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MULTIDIMENSIONAL KYLE-BACK MODEL WITH A RISK

AVERSE INFORMED TRADER∗

SHREYA BOSE† AND IBRAHIM EKREN‡

Abstract. We study the continuous time Kyle-Back model with a risk averse informed trader.
We show that in a market with multiple assets and non-Gaussian prices an equilibrium exists. The
equilibrium is constructed by considering a Fokker-Planck equation and a system of partial differential
equations that are coupled with an optimal transport type constraint at maturity.
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1. Introduction. The objective of this paper is to continue the study of Kyle-
Back models with a risk averse informed trader using the optimal transport theory
based methodology initiated in [5, 8]. In this paper, we study markets with multiple
stocks and show the existence of equilibrium under the assumption of log-concavity
of the distribution of the fundamental value of the assets.

Kyle’s model, introduced in the seminal work [24], has been one of the most
influential models in finance. In its original form, the model shows how an equilibrium
between a profit maximizing informed trader and a risk-neutral market maker is
reached. In this equilibrium, an informed trader who knows the fundamental value
of an asset trades optimally to maximize his expected profit against a market maker.
The market maker who has inferior information observes the total demand of the
informed trader and noise traders and quotes a rational price for the asset. In this
seminal work, the distribution of the fundamental value is assumed to be Gaussian
and the pricing rule of the market maker is particularly simple. Indeed, the increments
of the price quoted by the market maker is proportional to the total demand received.

A large number of extensions of this model has been considered in the literature.
In particular, the risk neutral single-period Kyle models are studied in [10, 27, 22].
In discrete time, the risk aversion of the informed trader is studied in [30]. The
continuous-time model with non-Gaussian fundamental value was introduced in [2].
Many extensions of the continuous time model have been studied, see [2, 4, 7, 3, 11,
12, 1, 13, 6].

Recently, it was shown in [5] that there exists a deep connection between optimal
transport theory and Kyle-Back models and many financially important quantities
can be computed using the Monge-Kantorovich duality1. The connection stems from
the fact that in many versions of Kyle’s model, the strategy of the informed trader
has the inconspicuous trading property as defined in [15]. This property means that
the current trading rate of the informed trader has zero mean conditional to the
information of the market maker . Such a property creates distributional constraints
on the total demand received by the market maker at maturity. Thus, a natural
pricing rule at maturity for the market maker is to use the optimal transport map (or
Brenier’s map) as defined in [9, 26]. The strategy of the informed trader can also be
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2 S. BOSE AND I. EKREN

interpreted as the Brownian bridge whose final condition is determined by an optimal
transport map and the private information of the informed trader. Additionally, the
potential functions, which are the optimizers of the dual formulation of the optimal
transport problem, provides expressions for the profits of the informed trader and the
market maker, see [5, Theorem 3.2 and Corollary 3.1].

In this paper, we aim to extend the results in [8] to a multi-dimensional case. A
fundamental challenge in treating the case of the risk-averse insider is the fact that the
total demand Yt is not a sufficient statistic for the pricing rule of the market maker
and the strategy of the informed trader. This point was noted in [15], where the
author shows that both the pricing rule and the strategy of the informed trader are
path-dependent functionals of Y , see also [14]. It is also shown in [15] that the relevant

statistic is a stochastic integral ξt =
∫ t

0
λsdYs driven by Y where the integrand λt,

called the price pressure, is a deterministic function of time. The price pressure is
then determined by an algebraic equation. Given the fact that the price pressure is
taken to be deterministic, it is shown in [15] that an equilibrium can only exist if the
fundamental value of the asset is Gaussian.

In [8], in order to relax the Gaussianity assumption of the fundamental value, the
authors allow the price pressure to be a function of (ξt). Thus, (ξt) solves a stochastic
differential equation driven by Y . Then, the algebraic condition identifying the price
pressure was shown to be an optimal transport type condition between the law of ξT
in equilibrium and the belief of the market maker on the fundamental value. This
condition yields, in the context of [8], to the existence of a fixed-point between a
Fokker-Planck equation and a quasilinear parabolic partial differential equation. This
fixed point allows the construction of an equilibrium.

The multi-asset framework studied in this paper brings forward major challenges.
First of all, although the quasilinear equation describing the pricing rule in [8] can
be stated in this multi-asset framework, we are not able to construct other functions
needed to carry out the existence proof. Thus, we derive novel tools to construct the
price pressure function. The main advantage of this methodology is to completely
avoid the study of the quasilinear pricing equation. The solution of this equation is
readily provided from a first order optimality condition of a convex conjugation.

Secondly, in our multi-asset framework the optimal transport map is not explicit
and we need to prove the continuous dependence of the transport maps as a function
of marginals of the transport problem. Given the fact that the PDE methods in [8]
require strong regularity assumptions, it was conjectured that the existence of an
equilibrium for the multi-asset problem studied here would require strong continuous
dependence estimates of the transport maps. However, our novel optimization theory
based construction presented here do not require stringent condition on the functions
defined. Thus, we are able to obtain the continuous dependence estimates needed
with tools available in the literature, see [32, Corollary 5.23].

Our optimal transport theory based construction also grandly simplifies the fil-
tering problem of the market maker. Indeed, we show that in the equilibrium we
construct, the solution of the Kushner’s equation associated to the filtering problem
of the market maker is solved by the transition density of (ξt) in equilibrium. In
fact, the optimal transport type constraints defining the fixed-point are exactly the
condition we need so that this property of the filtering problem holds.

The paper is organized as follows. We introduce the problem of interest in Section
2. After providing preliminary results in Section 3, we state our main theorem in
terms of existence of equilibrium in Section 4. In section 5, we discuss properties



MULTI ASSET KYLE-BACK MODELS 3

of the equilibrium and compute explicitly the equilibrium for Gaussian fundamental
value. In Section 6, we provide the proofs of the results of the previous sections.

1.1. Notations. Throughout this paper we will use the following notations. We
denote by Sn (resp. Sn

>0, Sn
≥0) the set of n-dimensional symmetric (resp. symmetric

positive, symmetric non-negative) matrices. The components of the vector valued
functions will be denoted using superscripts, while a point x ∈ R

n = R
n×1 has its

components written with subscripts. For vector valued functions u : Rn 7→ R
m, u =

(u1, ..., um)⊤, we write the Jacobian matrix as

Dxu =









∂u1

∂x1
. . . ∂u1

∂xn

. . .
∂um

∂x1
. . . ∂um

∂xn









=







Du1

...
Dum






∈ R

m×n.

Note that with this convention, in the case m = 1, Dxu =
(

∂u
∂x1

, ..., ∂u
∂xn

)

∈ R
1×n

denotes a row vector which is the transpose of its gradient. In the case m = 1, the
Hessian matrix D2

xu ∈ Sn, is given by

D2
xu =









∂2u
∂x2

1
. . . ∂2u

∂x1∂xn

. . .
∂2u

∂xn∂x1
. . . ∂2u

∂x2
n









For simplicity of notation, we use D and D2 instead of Dx and D2
x respectively,

whenever there is no risk of confusion. For any A ∈ R
n×n, we denote λ(A) and λ(A)

respectively the smallest and largest eigenvalues of A. By tr(A), we denote the trace
of A given by

tr(A) =

n
∑

i=1

aii.

Let Λ = [0, T ]× C([0, T ],Rn) denote the set of n dimensional continuous paths.
We endow Λ with the pseudo-metric

d∞((t, y·), (s, ỹ·)) = |t− s|+ sup
0≤r≤T

|yt∧r − ỹs∧r|.

Similarly to [18, 16, 19], we say that a mapping u : Λ → R is C1,2(Λ) if there
exists three continuous mappings ∂tu : Λ 7→ R, ∂yu : Λ 7→ R

n, ∂yyu : Λ 7→ Sn so
that for any continuous semi-martingale Y with bounded characteristics, we have the
decomposition

du(t, Y·) =

(

∂tu(t, Y·) +
1

2
tr

(

∂yyu(t, Y·)
d〈Y 〉t
dt

))

dt+ ∂yu
⊤(t, Y·)dYt.

Note that any functional which is continuous with respect to d∞ is non-anticipative.

2. The multivariate model setup. Let us consider a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P) which satisfies the usual conditions of right continuity and com-
pleteness. We assume that the probability space carries a random vector ṽ ∈ R

n and a
standard n-dimensional Brownian motion B. We assume that F is the augmentation
of the filtration generated by the process t 7→ ṽ+Bt so that ṽ and B are independent.
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In the economy that we consider, there are n ≥ 1 stocks that can be traded
continuously over the time interval [0, T ]. There are three market participants namely
an informed trader, noise traders and market makers. At the initial time (t = 0), the
informed trader learns the fundamental value of the n assets at the terminal time
(t = T ), which we denote by ṽ ∈ R

n. At the terminal time, this private information
becomes available to the other market participants. The noise traders trade in the n
assets because of some exogenous needs. The position of the informed trader at each
time t is denoted by Xt ∈ R

n and that of the noise traders is assumed to have the
form Zt = σBt ∈ R

n, where σ ∈ Sn
>0 is a deterministic symmetric positive matrix.

The market makers only observe the total demand Yt ∈ R
n where Yt = Xt + Zt

without being able to observe the separate trades from Xt and Zt. They have an
apriori belief on the distribution of the n−dimensional random variable ṽ, which we
denote as ν. Based on the information set (FY

t ) of the market maker, in equilibrium,
the risk neutral market maker quotes the following rational pricing rule for the n
stocks

Pt = E[ṽ|FY
t ], t ∈ [0, T ].(2.1)

The main objective of the informed trader is to maximize the expected profit by
choosing his trading strategy X optimally. As shown in [5, 9], the wealth of the
informed trader at final time T is given by

WT =WT (X,H) :=

∫ T

0

(ṽ −H(t,X· + Z·))
⊤dXt −

n
∑

i=1

〈X i, Hi(t,X· + Z·)〉T .(2.2)

We assume that the informed trader is risk averse with exponential utility

−γ exp(−γWT )

where γ > 0 is her risk aversion parameter.
We make the following standing assumptions on the data of our problem.

Assumption 2.1. The distribution ν of ṽ is κ-strongly log-concave for some κ >
0, i.e. there exists a function V with D2V ≥ κIn such that the density of ν with
respect to the Lebesgue measure is x ∈ R

n 7→ e−V (x).

Before going into the definition of the equilibrium, we first define the pricing rule
of the market maker followed by the class of admissible strategies of the informed
trader. As studied in [17, 15, 8], in equilibrium the pricing rule of the market maker
will be path-dependent.

Definition 2.1. A pricing rule is a mapping H : Λ 7→ R
n so that Hi ∈ C1,2(Λ)

for all i = 1, . . . , n and satisfies the integrability condition

E[|H(T, Z·)|2] +
∫ T

0

E[|H(t, Z·)|2]dt <∞.(2.3)

We denote the set of pricing rules by H.

Definition 2.2. For any given pricing rule H ∈ H, a trading strategy for the
informed trader is a continuous integrable semi-martingale X with X0 = 0, adapted
to the filtration F , and satisfying

E

[

e
γ2

2

∫

T
0

|σ(ṽ−H(t,X·+Z·))|2dt
]

<∞(2.4)
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Given H ∈ H, we denote the set of admissible strategies of the informed trader by
A(H).

The objective of the paper is to establish the existence of an equilibrium defined
as below.

Definition 2.3. A pricing rule H∗ ∈ H of the market maker and a trading strat-
egy X∗ ∈ A(H∗) for the informed trader is said to form an equilibrium if the following
two conditions hold.

• Rationality of the pricing rule: If the informed trader chooses the trading
strategy X∗, then Pt = H∗(t, Y·) = E[ṽ|FY

t ] and PT = ṽ a.s.
• Profit maximization condition: If the market maker’s pricing rule is Pt =
H∗(t, Y·), then X∗ is a maximizer of

sup
X∈A(H∗)

E [−γ exp(−γWT (X,H
∗))] .(2.5)

3. Preliminary Results. Denote by

Cl = {φ ∈ C2(Rn;R), 0 ≤ D2φ < lId, φ(0) = 0}

the set of convex functions with second derivatives bounded by lId. Let 0 ≤ l <
1

λ
2
(σ)γT

and φ ∈ Cl be fixed and define on [0, T ] × R
n the functions (E,χ,Γ, P ) =

(Eφ, χφ,Γφ, Pφ) by

E(t, z) :=
1

γ
lnE [exp (γφ(z + σ(BT −Bt)))] ∈ R(3.1)

χ(t, ξ) := argmin
z∈Rn

{

E(t, z) +
1

2γ(T − t)
|σ−1(ξ − z)|2

}

∈ R
n(3.2)

Γ(t, ξ) := E(t, χ(t, ξ)) = min
z∈Rn

{

E(t, z) +
1

2γ(T − t)
|σ−1(ξ − z)|2

}

∈ R(3.3)

P (t, ξ) := (DE)⊤(t, χ(t, ξ)) ∈ R
n.(3.4)

The following lemma shows that these functions are well-defined and provides their
properties that we will need to construct an equilibrium.

Lemma 3.1. For 0 ≤ l < 1

λ
2
(σ)γT

, and φ ∈ Cl, the function defined by

(t, ξ, z) ∈ [0, T ]× R
n × R

n 7→ E(t, z) +
1

2γ(T − t)
|σ−1(ξ − z)|2

is strongly convex in z for all t < T , and χ(t, ξ) is its unique minimizer in z for all
(t, ξ) ∈ [0, T ] × R

n. The functions (χ,Γ, P ) are C1,2([0, T ) × R
n) ∩ C0([0, T ] × R

n)
solutions of

∂Γ

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2Γ(t, ξ)(Dχ)−1(t, ξ)σ
)

=
γ|σP (t, ξ)|2

2
(3.5)

∂χi

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χi(t, ξ)(Dχ)−1(t, ξ)σ
)

= γ
(

σ2P (t, ξ)
)i

(3.6)

∂P i

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2P i(t, ξ)(Dχ)−1(t, ξ)σ
)

= 0.(3.7)
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for all i = 1, . . . , n, with final conditions

P (T, ξ) = (Dφ(ξ))⊤, χ(T, ξ) = ξ, Γ(T, ξ) = φ(ξ).(3.8)

Additionally, let φk, φ ∈ Cl be such that

φk → φ uniformly on compact sets of Rn as k → ∞.(3.9)

Then,

(Γφk(0, 0), χφk(0, 0)) → (Γφ(0, 0), χφ(0, 0)).(3.10)

Remark 3.2. (i) Using the first order optimality condition

χ(t, ξ) = ξ − (T − t)γσ2P (t, ξ)(3.11)

of the optimization problem (3.2), one can eliminate Dχ from the equation (3.7) so
that P solves a quasilinear parabolic equation. In the one dimensional case of [8],
the function P was directly constructed as the solution of such an equation, see [8,
Equation (3.1)]. After constructing P , one can obtain Γ and χ by simple integration
of P . However, we are not able to extend this methodology to the multi-dimensional
case of this paper where in order to be able to integrate P , we need some symmetry
properties of Dχ that we are unable to check.

(ii) The novel multi-dimensional construction presented here also removes strong
regularity requirement on the class Cl imposed in [8]. Because of these strong reg-
ularity requirements, in [8], it was conjectured that the extension of [8] to multi-
dimension would require the proof of strong continuous dependence estimates for the
Monge-Ampere equation. However, by removing these regularity requirements, our
novel methodology is able to use simple continuous dependence estimates of optimal
transport plans to construct the equilibrium.

As mentioned, in the equilibrium we construct, Yt is not a sufficient statistics to
define the strategies of both agents. We introduce below a novel state process (ξt)
allowing us to define these strategies. The next Lemma provides a solution of the
Fokker-Planck equation associated with this state variable in equilibrium.

Lemma 3.3. For 0 ≤ l < 1

λ
2
(σ)γT

, let (ξ0t )t∈[0,T ] = (ξφ,0t )t∈[0,T ] be the solution of

the stochastic differential equation

ξ0t =

∫ t

0

(Dχφ)−1(s, ξ0s )σdBs(3.12)

and define for x, y,∈ R
n and 0 ≤ r < t ≤ T, the function G = Gφ by

G(r, x, t, y) =
det(Dχ(t, y)) exp

(

γΓ(t, y)− γΓ(r, x)− |σ−1(χ(t,y)−χ(r,x))|2
2(t−r)

)

det(σ)(2π(t − r))n/2
.(3.13)

Then, G is the transition density of ξ0 and Gφ only depends on D2φ (and not on
Dφ(0) which would fully determine φ). We denote µφ, the distribution whose density
is Gφ(0, 0, T, ·).

Remark 3.4. (i) The main assumption we make to establish the existence of equi-
librium is based on [15, Hypothesis 4] where the author postulates that in equilibrium
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both the pricing rule of the market maker and the strategy of the informed trader are
functions of a novel state variable (ξt)t∈[0,T ] that is a stochastic integral driven by Y

of the form ξt =
∫ t

0 λsYs for a deterministic function λ. In [8], it is shown that this
novel state variable solves a stochastic differential equation driven by Y .

In the equilibrium we construct, the strategy of the informed trader satisfies the
inconspicuous trading property of [15]. Thus, under P, the FY -distribution of Y is the
distribution of σB. In this sense, the solution of (3.12) describes the distribution of
the new state variable under FY and in equilibrium. In fact, we only need ξ0 through
its distribution described with the transition density G and not the exact value of the
random variables (ξ0t ).

(ii) Through an application of the Ito’s Lemma to Γ(t, ξt)− ṽ⊤χ(t, ξt), the dynam-
ics of Γ, χ, and the endogenously determined state variable (ξt) allow us to simplify
the dynamic problem of the informed trader (2.5) into a problem of utility from termi-
nal wealth. In this sense, the equations (3.5)-(3.7), allows us to pass from the dynamic
problem of Kyle’s model to a static problem of optimal transport at time T .

We now state the following theorem which is the main mathematical contribution
of the paper and an extension of [8, Theorem 3.1] to the multi-dimensional case.

Theorem 3.5. Under Assumption 2.1, there exists γ0 > 0 so that for all γ ∈
(0, γ0) there exists φ ∈ Cl for some l > 0 so that (Dξφ)♯µ

φ = ν. Equivalently φ is a
convex solution of the Monge-Ampere equation

Gφ(0, 0, T, x) = det(D2
xφ(x))fν ((Dxφ)

⊤(x)).(3.14)

Remark 3.6. i) We note that the main contribution of Theorem 3.5 is to establish
the existence of a fixed-point. Indeed, for any φ ∈ Cl, in Lemma 3.1, we define the
function Γφ and χφ. Using these functions we can define Gφ. Then, given Gφ one can
find, thanks to the Brenier theorem [9, 26], a convex function ψ solving

Gφ(0, 0, T, x) = det(D2
xψ(x))fν((Dxψ)

⊤(x)).(3.15)

Thus, we have defined a mapping from the set of functions Cl to the set of all convex
functions. Theorem 3.5 states the existence of a fixed point for this mapping.

(ii) The reason why we require this fixed-point comes from the fact that for such
a fixed-point (Dφ)−1(ṽ) (the inverse function of Dφ : Rn 7→ R

1×n) has distribution
Gφ(0, 0, T, ·). Thus, the informed trader can find a trading strategy so that the family
of random measures G(t, ξt, T, ·) solves the filtering problem of the maker-maker of
the unknown quantity (Dφ)−1(ṽ). This crucial point simplifies the filtering problem
of the market maker in equilibrium and allows us to pinpoint an equilibrium.

4. Main result. We fix l and φ ∈ Cl as constructed in Theorem 3.5 and omit
the dependence of different quantities in these variables. Thanks to the first order
optimality condition in (3.2), we have

χ(t, ξ) + (T − t)γσ2(DE)⊤(t, χ(t, ξ)) = ξ.

Thus, χ is invertible in ξ and for all y ∈ C([0, T ],Rn), we can define the mapping
ξ : (t, y·) ∈ Λ 7→ R

n by the equality

χ(t, ξ(t, y·)) = χ(0, 0) + yt +

∫ t

0

γσ2P (s, ξ(s, y·))ds.(4.1)

The following Lemma defines our candidate equilibrium strategy the informed trader
and pricing rule for the market maker.
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Lemma 4.1. Under Assumption 2.1, there exists γ1 > 0 so that for all γ ∈ (0, γ1)
and φ as in Theorem 3.5, the mapping (t, y) ∈ Λ 7→ ξ(t, y·) is C1,2(Λ) and the pricing
rule for the market maker defined as

(t, y) ∈ Λ 7→ H∗(t, y) := Pφ(t, ξ(t, y·)) = P (t, ξ(t, y·))(4.2)

is in H. The trading strategy for the informed trader defined as

dX∗
t =

(Dφ∗)−1(ṽ)− ξt

T − t
dt(4.3)

where ξt = ξ(t, Y·) is in A(H∗).

We are now ready to provide the main result of the paper.

Theorem 4.2. Under Assumption 2.1, the pair (H∗, X∗) forms an equilibrium
where the conditional distribution of ξT conditionally on FY

t is G(t, ξt, T, ·) and the
conditional distribution of ṽ is φ♯G(t, ξt, T, ·)2. In the equilibrium we construct, the
expected utility of the informed trader conditional to his information is

−e−γ(φc(ṽ)− γT
2 |σ(ṽ−P (0,0))|2)−γΓ(0,0)− γ2T

2 P⊤(0,0)σ2P (0,0).

Proof of Theorem 4.2. The proof is provided in Subsections 6.2, 6.3, and 6.4.

5. Properties of the Equilibrium and Examples.

5.1. Properties of Equilibrium. In the risk neutral case of [5], it was shown
that the expected wealth of the informed trader is φc(ṽ). By convexity of φc, large
values of ṽ are advantageous for the informed trader. Indeed, these values correspond
to unexpected or low probability events from the perspective of the market maker.

With risk aversion, the part of the expected utility depending on ṽ is

φc(ṽ)− γT

2
|σ(ṽ − P (0, 0))|2.

Since φc and φ are smooth and convex conjugate of each other, we have the
equalities

Dφc (Dφ(ξ)) = ξ and D2φc (Dφ(ξ))D2φ(ξ) = In.

Since by construction 0 ≤ D2φ ≤ 1

λ
2
(σ)γT

In, we have

λ(D2φc) ≥ λ
2
(σ)γT

and

ṽ 7→ φc(ṽ)− γT

2
|σ(ṽ − P (0, 0))|2

is a convex function. Thus, the profit of the informed trader is still large for large
values of ṽ. However, there is a loss of utility due to the fact that the informed trader
is risk averse.

2We abuse notation here by identifying distribution and density.
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5.2. Gaussian Example. We assume that ν is the Gaussian distribution

N(m,σ2
ν)

where σν is a symmetric positive matrix andm ∈ R
n. Due to the linearity of transport

maps between Gaussian distributions, we conjecture that φ constructed in Theorem
3.5 is a quadratic function

φ(z) =
1

2
z⊤Az +B⊤z

for some A ∈ Sn
+ and B ∈ R

n. Our objective is to use the fixed-point condition (3.14)
to find A,B. To exhibit the fixed-point condition on A and B we conjecture that E
is a quadratic function

E(t, z) =
1

2
z⊤Atz +B⊤

t z + Ct

for some functions At ∈ Sn
+, Bt ∈ R

n, Ct ∈ R.
Injecting these in (6.5), we get

1

2
z⊤
∂At

∂t
z +

∂B⊤
t

∂t
z +

∂Ct

∂t
+

1

2
tr(σ2At) +

γ

2

(

z⊤Atσ +B⊤
t σ

) (

σA⊤
t z + σBt

)

1

2
z⊤

(

∂At

∂t
+ γAtσ

2At

)

z +

(

∂Bt

∂t
+ γAtσ

2Bt

)⊤
z +

∂Ct

∂t
+

1

2
tr(σ2At) +

γ

2
B⊤

t σ
2Bt

= 0.

Using the final condition of the PDE of E, we have AT = A,BT = B,CT = 0 and

∂At

∂t
+ γAtσ

2At = 0

∂Bt

∂t
+ γAtσ

2Bt = 0

∂Ct

∂t
+

1

2
tr(σ2At) +

γ

2
B⊤

t σ
2Bt = 0.

Given its final condition, we have At as

At =
(

A−1 − γ(T − t)σ2
)−1

=
1

γ
σ−1

(

(γσAσ)−1 − (T − t)In
)−1

σ−1.

Similarly, we have that the solution of

Ḃt = −γAtσ
2Bt

BT = B

is

Bt = AtA
−1B.

Finally, C can be characterised as the solution of

Ċt = −1

2
tr(σ2At)−

γ

2
B⊤

t σ
2Bt

CT = 0
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so that

E(t, z) =
1

2
(z +A−1B)⊤At(z +A−1B) + Ct −

1

2
B⊤A−1AtAB.

Then, performing the minimization problem (3.2)-(3.3) or using the first order opti-
mality condition (3.11) and the Woodburry matrix identity,

(

I −
[

I − (γ(T − t)σAσ)−1
]−1

)−1

= I −
(

I −
[

I − (γ(T − t)σAσ)−1
])−1

= I − γ(T − t)σAσ

we obtain

χ(t, ξ) = σ(In + γ(T − t)σAtσ)
−1σ−1(ξ − γ(T − t)σ2AtA

−1B)

= σ(In − γ(T − t)σAσ)σ−1(ξ − γ(T − t)σ2AtA
−1B)

= σ(In − γ(T − t)σAσ)σ−1ξ − γ(T − t)σ2B

Γ(t, ξ) = E(t, χ(t, ξ))

P (t, ξ) = At(χ(t, ξ) +A−1B) = Aξ +B.

Thanks to Lemma 3.3, up to a normalization factor

G(0, 0, T, y) ∝ e
− 1

2

(

|σ−1(y−χ(0,0))|2 )
T

−γ(y+A−1B)⊤A(y+A−1B)

)

.(5.1)

which is the Gaussian distribution

µφ = N(MA,B,Σ
2
A)

where MA,B =
(

σ−2

T − γA
)−1 (

σ−2

T χ(0, 0) + γB
)

and ΣA =
(

σ−2

T − γA
)−1/2

. The

fixed point condition on A and B is that Dφ(z) = Az + B pushes µφ to ν =
N(m,σ2

ν). Recall that for any two non-degenerate Gaussian distributions N(m1, S
2
1)

and N(m2, S
2
2), the Brenier map between these distributions is

z 7→ m2 + Λ(z −m1).

where Λ is the unique symmetric positive solution to ΛS2
1Λ = S2

2 .
Thus, the fixed-point condition can be written as

A = Λ, B = m− ΛMA,B

where ΛΣ2
AΛ = σ2

ν . This yields

σσ2
νσ

T
= σAσ (I − γTσAσ)

−1
σAσ

B = m−A

(

σ−2

T
− γA

)−1 (
σ−2

T
χ(0, 0) + γB

)

.

We compute χ(0, 0) = −γTσ2B so that

B = m.
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To compute A, we diagonalize
σσ2

νσ
T = U⊤DU for a symmetric positive matrix D and

orthongal matrix U . Then, Ã = UσAσU⊤ satisfies

Ã
(

In − TγÃ
)−1

Ã = D.

Denoting by di the diagonal terms of D, we have that Ã is diagonal with diagonal
terms ãi satisfying

ã2i
1− Tγãi

= di.

Thus,

1

ãi
=
Tγ

2
+

√

T 2γ2

4
+

1

di

and Ã is determined, which intern yields to A via the expression

A = σ−1U⊤ÃUσ−1.

Finally we obtain

P (t, ξ) = Aξ +m

and the dynamics of ξt are given by

dξt = (Dχ)−1(t, ξt)dYt = σ(In − γ(T − t)σAσ)−1σ−1dYt

In one dimension, we have

A =
1

Tσ2γ
2 +

√

T 2σ4γ2

4 + Tσ2

σ2
ν

=

√

σ4
νγ

2

4
+

σ2
ν

Tσ2
− σ2

νγ

2

which is denoted by λ∗(1) in [15]. Thus, we recover the equilibrium computed in
[15, 8].

For γ = 0 and general distribution for ν, for all φ, µφ is the Gaussian distribution
with mean χ(0, 0) = 0 and covariance matrix Tσ2 and ξt = Yt for all t ∈ [0, T ].
Thus, φ is necessarily the Brenier’s map from this given Gaussian distribution to ν.
Additionally (3.5)-(3.7) are reducued to the same heat equation. The final condition
for P is the gradient of the final condition for Γ. Thus, for all t, P (t, y) = (DE)⊤(t, y)
with Γ(T, y) being the Brenier’s map from N(0, T, σ2) to ν. This is the equilibrium
described in [5].

6. Proofs.

6.1. Proofs Results in Section 3.

Proof of Lemma 3.1. We fix (t, z) ∈ [0, T ) × R
n. Note that exp(γE) is defined

via the expression

E [exp (γφ(z + σ(BT −Bt)))](6.1)

=
1

√

2π(T − t)

∫

exp

(

γ

(

φ(z + σx) − |x|2
2γ(T − t)

))

dx.
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Thanks to convexity of φ and the multivariate Taylor expansion, for all x ∈ R
n, we

have that

γφ(z) + γ(Dφ)⊤(z)σx− |x|2
2γ(T − t)

≤ γφ(z + σx)− |x|2
2γ(T − t)

≤ γφ(z) + γ(Dφ)⊤(z)σx+
λ
2
(σ)γl

2
|x|2 − |x|2

2γ(T − t)
.

Combining this inequality with 0 ≤ lγλ
2
(σ)(T−t)
2 <

lγλ
2
(σ)T
2 < 1

2 , the fact that φ has
at most quadratic growth and Dφ has at most linear growth, we obtain that E is well
defined and there exists a constant C = Cγ,l,T,|Dφ(0)| so that

|E(t, z)| ≤ C(|z|2 + 1).

Similarly, by a dominated convergence theorem, we can obtain the wellposedness
of the first two derivatives of E in z and for all i, j = 1, . . . , n, these derivatives admit
the stochastic representations

∂E

∂zj
(t, z) =

E

[

∂φ
∂zj

(z + σ(BT −Bt))e
φz,t

]

E [eφz,t ]
.(6.2)

and

∂2E

∂zj∂zi
(t, z) =

E

[(

∂2φ
∂zj∂zi

+ γ ∂φ
∂zj

∂φ
∂zi

)

(z + σ(BT −Bt))e
φz,t

]

E [eφz,t ]
(6.3)

− γ
E

[

∂φ
∂zj

(z + σ(BT −Bt))e
φz,t

]

E

[

∂φ
∂zi

(z + σ(BT −Bt))e
φz,t

]

E [eφz,t]
2

where eφz,t = eγφ(z+σ(BT−Bt)).
Thus, for any vector v ∈ R

n we have that

v⊤D2
zE(t, z)v = Ẽ

[

v⊤D2φ(z + σ(BT −Bt))v
]

(6.4)

+ γ
(

Ẽ
[

|Dφ(z + σ(BT −Bt))v|2
]

− |Ẽ [Dφ(z + σ(BT −Bt))v] |2
)

.

where Ẽ is the expectation with respect to the probability distribution which is defined

with the Radon-Nikodym derivative
exp(γφz,t)

E[exp(γφz,t)]
which is integrable. (6.4), the convex-

ity of φ, and the Cauchy-Schwarz inequality give that E is convex in z. Well-known
Malliavin derivative representations of the derivative of conditional expectation (see
[20, Lemma 2.1]) also show that E is 3 times continuously differentiable on [0, T ).
Since the derivatives in space are continuous and E solves

∂E

∂t
(t, z) +

1

2
tr
(

σ2D2E(t, z)
)

+
γ

2
|DE(t, z)σ|2 = 0(6.5)

E(T, z) = φ(z).(6.6)

we have that E is C1,3([0, T ),Rn). E is also C0([0, T ],Rn) by its stochastic represen-
tation and the dominated convergence theorem.
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The convexity of E combined with the strong convexity of z 7→ 1
2γ(T−t) |σ−1(ξ −

z)|2 gives the strong convexity of

(t, ξ, z) 7→ E(t, z) +
1

2γ(T − t)
|σ−1(ξ − z)|2.

Thus, χ(t, ξ) is unique, well-defined, and characterized via the first order optimality
condition

γ(T − t)σ2(DE)⊤(t, χ(t, ξ)) + χ(t, ξ) = ξ(6.7)

for all t ∈ [0, T ) and χ(T, ξ) = ξ. We define

R(t, z) := γ(T − t)σ2(DE)⊤(t, z) + z(6.8)

so that by (6.7) we have

R(t, χ(t, ξ)) = ξ.(6.9)

The implicit functions theorem shows that the inverse of R, which is χ, is continuously
differentiable and

(Dχ)−1(t, ξ) = γ(T − t)σ2D2E(t, χ(t, ξ)) + In.(6.10)

Thus, χ ∈ C1,2([0, T ),Rn) ∪ C0([0, T ],Rn). By the definition of Γ and P , these
functions are also in C1,2([0, T ),Rn) ∪ C0([0, T ],Rn).

We now show that the functions defined by (3.2)-(3.3) satisfy (3.5)-(3.6). Dif-
ferentiating (6.9) in time once and in space twice with respect to ξi and ξj , for all
k = 1, . . . , n we obtain

∂Rk

∂t
(t, χ(t, ξ)) +

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

∂χl

∂t
(t, ξ) = 0

n
∑

l,m=1

∂2Rk

∂zl∂zm
(t, χ(t, ξ))

∂χm

∂ξi
(t, ξ)

∂χl

∂ξj
(t, ξ) +

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

∂2χl

∂ξjξi
(t, ξ) = 0.

We multiply the second equality with
(

σ⊤(Dχ)−⊤(t, ξ)
)

r,i

(

(Dχ)−1(t, ξ)σ
)

j,r
and sum

in r, i, j to obtain for all k = 1, . . . , n the equality

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

+
∂Rk

∂t
(t, χ(t, ξ)) +

1

2
tr
(

σ⊤D2
zR

k(t, χ(t, ξ))σ
)

= 0.(6.11)

Differentiating (6.8) in time once we obtain

∂Rk

∂t
(t, z) = −γ

(

σ2(DE)⊤(t, z)
)k

+ γ(T − t)
(

σ2 ∂(DE)⊤

∂t
(t, z)

)k

.

Differentiating (6.5) and using (6.8), we have

1

2
tr
(

σ⊤D2Rk(t, z)σ
)

= −γ(T − t)
(

σ2 ∂(DE)⊤

∂t
(t, z)

)k

− γ2(T − t)
(

σ2D2E(t, z)σ2(DE)⊤(t, z)
)k
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Thus, injecting this equality and the expression for ∂Rk

∂t (t, z) in (6.11), we have

0 = −γ
[

γ(T − t)
(

σ2D2E(t, χ(t, ξ))σ2(DE)⊤(t, χ(t, ξ))
)k

+
(

σ2(DE)⊤(t, χ(t, ξ))
)k
]

+
n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

.

Using the definition of P (t, ξ) given by equation (3.4) we have,

0 = −γ
[

γ(T − t)
(

σ2D2
zE(t, χ(t, ξ))σ2P (t, ξ)

)k
+
(

σ2P (t, ξ)
)k
]

+
n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

= −γ
[

n
∑

l=1

(

γ(T − t)σ2D2
zE(t, χ(t, ξ)) + Id

)

k,l

(

σ2P (t, ξ)
)l
]

+

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

=

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

− γσ2P (t, ξ)
)l

+

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

.

Finally we obtain that for all k,

0 =

n
∑

l=1

∂Rk

∂zl
(t, χ(t, ξ))

×
(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

− (γσ2P (t, ξ))l
)

Multiplying with the inverse of the matrix ∂Rk

∂zl
(t, χ(t, ξ)), which by the help of equa-

tions (6.9) and (6.10) is Dχ(t, ξ), we obtain that for all l = 1, . . . , n, the equality

0 =
∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

− (γσ2P (t, ξ))l

which is (3.6). Next, we prove equation (3.5). Using the definition of Γ given by (3.3)
and differentiating it once in time and twice in space with respect to ξi and ξj , we get

∂Γ

∂t
(t, ξ) =

∂E

∂t
(t, χ(t, ξ)) +

n
∑

l=1

∂E

∂zl
(t, χ(t, ξ))

∂χl

∂t
(t, ξ)(6.12)

∂2Γ

∂ξiξj
(t, ξ) =

n
∑

l,m=1

∂2E

∂zl∂zm
(t, χ(t, ξ))

∂χm

∂ξi
(t, ξ)

∂χl

∂ξj
(t, ξ)

+

n
∑

l=1

∂E

∂zl
(t, χ(t, ξ))

∂2χl

∂ξjξi
(t, ξ).(6.13)
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Similarly to (6.11), using (6.13), we form the trace term, which is given by

tr
(

σ⊤(Dχ)−⊤(t, ξ)D2Γ(t, ξ)(Dχ)−1(t, ξ)σ
)

= tr(σ⊤D2
zE(t, χ(t, ξ)σ))

+
n
∑

l=1

∂E

∂zl
(t, χ(t, ξ))tr

(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

Combining this equality with (6.12) and using (6.5), (3.6), and (3.4), we have

∂Γ

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2Γ(t, ξ)(Dχ)−1(t, ξ)σ
)

= −γ
2
|DE(t, χ(t, ξ))σ|2

+
n
∑

l=1

∂E

∂zl
(t, χ(t, ξ))

(

∂χl

∂t
(t, ξ) +

1

2
tr
(

σ⊤(Dχ)−⊤(t, ξ)D2χl(t, ξ)(Dχ)−1(t, ξ)σ
)

)

= −γ
2
|DE(t, χ(t, ξ))σ|2 + γDE(t, χ(t, ξ))σ2P (t, ξ)

= −γ
2
|σP (t, ξ)|2 + γ|σP (t, ξ)|2 =

γ

2
|σP (t, ξ)|2.

In order to obtain (3.7), we write the optimality condition (6.7) as

γ(T − t)σ2P (t, ξ) + χ(t, ξ) = ξ

and use (3.6).
It remains to show the continuous dependence of Γ, χ in φ. Let φk, φ ∈ Cl be

such that φk → φ uniformly on compact sets of R
n. Denote Ek = Eφk and fix

(t, ξ) ∈ [0, T ) × R
n. Thanks to (6.4), the functions z 7→ Ek(t, z) are convex and

given the representation (6.1) and the subsequent bounds on the integrands, uniform
convergence on compact sets of φk to φ easily implies that z 7→ Ek converges pointwise
to z 7→ E(t, z). By an application of [28, Theorem 10.8], this convergence is uniform
on compact sets of Rn.

The sequence of functions

z ∈ R
n 7→ Ek(t, z) +

1

2γ(T − t)
|σ−1(ξ − z)|2

are strongly convex uniformly in k. This is also the case for

z ∈ R
n 7→ E(t, z) +

1

2γ(T − t)
|σ−1(ξ − z)|2.

Due to uniform strong convexity of this function and the uniform convergence on
compact sets, one can easily construct a ball a round χ(t, ξ) so that χk(t, ξ) is in this
ball for k large enough. Thus, the sequence (χk(t, ξ))k admits a limit. Due to the
uniqueness of the minimizer of

z ∈ R
n 7→ E(t, z) +

1

2γ(T − t)
|σ−1(ξ − z)|2

we have χk(t, ξ) → χ(t, ξ). This convergence combined with the uniform convergence
on compact sets of Ek yields to Γk(t, ξ) = Ek(t, χk(t, ξ)) → Γ(t, ξ) which completes
the proof.
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Proof of Lemma 3.3. Fix r ∈ [0, T ) and for t ∈ [r, T ], denote

Ỹr,t = χ(r, x) + σ(Bt −Br) and Z̃r,t = eγE(t,Ỹr,t)−γE(t,χ(r,x)).(6.14)

Thanks to (6.5), we have

Z̃r,t = e−
1
2

∫

t
r
γ2|σP (s,χ−1(s,Ỹr,s))|2ds+

∫

t
r
γP⊤(s,χ−1(s,Ỹr,s))σdBs .

We now define the process χ0
t = χ(t, ξ0t ) which satisfies the dynamics

dχ0
t = σdBt + γσ2P (t, χ−1(t, χ0

t ))dt

with χ0
r = χ(r, x). Thanks to (3) and [31, Theorem 3.1], the density of χ0

t is given by

1

det(σ)(2π(t − r))n/2
e
− |y−χ(r,x)|2

2(t−r) E[Z̃r,t|Ỹr,t = y].

Thanks to (6.14), this density is

1

det(σ)(2π(t− r))n/2
e
− |y−χ(r,x)|2

2(t−r) eγE(t,y)−γE(t,χ(r,x)).

Thus, the density of ξ0t = χ−1(t, χ0
t ) is (3.13).

It remains to show that µφ only depends on D2φ. Note that since φ(0) = 0 for

all φ ∈ Cl, due to the equality φ(z) =
∫ 1

0
z⊤Dφ(sz)ds we directly have that µφ only

depends on Dφ. Additionally, the equality

φ(z) =

∫ 1

0

∫ s

0

z⊤D2φ(rz)zdrds + z⊤Dφ(0).

shows that µφ only depends on D2φ if and only if for all A ∈ R
n,

µφA = µφ

where φA(z) = φ(z)+A⊤z (this means that shifting the derivative of φ by a constant
does not change µφ). In order to prove this claim we fix A ∈ R

n and denote

(EA,ΓA, χA, PA, GA) := (EφA ,ΓφA , χφA , PφA , GφA).

Thanks to (6.1),

eγE
A(t,z) =

eA
⊤z

(2π(T − t))n/2

∫

e
γ

(

φ(z+σx)+A⊤σx− |x|2

2γ(T−t)

)

dx

=
eγA

⊤z+ γ(T−t)|σA|2

2

(2π(T − t))n/2

∫

e
γφ(z+σx)− 1

2(T−t)
|x−γ(T−t)σA|2

dx

= eγA
⊤z+ γ(T−t)|σA|2

2 +γE(t,z+γ(T−t)σ2A).

Thus, by direct computation and using (3.11) and the definitions of χA,ΓA, we have

EA(t, z) = A⊤z +
(T − t)|σA|2

2
+ E(t, z + γ(T − t)σ2A)

DEA(t, z) = A⊤ +DE(t, z + γ(T − t)σ2A)

χA(t, ξ) = χ(t, ξ)− γ(T − t)σ2A

ΓA(t, ξ) = EA(t, χA(t, ξ))

= A⊤χ(t, ξ)− (T − t)|σA|2
2

+ Γ(t, ξ)
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Thus, using the definition of G, we obtain the invariance

GA(r, x, t, y) =
det(DχA(t, y)) exp

(

γΓA(t, y)− γΓA(r, x) − |σ−1(χA(t,y)−χA(r,x))|2
2(t−r)

)

det(σ)(2π(t− r))n/2

=
det(Dχ(t, y)) exp

(

γΓ(t, y)− γΓ(r, x)− |σ−1(χ(t,y)−χ(r,x))|2
2(t−r)

)

det(σ)(2π(t − r))n/2

= G(r, x, t, y).

which concludes the proof.

Proof of Theorem 3.5. The proof is based on the proof of [8, Theorem 3.1]. We
only provide a detailed proof of the technicalities that are due to the multi-dimensional

aspects. Given κ > 0 defined in Assumption 2.1, define γ0 =
√
κ

2λ(σ)
√
T
and l = 1

λ(σ)
√
κT

so that for all γ ∈ (0, γ0), we have that

0 < l =
1

λ(σ)
√
Tκ

=
1

2λ
2
(σ)Tγ0

<
1

λ
2
(σ)Tγ

.

Thus, we can use Lemmas 3.1-3.3 and the Brenier’s theorem [9, 26] to define a mapping

M : Cl 7→ C∞

that associates to φ ∈ Cl, M(φ) which is the Brenier map pushing µφ (which has
density Gφ(0, 0, T, ·) to ν and normalized to be 0 at 0. Note that

G(0, 0, T, y) =
exp

(

γφ(y)− γΓ(0, 0)− |σ−1(y−χ(0,0))|2
2T

)

det(σ)(2πT )n/2
and

−v⊤D2
y(lnG(0, 0, T, y))v =

|σ−1v|2
T

− γv⊤D2φ(y)v ≤ |v|2

λ
2
(σ)T

for all v ∈ R
n. Thus, [23, Theorem 6.1] implies that

κ(λ(D2M(φ)))2 ≤ 1

λ
2
(σ)T

.

Equivalently

λ(D2M(φ)) ≤ 1
√

λ
2
(σ)Tκ

.

Due to our choice of l, we have that

λ(D2M(φ)) ≤ 1
√

λ
2
(σ)Tκ

= l.

Thus, M(φ) ∈ Cl and M is indeed a mapping from Cl to itself.
We endow Cl with uniform convergence on compact sets of derivatives, i.e., φk ∈

Cl → φ ∈ Cl if supx∈K |Dφk(x)−Dφ(x)| → 0 for all compact K ⊂ R
n. We now show

that M is continuous in this topology. Fix φk ∈ Cl → φ ∈ Cl. Note that the uniform
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convergence on compact sets of the derivatives imply the uniform convergence on com-
pact sets of the functions. By Lemma 3.1, (Γφk(0, 0), χφk(0, 0)) → (Γφ(0, 0), χφ(0, 0)).
Thus, we have the uniform convergence on compact sets

Gφk(0, 0, T, y) =
exp

(

γφk(y)− γΓφk(0, 0)− |σ−1(y−χφk (0,0))|2
2T

)

det(σ)(2πT )n/2
(6.15)

→ Gφ(0, 0, T, y) =
exp

(

γφ(y)− γΓφ(0, 0)− |σ−1(y−χφ(0,0))|2
2T

)

det(σ)(2πT )n/2
.

Note that Gφ only depends on D2φ and φ ∈ Cl. By the choice of l and simple
estimates we also have that

Gφk(0, 0, T, y) ∨Gφ(0, 0, T, y) ≤ CG(y)(6.16)

where G(y) is the density of some non-degenerate Gaussian distribution and C > 0.
We now show that DM(φk) → DM(φ) in probability with respect to the density

G. (6.15)-(6.16) easily implies that µφk → µφ for the weak convergence of probability
measures. Similarly to the proof of [32, Corollary 23], this convergence implies the
convergence of transport plans, meaning for all continuous bounded function f we
have the convergence

∫

f(y,DM(φk)(y))G
φk (0, 0, T, y)dy →

∫

f(y,DM(φ)(y))Gφ(0, 0, T, y)dy.

Thanks to the continuity of M(φ), we take f(y, z) = 1∧ |DM(φ)(y)−z|
ε to obtain from

this convergence that

lim
k→∞

∫

1 ∧ |DM(φ)(y) −DM(φk)(y)|
ε

Gφk(0, 0, T, y)dy = 0.

Thus, we have the convergence in measure

lim
k→∞

∫

1{|DM(φ)(y)−DM(φk)(y)|≥ε}G(y)dy = 0.

Since the function DM(φk) is uniformly Lipschitz continuous, their convergence in
measure easily implies their pointwise convergence. This in return implies the uniform
convergence on compact sets. This is precisely the convergence in Cl of M(φk) to
M(φ). Thus, M : Cl 7→ Cl is a continuous mapping.

We now show that M(Cl) is compact which is sufficient to have a fixed-point.
Let φk be a sequence in Cl. Define φ̃k(z) = φk(z) − Dφk(0)z. Thanks to (3.3),

Gφk = Gφ̃k and therefore M(φk) = M(φ̃k). Thus, without loss of generality we
can assume that Dφk(0) = 0. This property combined with the uniform Lipschitz
continuity of Dφk and Arzela-Ascoli theorem yield that there is a subsequence of Dφk
denoted Dφkn

converging to some ψ uniformly on compact sets of Rn. By the uniform
convergence, ψ is a conservative vector field and there exists φ ∈ Cl so that ψ = Dφ.
We can now use the continuity of M to obtain the fact that {M(φk) : k ≥ 1} has an
accumulation point. Thus, by the Schauder fixed-point theorem, there exists φ ∈ Cl

so that M(φ) = φ.
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6.2. Admissibility of candidate equilibrium strategies.

Proof of Lemma 4.1. The definition of (ξt) as (4.1) and the regularity of χ directly
implies that for all i = 1, . . . n, ξi ∈ C1,2(Λ) and by composition with a smooth
function (t, y·) 7→ H∗(t, y·) = P (t, ξ(t, y·)) is in C1,2(Λ).

Given our definition,H∗(T, σB·) has the same distribution as P (T, ξ0T ) = (Dφ)⊤(ξ0T ).
Since Dφ is Lipschitz continous we easily have the integrability. Similarly H∗(t, σB·)
has the same distribution as P (t, ξ0t ). Due to the martingality of P (t, ξ0t ) we easily
have the integrability condition of Definition 2.1.

In order to show the admissibility of the strategy (4.3), we only need to check the
Novikov condition (2.4) for γ small enough. The proof of this statment is similar to
[8, Section 5.2].

6.3. Market maker’s problem. If the informed trader uses the candidate
strategy (4.3) then ξ satisfies

dξt = (Dχ)−⊤(t, ξt)
(Dφ)−1(ṽ)− ξt

T − t
dt+ (Dχ)−1(t, ξt)σdBt(6.17)

where (Dφ)−1(ṽ) is unknown by the market maker. By the choice of φ, (Dφ)−1(ṽ)
has distribution G(0, 0, T, ·). Thanks to [25], the filtering equation implies that the

density ρ(t, ·) of (Dφ)−1(ṽ) conditional to FY
t = Fξ

t is the unique solution to

ρ(0, y) = G(0, 0, T, y)(6.18)

dρ(t, y)

ρ(t, y)
=

(

y −
∫

zρ(t, z)dz

T − t

)⊤
σ−2

(

Dχ(t, ξt)dξt −
∫

zρ(t, z)dz − ξt

T − t
dt

)

.(6.19)

Since G is the transition density of ξ0, G(t, ξ0t , T, y) is a martingale on [0, T ) and
(t, ξ) ∈ [0, T )×R

n → G(t, ξ, T, y) solves (3.7). Thus, applying Ito’s formula we obtain

dG(t, ξt, T, y) = DξG(t, ξt, T, y)dξt.

Note that

DξG(t, ξ, T, y)

G(t, ξ, T, y)
= −γ

(

DΓ(t, ξ)(Dχ)−1(t, ξ) +
(χ(t, ξ)− y)⊤σ−2

γ(T − t)

)

Dχ(t, ξ)

= −γ
(

P⊤(t, ξ) +
(χ(t, ξ) − y)⊤σ−2

γ(T − t)

)

Dχ(t, ξ)

= −γ (ξ − y)⊤σ−2

γ(T − t)
Dχ(t, ξ)

where we used (3.11) to obtain the last equality. Thus,

dG(t, ξt, T, y)

G(t, ξt, T, y)
=

(y − ξt)
⊤

(T − t)
σ−2Dχ(t, ξt)dξt.

Additionally, by martinality of ξ0, we have
∫

G(t, ξt, T, y)ydy = ξt.(6.20)

Thus, the density G(t, ξt, T, ·) solves (6.19). It also satisfies the initial condition (6.18)
and we have that G(t, ξt, T, ·) = ρ(t, ·).
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Note that G(T, ξT , T, y) is a Dirac mass at ξT . Thus, ξT = (Dφ)−⊤(ṽ) almost
surely. (6.20) also implies that ξt = E[ξT |FY

t ] = E[(Dφ)−⊤(ṽ)|FY
t ] which means that

(ξt) is a FY martingale. Finally, by (3.7) an application of Ito’s Lemma P (t, ξt) is
a martingale satisfying P (T, ξT ) = Dφ⊤((Dφ)−⊤(ṽ)) = ṽ. Thus, P (t, ξt) = E[ṽ|FY

t ].
This proves the rationality of the pricing rule H defined in (4.2).

Note the proof provided here is self contained and does not rely on construction
of Markov bridges as in [12].

6.4. Informed trader’s problem. We now assume that the market maker uses
the pricing rule (4.2) and we fix X ∈ A(H∗) an admissible strategy for the informed
trader which has the semimartingale decomposition dXt = θtdt+ αtdBt, where αt is
a n×n symmetric matrix valued F -progressively measurable process. If the informed
trader uses this strategy Y then satisfies

dYt = θtdt+ (σ + αt)dBt.

ξ is defined as the solution of (4.1). By conjecturing its dynamics as

dξt = (Dξχ)
−1(t, ξt) (dYt − ηtdt)(6.21)

and applying Ito’s formula to (4.1), we can easily identify that

ηit =
1

2
tr

(

αt(Dξχ)
−⊤(t, ξt)D

2
ξχ

i(t, ξt)(Dξχ)
−1(t, ξt)αt

)

+
1

2
tr

(

σ(Dξχ)
−⊤(t, ξt)D

2
ξχ

i(t, ξt)(Dξχ)
−1(t, ξt)αt

)

+
1

2
tr

(

αt(Dξχ)
−⊤(t, ξt)D

2
ξχ

i(t, ξt)(Dξχ)
−1(t, ξt)σ

)

.

By a direct computation we also have

γ

n
∑

i=1

d〈P i, X i〉t = γtr
(

αtDξP (t, ξt)(Dξχ)
−1(t, ξt)(αt + σ)

)

dt(6.22)

= γtr
(

αtD
2
ξE(t, χ(t, ξt))(αt + σ)

)

dt.

Using the dynamics of ξt, the multidimensional Ito’s formula yields

γd(Γ(t, ξt)) =

{

γ2

2
P⊤
t σ

2Pt + γDξΓ(t, ξt) (Dξχ)
−1

(t, ξt) (θt − ηt)

+
γ

2
tr
[

α⊤
t (Dξχ)

−⊤(t, ξt)D
2
ξΓ(t, ξt) (Dξχ)

−1
(t, ξt)σ

+ (σ + αt)
⊤ (Dξχ)

−⊤ (t, ξt)D
2
ξΓ(t, ξt) (Dξχ)

−1 (t, ξt)αt

]

}

dt

+ γDξΓ(t, ξt) (Dξχ)
−1

(t, ξt)(σ + αt)dBt

=
[γ2

2
P⊤
t σ

2Pt + γP⊤
t (θt − ηt)

]

dt+ γP⊤
t (σ + αt)dBt

+
γ

2
tr
[

α⊤
t (Dξχ)

−⊤(t, ξt)D
2
ξΓ(t, ξt) (Dξχ)

−1
(t, ξt)σ

+ (σ + αt)
⊤ (Dξχ)

−⊤
(t, ξt)D

2
ξΓ(t, ξt) (Dξχ)

−1
(t, ξt)αt

]

dt
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where we use DξΓ(t, ξ) = DE(t, χ(t, ξ))Dξχ(t, ξ) = P⊤(t, ξ)Dξχ(t, ξ) to get the sec-
ond equality. Differentiating DξΓ(t, ξ) one more time and using the the expression of
η, we obtain that

γd(Γ(t, ξt)) =
[γ2

2
P⊤
t σ

2Pt + γP⊤
t θt

]

dt+ γP⊤
t (σ + αt)dBt

+
γ

2
tr
[

α⊤
t D

2
ξE(t, χ(t, ξt))σ + (σ + αt)

⊤D2
ξE(t, χ(t, ξt))αt

]

dt.(6.23)

Similarly, we have

− γd(ṽ⊤χ(t, ξt)) =
n
∑

i=1

−γd
(

ṽiχi(t, ξt)
)

= (−γ2ṽ⊤σ2Pt − γṽ⊤θt)dt− γṽ⊤(σ + αt)dBt(6.24)

Combining (6.22), (6.23), and (6.24), we get the following decomposition of the wealth

−γWT =− γ

∫ T

0

(ṽ − Pt)
⊤dXt + γ

n
∑

i=1

〈P i, X i〉T

=
Tγ2

2
ṽ⊤σ2ṽ − γ

(

ṽ⊤ξT − φ(ξT )
)

+ γ(ṽ⊤χ(0, 0)− Γ(0, 0))

+

∫ T

0

γ

2
tr
[

α⊤
t D

2
ξE(t, χ(t, ξt))αt

]

dt

−
∫ T

0

γ2

2
|σ(Pt − ṽ)|2dt− γ

∫ T

0

(Pt − ṽ)⊤σdBt.

Thus, finally we obtain

E
[

−e−γWT |F0

]

= Ẽ

[

−e
−γ(ṽ⊤ξT−φ(ξT ))+

∫

T
0

γ
2 tr

(

α2
tD

2
zE(t,χ(t,ξt))dt

)

|F0

]

× eγ(ṽ
⊤χ(0,0)−Γ(0,0))+ γ2T

2 ṽ⊤σ2ṽ(6.25)

where Ẽ is obtain by an application of Girsanov’s theorem and under the associated
probability

dBt − γσ(ṽ − Pt)dt

defines a F Brownian motion. Note that this is indeed an equivalent change of measure
by the definition of admissibility in Definition 2.2.

Since D2
zE and α2 are symmetric non-negative matrices, their product only has

non-negative eigenvalues and therefore tr
(

α2
tD

2
zE (t, χ(t, ξt))

)

≥ 0. Additionally,

ṽ⊤ξT − φ(ξT ) ≤ φc(ṽ) := sup{ṽ⊤y − φ(y)|y ∈ R
n}. Thus,

E
[

−e−γWT |F0

]

≤ −e−γφc(ṽ)+γ(ṽ⊤χ(0,0)−Γ(0,0))+ γ2T
2 ṽ⊤σ2ṽ

and any strategy of the informed trader with α = 0 and Dφ(ξT ) = ṽ achieves this
upper bound and is therefore optimal. As shown in Subsection 6.3, these properties
hold the strategy (4.3).
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[18] B. Dupire, Functional itô calculus, Quantitative Finance, 19 (2019), pp. 721–729.
[19] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path de-

pendent pdes: Part i, The Annals of Probability, 44 (2016), pp. 1212–1253.
[20] A. Fahim, N. Touzi, and X. Warin, A probabilistic numerical method for fully nonlinear

parabolic pdes, The Annals of Applied Probability, 21 (2011), pp. 1322–1364.
[21] A. Galichon, Optimal transport methods in economics, Princeton University Press, 2016.
[22] L. C. Garcia del Molino, I. Mastromatteo, M. Benzaquen, and J.-P. Bouchaud, The

multivariate kyle model: More is different, SIAM Journal on Financial Mathematics, 11
(2020), pp. 327–357.

[23] A. Kolesnikov, On sobolev regularity of mass transport and transportation inequalities, Theory
of Probability & Its Applications, 57 (2013), pp. 243–264.

[24] A. S. Kyle, Continuous auctions and insider trading, Econometrica: Journal of the Econo-
metric Society, (1985), pp. 1315–1335.

[25] R. S. Liptser and A. N. Shiriaev, Statistics of random processes: General theory, vol. 394,
Springer, 1977.

[26] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math-
ematical Journal, 80 (1995), pp. 309–323.

[27] P. Pasquariello and C. Vega, Strategic cross-trading in the us stock market, Review of
Finance, 19 (2015), pp. 229–282.

[28] R. T. Rockafellar, Convex analysis, Princeton university press, 2015.
[29] F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, NY, 55 (2015),
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