velocities are imposed for the vertical boundaries of ΩD and Dirichlet
pressure is imposed on the bottom, i.e., p(x, 0) = −103. In addition, we let fB = fD = 0 and f = 0.
The parameters are set as φ = 1, s = 0.01 and cin = 1 for the transport equation. The time step
size is chosen to be ∆t = 10−3. The approximated velocity and pressure are shown in Figure 7. The
approximated concentration at time T = 1, 5, 10, 20 are shown in Figure 8 and we can observe that
the concentration propagates to the right.
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Mesh ‖ǫ−1/2(L− Lh)‖0,ΩB
‖uB − uB,h‖0,ΩB

‖pB − pB,h‖0,ΩB

k h−1 Error Order Error Order Error Order
1 2 2.79e-05 N/A 3.59e-02 N/A 4.90e-03 N/A

4 1.05e-05 1.42 7.40e-03 2.28 9.23e-04 2.41
8 3.73e-06 1.49 1.80e-03 2.02 2.37e-04 1.96
16 1.28e-06 1.55 4.45e-04 2.02 5.97e-05 1.99
32 4.45e-07 1.52 1.10e-04 2.02 1.49e-05 2.00

Table 7: Convergence history for Example 6.2 with K = 0.001, ǫ = 10−8.

Mesh ‖uD − uD,h‖0,ΩD
‖pD − pD,h‖0,ΩD

‖c − ch‖0 ‖z − zh‖0

k h−1 Error Order Error Order Error Order Error order
1 2 1.24e-01 N/A 1.08e-02 N/A 2.40e-03 N/A 4.13e-05 NA

4 4.33e-02 1.52 4.00e-03 1.43 8.86e-04 1.43 2.99e-05 0.47
8 1.12e-02 1.95 1.50e-03 1.43 3.95e-04 1.59 2.16e-05 0.47
16 2.90e-03 1.99 6.45e-04 1.21 7.95e-05 1.89 1.13e-05 0.94
32 7.07e-04 1.99 3.07e-04 1.07 1.74e-05 2.19 4.28e-06 1.39

Table 8: Convergence history for Example 6.2 with K = 0.001, ǫ = 10−8.

Figure 6: Profile of the meshes used for Example 6.4. The meshes for ΩB (left) and the meshes for
ΩD.

Figure 7: Velocity magnitude uh (left) and pressure (right) for Example 6.4.
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Figure 8: Concentration at t = 1 and t = 5 for Example 6.4.

Figure 9: Concentration at t = 10 and t = 20 for Example 6.4.

7 Conclusion

In this paper we have designed a strongly mass conservative scheme for the Brinkman-Darcy flow,
where the interface conditions are enforced naturally in the discrete formulation. Theoretical analysis
indicates that the proposed scheme is exactly divergence free in the Brinkman region and it is robust for
both the Stokes limit and Darcy limit. Taking advantage of the mass conservation property, we design
an upwinding staggered DG method for the transport equation, where the boundary correction terms
are introduced to improve the stability estimate. Several numerical experiments illustrate that our
scheme is indeed robust for both the Stokes limit and Darcy limit; in addition, optimal convergence
rates can be achieved for various values of ǫ. It is worth mentioning that the proposed scheme is
pressure-robust and strongly mass conservative, which makes it a good candidate for the numerical
simulation of coupled flow and transport.
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