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Abstract. Finding a directed acyclic graph (DAG) that best encodes the
conditional independence statements observable from data is a central ques-

tion within causality. Algorithms that greedily transform one candidate DAG

into another given a fixed set of moves have been particularly successful, for
example the GES, GIES, and MMHC algorithms. In 2010, Studený, Hem-

mecke and Lindner introduced the characteristic imset polytope, CIMp, whose

vertices correspond to Markov equivalence classes, as a way of transforming
causal discovery into a linear optimization problem. We show that the moves

of the aforementioned algorithms are included within classes of edges of CIMp

and that restrictions placed on the skeleton of the candidate DAGs corre-
spond to faces of CIMp. Thus, we observe that GES, GIES, and MMHC all

have geometric realizations as greedy edge-walks along CIMp. Furthermore,
the identified edges of CIMp strictly generalize the moves of these algorithms.

Exploiting this generalization, we introduce a greedy simplex-type algorithm

called greedy CIM, and a hybrid variant, skeletal greedy CIM, that outperforms
current competitors among hybrid and constraint-based algorithms.

1. Introduction

The use of directed acyclic graphs (DAGs) to model complex systems has in-
creased rapidly during the last thirty years, and today they are used in a wide
variety of fields [5, 11, 14, 16]. Given a positive integer p we let [p] := {1, 2, . . . , p}.
To each DAG G = ([p], E) we associate a set of random variables X1, . . . , Xp, and
the conditional independence (CI) statements Xi ⊥⊥ XndG(i)\paG(i)|XpaG(i)

for all

i ∈ [p]. Here, paG(i) denotes the parents and ndG(i) denotes the non-descendants
of i in G. A joint probability distribution P (X1, . . . , Xp) is Markov to a DAG G if it
entails all such CI statements. The goal of causal discovery is to learn an unknown
DAG G = ([p], E) from samples drawn from a joint distribution P over (X1, . . . , Xp)
that is assumed to be Markov to G. Unfortunately, this cannot generally be done
as multiple DAGs can encode the same set of CI statements. Two such DAGs are
called Markov equivalent, and they belong to the same Markov equivalence class
(MEC). Thus, the basic problem of causal discovery is to identify the MEC of
G, and a variety of causal discovery algorithms for doing so have been proposed
[4, 7, 17, 22].

Many of the more competitive algorithms are score-based and greedy, like the
Greedy Equivalence Search (GES) [4], or the Greedy Interventional Equivalence
Search (GIES) applied to only observational data [7]. These algorithms aim to max-
imize a score function, such as the Bayesian Information Criterion (BIC). Others
aim to recover the MEC from a collection of CI statements by treating causal discov-
ery as a constraint-satisfaction problem, like the PC algorithm [17, 22]. While the
score-based methods tend to be more accurate on both simulated and real data, the
constraint-based algorithms are usually faster. More recent algorithms have tried
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using a hybrid approach, like Max-Min Hill Climbing (MMHC) [23], where the au-
thors restrict the search space by using CI tests and then take a greedy score-based
approach. In the hybrid setting, one can leverage the speed of constraint-based
methods versus the accuracy of score-based methods.

Alternatively, Studený, Hemmecke and Lindner gave a geometric interpretation
of MECs by realizing them as 0/1-vectors called characteristic imsets [20]. Maxi-
mizing a score equivalent and (additive) decomposable function over the MECs of
DAGs on p nodes then becomes equivalent to maximizing a linear function over
these vectors. Thus, finding the BIC-optimal MEC can be seen as a linear opti-
mization problem over the characteristic imset (CIM) polytope, CIMp. This ap-
proach has also been used to learn decomposable models, with promising results
[21]. While most research on these polytopes has focused on the identification of
facets, our main focus will be their edges and other lower-dimensional faces.

We begin by showing that the reduced search space of the aforementioned pop-
ular hybrid and constraint-based algorithms are realized as faces of CIMp (see
Proposition 2.4). In Section 3, we then identify classes of edges corresponding to,
and strictly generalizing, the moves of GES, GIES, and MMHC. Thus, we obtain
a geometric interpretation of these algorithms as edge-walks along faces of a con-
vex polytope. A more recent hybrid algorithm called greedy SP [15] also admits
a geometric interpretation as an edge-walk along a convex polytope. Since GES,
GIES, MMHC, and greedy SP are currently the benchmark standards for greedy
causal discovery algorithms based solely on observational data, we can then view
greedy causal discovery as a purely geometric process; i.e., as an edge-walk along
a convex polytope (see Theorem 3.10). Furthermore, as the characterized edges of
CIMp strictly generalize the moves of GES, GIES, and MMHC, we propose a hybrid
algorithm that we call skeletal greedy CIM (Algorithm 1) and a greedy score-based
algorithm that we call greedy CIM (Algorithm 2).

In Section 4, we study how greedy CIM and skeletal greedy CIM perform on sim-
ulated data and compare their performance with the state-of-the-art. We observe
that the additional moves given by the classified edges of CIMp result in both the
hybrid and purely score-based algorithms performing at least as well as all (respec-
tive) benchmark standards. In the case of hybrid algorithms, skeletal greedy CIM
consistently outperforms all other hybrid alternatives. These observations purport
the edges of the characteristic imset polytope as the natural object of study in
efforts to improve the accuracy of modern causal discovery algorithms. The more
technical proofs of the main theorems in Section 3 can be found in Appendix A.

2. Preliminaries

For an introduction to the theory of convex polytopes, see for example [26]. We
start with a brief summary of the graph theory notation used in the paper. All
graphs are assumed to be simple.

Let G = ([p], E) be an undirected graph. For a pair of distinct nodes i, j ∈ [p]
we write i− j ∈ G if {i, j} ∈ E. We denote the set of neighbors of i in G by neG(i).
For a directed graph G = ([p], E) we likewise write i→ k ∈ G if (i, k) ∈ E. Then i
is said to be a parent of k and k a child of i. The sets of parents and children of
k in G are denoted by paG(k) and chG(k) respectively. The skeleton of a directed
graph G is the undirected graph G where we replace k → i ∈ G with k − i ∈ G.
We say that two nodes are neighbors in G if they are neighbors in the skeleton of
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G. For a directed graph G we say that 〈k0, k1, . . . , kn〉 is a directed path from k0 to
kn in G if ki → ki+1 ∈ G for all 0 ≤ i ≤ n − 1 and all ki different. We say that
〈k0, k1, . . . , kn〉 is a path in G if it is a path in the skeleton of G. Then a directed
cycle is a directed path with an extra edge kn → k0 and a directed graph G is a
directed acyclic graph (DAG) if G does not have a directed cycle. A node i is a
descendant of k if there exists a directed path from k to i, and i 6= k. The set of
descendants is denoted deG(k), and, by definition, does not include k. Every node
that is not k, nor a descendant of k, is a non-descendant, and the set of all such
nodes is denoted ndG(k). The induced subgraph on A ⊆ [p] is denoted G|A. We
recommend [9] for a background on graphs and DAG models.

A v-structure is an induced subgraph of the form i→ j ← k. The following is a
classical result of Verma and Pearl.

Theorem 2.1. [25] Two DAGs are Markov equivalent if and only if they have the
same skeleton and the same v-structures.

Let G = ([p], E) be a DAG. It is well-known that a joint distribution over
(X1, . . . , Xp) is Markov to G if and only if its probability density function P fac-
torizes as

(1) P (X1, . . . , Xp) =
∏
i∈[p]

P (Xi|XpaG(i)
).

To obtain a unique graphical representation of each MEC, Andersson, Madigan,
and Perlman proposed and gave a complete characterization of essential graphs
[1]. Studený proposed a more geometric interpretation of Markov equivalence via
vectors that encode the CI statements, called the standard imset [18, 19]. Following
this idea, in [20] Studený, Hemmecke, and Lindner introduced the characteristic
imset, cG , of a DAG G that encodes the factorization of Equation (1). As the
factorization determines the MEC, this gives us a unique representation of each
MEC. Formally it is a function cG : {S ⊆ [p] : |S| ≥ 2} → {0, 1} defined as

cG(S) :=

{
1 if there exists i ∈ S such that for all j ∈ S \ {i}, j ∈ paG(i),

0 otherwise.

As cG is a function from a finite set we can identify it with a vector in R2p−p−1

where the basis vectors, eS , are indexed by the sets in {S ⊆ [p] : |S| ≥ 2}. Similar
to essential graphs, characteristic imsets then give us a unique representation for
each MEC.

Theorem 2.2. [20] Two DAGs G and H are Markov equivalent if and only if
cG = cH.

The next lemma follows from the definition of characteristic imsets and provides
a way to recover the structure of the graph from this vector encoding.

Lemma 2.3. [20] Let G be a DAG on [p]. Then for any distinct nodes i, j, and k
we have

(1) i→ j or i← j in G if and only if cG({i, j}) = 1.
(2) i → j ← k is a v-structure in G if and only of cG({i, j, k}) = 1 and

cG({i, k}) = 0.
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As we can see, the characteristic imset encodes the skeleton and the v-structures
in the 2- and 3-sets. Any (additive) decomposable and score equivalent function
can be seen as an affine linear function over the vectors cG [20]. An important
example of such a function is the Bayesian Information Criterion (BIC). Given
n independent samples, D, drawn from the joint distribution of (X1, . . . , Xp), the
BIC is defined as

(2) BIC(G,D) = logP
(
D|θ̂,Gh

)
− d

2
log(n).

Here θ̂ is the maximum-likelihood estimate for the network parameters, d denotes
the number of free parameters of G, and Gh denotes the hypothesis that D are i.i.d
samples from a distribution that entails exactly the CI statements encoded by G
[4]. Thus, the question of learning the BIC-optimal MEC can be stated as finding
the maximum of an affine linear function over a finite set of vectors in a finite-
dimensional real vector space. This motivates the definition of the characteristic
imset polytope (CIM polytope) for DAGs on p nodes:

CIMp := conv
(
cG ∈ R2p−p−1 : G = ([p], E) a DAG

)
.

As CIMp is defined as a 0/1-polytope (that is, the convex hull of vectors with entries
that are either 0 or 1) the vertices of CIMp are precisely {cG : G = ([p], E) a DAG}
[26].

A classic constraint-based causal discovery algorithm is the PC algorithm [17, 22].
It first utilizes CI tests to learn a skeleton G and then to orient v-structures. The
Max-Min Hill Climbing (MMHC) algorithm [23] utilizes CI tests to learn possible
edges in the skeleton, and then uses a score-based method to construct a DAG
restricted to using only these edges. Following the idea of utilizing CI tests to
obtain a skeleton, we consider another polytope, closely related to CIMp. Let
G = ([p], E) be an undirected graph and define the CIM polytope for G to be

CIMG := conv
(
cG ∈ R2p−p−1 : G = ([p], E) a DAG with skeleton G

)
.

Thus, like the PC algorithm, we can learn an undirected skeleton, G, via CI tests,
and then take a score-based approach via an edge-walk on CIMG optimizing the
BIC. Such a method is called a hybrid algorithm as it first uses a constraint-based
approach to restrict the search space, and then uses a score-based approach to find
the optimal DAG. An immediate question is then: what is the relationship between
CIMp and CIMG? To this end we have the following proposition:

Proposition 2.4. Let H = ([p], E) and H ′ = ([p], E′) be two undirected graphs
such that E ⊆ E′. Then

conv
(
cG ∈ R2p−p−1 : G a DAG with skeleton G = ([p], D) where E ⊆ D ⊆ E′

)
is a face of CIMp.

Proof. It is enough to find a cost function, wH,H′ , which maximizes precisely over
the set{

cG ∈ R2p−p−1 : G a DAG with skeleton G = ([p], D) where E ⊆ D ⊆ E′
}
,
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out of all characteristic imsets. So define

wH,H′(S) :=


0 if |S| 6= 2 or S ∈ E′ \ E,

1 if S ∈ E,

−1 otherwise.

Notice that wH,H′ is only non-zero for sets with cardinality 2. Then if we have G
with skeleton G = ([p], D) we get via Lemma 2.3

wT
H,H′cG =

∑
S⊆[p],|S|≥2

wH,H′(S)cG(S)

= |D ∩ E| − |D \ E′|.

The right-hand-side is maximized exactly when E ⊆ D ⊆ E′. Thus wH,H′ maxi-
mizes exactly over the given set. �

Taking H = H ′ = G, we get the following corollary.

Corollary 2.5. Let G = ([p], E) be an undirected graph. Then CIMG is a face of
CIMp.

3. Edges of the CIM Polytope

To construct efficient algorithms for finding the maximum of a linear score func-
tion over a polytope, we need some description of the polytope. Assume we are
given an arbitrary polytope Q and a linear function s. It is immediate that the set
maximizing sT q for q ∈ Q is a face of Q. Thus, any linear function assumes its
maximum value over Q at at least one vertex of Q. An edge-walk on Q to maximize
a linear function s is done in the following way: Start at any vertex q0 of q, and set
i := 0. At each step, choose qi+1 such that conv(qi, qi+1) is an edge of the polytope
and sT qi < sT qi+1. If no such edges exist, return qi.

Assuming that we know every edge of Q, such an edge-walk will always return
a vertex maximizing s. Making additional assumptions on the score function or
looking for edges in a certain order can sometimes give us similar guarantees. For
example, see [15]. As a direct computation of all edges of CIMp and CIMG is
not feasible for large p, we will instead identify edges of these polytopes in terms
of relations between the characteristic imsets they connect. As the characteristic
imsets are the vertices of these polytopes we will see how these relations label edges
of the polytope.

We will define two relations, one on CIMG and one on CIMp. Utilizing the
first one we propose a hybrid algorithm that first learns an undirected skeleton
via conditional independence tests and then performs an edge-walk along CIMG,
greedily optimizing BIC. Then using both we also define a purely score-based
algorithm that performs an edge-walk on CIMp, again greedily optimizing the BIC.

The edges we identify will include, as a special case, the moves of Greedy Equiv-
alence Search (GES) [4]. This positively answers a question raised by Steffen
Lauritzen at the Workshop on Graphical Models: Conditional Independence and
Algebraic Structures, TU Munich, 2019 : Do the moves of GES have a geometric
interpretation in terms of the CIMp polytope? More generally, we recover a geo-
metric interpretation of the GIES algorithm [7] in the case of purely observational
data, as well as the hybrid MMHC algorithm.
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To this end, we will begin by defining relations between imsets. These relations
are motivated by our graphical understanding of Markov equivalence, but also turn
out to generalize our intuition.

Definition 3.1 (Turn pair). Let G and H be two DAGs on node set [p] and with
skeleton G. Suppose there exist i, j, Si ⊆ [p]\{i, j} and Sj ⊆ [p]\{i, j} such that

(1) cG({i, j}) = 1;
(2) cG(S ∪ {i}) = 1 for all S ⊆ Si with |S| ≥ 1;
(3) cG(S ∪ {j}) = 1 for all S ⊆ Sj with |S| ≥ 1;
(4) either Si 6⊆ neG(j) or Sj 6⊆ neG(i).

Then we say that {G,H} is a turn pair with respect to (i, j, Si, Sj) if

cH = cG +
∑

S∈S+

eS −
∑

S∈S−
eS

where S+ := {T ∪{i, j} : T ⊆ Si, T 6⊆ neG(j)} and S− := {T ∪{i, j} : T ⊆ Sj , T 6⊆
neG(i)}.

Note that one of Si and Sj can may be empty, but not both by (4). The name
“turn pair” is explained via the next proposition. We observe that {G,H} is a turn
pair with respect to (i, j, Si, Sj) if and only if {H,G} is a turn pair with respect to
(j, i, Sj , Si). Moreover, as the edges of a polytope lack orientation, a greedy edge-
walk may walk in either direction along a given edge. Thus we view our relations
between characteristic imsets and their corresponding DAGs as unordered pairs, as
opposed to ordered pairs.

If G is a directed graph with i → j ∈ G we denote by Gi←j the directed graph
identical to G except that the edge i→ j is replaced with i← j.

Proposition 3.2. Let G be a DAG with i→ j ∈ G. If Gi←j is a DAG, then either
G and Gi←j are Markov equivalent, or {G,Gi←j} is a turn pair.

The case in which G and Gi←j are Markov equivalent is characterized in [3].
Hauser and Bühlmann define a collection of turning moves in terms of the essential
graph (see [7, Propositions 31 and 34]). They characterize when Gi←j is a DAG and
the relation between the essential graphs of G and Gi←j when this is the case. The
above proposition shows that in the case of no interventions, their turning moves
are turn pairs. The converse is not true, as shown in Example 3.3.

Example 3.3. By Proposition 3.2, turn pairs capture whenever we turn an edge
in a DAG, transforming it into another (non-Markov equivalent) DAG, in terms of
characteristic imsets. The converse of Proposition 3.2 is, on the other hand, not
true. That is, there exists a turn pair {G,H} for which there is no DAG D Markov
equivalent to G such that Di←j is Markov equivalent to H. As an example of this,
take G and H as in Figure 1. It can be checked that {G,H} is a turn pair with
respect to (i, j, {s1, s2}, ∅), but it follows from Theorem 2.1 that i ← j ∈ D for all
DAGs D Markov equivalent to G or H.

By Proposition 3.2, turn pairs arise naturally from an intuitive graphical inter-
pretation of reversing an edge and, as Example 3.3 shows, strictly generalize this
intuition.

Theorem 3.4. If {G,H} is a turn pair, then conv(cG , cH) is an edge of CIMG

where G is the skeleton of G and H.
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G :=

s1

s2

i j

k1

k2

H :=

s1

s2

i j

k1

k2

Figure 1. An example of a turn pair not arising from changing
the direction of any one edge in any DAG in the MEC.

Algorithm 1 Skeletal Greedy CIM

Input: Data D.
Output: A characteristic imset cG .

Perform CI tests to find the underlying skeleton G1

Let G a DAG with skeleton G
cD ← null

while cD 6= cG do
cG ← cD
cD ← turn phase (Algorithm 4 in Appendix B with cD as input.)

end whilereturn cG

The above theorem tells us that moving via turn pairs is in fact an edge-walk
along CIMG. For algorithms based on such edge-walks to be able to perform well
we would like to move around CIMG relatively freely. In the following proposition
we show that the edges labeled by turn pairs are enough to traverse the polytope
CIMG.

Proposition 3.5. Let G be a graph and G and H two DAGs with skeleton G. Then
there exists a sequence of edges conv(cG , cD1

), conv(cD1
, cD2

), . . . , conv(cDm−1
, cDm

), conv(cDm
, cH),

of CIMG such that each pair {G,D1}, {D1,D2}, . . . , {Dm−1,Dm}, and {Dm,H} is
a turn pair.

Proof. By Proposition 3.2 it is enough to show that there exists a sequence of DAGs
G = D0, . . . ,Dn = H such that Di and Di+1 differ by the direction of a single edge.
To find such a sequence it is enough to show that for any two DAGs, G and H,
that share the same skeleton, there exists an edge i − j ∈ G such that i → j ∈ G,
i← j ∈ H, and Gi←j is a DAG.

We can partially order all edges via i′ → j′ � i→ j if and only if j′ ∈ deG(j) or,
if j′ = j, i ∈ de(i′). Note that we sort the children according to G and the parents
in reverse. Consider all edges that differ between G and H and consider such an
edge i → j that is maximal in the prescribed order. For the sake of contradiction
assume there is a cycle in Gi←j . Then there is a directed path i→ · · · → j different
from the edge i → j. However, every edge in this path is bigger in the order �,
and hence this path is present in H as well. This gives us a directed cycle in H, a
contradiction. Hence, with this choice of the edge i→ j, Gi←j will be a DAG and
the result follows. �
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The edges labeled by turn pairs thus connect the polytope CIMG in the sense
that for any two DAGs, G and H, with skeleton G, there exists a sequence of turn
pairs that begins at cG and ends at cH. Thus we can take a simplex-type approach
to finding the BIC-optimal MEC. To this end, we propose a hybrid greedy causal
discovery algorithm in which we first learn the skeleton G via CI tests, similar to
the PC algorithm, and then perform a restricted edge-walk on CIMG utilizing the
edges labeled by turn pairs, which we call the turn phase. We call this algorithm
skeletal greedy CIM (see Algorithm 1).

Up until now we have primarily studied CIMG, but we would like to move be-
tween vertices of CIMG and CIMH when G and H are not equal. A direct conse-
quence of Proposition 3.2 and Theorem 3.4 is that the turning phase of GIES [7] is
a type of edge-walk over CIMG. The question then arises whether it holds for the
forward and backward phases as well. Thus, we would like a definition similar to
Definition 3.1 but for adding an edge.

Definition 3.6 (Edge pair). Let G and H be two DAGs on node set [p]. Suppose
there exists distinct nodes i, j and a set S∗ ⊆ [p]\{i, j} such that

(1) cG({i, j}) = 0,
(2) cG(S ∪ {i}) = 1 for all S ⊆ S∗ with |S| ≥ 1.

Then we say that {G,H} is an edge pair with respect to (i, j, S∗) if

cH = cG +
∑

S∈S+i←j

eS

where S+i←j := {S ∪ {i, j} : S ⊆ S∗}.

Let G be a DAG and assume i and j are not adjacent in the skeleton of G. We
denote by G+i←j the directed graph identical to G with the edge i ← j ∈ G+i←j .
Then, similar to Proposition 3.2, we have the following:

Proposition 3.7. Let G be a DAG and assume i and j are not adjacent in the
skeleton of G. If G+i←j is a DAG, then {G,G+i←j} is an edge pair.

Thus edge pairs give an interpretation, in terms of characteristic imsets, of adding
an edge to a graph the same way as turn pairs give an interpretation of changing
the direction of an edge. However, in this case we believe that the converse holds.

Conjecture 3.8. Let {G,H} be an edge pair with respect to (i, j, S∗). Then there
exists a DAG G′ Markov equivalent to G such that G′+i←j is a DAG Markov equiv-
alent to H.

Similar to turn pairs, edge pairs constitute edges of CIMp.

Theorem 3.9. If {G,H} is an edge pair, then conv(cG , cH) is an edge of CIMp

where p is the number of nodes in G and H.

By combining Proposition 3.7 with Theorem 3.9 we obtain a positive answer to
the aforementioned question by Steffen Lauritzen; namely, we see that the moves
of GES have a geometric interpretation as edges of CIMp. Going even further,
by combining this observation with Proposition 3.2 and Theorem 3.4, we see that
the moves of the GIES algorithm, which (in the case of purely observational data)
extends GES with an additional turn phase, also admit a geometric interpretation

1For example we can use the skeleton algorithm from the pcalg package in R [7, 8].
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Algorithm 2 Greedy CIM

Input: Data D.
Output: A characteristic imset cG .

Let G be the DAG without any edges
cD ← null

while cD 6= cG do
cG ← cD
cD ← edge phase (Algorithm 3 in Appendix B with cD as input.)
cD ← turn phase (Algorithm 4 in Appendix B with cD as input.)

end while
return cG

as edges of CIMp. Similarly, the MMHC algorithm performs a greedy search akin
to that of GES, but it first restricts the search space to a subset of edges that
are allowed to appear in the skeleton. An application of Proposition 2.4 with
H = ([p], ∅) thus extends these results to the MMHC algorithm. Since greedy SP
[15] is defined as an edge-walk along another family of convex polytopes (called
DAG associahedra [10]), these observations imply that the popular greedy score-
based and hybrid causal discovery algorithms (GES, GIES, MMHC, and greedy
SP) can all be viewed as edge-walks along a convex polytope. Thus greedy causal
discovery is, in a sense, geometric. We summarize this observation in the following
theorem:

Theorem 3.10. The following causal discovery algorithms are greedy edge-walks
along a convex polytope:

(1) GES,
(2) GIES with purely observational data,
(3) MMHC, and
(4) Greedy SP.

Example 3.3 further shows that the edges of CIMp labeled by turn and edge
pairs are a strict generalization of the moves of GES and GIES. Hence, any edge-
walk that greedily optimizes BIC over CIMp can be viewed as an extension of these
causal discovery algorithms.

In regards to Theorem 3.9, we propose the purely score-based algorithm greedy
CIM (Algorithm 2) which extends GES and GIES. This algorithm is, as opposed
to skeletal greedy CIM (Algorithm 1), not a hybrid algorithm, as we do not rely
on conditional independence tests to find the skeleton. Instead it relies on an edge
phase that consists of a restricted edge-walk, utilizing the edges of CIMp determined
by edge pairs. Due to Theorem 3.9, the greedy CIM algorithm consists solely of an
edge-walk on CIMp. In Section 4 we analyze how greedy CIM and skeletal greedy
CIM perform on simulated data relative to GES, GIES, MMHC, greedy SP, and
the PC algorithm.

4. Simulations

In Section 3 we proposed two algorithms, skeletal greedy CIM (Algorithm 1), and
greedy CIM (Algorithm 2). Here we compare the performance of these algorithms
on simulated data with the state-of-the-art.
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An implementation of all algorithms discussed in this section is available at [13].
The simulated data was produced in R [12] using linear structural equation models
with Gaussian noise. The true underlying DAG G∗ was chosen randomly using an
Erdős-Rényi model on p = 8 vertices and expected neighborhood size d, which we
varied over the interval [0.5, 7]. Each edge i → j was given an edge-weight wi,j

chosen uniformly from [−1,−0.25]∪ [0.25, 1]. The direction of the edges were given
by a linear order of the vertices, sampled uniformly from all linear orders. We
then sampled from a multivariate Gaussian distribution over the random variables
X1, . . . , Xp where Xi = εi +

∑
k∈paG∗ (i)

wk,iXk. Here, the εi are independent and

normally distributed random variables with mean 0 and variance 1. We produced
100 models for each d and from each model we drew n = 10, 000 samples. This was
done via the MASS library [24]. As the implementation of greedy CIM and skeletal
greedy CIM available at [13] is done in Python, we used the rpy2 module for the
R-to-Python conversions.

To produce the undirected skeleton in Algorithm 1 we used the skeleton algo-
rithm in the pcalg package [7, 8]. The algorithm skeleton requires a significance
level α for the CI tests, which we varied over {0.01, 0.001, 0.0001}. Skeletal greedy
CIM, greedy CIM, GES, and GIES all aim to optimize BIC (see Equation (2))
which we computed for our models via the GaussL0penObsScore-class from the
pcalg package. In order to fairly compare the different algorithms that are each
a single edge-walk along a convex polytope (according to Theorem 3.10) we ran
greedy SP with no restarts and unbounded search depth (r = 1, d = ∞) [15].
(Note this choice of parameter settings results in greedy SP performing worse than
it did for the same simulations in [15, Figure 5], as the parameter settings used
to generate [15, Figure 5] were r = 10 and d = 4.) In Figure 2 we see the ratio
of models recovered from the samples versus the expected neighborhood size d. In
Figure 3 we compare the model recovery rate and the average Structural Hamming
Distance (SHD) (see [23] for a definition) to the true model versus the average
expected neighborhood size d.

In Figure 2a, Figure 2b, and Figure 2c we compared all algorithms relying on CI
tests (i.e., all constraint-based and hybrid algorithms). We see that skeletal greedy
CIM has a higher recovery rate than greedy SP, MMHC and the PC algorithm.
Note that both skeletal greedy CIM and PC are restricted by the performance of
the skeleton algorithm, which is the algorithm used to identify the skeleton of
the learned DAG. Thus, we have also included how often skeleton finds the true
skeleton. We see that, if the correct skeleton is identified, skeletal greedy CIM
almost always learns the true MEC. However, the same is not true for the PC
algorithm. Based on this near optimality of skeletal greedy CIM, we cannot expect
the performance of skeletal greedy CIM to increase by much, even if more edges
of CIMG are identified and added to the implementation. The main difference of
skeletal greedy CIM and MMHC is that skeletal greedy CIM relies on CI tests
to determine the skeleton, as opposed to MMHC, which only restricts to a set
of possible skeletons. The fact that skeletal greedy CIM outperforms MMHC in
Figure 2 suggests that the set of moves used by skeletal greedy CIM, given by turn
pairs, is diverse enough that there is no advantage of hybrid methods that rely on
score-based edge specification from a restricted set compared to methods that fully
specify a skeleton and then rely on turning edges. Computational results regarding
CIM4 also suggest that the number of turn pairs make up for a significant part of



GREEDY CAUSAL DISCOVERY IS GEOMETRIC 11

1 2 3 4 5 6 7
Expected neighborhood size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 M
EC

s r
ec

ov
er

ed
PC
MMHC
greedySP
skeletal greedy CIM
skeleton

(a) p = 8, n = 10, 000, α = 0.01
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(b) p = 8, n = 10, 000, α = 0.001
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(c) p = 8, n = 10, 000, α = 0.0001
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Figure 2. Ratio of models recovered versus the expected neigh-
borhood size of the true graph. In Fig. 2a–Fig. 2c we ran PC,
MMHC, and skeletal greedy CIM on 100 models. Each model had
p = 8 nodes and the weights of the edges were sampled uniformly
in [−1,−0.25]∪ [0.25, 1]. We used a sample size of n = 10, 000, and
varied α in {0.01, 0.001, 0.0001}. In Figure 2d we see how GES,
GIES, and greedy CIM perfomed on the same data.

the edges of CIMG, but edge pairs make up for a small part of edges of CIMp (less
than a quarter for p = 4). Thus MMHC might be rather restricted when moving
between MECs with different skeletons, which is a non-issue for skeletal greedy
CIM.

In Figure 2d we compared the purely score-based algorithms. By Proposition 3.2
and Proposition 3.7, greedy CIM can do all moves of GES and GIES, and more.
Recall that greedy CIM was implemented using edge pairs and turn pairs, perform-
ing only a depth-first search, whereas GES and GIES perform recurrent phased,
breadth-first searches. To estimate the extent to which turn pairs and edge pairs
generalize the moves of GES and GIES, we also implemented a recurrent phased
breadth-first version of greedy CIM. That is, we first only consider edge pairs that
increase the number of edges, then the ones that decrease the number of edges,
then we enter the turn phase. We then cycle through these three phases, analogous
to GIES. We call this algorithm recurrent phased breadth-first greedy CIM. As can
be seen in Figure 2d, this version of greedy CIM replicates the output of GIES.
On the other hand, GES and GIES perform better than greedy CIM. This suggests
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(a) The ratio of models recovered.
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(b) The average SHD between the true
model and the result of different algo-
rithms.

Figure 3. A comparison between all algorithms discussed based
on 100 simulations. Each model had p = 8 nodes and the weights
of the edges were sampled uniformly in [−1,−0.25] ∪ [0.25, 1]. We
used a sample size of n = 10, 000, and α = 0.0001.

that recurrent phased approaches to optimizing BIC will typically yield better re-
sults. Moreover, the fact that recurrent phased breadth-first greedy CIM matches
the best performing algorithm (GIES) suggests that characterizing more edges of
CIMp and incorporating them into the implementation of greedy CIM could yield
even better performing greedy score-based causal discovery algorithms. The previ-
ously mentioned computational results for CIM4 suggest that there is much room
for improvement in this direction as the turn pairs and edge pairs make up less
than a quarter of the edges for CIM4.

In Figure 3 we give a complete comparison of the recovery ratios of all algorithms
discussed as well as the SHD between the result for each algorithm and the true
model. Even though greedy CIM has a higher recovery ratio than the PC algorithm
and MMHC, the average SHD is higher as well. This indicates that, while greedy
CIM typically succeeds in finding the true DAG more often than these algorithms,
when it fails to do so it returns a less accurate MEC than the other algorithms.
Thus, greedy CIM likely does a move early on from which it cannot move towards
the optimal imset, since we do not have access to all edges of CIMp. (Note that, as
BIC is linear over CIMp, this would never happen given a complete characterization
of the edges of CIMp.) On the other hand, skeletal greedy CIM is one of the top
performers in regards to average SHD. As opposed to skeletal greedy CIM, greedy
CIM will probably improve if more edges of CIMp are identified.

5. Discussion

In this paper, we have studied the characteristic imset polytope CIMp and its
faces CIMG. We have shown that most common moves utilized in greedy causal
discovery algorithms, such as reversing or adding an edge, correspond to edges of
CIMp. Utilizing this, we introduced skeletal greedy CIM (Algorithm 1) and greedy
CIM (Algorithm 2). These algorithms are greedy depth-first search edge-walks
over the CIMG and CIMp polytopes, respectively. Skeletal greedy CIM is a hy-
brid algorithm that first does CI tests to learn a skeleton G, and then passes to
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a restricted edge-walk over CIMG, attempting to maximize the BIC by walking
along edges labeled by turn pairs or edge pairs. Greedy CIM performs a similar
restricted edge-walk over CIMp. Both algorithms could likewise be implemented
using any score-equivalent and decomposable score function. We showed that (re-
current phased breadth-first) greedy CIM is a geometric generalization of GES and
GIES in the case of purely observational data. Consequently, GES and GIES ad-
mit a geometric interpretation as edge-walks along a convex polytope. It further
follows that MMHC has a similar interpretation. As greedy SP already has such
an interpretation in terms of the DAG associahedron [10] it follows that all greedy
algorithms discussed in this paper have a geometric interpretation as an edge-walk
along a convex polytope. In this sense, we have observed that greedy causal dis-
covery is geometric.

An implementation of skeletal greedy CIM and greedy CIM is available at [13].
Given data drawn from a joint distribution on 8 variables, these implementations
return a graph in approximately 1 and 10 seconds on average, respectively. We
believe that a more efficient implementation is possible, but we leave that for future
work.

Skeletal greedy CIM was shown to outperform the other hybrid algorithms such
as MMHC and greedy SP on simulated Gaussian data. The main difference between
these algorithms is that skeletal greedy CIM relies on CI tests to determine the
skeleton, while MMHC only utilizes the CI tests to restrict the set of possible
skeletons. Thus it is probable that turn pairs capture many edges of CIMG, while
turn and edge pairs capture relatively few edges of CIMp. So while skeletal greedy
CIM appears to be a near optimal hybrid algorithm given its constraint-based
bounds, identifying more edges of CIMp to extend the moves used by MMHC
between skeleta could lead to an algorithm capable of outperforming both skeletal
greedy CIM and MMHC. Given that one can use polymake [2, 6] to compute all
edges of CIM4, a natural first step would be to try to generalize some of these edges
not captured by edge pairs or turn pairs to higher values of p.

Finally, recall that GIES first adds in edges without considering the deletion of
edges, then deletes edges without considering the addition of edges, then reverses
edges, and then cycles through each of these phases. GIES also does a breadth-
first search. Thus, we believe that the depth-first nature of greedy CIM induces
a preference on the edges which is avoided by GIES via a breadth-first search. A
recurrent phased breadth-first version of greedy CIM was implemented and per-
formed identically, in terms of accuracy, with GIES in our simulations. A natural
follow-up question is then: how often, if ever, does recurrent phased breadth-first
search greedy CIM utilize the extra moves to which it has access? Presently, what
we can surmise is that finding and implementing more edges of the CIMp poly-
tope could lead to even better greedy causal discovery algorithms than the current
front-runners (GIES and recurrent phased breadth-first greedy CIM).
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Appendix A. Proofs of Theorems in Section 3

Proof of Proposition 3.2. We have the following equality

cGi←j
= cG +

∑
S∈A+

eS −
∑

S∈A−
eS

for some A+ and A−. We begin by giving a possible description of A+ and
A−. If we have a set S such that {i, j} 6⊆ S, then the graphs induced by G
and Gi←j on S are identical and we can assume that no such S is in either
A+ or A−. We only changed the edge i → j. So for any set S, the only
node that could have become the child of every other node in S upon revers-
ing i → j is i. Taking this as a definition of A+ we get that A+ is all sets S
such that {i, j} ⊆ S ⊆ paGi←j

(i) ∪ {i} and {i, j} ⊆ S 6⊆ paG(i) ∪ {i}. That

gives us A+ =
{
S : {i, j} ⊆ S ⊆ paG(i) ∪ {i, j}

}
=
{
S ∪ {i, j} : S ⊆ paG(i)

}
. Sim-

ilar reasoning gives us A− =
{
S ∪ {i, j} : S ⊆ paG(j)

}
. Note that A+ ∩ A− =

{S ∪ {i, j} : S ⊆ paG(i) ∩ paG(j)}.
Let Si = paG(i) and let Sj = paG(j)\{i}. We will now check the conditions in

Definition 3.1 with respect to (i, j, Si, Sj). G and Gi←j have the same skeleton, say
G. Conditions (1)-(3) are direct from the definition of characteristic imset as i is
the child of every node in Si = paG(i), and similarly with j. If Si ⊆ neG(j) we have
Si ⊆ paG(j), indeed otherwise we would have k ∈ Si = paG(i) such that k ∈ chG(j).
This gives us the edges i→ j → k → i in G, a contradiction as G is a DAG.

Case I, Si ⊆ neG(j) and Sj ⊆ neG(i): We have i /∈ Si. As argued above, if
Si ⊆ neG(j) and Sj ⊆ neG(i) we get Si ⊆ paG(j) \ {i} = Sj ⊆ paG(i) = Si. In
particular paG(j)\{i} = paG(i). Thus G and Gi←j are Markov equivalent. This was
first proved by Chickering in [3]. From the viewpoint of imsets, we get A+ = A−
and thus cG = cGi←j

.
Case II, Si 6⊆ neG(j) or Sj 6⊆ neG(i): Condition (4) in Definition 3.1 holds by

assumption. Thus what is left is to check that S+ = A+ \ A− and S− = A− \ A+.
Then by our above reasoning we get

A+ \ A− =
{
S ∪ {i, j} : S ⊆ paG(i), S 6⊆ paG(j)

}
= {S ∪ {i, j} : S ⊆ Si, S 6⊆ neG(j)} = S+.
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Similar reasoning gives us S− = A− \ A+. �
For the following proofs we will use the following well-known fact.

Lemma A.1. Let P be a 0/1-polytope. If u and v are two vertices of P such that
u and v differ by a single value. Then conv(u, v) is an edge of P .

Proof of Theorem 3.4. By definition we have cG({k, i}) = 1 for all k ∈ Si, thus
Si ⊆ neG(i) and similar for Sj . Note that this implies that S+ and S− are disjoint.
If Si = Sj we have that Si = Sj ⊆ neG(j), and vice versa, thus this is not a turn
pair. By symmetry in the definition we get two cases.

Case I, Sj ( Si: If |Si| = |{k}| = 1 we get that cH = cG + e{i,j,k}, and thus
this follows by Lemma A.1. To prove the claim when |Si| ≥ 2, it suffices to find a
cost vector w ∈ R2p−p−1 such that wTx is maximized at exactly cG and cH over the
vertices of CIMG. Since cG({i, k}) = 1 for all k ∈ Sj we have Si ⊆ neG(i). Thus
Sj ⊆ Si ⊆ neG(i) and we get that S− = ∅, by definition of S−. Moreover, by (4) in
Definition 3.1, Si 6⊆ neG(j). Let m := |S+| and define the cost vector w such that
for S ⊆ [p], with |S| ≥ 2, w satisfies

w(S) =


2 if cG(S) = 1

1 if S = Si ∪ {i, j},
−1

m−1 if S ∈ S+ \ {Si ∪ {i, j}},
−2 otherwise.

Notice that since |Si| ≥ 2 we have m ≥ 2 so this is indeed well defined. Then we
have wT cG = wT cH since

wT cH = wT

(
cG +

∑
S∈S+

eS −
∑

S∈S−
eS

)
= wT cG + w(Si ∪ {i, j})(1) +

∑
S∈S+\{Si∪{i,j}}

w(S) = wT cG .

It then remains to check that wT cD < wT cG for any DAG D with skeleton G and
D not Markov equivalent to G or H.

Let us denote A+ := {S : w(S) = 2} and A− := {S : w(S) = −2}. For all
0/1-vectors v we have

wT v = wT
∑

S∈A+ : v(S)=1

eS + wT
∑

S∈A− : v(S)=1

eS + wT
∑

S∈S+ : v(S)=1

eS

= 2
∣∣{S ∈ A+ : v(S) = 1

}∣∣− 2
∣∣{S ∈ A− : v(S) = 1

}∣∣+ wT
∑

S∈S+ : v(S)=1

eS .

Noting that cG(S) = cH(S) = 1 for all S ∈ A+, cG(S) = cH(S) = 0 for all S ∈ A−
and that −1 ≤ wT

∑
S∈S+ : v(S)=1 eS ≤ 1 we immediately get that wT v < wT cG

whenever we have that {S ∈ A+ : v(S) = 1} 6= A+ or {S ∈ A− : v(S) = 0} 6= A−.
Then as {S ⊆ [p] : |S| ≥ 2} = A+ ∪ A− ∪ S+ we can assume that cD(S) = cG(S)
whenever S /∈ S+. In particular D must have the same skeleton as G and H.

Since D was assumed to not be Markov equivalent to G we have the following
cases:

(1) cD(Si∪{i, j}) = 0 and for some set S ∈ S+\{Si∪{i, j}} we have cD(S) = 1,
or
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(2) cD(Si ∪ {i, j}) = 1.

In case (1) it follows immediately that wT cD ≤ wT cG + −1
m−1 < wT cG .

As for case (2), by definition of the characteristic imset we have a node n such
that x → n in D for all x ∈ (Si ∪ {i, j}) \{n}. If n = j we get Si ⊆ neG(j), but
this cannot happen by (4) in Definition 3.1. If n = i we get that cD(S) = 1 for
all S ∈ S+, and thus D is Markov equivalent to H. Thus the only case left is that
n ∈ Si.

As Si 6⊆ neG(j) we have Si ∪ {i, j} ∈ S+. Then, as j → n in D, there must
exist a node k /∈ {i, j, n} such that k is not a neighbour of j in G. Since {j, k} ⊆
Si ∪ {i, j} ⊆ paD(n)∪ {n} we get cD({j, n, k}) = 1. As i /∈ {j, n, k}, {j, n, k} /∈ S+.
Thus we must have that 1 = cD({j, n, k}) = cG({j, n, k}) = cH({j, n, k}). That
is {j, n, k} is a v-structure in D, G and H. We have that cG({i, j, k}) = 0 since
{i, j, k} ∈ S+. Thus, since G is acyclic, it follows that i → n in G as well. In the
terminology used in [1], i → n will be strongly protected in G. Hence n is a child
of i, j and k in G, so cG({i, j, n, k}) = 1. But {i, j, n, k} ∈ S+, a contradiction.

Case II, Si 6⊆ Sj and Sj 6⊆ Si: Here we will use a different cost vector. Let
m+ := |S+| and m− := |S−|. If m+,m− ≥ 2 define

w(S) =



5 if cG(S) = cH(S) = 1,

2 if S = Si ∪ {i, j} or S = Sj ∪ {i, j}
−1

m+−1 if S ∈ S+ \ {Si ∪ {i, j}},
−1

m−−1 if S ∈ S− \ {Sj ∪ {i, j}},
−5 if cG(S) = cH(S) = 0,

If |S+| = 1 we have that S+ = {Si ∪ {i, j}}, and thus we let w(Si ∪ {i, j}) = 1.
Likewise, if |S−| = 1 we have that S− = {Sj ∪{i, j}}, and we let w(Sj ∪{i, j}) = 1.
Otherwise let w be as above. Thus, by definition of w, we have

∑
S∈S+ w(S) =∑

S∈S− w(S) = 1. To see wT cH = wT cG , note that

wT cH − wT cG =wT

(
cG +

∑
S∈S+

eS −
∑

S∈S−
eS

)
− wT cG

=
∑

S∈S+\S−
w(S)−

∑
S∈S∈S−\S+

w(S) = 0.

So left to show is that for any DAG D with skeleton G we have wT cD < wT cG if
cD is neither cG or cH.

As in case I we let A+ := {S : w(S) = 5} = {S : cG(S) = cH(S) = 1} and
A− := {S : w(S) = −5} = {S : cG(S) = cH(S) = 0}. As in case I we have for any
0/1 vector v

wT v = 5
∣∣{S ∈ A+ : v(S) = 1

}∣∣− 5
∣∣{S ∈ A− : v(S) = 1

}∣∣
+ wT

∑
S∈S+ : v(S)=1

eS + wT
∑

S∈S− : v(S)=1

eS .

We also have that−1 ≤ wT
∑

S∈S+ : v(S)=1 eS ≤ 2 and−1 ≤ wT
∑

S∈S− : v(S)=1 eS ≤
2.We immediately get that wT v < wT cG whenever we have that {S ∈ A+ : v(S) = 1} 6=
A+ or {S ∈ A− : v(S) = 0} 6= A−. Thus we can assume that cD(S) = cG(S) when-
ever cG(S) = cH(S).
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If cD(Si ∪ {i, j}) = cD(Sj ∪ {i, j}) = 0 then it follows that wT cD ≤ 5|A+| <
5|A+|+1 = cG . Thus for wT cD ≥ wT cG to be true we must have cD(Si∪{i, j}) = 1
or cD(Sj ∪ {i, j}) = 1. By symmetry we can assume cD(Si ∪ {i, j}) = 1.

Thus there exists ni ∈ Si such that Si∪{i, j} ⊆ paD(ni)∪{ni}. We cannot have
ni = j as that would give us Si ⊆ neG(j), and by the same reasoning there must
exist a node ki ∈ Si \ neG(j). Then we have two cases ni 6= i and ni = i.

If ni 6= i we have that cD({ni, ki, j}) = 1. As {ni, ki, j} /∈ S+ ∪ S− we get
cD({ni, ki, j}) = cG({ni, ki, j}) = cH({ni, ki, j}) = 1. Then by acyclicity we get
cG({ni, ki, i, j}) = 1. But as {ni, ki, i, j} ∈ S+\S− we get cG({ni, ki, i, j}) = 0, a
contradiction.

Thus ni = i. Then, by definition, it follows that cD(S) = 1 for all S ∈ S+. If
cD(Sj ∪ {i, j}) = 1 we can in the same way argue that the corresponding nj = j
and thus that cD(S) = 1 for all S ∈ S−. More specifically we get that we have the
following two graphs induced in D, i → j ← kj and ki → i ← j. A contradiction,
thus if cD(Si ∪ {i, j}) = 1 we have cD(Sj ∪ {i, j}) = 0.

In conclusion, we assumed that wT cD ≥ wT cG and deduced that we cannot have
both cD(Si ∪ {i, j}) = 1 and cD(Sj ∪ {i, j}) = 1. With that assumption it also
followed that if cD(Si ∪ {i, j}) = 1 then cD(S) = cG(S) for all S. By symmetry, if
cD(Sj ∪ {i, j}) = 1 then cD(S) = cH(S) for all S. The result follows. �

Proof of Proposition 3.7. We begin to characterize all sets S such that cG(S) 6=
cG+i←j

(S). For any S ⊆ [p] and k 6= i we have that k ∈ S ⊆ paG(k) ∪ {k} if and
only if k ∈ S ⊆ paG+i←j

(k)∪ {k}. This is because paG(k) = paG+i←j
(k) for all such

k. As the value of cG(S) and cG+i←j (S) is determined by this property the only
case where we can have cG(S) 6= cG+i←j (S) is for sets such that i ∈ S 6⊆ paG(i)∪{i}
or i ∈ S ⊆ paG+i←j

(i) ∪ {i}.
Moreover, for any S such that {i, j} 6⊆ S we have that the induced subgraphs of

G and G+i←j are identical. Thus cG(S) = cG+i←j
(S) for all such S. This together

with the fact that paG(i) ∪ {j} = paG+i←j
(i) tells us that the only sets of interest

are {i, j} ⊆ S ⊆ paG(i) ∪ {i, j}.
We claim that cG+i←j

(S) = 1 and cG(S) = 0 for all S such that {i, j} ⊆ S ⊆
paG(i)∪{i, j}, making this an edge pair with respect to (i, j, S∗) where S∗ = paG(i).
It follows that cG+i←j (S) = 1 for all such S since i ∈ S ⊆ paG(i) ∪ {i, j} =
paG+i←j

(i) ∪ {i}. Suppose S is such that {i, j} ⊆ S ⊆ paG(i) ∪ {i, j}. Any k ∈
S \{i, j} must be a parent of i in G, since we cannot have i ∈ S ⊆ paG(k)∪{k}. As
i and j are not adjacent neither can be the parent of the other. Hence no node in S
can be the parent of all other nodes in S, and it follows that cG(S) = 0. Condition
(1) in Definition 3.6 follows since i was not a neighbor of j in G, and condition (2)
follows since we choose S∗ to be paG(i). �

Proof of Theorem 3.9. If |S∗| = 0 we get |S+i←j | = 1, thus this follows by
Lemma A.1. Hence we can assume that |S∗| > 0. We partition the elements in S∗

based on if they are adjacent to j in G or not. So let X = {x ∈ S∗ : cG({x, j}) = 0}
and Y = {y ∈ S∗ : cG({y, j}) = 1}. Define s := |X| and t := |Y |. We treat the cases
when X 6= ∅ and X = ∅ separately.
Case I, X 6= ∅: Let M := 2s+t−(s+t+1) and notice that |{S ∈ S+i←j , |S| ≥ 4}| =
M . If M = 0 we get s = 1 and t = 0 as |X| = s. In this case cG and cH only differ
in the coordinates {i, j} and {i, j} ∪X. We claim that cG + e{i,j}∪X is not a valid
imset as {i, j} ∪X is not connected in the skeleton of G. Hence cG(S), cH(S) and
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at most one more vertex in CIMp form a face of CIMp. It follows that conv(cG , cH)
is an edge in this case.

IfM > 0 we can define the following objective function w to prove that conv(cG , cH)
is an edge of CIMp:

w(S) =



t+ 2 if cG(S) = 1

−1 if S = {i, j},
−1 if S = {i, j, y}, some y ∈ Y ,
1
s (t+ 1

2 ) if S = {i, j, x}, some x ∈ X,
1

2M if S ∈ S+i←j , |S| ≥ 4,

−(t+ 2) otherwise.

The negative weights for S ∈ S+i←j sum to−(t+1) and the positive to t+1. Since
the imsets differ exactly on S+i←j , for which w sum to 0, we get wT cH = wT cG .
Assume we have a DAGD such that wT cD ≥ wT cG . Then it must be that cD(S) = 1
if cG(S) = 1 and cD(S) = 0 if cH(S) = 0. If cD(S) = 0 for all S ∈ S+i←j then
cD = cG , so we can assume that is not the case. Such a DAG D must thus pick
up some of the positive weights in S+i←j . There are two possibilities to consider.
First, if cD({i, j, x}) = 1 for some x ∈ X, then, by definition of cD, D must have
v-structure x→ i← j, since we know there is no edge between x and j. Therefore
we must have cD({i, j}) = 1, and it follows that cD({i, j, y}) = 1, for all y ∈ Y ,
since y is adjacent to both i and j. Thus wT cD picks up all the negative weights
in S+i←j . To then get wT cD ≥ wT cG , we must have cD(S) = cH(S) for all S.
Therefore, D is Markov equivalent to H by Theorem 2.2.

Second, if cD({i, j, x}) = 0 for all x ∈ X, but cD(S) = 1, for some S ∈
S+i←j , |S| ≥ 4, then by definition there exists k ∈ S with S ⊆ paD(k) ∪ {k}. If
k ∈ {i, j} we immediately get cD({i, j}) = 1. Otherwise we have cD({i, j, k}) = 1,
and since there is no edge between j and elements in X we know that k ∈ Y .
In either case wT cD picks up a −1. The sum of the positive weights w(S) for
S ∈ S+i←j , |S| ≥ 4 is only 1/2 and we cannot have wT cD ≥ wT cG .
Case II, X = ∅: If M = 0, either s+ t = 1 or s+ t = 0. The latter implies S∗ = ∅,
which is dealt with above. For the former, we get s = 0 and t = 1. We claim
that cG + e{i,j} is not a valid characteristic imset for any DAG, since {i, j} ∪ Y is
complete in the skeleton of H. Similar to Case I it follows conv(cG , cH) is an edge.

If M > 0 we now use the following objective function w in order to prove that
conv(cG , cH) is an edge of CIMp:

w(S) =



t+ 1 if cG(S) = 1

t− 1
2 if S = {i, j},

−1 if S = {i, j, y}, some y ∈ Y ,
1

2M if S ∈ S+i←j , |S| ≥ 4,

−(t+ 1) otherwise.

Here s = 0, so M = 2t− t−1. The reasoning is very similar to Case I. The negative
weights for S ∈ S+i←j sum to −t and the positive to t. Thus, wT cH = wT cG ,
and again if another DAG D were to have wT cD ≥ wT cG , then it must have
cD(S) = 1 if cG(S) = 1 and cD(S) = 0 if cH(S) = 0. There are two possibilities to
consider. First, if cD({i, j}) = 1, thenD has triangles on every {i, j, y} and therefore
cD({i, j, y}) = 1, for all y ∈ Y . Thus D picks up all the −t negative weights and
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Algorithm 3 Edge phase

Input: An imset cG corresponding to a DAG G. Data D.
Output: A characteristic imset cG where G is a DAG.

Let G be the skeleton of G
check ← true

while check do
check ← false

for i, j ∈ [p] do
for S∗ ⊆ neG(i) do

if We have a DAG H such that {G,H} is an edge pair with respect to
(i, j, S∗) then

if BIC(H,D) > BIC(G,D) then
cG ← cH
Let G be the skeleton of G
check ← true

break
end if

end if
end for

end for
end while
return cD

the only possibility is cD = cH. The second possibility is that cD({i, j}) = 0 but
cD(S) = 1, for some S ∈ S+i←j , |S| ≥ 4, then by definition there exists k ∈ S with
S ⊆ paD(k)∪ {k}. As i and j are not adjacent we get k 6∈ {i, j}. This implies that
cD({i, j, k}) = 1, for k ∈ Y , which gives a −1 in wT cD. The sum of the positive
weights w(S) for S ∈ S+i←j , |S| ≥ 4 is 1/2 and thus we cannot have wT cD ≥ wT cG .

�

Appendix B. The Turn Phase and the Edge Phase Algorithms

Here we present the pseudocode for the edge phase and turn phase used in
Algorithm 1 and Algorithm 2. The edge phase and turn phase algorithms are
presented in Algorithm 3 and Algorithm 4, respectively.
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Algorithm 4 Turn phase

Input: An imset cG corresponding to a DAG G. Data D.
Output: A characteristic imset cG where G is a DAG.

cD ← cG
Let G be the skeleton of G
check ← true

while check do
check ← false

for i, j ∈ [p] do
for Si ⊆ neG(i) and Sj ⊆ neG(j) do

if We have a DAG H such that {D,H} is an turn pair with respect
to (i, j, Si, Sj) then

if BIC(H,D) > BIC(D,D) then
cD ← cH
check ← true

end if
end if

end for
end for

end while
return cG
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