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ON GENERALIZED TURÁN RESULTS IN HEIGHT TWO POSETS

JÓZSEF BALOGH, RYAN R. MARTIN, DÁNIEL T. NAGY, AND BALÁZS PATKÓS

Abstract. For given posets P and Q and an integer n, the generalized Turán problem for
posets, asks for the maximum number of copies of Q in a P -free subset of the n-dimensional
Boolean lattice, 2[n].

In this paper, among other results, we show the following:
(i) For every n ≥ 5, the maximum number of 2-chains in a butterfly-free subfamily of 2[n] is

⌈

n
2

⌉ (

n
⌊n/2⌋

)

.

(ii) For every fixed s, t and k, a Ks,t-free family in 2[n] has O
(

n
(

n
⌊n/2⌋

)

)

k-chains.

(iii) For every n ≥ 3, the maximum number of 2-chains in an N-free family is
(

n
⌊n/2⌋

)

, where N

is a poset on 4 distinct elements {p1, p2, q1, q2} for which p1 < q1, p2 < q1 and p2 < q2.
(iv) We also prove exact results for the maximum number of 2-chains in a family that has no

5-path and asymptotic estimates for the number of 2-chains in a family with no 6-path.

1. Introduction

We say that P is a (weak) subposet of Q if there is an injection f : P → Q such that p ≤P p′

implies f(p) ≤Q f(p′). Denote Pk the chain with k elements. For positive integers s and t, the
poset Ks,t has s minimal elements, t maximal elements and every minimal element is less than
every maximal element. We write ⊲⊳ for K2,2, which is also called the butterfly.

For integers n and k, let [n] = {1, . . . , n} and let
(

[n]

k

)

= {S ⊆ [n] : |S| = k} .

We will sometimes use abc to denote the set {a, b, c}. In the Boolean lattice of dimension n, a
full chain C is a sequence of n+ 1 sets of the form ∅ = C0 ⊂ C1 ⊂ · · · ⊂ Cn−1 ⊂ Cn = [n].

The expression La(n, P ) denotes the largest subposet of the n-dimensional Boolean lattice
that does not have P as a subposet. The study of La(n, P ) can be traced to Sperner [21],
who proved that La(n, P2) =

(

n
⌊n/2⌋

)

. This was extended by Erdős [5] in 1945, who established

La(n, Pk+1) ∼ k
(

n
⌊n/2⌋

)

, and in fact determined La(n, Pk+1) exactly. The systematic study of

La(n, P ) for general P was initiated by Katona and Tarján [19] in 1983, who studied the case
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where P is a fork poset, in which the r-fork poset on r + 1 elements is the poset consisting of
a, b1, b2, . . . , br with a being smaller than all bis and the bis forming an antichain.

In 2005, De Bonis, Katona, and Swanepoel [3] proved that for all n ≥ 3, La(n, ⊲⊳) =
(

n
⌊n/2⌋

)

+
(

n
⌊n/2⌋+1

)

.

We emphasize that the butterfly poset is a set of 4 distinct elements {p1, p2, q1, q2} for which
p1 < q1, p1 < q2, p2 < q1, and p2 < q2. Note that this also forbids a 4-element poset for
which both p1 < p2 < q1 and p1 < p2 < q2 or both p1 < q1 < q2 and p2 < q1 < q2 or even
p1 < p2 < q1 < q2, see Figure 1.
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p2
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q2

Figure 1. Forbidden configurations of a ⊲⊳-free family.

The N poset is a set of 4 distinct elements {p1, p2, q1, q2} for which p1 < q1, p2 < q1 and
p2 < q2. Note that this also forbids a ⊲⊳, see Figure 2.
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Figure 2. Forbidden configurations of an N-free family.

Determining La(n, P ) is known as the poset Turán problem. The basic results of Turán theory
in graphs are well-known [22, 7, 8], whereas the asymptotic value of La(n, P ) is not known for
most posets P . Famously, even if P = ♦, the 4-element diamond poset, the asymptotic value of
La(n,♦) is unknown [16].

1.1. Previous Results. One extension of Turán theory is when instead of determining the
maximum number of edges in an H-free graph, one finds the maximum number of copies of F
in an H-free graph, see for example Alon and Shikhelman [1].

There is an obvious analogue of generalized Turán theory to posets, introduced by Gerbner,
Keszegh, and Patkós [9]:

Definition 1. The maximum number of copies of Q in a P -free subfamily of the n-dimensional
Boolean lattice is denoted by La(n, P,#Q).
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We note that the notation is slightly different, but we add the “#” symbol to make it clear
which poset is being counted.

Denote by Pk the chain on k elements. Clearly, La(n, P ) = La(n, P,#P1). The primary
problem in generalized Turán theory on posets is determining La(n, P,#Pℓ), where usually, ℓ is
less than the height of P .

The function La(n, P3,#P2) was determined by Katona [17] and reproved independently in [20].
The function La(n, Pk,#Pℓ) was determined for every pair of integers k > ℓ ≥ 1.

Theorem 2 (Gerbner-Patkós [11]). For any pair of integers k > ℓ ≥ 1,

La(n, Pk,#Pℓ) = max
0≤i1<i2<···<ik−1≤n

f(n, ℓ, i1, i2, . . . , ik−1),

where f(n, ℓ, i1, i2, . . . , ik−1) denotes the number of ℓ-chains in
(

[n]
i1

)

∪
(

[n]
i2

)

∪· · ·∪
(

[n]
ik−1

)

. If k = ℓ+1,

then f(n, ℓ, i1, i2, . . . , ik−1) =
(

n
n−ik−1,ik−1−ik−2,...,i2−i1,i1

)

and the above maximum is attained when

the integers i1, i2 − i1, . . . , ik−1 − ik−2, n− ik−1 differ by at most one. Consequently,

La(n, P3,#P2) = (1 + o(1))
3
√
3

2πn
3n.

The general case of P , where P has height at least 3, has also been resolved.

Theorem 3. [Gerbner-Methuku-Nagy-Patkós-Vizer [10]]

(a) If P is a poset of height at least 3, then

La(n, P,#P2) = Θ (La(n, P3,#P2)) .

(b) If T is a poset T of height 2 whose Hasse diagram is a tree, then

La(n, T,#P2) = Θ

((

n

⌊n/2⌋

))

.

(c) If P is a poset of height 2 that has at least three elements, then

Ω

((

n

⌊n/2⌋

))

= La(n, P,#P2) = O (n · 2n) .

Since
(

n
⌊n/2⌋

)

= Θ (2n/
√
n), there is a gap in the asymptotic value of La(n, P,#P2) for height

2 posets P .

1.2. New results. We compute La(n, ⊲⊳,#P2), and determine the extremal families.

Theorem 4. For all n ≥ 5,

La(n, ⊲⊳,#P2) =
⌈n

2

⌉

(

n

⌊n/2⌋

)

.

Moreover, if n ≥ 7, then equality is only achieved by either
(

[n]
⌊n/2⌋

)

∪
(

[n]
⌊n/2⌋+1

)

or
(

[n]
⌈n/2⌉−1

)

∪
(

[n]
⌈n/2⌉

)

.
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Remark 5. For n ≤ 4, the expression in Theorem 4 is false. For n = 2, it is clear that
La(2, ⊲⊳,#P2) = 4 > 2 =

(

2
1

)

. For n = 3, the family {∅, 1, 2, 3, 123} witnesses that La(3, ⊲⊳

,#P2) ≥ 7 > 6 = 2
(

3
2

)

. For n = 4, the family {∅, 12, 13, 14, 23, 24, 34, 1234} witnesses that

La(4, ⊲⊳,#P2) ≥ 13 > 12 = 2
(

4
2

)

.
It is not difficult to see that La(3, ⊲⊳,#P2) = 7 but we did not choose to go through the case

analysis to compute La(4, ⊲⊳,#P2) or to determine all extremal families for La(n, ⊲⊳,#P2) when
n ≤ 6.

Theorem 6. Fix s ≥ 2, t ≥ 2 and k ≥ 1. Then,

La(n,Ks,t,#Pk) = O
(

n ·
(

n
⌊n/2⌋

)

)

= O (
√
n · 2n) .

Because every finite poset P of height 2 is a subposet of Ks,t for some s and t, we have an upper

bound for La(n, P,#P2) of O
(

n ·
(

n
⌊n/2⌋

)

)

, which verifies Conjecture 1.6 in [10], and improves

the upper bound in Theorem 3 (c).

If F =
(

[n]
⌊n/2⌋

)

∪
(

[n]
⌊n/2⌋+1

)

does not contain some poset P (in particular, if P contains a ⊲⊳), then

La(n, P,#P2) ≥
⌈

n
2

⌉ (

n
⌊n/2⌋

)

. Thus, for any poset P , the order of magnitude of La(n, P,#P2) is

determined if P has height at least 3 (Theorem 2) and if P has height 2 and contains a ⊲⊳ as a
subposet (Theorem 6).

For other posets, such as the ℓ-crown, which is a poset with ℓ maximal elements and ℓ min-
imal elements whose Hasse diagram is the 2ℓ-cycle, the order of magnitude of La(n, P,#P2) is
unknown, but it is at most La(n,Kℓ,ℓ,#P2) = O (

√
n · 2n).

Our other results relate to posets whose Hasse diagram is a tree and the order of magnitude of
La(n, T,#P2) is established by Theorem 3(b). In our case, we determine the constant coefficient
in the case where several tree posets are excluded. The simplest tree posets are “path-like”
posets.

Definition 7. Denote Pk to be the family of those posets P on k elements such that the
undirected Hasse diagram of P is a path.

Obviously, Pk ∈ Pk for all k, and N ∈ P4. Recall that ∨r denotes the r-fork poset on r + 1
elements; that is, the poset consisting of a, b1, b2, . . . , br with a being smaller than all bis and the
bis forming an antichain. Then, ∨2 ∈ P3. Observe that if k is even, then there exists a unique
poset in Pk of height 2, while if k is odd, then there are two such posets: one being the dual of
the other, that is, we can obtain one of them by reversing all relations of the other.

Our final results count 2-chains in families avoiding all posets of Pk or only height-2 posets
of Pk, which behaves very differently. Note that for k = 4, there is no difference between these
two problems, because the unique height-2 tree poset on 4 elements is N and a copy of any tree
poset on 4 elements is a copy of N.

Theorem 8. For every n ≥ 3,

La(n,N,#P2) = La(n,P4,#P2) =
(

n
⌊n/2⌋

)

.
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Denote by W the poset on 5 elements a, b, c, d, e with b < a, b < c, d < c, and d < e being all
of its relations. Let M be its dual poset obtained from W by reversing all of its relations, see
Figure 3.

a

b

c

d

e

a

b

c

d

e

a

b1

b2

b3

c

d

e

Figure 3. The W poset, the M poset, and the S poset.

Observe that W and M are the unique posets of P5 of height 2, but this time a copy of the
poset S ∈ P5 is not necessarily a copy of either W or M , where the relations of S on a, b1, b2, b3, c
are b1 < a, b1 < b2 < b3, and c < b3, see Figure 3. It turns out that forbidding all of P5 and
forbidding only W and M result in completely different extremal values and families as seen in
Theorems 9 and 10 below.

Theorem 9. If n is sufficiently large, then

La(n,P5,#P2) = 5 ·
(

n−2
⌊n/2⌋−1

)

=
(

5
4
+ o(1)

)

·
(

n
⌊n/2⌋

)

.

Theorem 10. If n ≥ 2 then

2
(

n
⌊n/2⌋

)

+ 1 ≤ La(n, {W,M},#P2) ≤ La(n,P6,#P2) ≤ (2 + o(1))
(

n
⌊n/2⌋

)

.

In Theorem 9, the extremal configuration is the set of all sets F for which |F ∩ [n − 2]| has
size exactly ⌊n/2⌋ − 1. However, in Theorem 10, the configuration that gives the lower bound is
simply the largest antichain, together with {∅, [n]}.

The paper is organized as follows: In Section 2, we prove Theorems 4 and 6. In Section 3, we
prove Theorems 8, 9 and 10. In Section 4, we present some open problems.

2. Proofs of Theorems 4 and 6

We start with the proof of Theorem 6 because that proof uses the basic ideas that we use in
both of the proofs. For Theorem 4, some more careful details are necessary to ensure the precise
result that is given.

Proof of Theorem 6. Let F ⊂ 2[n] be a Ks,t-free family. We color the sets of 2[n] in the following
way: If a set G is strictly contained by (that is, “below”) at least t elements of F then G is
blue, otherwise it is red. Note that the blue sets form a downset and the red sets form an
upset. Furthermore, each blue set contains at most s−1 sets from F (including, possibly, itself),
otherwise a Ks,t would be formed. Define a critical pair to be a pair of sets (G,G′) where G ( G′,
|G′| = |G|+ 1, G is blue and G′ is red.
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Let us count copies of Pk of the form F1 ( F2 ( · · · ( Fk, according to the colors of F1, Fk.
Suppose first that Fk is blue. By definition, a blue set contains at most s − 1 other members
of F , therefore the number of such Pks is at most

(

s−1
k−1

)

2n. Now assume that F1 is red. By the
definition of the coloring, a red set is below at most t−1 other members of F , hence the number
of such Pks is at most

(

t−1
k−1

)

2n. This gives that the number of monochromatic Pks is at most
[(

s−1
k−1

)

+
(

t−1
k−1

)]

2n < 2max{s+t}+n = O
(√

n ·
(

n
⌊n/2⌋

)

)

.

Finally, suppose that F1 is blue and Fk is red. For every k-chain of the form F1 ( F2 ( · · · ( Fk,
there is a pair F1 ⊆ G ( G′ ⊆ Fk such that (G,G′) is a critical pair and each of G and G′ are
comparable with each set Fi, i = 1, . . . , k. Because the blue sets form a downset and the red
sets form an upset, we have that each maximal chain C contains at most one critical pair (C,C ′)
with C,C ′ ∈ C.

Now let us count the triples (G,G′, C) with G,G′ ∈ C, the pair (G,G′) a critical pair, and the
existence of F1 ( F2 ( . . . ( Fk such that F1 ⊆ G,G′ ⊆ Fk and each Fi is comparable with G,G′.
Each such pair (G,G′) is contained in |G|!(n − |G| − 1)! maximal chains, and as we remarked
earlier, every chain contains at most one such pair. So we obtain

∑

(G,G′) |G|!(n− |G| − 1)! ≤ n!.

Since k!(n−k−1)! is minimized when k = ⌈n−1
2
⌉ = ⌊n

2
⌋, we obtain that the number of summands,

and thus the number of pairs (G,G′) is at most

n!

⌊n/2⌋! · (n− ⌊n/2⌋ − 1)!
=

⌈n

2

⌉

·
(

n

⌊n/2⌋

)

.

Finally, we claim that the number of k-chains in F to which every pair (G,G′) belongs is

at most
∑k−1

i=1

(

s−1
i

)(

t
k−i

)

. Indeed, because G is blue, it contains (allowing for itself) at most
s− 1 sets of F and because G′ is red, it is contained (allowing for itself) in at most t sets in F .
So,

(

s−1
i

)(

t
k−i

)

gives a bound on the number of k-chains such that the first i sets of which are
contained in G and the remaining k − i sets of which contain G′.

Therefore, the number of k-chains with F1 blue and Fk red is at most

k−1
∑

i=1

(

s− 1

i

)

·
(

t

k − i

)

·
⌈n

2

⌉

·
(

n

⌊n/2⌋

)

< 2s+t−1 ·
⌈n

2

⌉

·
(

n

⌊n/2⌋

)

.

So the total number of pairs in containment is at most 2max{s,t}+n + 2s+t−1
⌈

n
2

⌉ (

n
⌊n/2⌋

)

=

O
(

⌈

n
2

⌉ (

n
⌊n/2⌋

)

)

. This completes the proof of Theorem 6. �

Remark 11. For the case k = 2, it is easy to see that the proof gives

La(n,Ks,t,#P2) ≤
(

st− t +O
(

1√
n

))

·
⌈

n
2

⌉

·
(

n
⌊n/2⌋

)

.

Though we will not provide the details here, the ideas in the proof of Theorem 4 can be used to
improve this to

La(n,Ks,t,#P2) ≤
(

(s− 1)(t− 1) +O
(

1√
n

))

·
⌈

n
2

⌉

·
(

n
⌊n/2⌋

)

.

We write Cn to denote the set of all maximal chains in [n] and for a chain C1, C2, . . . , Ch we
will write CC1,C2,...,Ch

to denote all maximal chains in Cn that contain each Ci, i = 1, . . . , h.
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Proof of Theorem 4. The set system
(

[n]
⌈n/2⌉−1

)

∪
(

[n]
⌈n/2⌉

)

is ⊲⊳-free and has ⌈n
2
⌉·
(

n
⌊n/2⌋

)

containments,

which proves the lower bound.
To prove the upper bound, consider a ⊲⊳-free family F ⊂ 2[n]. Our plan is as follows: We will

partition the set of containments and associate to each part a disjoint subset of full chains. Then
for each part in this partition, we will bound the ratio of the size of the associated subset of full
chains to the size of that part.

Formally, suppose P1,P2, . . . ,Pm is a partition of P = {(F, F ′) : F ( F ′ for F, F ′ ∈ F} and
there is a function h : {P1,P2, . . . ,Pm} → 2Cn such that 1 ≤ i 6= j ≤ m implies h(Pi)∩h(Pj) = ∅.
Denote by α the minimum of |h(Pi)|

|Pi| over 1 ≤ i ≤ m. By averaging,

|P| = |P1|+ |P2|+ . . .+ |Pm| ≤
Cn

α
=

n!

α

We define a function h with the above properties for which α is at least
⌊

n
2

⌋

! ·
(⌈

n
2

⌉

− 1
)

! because
then

|P| ≤ n!
⌊

n
2

⌋

! ·
(⌈

n
2

⌉

− 1
)

!
=

⌈n

2

⌉

·
(

n

⌊n/2⌋

)

.

Denote F1 (and F3) the set of inclusion-wise minimal (maximal) sets of F . Note that we may
ignore any set in F that is both minimal and maximal because such sets will not contribute to
the family of containments. Let F2 := F −F1 −F3. Note that F2 is an antichain, otherwise we
would have a 4-chain, which forms a ⊲⊳ poset.

First consider all sets Y1, Y2, . . . , Ys ∈ F2. Since F is ⊲⊳-free, for every 1 ≤ i ≤ s there are
two unique sets Xi, Zi ∈ F such that Xi ⊂ Yi ⊂ Zi, where Xi ∈ F1 and Zi ∈ F3. Greedily set
Pi = {(Xi, Yi), (Yi, Zi), (Xi, Zi)}, except if the pair (Xi, Zi) was already used for some j < i,
then we set Pi = {(Xi, Yi), (Yi, Zi)}. In either case, we let h(Pi) = CYi

, the set of chains that
contain Yi. Clearly, h(Pi) ≥

⌊

n
2

⌋

! ·
⌈

n
2

⌉

! and |Pi| ≤ 3 and so

|h(Pi)|
|Pi|

≥ 1

3
·
⌊n

2

⌋

! ·
⌈n

2

⌉

! ≥
⌊n

2

⌋

! ·
(⌈n

2

⌉

− 1
)

! for every 1 ≤ i ≤ s.(1)

The last inequality comes from the condition that n ≥ 5.

We still have to consider those pairs F ⊂ F ′ for which F ∈ F1, F ′ ∈ F3 and there is no
set Y ∈ F such that F ⊂ Y ⊂ F ′. Let such pairs be {(F1, F

′
1), (F2, F

′
2), . . . , (Ft, F

′
t)}. We set

Ps+j = {(Fj, F
′
j)} and so |Ps+j| = 1. In order to define h(Ps+j) for all 1 ≤ j ≤ t, we set

Hj = {H ∈ 2[n] : Fj is the unique subset (allowing for itself) of H in F},
H′

j = {H ′ ∈ 2[n] : F ′
j is the unique superset (allowing for itself) of H ′ in F}.

Since Fj ∈ F1 and F ′
j ∈ F3, we have Fj ∈ Hj and F ′

j ∈ H′
j. Furthermore, for any set

Fj ⊂ H ⊂ F ′
j , we have H ∈ Hj ∪H′

j , otherwise H would have two proper subsets and two proper
supersets in F , forming a ⊲⊳. Here we used that there is no H ∈ F for which Fj ⊂ H ⊂ F ′

j .
Observe that ifH ∈ Hj, then every set between Fj andH is inHj and ifH ′ ∈ H′

j, then every set
between H ′ and F ′

j is in H′
j. Thus, we can find two sets Gj and G′

j such that Fj ⊆ Gj ⊂ G′
j ⊆ F ′

j ,
Gj ∈ Hj , G

′
j ∈ H′

j and |G′
j| = |Gj|+ 1. We let h(Ps+j) = CGj ,G′

j
for an arbitrary such pair, and
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thus

|h(Ps+j)|
|Ps+j|

= |h(Ps+j)| = |G|! · (n− |G| − 1)! ≥
⌈

n− 1

2

⌉

! ·
⌊

n− 1

2

⌋

! =
⌊n

2

⌋

! ·
(⌈n

2

⌉

− 1
)

!,(2)

as claimed.
We still need to show that the images are pairwise disjoint. It is clear that h(Pi) ∩ h(Pj) =

CYi
∩ CYj

= ∅ where 1 ≤ i, j ≤ s, because F2 is an antichain. Now consider h(Pi) ∩ h(Ps+j)
where 1 ≤ i ≤ s and 1 ≤ j ≤ t. If a chain contains Gj and G′

j , then it cannot contain any
member of F other than Fj and F ′

j since Gj ∈ Hj and G′
j ∈ H′

j. In particular such a chain
cannot contain any Yi ∈ F2 and so h(Pi) ∩ h(Ps+j) = ∅.

Finally, suppose that a chain belongs to h(Ps+a)∩h(Ps+b) via the pairs (Ga, G
′
a) and (Gb, G

′
b),

respectively, where 1 ≤ a, b ≤ t. Let S = Ga ∪Gb. Since both Ga and Gb are on the same chain,
either S = Ga or S = Gb. Thus, S is in both Ha and Hb and must contain only one member
of F . As a result, Fa = Fb. Analogously, using S ′ = G′

a ∩ G′
b, we may conclude that F ′

a = F ′
b.

Consequently, a = b as desired.

It remains to establish equality in the case where n ≥ 7. In order for equality to hold, both (1)
and (2) must hold with equality for each Pi. Since n ≥ 7 implies (1) never holds with equality,
F2 is empty and s = 0. Moreover, in order for (2) to hold with equality, every pair (Gj , G

′
j) must

have sizes in
{

⌊n−1
2
⌋, ⌊n−1

2
⌋ + 1

}

or in
{

⌈n−1
2
⌉, ⌈n−1

2
⌉+ 1

}

.
Next observe that if F is extremal, then for every pair (Fj , F

′
j) we must have Fj = Gj , F

′
j = G′

j .
Indeed, if Fj ( Gj ( G′

j ⊆ F ′
j , then there exists at least one other pair (G∗

j , G
∗∗
j ) 6= (Gj , G

′
j)

with Fj ⊆ G∗
j ⊆ G∗∗

j ⊆ F ′
j , G

∗
j ∈ Hj , G

∗∗
j ∈ H′

j and |G∗
j |+ 1 = |G∗∗

j |. So the mapping h could be
defined as h(Fj , F

′
j) = CGj ,G′

j
∪CG∗

j ,G
∗∗
j
, and then (2) could not hold with equality.

So F2 is empty, for every pair (Fj, F
′
j) we have Fj = Gj , F

′
j = G′

j, and the sizes are in
{

⌊n−1
2
⌋, ⌊n−1

2
⌋ + 1

}

or in
{

⌈n−1
2
⌉, ⌈n−1

2
⌉+ 1

}

.

If n is odd, then equality can only occur if F =
(

[n]
(n−1)/2

)

∪
(

[n]
(n+1)/2

)

, as needed.

If n is even, then each pair (G,G′) must contain an element from
(

[n]
n/2

)

and an element from
(

[n]
n/2−1

)

∪
(

[n]
n/2+1

)

. Because F2 = ∅, then no member of
(

[n]
n/2

)

can have a member of F both

above and below it. So in order for equality to hold, each F ∈
(

[n]
n/2

)

must be in F and ei-

ther F has n/2 members of F above it (an under-element) or n/2 members of F below it
(an over-element). If there are both under elements and over elements, there must be a pair
F1, F2 whose symmetric difference is 2, F1 is an under-element and F2 is an over-element. In
that case, F1 ∪ F2, F1 ∩ F2 ∈ F , which would put F1, F2 ∈ F2, a contradiction to that set being
empty. Thus, in order for equality to hold, either F =

(

[n]
⌊n/2⌋

)

∪
(

[n]
⌊n/2⌋+1

)

or F =
(

[n]
⌈n/2⌉−1

)

∪
(

[n]
⌈n/2⌉

)

.

This completes the proof of Theorem 4. �

3. Proofs of Theorems 8, 9 and 10

Definition 12. Let F be a set system. The comparability graph of F is a simple graph G whose
vertices correspond to the sets of F . The vertices representing two sets A and B are connected
by an edge if A ⊂ B or B ⊂ A holds.
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Definition 13. The convex hull of a set system F ⊂ 2[n] is

conv(F) = {F ∈ 2[n]
∣

∣ ∃F1, F2 ∈ F , F1 ⊆ F ⊆ F2}.
Definition 14. Two families H and H′ in 2[n] are incomparable if neither F ⊆ F ′ nor F ′ ⊆ F
holds for every pair F ∈ H, F ′ ∈ H′.

Note that if H and H′ are incomparable then conv(H) and conv(H′) are also incomparable.
Therefore no full chain can intersect both conv(H) and conv(H′).

Lemma 15. Let A ⊂ B ⊆ [n]. The number of full chains meeting the set {F : A ⊂ F ⊂ B} is
n!

(n−|B|+|A|
|A| )

.

Proof. A full chain meets the set {F : A ⊂ F ⊂ B} if and only if all elements of A appear

before the elements of [n]\B. This is true for a random chain with probability
(

n−|B|+|A|
|A|

)−1
. �

Proof of Theorem 8. To show La(n,N,#P2) ≥
(

n
⌊n/2⌋

)

, consider the family {∅} ∪
(

[n]
⌊n/2⌋

)

. It has
(

n
⌊n/2⌋

)

containments and avoids the subposet N.

To prove the upper bound, consider an N-free family F ⊂ 2[n], and let G be its comparability
graph. We will classify the possible components of G.

If F contains the poset P3 (three sets A ⊂ B ⊂ C), then there can be no fourth set comparable
to any of these three, otherwise an N would be formed. A component corresponding to a P3 is
a triangle.

If a component contains no P3, then all its paths must be alternating. Since we cannot have N
(the 3-edge alternating path), there is no path with at least three edges. Therefore, a component
consists of either a minimal element and some of its supersets forming an antichain or a maximal
element and some its subsets forming an antichain. In either case, the corresponding component
in G is a star.

Note that a full chain can meet the convex hull of at most one of the components. We will
show that if a component has r containments (edges in G), then at least r ·

⌊

n
2

⌋

! ·
⌈

n
2

⌉

! full chains
meet its convex hull. Since there are n! full chains, this means that the number of containments
is at most n!/

(⌊

n
2

⌋

! ·
⌈

n
2

⌉

!
)

=
(

n
⌊n/2⌋

)

.

If a P3 component is formed by the sets A ⊂ B ⊂ C then its convex hull is the set {F : A ⊂
F ⊂ C}. By Lemma 15, it meets n!

(n−|C|+|A|
|A| )

full chains. Since |C| − |A| ≥ 2, this is at least

n!

( n−2
⌊n/2⌋−1)

= n(n− 1) ·
(⌊

n
2

⌋

− 1
)

! ·
(⌈

n
2

⌉

− 1
)

!, which is at least 3 ·
⌊

n
2

⌋

! ·
⌈

n
2

⌉

! when n ≥ 3.

A P3-free component of size r+ 1 has r containments. It also has r sets forming an antichain.
Each of them meets at least

⌊

n
2

⌋

! ·
⌈

n
2

⌉

! full chains, and these are different due to the antichain
property. �

The following simple lemma will be used to prove Theorem 9. See also [4] which has the same
main result about incomparable copies of a poset, proved independently.

Lemma 16 (Katona, Nagy [18]). Let H be a family of t subsets of [n]. Then the number of full
chains meeting at least one element of H is at least

(

t− t(t− 1)

n

)

·
⌊n

2

⌋

! ·
⌈n

2

⌉

!.
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Proof of Theorem 9. For n ≥ 2, consider the following family:

F :=

{

F ⊂ [n] : |F ∩ [n− 2]| =
⌊

n− 2

2

⌋}

.

This family can be divided into
(

n−2
⌊n/2⌋−1

)

pairwise incomparable 4-tuples. Each of these are

isomorphic to the Boolean lattice B2, and has 5 containments. Therefore the number of contain-
ments in F is 5

(

n−2
⌊n/2⌋−1

)

.

To prove that for n large enough a P5-free family F has at most 5
(

n−2
⌊n/2⌋−1

)

containments, we

use the same strategy as in the proof of Theorem 8. We will describe all possible components of
the comparability graph G, and show that if a component has c containments then its convex
hull meets at least

c · n!
5 ·

(

n−2
⌊n/2⌋−1

) =

(

4

5
+ o(1)

)

· c ·
⌊n

2

⌋

! ·
⌈n

2

⌉

!

full chains. There are n! full chains and each of them meets the convex hull of at most one
component, therefore the number of containments is at most 5

(

n−2
⌊n/2⌋−1

)

.

Before finding all possible components, we describe two types for which the statement is easy
to verify. These two types will cover most of our cases.

If a component has at most c ≤ 100 containments, and its convex hull contains at least
c elements, then we call it type I. Choose c sets from the convex hull. By Lemma 16, the
number of full chains meeting them is at least (c − o(1)) · ⌊n/2⌋! · ⌈n/2⌉!, which is more than
(

4
5
+ o(1)

)

· c · ⌊n/2⌋! · ⌈n/2⌉! for large enough n.

If a component has c containments (for c of any size) and at least 5
6
c of its members form an

antichain then we call it type II. Each of the sets in the antichain meets at least ⌊n/2⌋! · ⌈n/2⌉!
full chains, and these are pairwise different. Therefore, a type II component meets at least
5
6
c · ⌊n/2⌋! · ⌈n/2⌉! chains, which is more than

(

4
5
+ o(1)

)

· c · ⌊n/2⌋! · ⌈n/2⌉! for large enough n.
Now let us list all possible components of G and the corresponding set systems in F . Note

that F being P5-free means that G has no 5-vertex path.
First, consider a tree component in G. As we work with P5-free posets, it contains no 4-edge

path. It is easy to see that this implies that there must be an edge that shares a vertex with all
other edges. Let A ⊂ B be the sets in F corresponding to the endpoints of this special edge.
If a third set C ∈ F would be a subset of A or a superset of B then A,B and C would span a
triangle in G, which is not allowed in this case. Therefore all other sets of F are either supersets
of A or subsets of B, so the component is a star. If this component has t sets, then the number of
containments is t− 1 and there is an antichain of size t− 2, formed by all sets of the component,
except for A and B. If t < 7 then the component is of type I. If t ≥ 7 then it is of type II, since
t− 2 ≥ 5

6
(t− 1).

From now on, we assume that the component has a cycle. It cannot be a cycle of length 5 or
more since it would contain a 5-vertex path. First, assume that the component has a triangle,
but no 4-cycle. A triangle in G corresponds to three sets A ⊂ B ⊂ C in F . If there are no other
sets in this component then it is of type I.

If there is a fourth set D ∈ F such that B ⊂ D or D ⊂ B, then {A,C,B,D} is a 4-cycle,
which is not allowed in this case. Therefore, any set of F comparable to {A,B,C} must be either
a superset of A or a subset of C. If there are sets D,E ∈ F such that A ⊂ D and E ⊂ C, then
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D,A,B, C,E form an S ∈ P5. Note that D = E would create a 4-cycle, which is not allowed in
this case.

We have only two subcases remaining to handle. Either there are some sets D1, D2, . . . , Dk ∈ F
such that A ⊂ Di for all i and {D1, D2, . . . , Dk} is incomparable to {B,C}, or there are some sets
E1, E2, . . . , Ek ∈ F such that Ej ⊂ C for all j and {E1, E2, . . . , Ek} is incomparable to {A,B}.
By symmetry, it is enough to consider the first subcase. The sets {D1, D2, . . . , Dk} must form
an antichain, since Di ⊂ Dj would mean that {B,C,A,Dj, Di} form an M ∈ P5. Therefore the
component has k + 3 sets, k + 3 containments, and contains the antichain {B,D1, D2, . . . , Dk}
of size k + 1. If k < 9 then the component is of type I. If k ≥ 9 then it is of type II, since
k + 1 ≥ 5

6
(k + 3).

Finally, we handle the case when a component contains a 4-cycle. If there were a fifth set in
F comparable to any of the four sets in the cycle in any way then these sets would form a poset
in P5. Therefore, we can assume that this component consists of only four sets. If there are only
four containments, then the component is of type I. If there are six containments among the four
sets then they must form a chain A ⊂ B ⊂ C ⊂ D. The convex hull is the set {F : A ⊂ F ⊂ D}.
By Lemma 15, it meets n!

(n−|D|+|A|
|A| )

chains. Since |D| − |A| ≥ 3, this is at least n!

( n−3
⌊(n−3)/2⌋)

, which is

more than 6·n!
5·( n−2

⌊n/2⌋−1)
for n ≥ 3.

The last subcase has five containments among the four sets. This can be achieved in three
different ways:

• A ⊂ B ⊂ C,D. In this case, the size of the convex hull is at least five since it also
contains at least one set E such that E 6= B and A ⊂ E ⊂ D. With five containments
and a convex hull of size at least five, the component is of type I.

• A,B ⊂ C ⊂ D. This case can be handled similarly to the previous one.
• A ⊂ B,C ⊂ D. The convex hull of this component is the set {F : A ⊂ F ⊂ D}. By
Lemma 15, it meets n!

(n−|D|+|A|
|A| )

full chains. Since |D| − |A| ≥ 2 must hold, the minimum

of this quantity is n!

( n−2
⌊n/2⌋−1)

= 5·n!
5·( n−2

⌊n/2⌋−1)
.

Thus, every component with c containments has a convex hull that meets at least c·n!
5·( n−2

⌊n/2⌋−1)
full chains, as desired.

�

The following important result of Bukh [2] will be used for proving Theorem 10.

Theorem 17 (Bukh [2]). For every poset T with a tree Hasse diagram, we have La(n, T ) =
(h(T )− 1 + o(1)) ·

(

n
⌊n/2⌋

)

, where h(T ) denotes the height of T .

Proof of Theorem 10. To prove the first inequality, let F = {∅} ∪
(

[n]
⌊n/2⌋

)

∪ {[n]}. This family

contains neither M nor W . The number of containments in F is 2
(

n
⌊n/2⌋

)

+ 1.

To prove the second inequality, assume that we have six pairwise different sets A1, A2, . . . , A6

such that Ai ⊂ Ai+1 or Ai ⊃ Ai+1 holds for all 1 ≤ i ≤ 5. It can be checked that one can select five
of these sets forming anM or aW . Indeed, letm be the most number of consecutive Ais that form
a chain, so Ai ⊂ Ai+1 ⊂ . . . ⊂ Ai+m−1 or Ai ⊃ Ai+1 ⊃ . . . ⊃ Ai+m−1. If m ≥ 5, then a 5-chain is
both anM and aW . Ifm = 2, then one of {A1, A2, . . . , A5} and {A2, A3, . . . , A6} forms anM and
the other forms a W . If m = 4, then by symmetry we can assume Ai ⊂ Ai+1 ⊂ Ai+2 ⊂ Ai+3. If
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i ≥ 2, then {Ai−1, Ai, Ai+2, Ai+1, Ai+3} forms a W , otherwise {Ai, Ai+2, Ai+1, Ai+3, Ai+4} forms
an M . Finally, if m = 3, then again we can assume Ai ⊂ Ai+1 ⊂ Ai+2. If i ≤ 2 then we
have Ai+2 ⊃ Ai+3 by the maximality of the chain Ai ⊂ Ai+1 ⊂ Ai+2. If Ai+3 ⊂ Ai+4 then
{Ai+1, Ai, Ai+2, Ai+3, Ai+4} forms a W . If Ai+3 ⊃ Ai+4 then {Ai+1, Ai, Ai+2, Ai+4, Ai+3} forms a
W . If i ≥ 3 then we can similarly conclude that Ai−1 ⊃ Ai and either {Ai−2, Ai−1, Ai, Ai+2, Ai+1}
or {Ai−1, Ai−2, Ai, Ai+2, Ai+1} forms an M . This means that a family that avoids both M and
W will avoid all posets in P6, proving the inequality.

To prove the last relation, assume that F ⊂ 2[n] is a P6-free family. It means that its com-
parability graph G contains no 6-vertex path. A theorem of Erdős and Gallai [6] states that in
this case |E(G)| ≤ 2|V (G)|. Therefore the number of containments in |F| is at most 2|F|. Since
F avoids the 6-element alternating path poset (a tree poset of height two), Theorem 17 implies
|F| ≤ (1 + o(1))

(

n
⌊n/2⌋

)

, completing the proof. �

4. Open problems

Determining the exact or asymptotic value of any La(n, P,#Q) would be interesting, but there
are two natural problems that arise from our current results and previous findings from [9] and
[10].

Problem 18. Determine the largest possible order of magnitude of La(n, P,#Pk) over all posets
of height at most ℓ ≤ k. The case ℓ = 2 is settled for arbitrary values of k: Theorem 6 gives the

upper bound La(n, P,#P2) = Ok

(

n ·
(

n
⌊n/2⌋

)

)

, while the family

Fk :=

{

F ∈ 2[n] : |F ∩ [n− k + 2]| =
(

n

⌊n/2⌋

)

or |F ∩ [n− k + 2]| =
(

n

⌊n/2⌋

)

+ 1

}

is Ks,s-free for large enough s and contains Ωk

(

n ·
(

n
⌊n/2⌋

)

)

chains of length k.

Let us repeat some observations on posets of height 2 and chains of size 2. It is clear that
if the family consisting of the two middle levels does not contain any copy of P , then we have

La(n, P,#P2) ≥ ⌈n
2
⌉ ·

(

n
⌊n/2⌋

)

. As mentioned in the introduction, La(n, T,#P2) = OT

(

(

n
⌊n/2⌋

)

)

was proved in [10].

Problem 19. Does there exist a poset P contained in
(

[n]
⌊n/2⌋

)

∪
(

[n]
⌊n/2⌋+1

)

such that La(n, P,#P2) =

ω
(

(

n
⌊n/2⌋

)

)

?

Observe that ⊲⊳ is a poset for which the value of La(n, ⊲⊳,#Pk) is determined for all values of
k. The ordinary forbidden subposet problem, case k = 1, was solved by DeBonis, Katona, and
Swanepoel [3]. The case k = 2 is settled by Theorem 4, the case k = 3 is an easy proposition by
Gerbner, Keszegh, and Patkós [9], while for all k ≥ 4 the value is zero as a 4-chain contains ⊲⊳. It
would be interesting to find other posets P for which all values La(n, P,#Pk) can be determined.

Problem 20. Determine La(n,♦3,#Pk) for k = 2, 3, 4, where ♦3 is the poset on 5 elements
a, b1, b2, b3, c with a < bi < c for all i = 1, 2, 3. The case k = 1 was solved by Griggs, Li, and
Lu [14].
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