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Abstract

We describe a new approach to derive numerical approximations of boundary conditions for high-
order accurate finite-difference approximations. The approach, called the Local Compatibility
Boundary Condition (LCBC) method, uses boundary conditions and compatibility boundary con-
ditions derived from the governing equations, as well as interior and boundary grid values, to
construct a local polynomial, whose degree matches the order of accuracy of the interior scheme,
centered at each boundary point. The local polynomial is then used to derive a discrete formula
for each ghost point in terms of the data. This approach leads to centered approximations that are
generally more accurate and stable than one-sided approximations. Moreover, the stencil approxi-
mations are local since they do not couple to neighboring ghost-point values which can occur with
traditional compatibility conditions. The local polynomial is derived using continuous operators and
derivatives which enables the automatic construction of stencil approximations at different orders
of accuracy. The LCBC method is developed here for problems governed by second-order partial
differential equations, and it is verified for a wide range of sample problems, both time-dependent
and time-independent, in two space dimensions and for schemes up to sixth-order accuracy.
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1. Introduction

We describe a new approach for constructing discrete boundary conditions for high-order accu-
rate numerical approximations to partial differential equations (PDEs). The approach, called the
Local Compatibility Boundary Condition (LCBC) method, combines the given physical boundary
conditions (BCs) with additional compatibility boundary conditions (CBCs) formed from the PDE
and its derivatives. Our focus here is on finite-difference (and finite-volume) methods for both time-
dependent and steady PDEs in second-order form with physical BCs of Dirichlet or Neumann type.
A high-order accurate centered finite-difference approximation of the spatial operator of the PDE
involves a wide stencil which then requires some special treatment to handle the approximation
at grid points near the boundary. Unlike a typical approach involving one-sided approximations
of the PDE near the boundary and one-sided approximations of Neumann-type BCs, the LCBC
approach results in fully centered approximations. These centered approximations are generally
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more accurate than one-sided approximations, and for the case of time-dependent PDEs they are
more stable and less stiff (i.e. do not decrease the stable explicit time-step). Furthermore, the new
LCBC approach improves upon a more traditional derivation of discrete CBCs by defining local
conditions that are not coupled to neighboring grids along the boundary in tangential directions.
As a result, there is no need to solve a system of equations along the boundary which is a significant
advantage for explicit time-stepping schemes. In the case of implicit time-stepping methods, and
for approximations of steady (elliptic) PDEs, where the solution of large linear systems is required,
this tangential decoupling can also be useful for iterative schemes, such as multigrid and Krylov
methods.

The development of LCBCs is motivated by our interest in high-order accurate approximations
of PDEs in complex domains using overset grids, although the applicability of LCBCs is broader.
As shown in Figure 1, an overset grid consists of multiple overlapping structured component grids
used to cover a complex, and perhaps moving, problem domain. A mapping is defined for each
component grid from physical space to a unit square (or cube) in a computational (index) space,
and the mapped PDE is discretized in the computational space. Solution values on the grid are
interpolated at internal boundaries where two component grids overlap, and the given physical
BCs are applied on external grid boundaries. We have developed second-order accurate schemes
for the equations of linear and nonlinear elasticity [1, 2], and up to fourth-order accurate schemes
for the incompressible Navier-Stokes equations [3, 4] and Maxwell’s equations [5–7] using overset
grids, among other applications. We generally use the physical BCs, along with CBCs, to define
discrete centered boundary conditions at external boundaries (with the aid of ghost points), but
this approach would become increasingly difficult as the order of the approximation increases. The
difficulty stems from the algebraic complexity associated with taking higher and higher derivatives
of the spatial operator of the mapped PDE and working out its attendant discrete approximations
(with tangential couplings). An associated difficulty involves the special treatments required at
corners of the problem domain where separate BCs along sides meet. The LCBC approach over-
comes these difficulties by introducing a polynomial interpolant of the solution about each point
on the boundary. The polynomial degree is determined by the desired order of accuracy of the ap-
proximation, and the coefficients of the polynomial are specified by imposing constraints involving
known solution values at grid points interior to the boundary, the physical BCs and CBCs. This
approach only requires CBCs defined at a continuous level, and these conditions can be applied to
the polynomial interpolant recursively thus easing the aforementioned algebraic complexity. Once
defined, the polynomial interpolant can be used to specify solution values at ghost points normal
to the boundary (or in corner ghost points for the case of a domain corner) without tangential
couplings.

Figure 1: Some target applications for the new LCBC approach. Left: overset grid for two spherical bodies and com-
puted incompressible flow (vorticity). Right: overset grid for a spiral wire and computed electromagnetic scattering.
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The aim of the present paper is to describe the LCBC approach in detail for a general class
of PDEs in second-order form and to investigate the properties of the resulting discretizations.
For example, in the case of a straight boundary and where the spatial operator is the Laplacian,
it is well known that for Dirichlet (Neumann) boundary conditions the solution has odd (even)
symmetry at the boundary. This leads to simple numerical reflection conditions, and we show
that the LCBC approach naturally results in these same reflection conditions (while one-sided
approximations would not in general). Beyond this special case, we show that the LCBC approach
leads to accurate discretizations of the PDEs, and their BCs, for all orders of accuracy tested (up
to sixth order). Further, we show that there is no additional time-step restriction for stability
for the case of explicit time-stepping schemes. We focus here on linear PDEs, but the approach
should be extendible to nonlinear problems as well. In this article we focus on scalar PDEs, but the
approach is also applicable to problems with vector PDEs (e.g. the equations of linear elasticity and
Maxwell’s equations) and to problems with material interfaces. Our ultimate goal is to automate
the construction of CBC conditions for any order of accuracy and for a wide range of PDEs. We
believe that by using the LCBC approach that this goal is achievable. This construction includes
the development of LCBC conditions at grid faces as well as at grid corners for two-dimensional
domains and at grid edges and vertices for three-dimensional domains.

Compatibility boundary conditions have been used with finite-difference methods for many
years3, although it appears that the approach is not widely known. In our work, we have used
CBCs for second-order and fourth-order accurate approximations of the heat equation [8] and the
incompressible Navier-Stokes equations [3, 4]. For wave equations, we have described the use of
CBCs for the compressible Euler equations [9] and linear elasticity [1], and for high-order accurate
approximations to Maxwell’s equations [5, 6]. CBCs are also useful for problems involving material
interfaces, such as conjugate heat transfer [10] and electromagnetics [5, 7]. In recent work, we have
developed Added-Mass Partitioned (AMP) schemes for a wide range of fluid-structure interaction
(FSI) problems, including schemes for incompressible flows coupled to rigid bodies [11–13] and
elastic solids [14, 15]. These strongly-partitioned schemes incorporate AMP interface conditions
derived using CBCs and the physical matching conditions at fluid-solid interfaces in order to over-
come added-mass instabilities that can occur for the case of light bodies [16, 17]. In related work,
we have also used CBCs in the CHAMP scheme [18] to form discrete interface conditions for a
partitioned approach to the solution of conjugate heat transfer problems.

In other work, CBCs are used in the book by Gustafsson on high-order difference methods [19].
CBCs have also been used to derive stable and accurate embedded boundary4 approximations [20–
22]. CBCs have been incorporated into summation-by-parts schemes by Sjögreen and Petersson
for the equations of elasticity [23]. CBCs have been used by LeVeque and Li with their immersed
interface method to develop accurate approximations at embedded interfaces [24–26]. Shu and
collaborators have used CBCs in their inverse-Lax-Wendroff approach for hyperbolic equations and
conservation laws [27–30] as well as for parabolic and advection-diffusion equations [31–33].

In this article we focus on high-order accurate finite-difference schemes. We note, however, that
CBCs could also be useful for Galerkin schemes. Typical high-order accurate FEM or DG schemes
that use polynomial approximations over an element effectively use one-sided approximations near
boundaries. This can result in time-step restrictions that force the time-step to decrease rather
significantly as the order-of-accuracy increases [34–36]. Similarly for B-Spline FEM, as commonly

3For example, CBCs were known to Professor H.-O. Kreiss and his students at least since the 1980’s.
4By embedded boundary we mean a boundary curve (or boundary surface in three dimensions) that passes through

a grid in an irregular fashion (as opposed to a boundary-conforming grid).
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used in isogeometric analysis, one-sided operators occurring near boundaries results in spurious
large eigenvalues, so-called outlier eigenvalues [37]. Banks et al. [38–40], however, have shown
that when CBCs are used with their Galerkin-Difference method, a class of FEM schemes, the
spectrum of the operator is near-optimal, and the time-step restriction for explicit integration gives
approximately the maximal CFL-one stability.

The remaining sections of the paper are organized as follows. In Section 2, we consider two
sample problems to introduce the LCBC method and to compare it to the standard CBC approach.
A second-order PDE initial-boundary-problem is introduced in Section 3, and this model problem
is used along with its physical boundary conditions and derived CBCs as a basis to describe the
LCBC approach for discretizations of the equations up to sixth-order accuracy. In Section 4, we
detail the steps of the LCBC approach for boundary conditions of Dirichlet and Neumann type, as
well as the implementation of the method at domain corners where boundary conditions of various
types meet. We provide algorithms for the efficient application of the LCBC method for both
domain sides and corners, and we discuss the conditioning of the matrices generated by the LCBC
procedure. Various elements of the LCBC method, including solvability, symmetry properties, and
stability for wave equations, are analyzed in Section 5. The accuracy and stability of the method is
illustrated in Section 6 by considering the numerical results for a variety of initial-boundary-value
problems. Concluding remarks and a discussion of future directions of the LCBC approach are
given in Section 7.

2. Two sample problems

We begin by discussing CBCs and the LCBC approach for two relatively simple sample prob-
lems, the first involving the heat (diffusion) equation and the second involving the wave equation.
This is done to establish basic ideas and to introduce useful notation.

2.1. Heat equation in one-dimension

Let upx, tq solve the following initial-boundary-value problem (IBVP) for the heat equation on
the interval x P ra, bs, with a Dirichlet boundary condition on the left and a Neumann boundary
condition on the right,

$

’

’

’

’

&

’

’

’

’

%

Btu “ κ B2
xu, x P pa, bq, t ą 0,

upa, tq “ gaptq, t ą 0,

Bxupb, tq “ gbptq, t ą 0,

upx, 0q “ u0pxq x P ra, bs,

(1)

where κ ą 0 is a constant diffusivity, and gaptq, gbptq and u0pxq are given smooth functions. The
CBCs we use for this problem are found by taking ν time derivatives of the boundary conditions
in (1), and then using the PDE to replace time derivatives with space derivatives. This leads to a
sequence of conditions given by

κνB2ν
x upa, tq “ B

ν
t gaptq, κνB2ν`1

x upb, tq “ Bνt gbptq, ν “ 1, 2, . . . (2)

The conditions in (2), denoted by CBCsrνs, s “ a and b, can be used in a finite difference scheme for
the IBVP in (1) as additional numerical boundary conditions, in place of extrapolation conditions
or one-sided approximations. For example, suppose the PDE and the Neumann boundary condition
are discretized to order of accuracy 2p using central difference approximations with a stencil width
2p ` 1, and suppose CBCs are used to generate additional numerical boundary conditions. The
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number of derivatives in CBCsrνs increases with ν, but it can be shown that the CBCs can be
approximated to lower-order accuracy as ν increases so that the stencil width remains 2p` 1.

To illustrate the use of CBCs for a specific case, consider a fourth-order accurate (p “ 2)
approximation of (1). Our focus is on the spatial approximations, especially near the boundaries,
and so we consider a method-of-lines approach. Let Ujptq « upxj , tq, j “ ´2,´1, 0, . . . , Nx ` 2,
where xj “ a ` jh are points on a uniform grid with grid spacing h “ pb ´ aq{Nx as shown in
Figure 2. Note that the grid includes ghost points at each boundary, and these are appended
to the grid covering the problem domain x P ra, bs to facilitate the approximations of the spatial
derivatives in the Neumann boundary condition at x “ b and the CBCs applied at both boundaries.

The fourth-order accurate approximation to (1), using a CBC at each boundary, is given by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

BtUjptq “ κD4xxUj , j “ 1, 2, . . . , Nx, t ą 0,

U0ptq “ gaptq, t ą 0,

κD4xxU0ptq “ Btgaptq, t ą 0, CBCar1s,

κ2pD`xD´xq
2U0ptq “ B

2
t gaptq, t ą 0, CBCar2s,

D4xUNxptq “ gbptq, t ą 0,

κD0xD`xD´xUNxptq “ Btgbptq, t ą 0, CBCbr1s.

(3)

Here, D4x and D4xx are fourth-order accurate approximations to Bx and B2
x, respectively, defined

by

D4x
def
“ D0x

ˆ

I ´
h2

6
D`xD´x

˙

, D4xx
def
“ D`xD´x

ˆ

I ´
h2

12
D`xD´x

˙

, (4)

where D`x, D´x and D0x are the usual divided difference operators defined by

D`xUj
def
“

Uj`1 ´ Uj
h

, D´xUj
def
“

Uj ´ Uj´1

h
, D0xUj

def
“

Uj`1 ´ Uj´1

2h
. (5)

Note that the discretization of the PDE is applied on all interior grid points and on the right
boundary (j “ Nx) as a CBC for the Neumann boundary condition. Note also that CBCar2s on
the left and CBCbr1s on the right are approximated only to second-order accuracy. Despite this,
the scheme is fourth-order accurate in space. Initial conditions have been omitted in (3) as these
are not essential for the present discussion.

x “ a x “ b

x´2

V´2

x´1

V´1

x0

V0

x1

V1

x2

V2

¨ ¨ ¨

¨ ¨ ¨

xNx´1

VNx´1

xNx

VNx

xNx`1

VNx`1

xNx`2

VNx`2

Figure 2: Grid in one space dimension, with ghost points, for the fourth-order accurate approximation of the heat
equation in (3).

We now describe the LCBC method as an alternative approach to derive discrete boundary
conditions in (3). Let us first consider boundary conditions at x “ a. In the LCBC approach
we approximate the solution near the boundary at x “ a as a polynomial ũpxq of degree 2p “ 4.
The polynomial approximation changes in time as the solution evolves, but this dependence is
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suppressed here for notational convenience. In terms of a monomial basis5, for example, we have

ũpxq “
4
ÿ

n“0

cn px´ aq
n. (6)

The five coefficients cn, n “ 0, 1, . . . , 4, in (6) are found by requiring ũ to match Uj on the boundary
and two interior points, as well as to satisfy the two compatibility conditions CBCar1s and CBCar2s,
i.e.

ũpaq “ gaptq, (7a)

ũpxjq “ Ujptq, j “ 1, 2, (7b)

κνB2ν
x ũpaq “ B

ν
t gaptq, ν “ 1, 2, (7c)

for a fixed time t. The five constraints in (7) imply a local system of linear equations for the
coefficients tcnu in (6). Once the system is solved, ghost values of Uj are then determined by
setting

Uj “ ũpxjq, j “ ´2,´1. (8)

For the right boundary, a similar polynomial approximation to that in (6) is defined about x “ b,
and its coefficients are found using the constraints

Bxũpbq “ gbptq, (9a)

ũpxjq “ Ujptq, j “ Nx ´ 2, Nx ´ 1, Nx, (9b)

κνB2ν`1
x ũpbq “ Bνt gbptq, ν “ 1. (9c)

The polynomial approximation about x “ b is then used to determine ghost values at xNx`1 and
xNx`2. We note that the LCBC approach uses CBCs at a continuous level to define local polynomial
approximations instead of their discrete approximations as in (3). However, for this simple one-
dimensional problem, it can be shown that the LCBC approach yields an equivalent approximation
to that in (3).

2.2. The wave equation in two dimensions

We now consider an IBVP for the wave equation (with unit wave speed) on a unit square
domain, x “ px, yq P Ω “ p0, 1q2. For this problem, we let upx, tq solve

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

B2
t u “ ∆u, x P Ω, t ą 0,

u “ g`py, tq x P BΩ`, t ą 0,

u “ grpy, tq x P BΩr, t ą 0,

Byu “ gbpx, tq x P BΩb, t ą 0,

Byu “ gτ px, tq x P BΩτ , t ą 0,

u “ u0pxq, Btu “ u1pxq, x P Ω, t “ 0,

(10)

5In practice we use a Lagrange polynomial basis as it leads to better conditioned equations.
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where ∆ is the Laplacian operator. Dirichlet conditions are imposed on the left (x “ 0) and right
(x “ 1) boundaries, denoted by BΩ` and BΩr, respectively, with given smooth functions g`py, tq
and grpy, tq. Similarly, Neumann conditions are specified on the bottom (y “ 0) and top (y “ 1)
boundaries, denoted by BΩb and BΩτ , respectively, with given smooth functions gbpy, tq and gτ py, tq.
Initial conditions are determined by the given functions u0pxq and u1pxq defined for Ω “ ΩY BΩs,
s “ `, r, b, τ .

As before, we consider CBCs for the problem by taking time derivatives of the boundary con-
ditions and then replacing even time derivatives of upx, tq in favor of spatial derivatives using the
PDE. For example, 2ν time derivatives of the Dirichlet conditions at s “ ` gives

∆νup0, y, tq “ B2ν
t g`py, tq, ν “ 1, 2, . . . , (11)

which implies a sequence of CBCs, denoted by CBC`rνs, ν “ 1, 2, . . ., whose first two conditions
are given by

B2
xupx, tq “ B

2
t g`py, tq ´ B

2
yg`py, tq, x P BΩ`, (12a)

B4
xupx, tq “ B

4
t g`py, tq ´ 2B2

t B
2
yg`py, tq ` B

4
yg`py, tq, x P BΩ`. (12b)

We can also write down CBCs corresponding to the Neumann boundary conditions by taking time
derivatives. At the bottom boundary, for example, this leads to CBCbrνs, ν “ 1, 2, . . ., whose first
two conditions are given by

B3
yupx, tq “ B

2
t gbpx, tq ´ B

2
xgbpx, tq, x P BΩb, (13a)

B5
yupx, tq “ B

4
t gbpx, tq ´ 2B2

t B
2
xgbpx, tq ` B

4
xgbpx, tq, x P BΩb. (13b)

The CBCs along the boundaries with s “ r and s “ τ are similar to those given in (12) and (13),
respectively.

A standard use of CBCs to define numerical boundary conditions for a high-order accurate
discretization of the IBVP in (10) for the wave equation in two space dimensions follows similar
steps as were used above for the heat equation in one space dimension. We first introduce a
Cartesian grid for Ω defined by

Ωh
def
“ txi “ pxi, yjq “ pi∆x, j∆yq, i “ 0, . . . , Nx, j “ 0, . . . , Nyu , (14)

where Nx and Ny determine the number of grid lines in the x and y directions, respectively,
∆x “ 1{Nx and ∆y “ 1{Ny are grid spacings, and i “ pi, jq is a multi-index, see the left plot
of Figure 3. Let BΩs,h, s “ `, r, b, τ , represent the grid points on the left, right, bottom and top
boundaries of Ωh respectively. The set BΩh “

Ť

s“`,r,τ,b BΩs,h represents all the boundary grid

points of Ωh and Ωh “ ΩhzBΩh denotes the interior grid points. The grid includes ghost points, as
shown in the figure, and these are used to facilitate the approximation of the Neumann boundary
conditions and the CBCs. Let Uiptq « upxi, yj , tq, and consider a fourth-order accurate semi-discrete
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scheme for (10) given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B2
tUiptq “ ∆4hUi, xi P Ωh Y BΩb,h Y BΩτ,h, t ą 0,

Uiptq “ g`pyj , tq, xi P BΩ`,h, t ą 0,

Uiptq “ grpyj , tq, xi P BΩr,h, t ą 0,

D4yUiptq “ gbpxi, tq, xi P BΩb,h, t ą 0,

D4yUiptq “ gτ pxi, tq, xi P BΩτ,h, t ą 0,

(15)

where ∆4h and D4y are fourth-order centered approximations of ∆ and By, respectively, following
the definitions in (4) and (5). Discrete approximations of CBC`r1s and CBC`r2s in (12) given by

D4xxUiptq “ B
2
t g`pyj , tq ´ B

2
yg`pyj , tq, xi P BΩ`,h, (16a)

pD`xD´xq
2Uiptq “ B

4
t g`pyj , tq ´ 2B2

yB
2
yg`pyj , tq ` B

4
yg`pyj , tq, xi P BΩ`,h, (16b)

respectively, are added to (15). Note that the approximation of CBC`r1s is fourth-order accurate,
while a second-order accurate approximation is used for CBC`r2s, following the scheme in (3) for
the CBCs about its Dirichlet boundary. Similar approximations of CBCrr1s and CBCrr2s are
also added to (15). For the Neumann conditions, we use second-order accurate approximations of
CBCbr1s and CBCτ r1s. For example, the approximation of CBCbr1s in (13) given by

D0yD`yD´yUiptq “ B
2
t gbpxi, tq ´ B

2
xgbpxj , tq, xi P BΩb,h, (17)

is added to (15). As before, the specifications of the initial conditions have been omitted in (15).

x0,0 xNx,0

xNx,Nyx0,Ny

x´2,´2 xNx`2,´2

x´2,Ny`2 xNx`2,Ny`2

x0,j̃

x0,0

interior and
boundary points

needed for LCBC

center boundary

point

ghost points to

be computed

Figure 3: Grid in two space dimension, with ghost points, for the fourth-order accurate approximation of the wave
equation in (15).

We now consider the LCBC approach for the fourth-order accurate approximation of the wave
equation in (15). For this two-dimensional problem, it is convenient to define an interpolating
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polynomial ũpx, yq, centered about px̃, ỹq, as

ũpx, yq
def
“

p
ÿ

n̂“´p

p
ÿ

m̂“´p

dm̂,n̂Lm̂

ˆ

x´ x̃

∆x

˙

Ln̂

ˆ

y ´ ỹ

∆y

˙

, p P N, (18)

where dm̂,n̂ are coefficients and Lkpzq is a Lagrange basis function given by

Lkpzq “

p
ź

l“´p
l‰k

pz ´ lq

pk ´ lq
, k “ ´p, . . . , p. (19)

Note that ũ has the property

ũ
`

x̃` î∆x, ỹ ` ĵ∆y
˘

“ dî,ĵ , î, ĵ “ ´p, . . . , p. (20)

We set p “ 2 in (18) for the fourth-order accurate scheme, and use known data at grid points
in the interior and on the boundary, along with the physical boundary conditions and CBCs, to
determine the coefficients of ũpx, yq centered at grid points along the boundaries. For example,
along the left Dirichlet boundary at a fixed time t, let px̃, ỹq “ x0,j̃ , j̃ P t2, 3, . . . , Ny ´ 2u, and
impose the constraints

ũ
`

x̃, ỹ ` ĵ∆y
˘

“ g`
`

ỹ ` ĵ∆y, t
˘

, ĵ “ ´2, . . . , 2, (21a)

ũ
`

x̃` î∆x, ỹ ` ĵ∆y
˘

“ Uî,j̃`ĵptq, î “ 1, 2, ĵ “ ´2, . . . , 2, (21b)

Bµy∆ν ũpx̃, ỹq “ Bµy B
2ν
t g`pỹ, tq, ν “ 1, 2, µ “ 0, . . . , 4. (21c)

The 25 constraints in (21) lead to a linear system for the 25 coefficients dm̂,n̂, m̂, n̂ “ ´2, . . . , 2,
in (18) for each point x0,j̃ along the boundary. Once solved, the coefficients determine the ghost

points as Uî,j̃ “ dî,0, î “ ´2,´1. Similarly, along the bottom Neumann boundary, let px̃, ỹq “ xĩ,0,

ĩ P t2, 3, . . . , Nx ´ 2u, and impose the constraints

ũ
`

x̃` î∆x, ỹ ` ĵ∆y
˘

“ Uĩ ˆ̀i,ĵptq, ĵ “ 0, 1, 2, î “ ´2, . . . , 2, (22a)

Bµx∆νByũpx̃, ỹq “ B
µ
xB

2ν
t gbpx̃, tq, ν “ 0, 1, µ “ 0, . . . , 4. (22b)

Note that the Neumann boundary condition appears in (22b) for the case ν “ µ “ 0, and
tangential derivatives of this boundary condition are applied for µ ą 0. As before, the 25 constraints
in (22) determine the 25 coefficients in (18), which then specify ghost points as Uĩ,ĵ “ d0,ĵ , ĵ “
´2,´1, for each point x0,j̃ along the boundary.

The application of the LCBC approach at corners requires special treatment. For example, let
us consider the corner at x̃ “ p0, 0q where the Dirichlet boundary on the left meets the Neumann
boundary along the bottom (see the right plot of Figure 3). Here, we choose a linearly independent
set of constraints from those implied by (21) and (22). We begin with the data available in the
interior and on the Neumann boundary,

ũ
`

î∆x, ĵ∆y
˘

“ Uî,ĵptq, î “ 1, 2, ĵ “ 0, 1, 2. (23a)

Next, we impose tangential derivatives of the primary boundary conditions

Bµ`y ũp0, 0q “ B
µ`
y g`p0, tq, µ` “ 0, 2, 3, 4, (23b)
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Bµbx Byũp0, 0q “ B
µb
x gbp0, tq, µb “ 1, 2, 3, 4, (23c)

along with

Byũp0, 0q “
1

2

`

Byg`p0, tq ` gbp0, tq
˘

. (23d)

The latter is an average of the linearly dependent constraints in (23b) and (23c) corresponding to
µ` “ 1 and µb “ 0. The remaining constraints and taken from compatibility conditions, and they
are

Bµ`y ∆ν ũp0, 0q “ Bµ`y B
2ν
t g`p0, tq, ν “ 1, 2, µ` “ 0, 2, 4, (23e)

Bµbx ∆Byũp0, 0q “ B
µb
x B

2
t gbp0, tq, µb “ 1, 3, 4, (23f)

and

B2
xB

3
yũp0, 0q “

∆y2B3
yB

2
t g`p0, tq `∆x2B2

xB
2
t gbp0, tq

∆y2 `∆x2
. (23g)

Again, an average is used when the conditions obtained from the two boundaries are linearly
dependent. This occurs for the constraints in (23e) and (23f) corresponding to pν, µ`q “ p1, 3q
and µb “ 2, respectively. Note that we use a weighted average in (23g) to balance the tangential
derivatives taken in the x and y directions, and that certain high derivatives of ũ implied by
the compatibility conditions have been omitted since they vanish for the chosen degree of the
interpolating polynomial in (18). There are 25 constraints in (23) that determine the 25 coefficients
of ũpxq about x̃ “ p0, 0q, and this interpolating polynomial is evaluated at xi, for i “ r´2,´1s ˆ
r´2, 1s and i “ r0, 1s ˆ r´2,´1s, to determine the ghost values there.

Note that we have chosen to use the corner LCBC polynomial to assign solution values in corner
ghost points, e.g. Ui for i “ r´2, 1s ˆ r´2,´1s, as well as values in nearby ghost points along the
adjacent faces, e.g. Ui for i “ r´2,´1s ˆ r0, 1s and i “ r0, 1s ˆ r´2,´1s, see Figure 3. These latter
values could instead have been determined by special LCBC polynomials that used appropriate
compatibility conditions from the primary face and the secondary adjacent face. For higher-order
approximations this would result in many more special cases as the corner is approached. To avoid
these complications, we have chosen to employ the simpler approach of using the corner LCBC
polynomial at all adjacent face ghost points where the standard LCBC polynomial for the face
does not apply.

The application of the LCBC method just outlined for the two sample problems describes the
basic approach. In the subsequent sections, we elaborate on the LCBC method by considering
initial-boundary-value problems involving a broader class of linear PDEs and corresponding spatial
discretizations of higher orders of accuracy.

3. Second-order PDE initial-boundary-value problems and discretizations

In this section, we consider initial-boundary-value problems for a general scalar second-order
PDE and corresponding high-order accurate finite-difference approximations as a basis for a full
description of the LCBC approach which follows in the next section.
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3.1. Second-order PDE initial-boundary-value problems

Consider the initial-boundary-value problem on r0, T s ˆ Ω, T ą 0, given by

$

’

&

’

%

Lqu “ Qu` fpx, tq, x P Ω, t P p0, T s, q “ 0, 1, 2,

Bupx, tq “ gpx, tq, x P BΩ, t P r0, T s,

B
α´1
t upx, 0q “ uα´1pxq, x P Ω, α “ 1, . . . , q, q “ 1, 2.

(24)

Here, Ω Ă R2 is a general domain, BΩ denotes the boundary of Ω, and Ω “ ΩY BΩ as before. We
define

Lqu
def
“

#

0, q “ 0,

B
q
t u, q “ 1, 2,

(25)

and

Qu
def
“ c11pxqB

2
xu` 2c12pxqBxByu` c22pxqB

2
yu` c1pxqBxu` c2pxqByu` c0pxqu, x P Ω. (26)

We assume that the coefficient functions c11pxq, c12pxq, etc., are smooth, and they are chosen,
together with the boundary and initial conditions, so that the problem is well posed. wdh: For
example, for q “ 1, 2, necessary conditions are that c11pxq ą 0, c22pxq ą 0 and

c11pxqc22pxq ´ c
2
12pxq ě δ ą 0, @x P Ω. (27)

We note that (26) is taken in non-conservative form for the purposes of this article; LCBC methods
for problems in conservative form are left to future work.

The governing equation in (24), with given forcing function fpx, tq, takes the form of a general
elliptic (q “ 0), parabolic (q “ 1) or hyperbolic (q “ 2) PDE in second-order form depending on
the choice of the index q. The boundary conditions in (24), with given forcing function gpx, tq, are
written in terms of the boundary operator given by

Bu def
“ b1pxqu` b2pxqBnu, x P BΩ, (28)

where Bn is the outward normal derivative and the coefficient functions satisfy |b1pxq|` |b2pxq| ‰ 0,
@x P BΩ. Initial conditions are specified for the cases, q “ 1 and 2.

We are motivated by the application of the LCBC method for high-order accurate discretizations
of the model problem in (24) on mapped grids. For such discretizations, we consider a smooth
mapping from the unit square to Ω. The form of the model problem remains unchanged in the
mapped domain, so it suffices to study the governing equations in (24) over the domain Ω “ p0, 1q2

as a model problem.

3.2. Semi-discrete approximations

Let

Ui «

#

upxiq, q “ 0,

upxi, tq, q “ 1, 2,

represent the numerical approximation of the exact solution of (24) at discrete points xi on the
Cartesian grid Ωh given in (14) and at a fixed time t P r0, T s. Our principal focus is on discretiza-
tions of (24) to fourth and sixth-order accuracy, although we also consider second-order accurate
approximations as a baseline. A second-order accurate discretization of (24) employs standard
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centered differences given by

D2,ζ
def
“ D0ζ , D2,ζζ

def
“ D`ζD´ζ , ζ “ x, y. (29)

Fourth-order accurate operators, D4,ζ and D4,ζζ , ζ “ x, y, were introduced in the previous section,
and we define sixth-order accurate centered operators as

D6,ζ
def
“ D0ζ

ˆ

I ´
∆ζ2

6
D`ζD´ζ `

∆ζ4

30
pD`ζD´ζq

2

˙

,

D6,ζζ
def
“ D`ζD´ζ

ˆ

I ´
∆ζ2

12
D`ζD´ζ `

∆ζ4

90
pD`ζD´ζq

2

˙

,

,

/

/

/

.

/

/

/

-

ζ “ x, y. (30)

Thus,

Qd,h
def
“ c11pxiqDd,xx ` 2c12pxiqDd,xDd,y ` c22pxiqDd,yy ` c1pxiqDd,x ` c2pxiqDd,y ` c0pxiqI, (31)

for xi P Ωh. Set Bd,h to be the dth-order accurate centered discretization of the boundary operator B.

In view of the finite difference operators defined above, we note that (31) can be written as

Qd,hVi “ c11pxiqD`xD´x

#

Vi `
k´1
ÿ

n“1

an∆x2n
`

D`xD´x
˘n
Vi

+

`2c12pxiqD0xD0y

#

Vi `
k´1
ÿ

n“1

n
ÿ

l“0

blbn´l∆x
2l∆y2pn´lq

`

D`xD´x
˘l`
D`yD´y

˘n´l
Vi

+

`c22pxiqD`yD´y

#

Vi `
k´1
ÿ

n“1

an∆y2n
`

D`yD´y
˘n
Vi

+

`c1pxiqD0x

#

Vi `
k´1
ÿ

n“1

bn∆x2n
`

D`xD´x
˘n
Vi

+

`c2pxiqD0y

#

Vi `
k´1
ÿ

n“1

bn∆y2n
`

D`yD´y
˘n
Vi

+

` c0pxiqVi,

(32)

for some grid function Vi and for d “ 2k, k “ 1, 2, 3. The higher-order correction terms given by
the sums in (32) are omitted for the second-order accurate case with k “ 1. The coefficients an
and bn of the correction terms involving powers of D`xD´x and D`yD´y are given by

a1 “ ´
1

12
, a2 “

1

90
, b0 “ 1, b1 “ ´

1

6
, b2 “

1

30
. (33)

The form of the discrete operator in (32) is particularly useful for the calculation of pQd,hq
νVi,

ν “ 1, 2, . . ., which is required for the approximation of compatibility boundary conditions as is
discussed in the next section.

The semi-discrete model problem takes the form

$

’

&

’

%

LqUiptq “ Qd,hUiptq ` fpxi, tq, xi P Ωh, t P p0, T s, q “ 0, 1, 2,

Bd,hUiptq “ gpxi, tq, xi P BΩh, t P r0, T s,

B
α´1
t Uip0q “ uα´1pxiq, xi P Ωh, α “ 1, . . . , q, q “ 1, 2.

(34)
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Grid points along ghost lines at each boundary of Ωh are introduced to accommodate the stencil
of the discrete spatial operators near the boundaries, and these are included in the extended grid
defined by

Ωe
h

def
“ txi | i “ pi, jq, i “ ´p, . . . , Nx ` p, j “ ´p, . . . , Ny ` pu , (35)

where p “ d{2. We evaluate the solution at the ghost points using the LCBC method.

3.3. Compatibility boundary conditions

The LCBC method uses compatibility boundary conditions obtained from the primary boundary
conditions and the governing PDE (and its derivatives) applied on the boundary. The steps taken
to obtain the CBCs depend on whether the PDE is time-dependent or not. We begin with the time-
dependent cases for which q “ 1 or 2. Here, we take q time derivatives of the primary boundary
condition in (24) to give

BBqt upx, tq “ B
q
t gpx, tq, x P BΩ, (36)

at a fixed time t P r0, T s. Now apply the PDE from (24) to obtain

BQupx, tq “ Bqt gpx, tq ´ Bfpx, tq, x P BΩ. (37)

Repeat the process ν times to find the νth compatibility condition, denoted by CBCB,qrνs, as

BQνupx, tq “ Bqνt gpx, tq ´ BΨνfpx, tq, x P BΩ, ν “ 1, 2, . . . , (38)

where Ψν is a differential operator defined by

Ψνfpx, tq
def
“

ν
ÿ

k“1

Qk´1B
qpν´kq
t fpx, tq, x P BΩ, ν “ 1, 2, . . . . (39)

For the time-independent case with q “ 0, we derive the νth compatibility condition by first
applying the elliptic operator Q to the governing PDE ν ´ 1 times to obtain

Qνupxq “ ´Qν´1fpxq, x P Ω, ν “ 1, 2, . . . . (40)

The boundary operator in (24) is then applied to (40) to give

BQνupxq “ ´BQν´1fpxq, x P BΩ, ν “ 1, 2, . . . , (41)

which we denote by CBCB,0rνs. We observe that the form of the CBCs in (38) for the cases q “ 1
and 2 and in (41) for the case q “ 0 are similar, and these conditions provide the additional
constraints needed to complete the specification of the local interpolants of the solution on the
boundary for the LCBC method.

4. LCBC method

We now provide a full description of the LCBC method for the semi-discrete model problem
in (34). We first consider a coordinate boundary away from corners where two coordinate bound-
aries meet. We choose a Dirichlet-type boundary condition and introduce the LCBC method using
a direct approach. For a more efficient implementation, we improve upon this direct approach by
adopting a stencil representation of the solution at the ghost points; we call this improved method
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the stencil approach. After this is done, we present an example where the boundary condition is of
the Neumann type. Finally, we describe the treatment near the corner and discuss the conditioning
of linear systems that arise in the LCBC method.

4.1. Dirichlet boundary

As an example of the LCBC method for Dirichlet boundary conditions, let us consider the left
boundary, x “ 0 with y P r0, 1s, and assume that the boundary operator in (24) becomes

upx, tq “ g`py, tq, x P BΩ`, (42)

for a fixed time t P r0, T s. Following the approach described in Section 2.2 for the wave equation
defined on a unit square domain, we consider the interpolating polynomial ũpxq in (18) centered
about a point x̃ P BΩ`, and then specify its m̃ “ p2p ` 1q2 coefficients dm̂,n̂, m̂, n̂ “ ´p, . . . , p, by
enforcing the constraints

ũ
`

0, ỹ ` ĵ∆y
˘

“ g`
`

ỹ ` ĵ∆y, t
˘

, ĵ “ ´p, . . . , p, (43a)

ũ
`

î∆x, ỹ ` ĵ∆y
˘

“ Uî,j̃`ĵptq, î “ 1, . . . , p, ĵ “ ´p, . . . , p, (43b)

BµyQ
ν ũp0, ỹq “ BµyR`,νpỹ, tq, ν “ 1, . . . , p, µ “ 0, . . . , 2p, (43c)

where

R`,νpy, tq
def
“

$

&

%

´Qν´1fp0, yq, q “ 0,

B
qν
t g`py, tq ´Ψνfp0, y, tq, q “ 1, 2.

(44)

The constraints in (43a) are the Dirichlet boundary condition applied at 2p` 1 grid points about
the boundary point p0, ỹq, while (43b) sets ũ equal to Ui at pp2p ` 1q grid points interior to the
boundary point. The last constraints in (43c) require that ũ satisfy p2p` 1q tangential derivatives
of the compatibility boundary conditions, CBC`,qrνs, ν “ 1, . . . , p, evaluated at the boundary
point p0, ỹq. Together, the constraints in (43) imply m̃ “ p2p ` 1q2 linear equations for the m̃
coefficients in ũ for each point p0, ỹq P BΩ̃`,h, where

BΩ̃`,h
def
“

 

xi | i “ 0, j “ p, p` 1, . . . , Ny ´ p
(

, (45)

is the set of grid points along the left boundary x “ 0 sufficiently separated from the corners at
y “ 0 and 1.

The m̃ˆ m̃ linear system implied by (43) has the form

Ad “ b, (46)

where A P Rm̃ˆm̃ is a coefficient matrix, b P Rm̃ is a right-hand side vector and d P Rm̃ is a vector
containing the coefficients of the interpolating polynomial in (18) organized as

d “ rd´p,´p, . . . , d´p,p | d´p`1,´p, . . . , d´p`1,p | ¨ ¨ ¨ | dp,´p, . . . , dp,ps
T . (47)

The matrix A, as constructed in Algorithm 1 for a point x̃ on the boundary, has the 2 ˆ 2 block
structure

A “

«

A11 A12

0 I

ff

. (48)

The elements in the matrices A11 P Rm̃1ˆm̃1 and A12 P Rm̃1ˆm̃2 , with m̃1 “ pp2p ` 1q and
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m̃2 “ pp ` 1qp2p ` 1q, are obtained from derivatives of the interpolating polynomial ũ implied
by the conditions in (43c). The m̃2 ˆ m̃2 identity in the lower-right block of A is implied by the
conditions in (43a) and (43b). The matrix A is nonsingular provided that the coefficient function
c11pxq associated with the highest x-derivative in the differential operator Q does not vanish (see
Theorem 1 discussed later in Section 5.1). Algorithm 2 shows the construction of the right-hand
side vector b which follows similar steps to that used to build A. The solution of (46) yields the
coefficients dm̂,n̂ of the interpolating polynomial, and in particular

Uî,j̃ “ dî,0, î “ ´p, . . . ,´1, (49)

which sets the values of Ui in the p ghost points corresponding to the boundary point x̃.

Algorithm 1 Construct the coefficient matrix A for a Dirichlet boundary.

1: r “ 0;
2: for ν “ 1, . . . , p do
3: for µ “ 0, . . . , 2p do
4: r “ r ` 1;
5: for m̂ “ ´p, . . . , p do
6: for n̂ “ ´p, . . . , p do
7: c “ p2p` 1qpm̂` pq ` n̂` p` 1;
8: Apr, cq “ BµyQ

νLm̂
`

px´ x̃q{∆x
˘

Ln̂
`

py ´ ỹq{∆y
˘
ˇ

ˇ

x“x̃
; Ź Elements of A from (43c)

9: end for
10: end for
11: end for
12: end for
13: for î “ 0, . . . , p do
14: for ĵ “ ´p, . . . , p do
15: r “ r ` 1;
16: Apr, rq “ 1; Ź Elements of A from (43a) and (43b)
17: end for
18: end for

Algorithm 2 Construct the right-hand side vector b for a Dirichlet boundary.

1: r “ 0;
2: for ν “ 1, . . . , p do
3: for µ “ 0, . . . , 2p do
4: r “ r ` 1;
5: bprq “ BµyR`,νpỹ, tq; Ź Elements of b from (43c)
6: end for
7: end for
8: for ĵ “ ´p, . . . , p do
9: r “ r ` 1;

10: bprq “ g`
`

ỹ ` ĵ∆y, t
˘

; Ź Elements of b from (43a)
11: end for
12: for î “ 1, . . . , p do
13: for ĵ “ ´p, . . . , p do
14: r “ r ` 1;
15: bprq “ Uî,j̃`ĵptq; Ź Elements of b from (43b)
16: end for
17: end for
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4.1.1. LCBC method: Direct approach

In the direct approach to the LCBC method, the matrix A and vector b in (46) are constructed
for each point on the boundary, and then the system is solved to determine ghost points following
the assignments in (49) for example. Algorithms 1 and 2 provide the steps for a point x̃ “ px̃, ỹq
along the boundary x̃ “ 0 for the case of a Dirichlet boundary condition, while the case of a
Neumann boundary condition is described in Section 4.2 below. Points on the boundary near
corners require special treatment, and this is discussed in Section 4.3.

An important element of the direct approach, and the stencil approach discussed next, is an effi-
cient calculation of the matrix A. The main step in this calculation appears in line 8 of Algorithm 1,
which is independent of time t and need only be performed once for a given problem. This step
involves applying repeated y-derivatives and powers of the operator Q on the product of Lagrange
basis functions Lm̂ and Ln̂, and then evaluating the result at a point x̃ on the boundary. While
this calculation can be carried out analytically, the form of Q in (26) involving general coefficient
functions, c11pxq, c12pxq, etc., makes this calculation increasingly messy as the order of accuracy
determined by p increases. Also, it is desirable to avoid having to specify derivatives of the coeffi-
cient functions. With these issues in mind, a more practical approach is described in Algorithm 3
which computes suitable approximations of these elements, denoted by Zm̂,n̂rµ, νs, in a particular
column of A determined by given values of m̂, n̂ P t´p, . . . , pu defining the basis functions. The row
entries are determined by the integers µ and ν, and we note in advance that the algorithm only
requires evaluations of the coefficient functions at points on the grid.

Algorithm 3 Compute Zm̂,n̂rµ, νs « B
µ
yQνLm̂

`

px´ x̃q{∆x
˘

Ln̂
`

py ´ ỹq{∆y
˘ˇ

ˇ

x“x̃
.

1: for k “ 1, . . . , p do
2: for î P Ω̂hr0, ks do Ź Initialize Vîr0, ks “ Lm̂p̂iqLn̂pĵq
3: Vîr0, ks “ Lm̂p̂iqLn̂pĵq;
4: end for
5: end for
6: for ν “ 0, . . . , p´ 1 do
7: for k “ 1, . . . , p´ ν do
8: for l “ 1, . . . , k ´ 1 do
9: for î P Ω̂hrν, ks do Ź Compute corrections W

pm,nq

î
rν, ls involving Vîrν, ls

10: for m “ 0, . . . , k ´ l do
11: W

pm,pk´lq´mq

î
rν, ls “ pD`xD´xq

m
pD`yD´yq

pk´lq´mVîrν, ls;
12: end for
13: end for
14: end for
15: for î P Ω̂hrν ` 1, ks do Ź Compute Vîrν ` 1, ks “

`

Q2k,h

˘

Vîrν, ks

16: Vîrν ` 1, ks “ applyQh
 

Vîrν, ks,W
pm,nq

î
rν, k ´ 1s, . . . ,W

pm,nq

î
rν, 1s

(

;
17: end for
18: end for
19: end for
20: for ν “ 1, . . . , p do Ź Compute Zi,jrµ, νs using Vîrν, ks, k “ 1, 2, . . . , p` 1´ ν
21: k “ p` 1´ ν;
22: Zm̂,n̂r0, νs “ V0,0rν, ks
23: for l “ 1 . . . , p do
24: µ “ 2l;
25:

 

Zm̂,n̂rµ´ 1, νs, Zm̂,n̂rµ, νs
(

“ applyDy
 

Vîrν, 1s, . . . , Vîrν, ks
(

;
26: end for
27: end for

The first collection of steps in the algorithm results in the calculation of the grid function
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Vîrν ` 1, ks in line 16 defined by

Vîrν, ks
def
“ pQd,hq

νLm̂
`

î
˘

Ln̂
`

ĵ
˘

, ν “ 1, . . . , p, (50)

where the indices pm̂, n̂q are fixed and the order of accuracy of the approximation is d “ 2k,
k “ 1, . . . , p ` 1 ´ ν. Note that the highest order of accuracy, given by 2pp ` 1 ´ νq, decreases as
ν increases. The calculation of Vîrν ` 1, ks, determined by the function applyQh, follows from the

form of the discrete operator Qd,h given in (32). Using the correction terms denoted by W
pm,nq

î
in

line 11, the function sets

Vîrν ` 1, ks “ c11pxîqD`xD´x

#

Vîrν, ks `
k´1
ÿ

n“1

an∆x2nW
pn,0q

î
rν, k ´ ns

+

`2c12pxîqD0xD0y

#

Vîrν, ks `
k´1
ÿ

n“1

n
ÿ

l“0

blbn´l∆x
2l∆y2pn´lqW

pl,n´lq

î
rν, k ´ ns

+

`c22pxîqD`yD´y

#

Vîrν, ks `
k´1
ÿ

n“1

an∆y2nW
p0,nq

î
rν, k ´ ns

+

`c1pxîqD0x

#

Vîrν, ks `
k´1
ÿ

n“1

bn∆x2nW
pn,0q

î
rν, k ´ ns

+

`c2pxîqD0y

#

Vîrν, ks `
k´1
ÿ

n“1

bn∆y2nW
p0,nq

î
rν, k ´ ns

+

` c0pxîqVîrν, ks,

(51)

where the coefficients pan, bnq are given in (33). The domain for the local index î, denoted by
Ω̂hrν, ks, for each calculation is defined by

Ω̂hrν, ks
def
“ r´wx, wxs ˆ r´wy, wys, wx “ p´ pν ` k ´ 1q, wy “ wx ` p, (52)

and this gives the minimum stencil width required for the subsequent calculation of the discrete
y-derivatives of Vîrν, ks performed in the second collection of steps starting at line 20. Here, the
main step involves the function applyDy in line 25 which computes the odd/even derivative pair
Zm̂,n̂rµ´ 1, νs and Zm̂,n̂rµ, νs using standard centered finite differences in the y-direction to order
of accuracy d “ 2k “ 2pp` 1´ νq.

The elements of the right-hand side vector b in (46) are specified by Algorithm 2 for the case
of a Dirichlet boundary along x̃ “ 0. The difficult step appears in line 5 and it involves the
calculation of successive y-derivatives of R`,νpỹ, tq defined in (44). The calculation of R`,νpy, tq,
in turn, requires powers of the operator Q applied to the forcing function fpx, tq. As before, we
use a practical approach in which the various derivatives, both in space and time, are performed
approximately to appropriate orders of accuracy. At present we have considered only a spatial
discretization in the semi-discrete model in (34) and so we assume the time derivatives in R`,νpỹ, tq
are exact for now. In terms of the spatial approximations, a key step involves applying powers
of the discrete operator Qd,h onto fpx, tq evaluated at grid points about x̃, and this can be done
efficiently following steps similar to those described in Algorithm 3. Discrete y-derivatives are
then applied to the result, again following the previous algorithm. The principal details involve
the approximations of R`,νpỹ, tq and these are given in Algorithm 4 for the time-dependent cases
q “ 1, 2 (with straightforward simplifications for the steady case q “ 0). For Algorithm 4, we
redefine the domain for the local index î in (52) such that wx “ p´ pν ` kq.
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Algorithm 4 Compute R`,ĵrν, ts « R`,ν
`

ỹ ` ĵ∆y, t
˘

for q ą 0

1: for ν “ 1, . . . , p do
2: for ĵ P r´p, ps do Ź Initialize R`,ĵrν, ts “ B

qν
t g`

`

ỹ ` ĵ∆y, t
˘

3: R`,ĵrν, ts “ applyDt
 

g`,ĵptq, qν
(

;
4: end for
5: end for
6: for n “ 0, . . . , p´ 1 do
7: for k “ 1, . . . , p do
8: for î P Ω̂hr0, ks do Ź Initialize Fîr0, k, ts “ B

qn
t fpx̃` xî, tq

9: Fîr0, k, ts “ applyDt
 

fîptq, qn
(

;
10: end for
11: end for
12: for ν̄ “ 0, . . . , p´ n´ 2 do
13: for k “ 1, . . . , p´ ν̄ ´ 1 do
14: for l “ 1, . . . , k ´ 1 do
15: for î P Ω̂hrν̄, ks do Ź Compute corrections W

pm,nq

î
rν̄, l, ts involving Fîrν̄, l, ts

16: for m “ 0, . . . , k ´ l do
17: W

pm,pk´lq´mq

î
rν̄, l, ts “ pD`xD´xq

m
pD`yD´yq

pk´lq´mFîrν̄, l, ts;
18: end for
19: end for
20: end for
21: for î P Ω̂hrν̄ ` 1, ks do Ź Compute Fîrν̄ ` 1, k, ts “

`

Q2k,h

˘

Fîrν̄, k, ts

22: Fîrν̄ ` 1, k, ts “ applyQh
 

Fîrν̄, k, ts,W
pm,nq

î
rν̄, k ´ 1, ts, . . . ,W

pm,nq

î
rν̄, 1, ts

(

;
23: end for
24: end for
25: end for
26: for ν “ n` 1, . . . , p do
27: ν̄ “ ν ´ n´ 1;
28: k “ mintp´ ν̄ , pu;
29: for ĵ P r´p, ps do Ź Update R`,ĵrν̃, ts
30: R`,ĵrν, ts “ R`,ĵrν, ts ´ F0,ĵrν̄, k, ts;
31: end for
32: end for
33: end for

It is worth noting that for the time-dependent cases, the elements of b must be calculated at
each time step. Also, the approximation of BµyR`,νpỹ, tq uses values of R`,ĵrν, ts about ỹ, computed
in Algorithm 4, and these can be used by the approximations at neighboring values along the
boundary. This observation suggests a possible savings in computational cost that is explored with
the stencil approach discussed next.

4.1.2. LCBC method: Stencil approach

The aim of the stencil approach is to manipulate the linear system in (46) so that the values in
the ghost points in (49) corresponding to a point x̃ on the boundary can be computed using the
stencil formula

Uî,j̃ “

p
ÿ

ν“1

j̃`p
ÿ

j“j̃´p

α
pν,jq

î,j̃
R`,jrν, ts `

p
ÿ

i“0

j̃`p
ÿ

j“j̃´p

β
pi,jq

î,j̃
Ui,jptq, î “ ´p, . . . ,´1, (53)

where α
pν,jq

î,j̃
and β

pi,jq

î,j̃
are coefficients belonging to the left boundary centered at x0,j̃ . A central

point is that the coefficients in (53) do not depend on time t and can be computed from the
matrix A in (48). Thus, the values in the ghost points can be computed efficiently via a fixed linear
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combination of the relevant time-dependent data, assuming q “ 1, 2, given by R`,jrν, ts and the
grid data given by Ui,jptq. This grid data includes values at interior points close to the boundary
for i “ 1, . . . , p and Dirichlet boundary data, U0,jptq “ g`pyj , tq. Note that Algorithm 4 computes
R`,ĵrν, ts for values of the local index ĵ about j̃, but the range of the y-index can be extended
readily to cover the whole left boundary (sufficiently separated from the corners).

To compute the coefficients in (53), we consider the linear system in (46) in the form

«

A11 A12

0 I

ff«

d1

d2

ff

“

«

DyRptq

Uptq

ff

, (54)

where d “
“

d1,d2s
T holds the coefficients of the interpolating polynomial, Rptq P Rm̃1 is a vector

containing R`,jrν, ts, Uptq P Rm̃2 is a vector containing Ui,jptq, and Dy P Rm̃1ˆm̃1 is the matrix op-
erator representing the discrete y-derivatives of R`,jrν, ts. We are mainly interested in the elements
of d1 which give the ghost values in (49). The lower set of m̃2 equations in (54) implies d2 “ Uptq
so that the upper set of m̃1 equations becomes

A11d1 “ DyRptq ´A12Uptq. (55)

Let Cα P Rm̃1ˆm̃1 and Cβ P Rm̃1ˆm̃2 solve the matrix systems

A11Cα “ Dy, A11Cβ “ ´A12, (56)

so that (55) reduces to
d1 “ CαRptq ` CβUptq. (57)

The sets of coefficients,
 

α
pν,jq

î,j̃

(

and
 

β
pi,jq

î,j̃

(

, in the stencil formula in (53) are given by the elements

along selected rows of Cα and Cβ, respectively, corresponding to the desired ghost values in d1.
We note also that the linear systems in (56) are dense but not very large, e.g. A11 is 21 ˆ 21 for
p “ 3, and they can be solved readily using standard linear algebra software.

4.2. Neumann boundary

We now turn our attention to the case of a Neumann boundary. Let us again treat the left
boundary, x “ 0 with y P r0, 1s, and assume a primary boundary condition given by

Bxupx, tq “ g`py, tq, x P BΩ`, (58)

for a fixed time t P r0, T s. We consider the interpolating polynomial ũpxq in (18) centered about a
point x̃ P BΩ`, and then specify its coefficients by enforcing the constraints

ũ
`

î∆x, ỹ ` ĵ∆y
˘

“ Uî,j̃`ĵptq, î “ 0, . . . , p, ĵ “ ´p, . . . , p, (59a)

Bµy BxQ
ν ũp0, ỹq “ BµyS`,νpỹ, tq, ν “ 0, . . . , p´ 1, µ “ 0, . . . , 2p, (59b)

where

S`,νpy, tq
def
“

$

&

%

´BxQ
ν´1fp0, yq, q “ 0,

B
qν
t g`py, tq ´ BxΨνfp0, y, tq, q “ 1, 2.

(60)

The interpolating polynomial ũ is set equal to the data Uiptq in (59a) at 2p ` 1 points on the
boundary and at pp2p ` 1q points in the interior adjacent to the boundary. The compatibility
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conditions in (59b) include tangential derivatives of the Neumann boundary condition in (58) for
the case ν “ 0. Note that we use only p ´ 1 CBCs here since the boundary condition involves a
normal derivative, whereas p CBCs are used for the case of a Dirichlet boundary. As before, the
constraints in (59) imply m̃ “ p2p` 1q2 linear equations for the m̃ coefficients in ũ for each point
p0, ỹq P BΩ̃`,h given in (45), and these equations can be written in a matrix form following (46) with
a coefficient matrix A and right-hand side vector b generated in Algorithms 5 and 6, respectively.
The solution of the linear system gives d, the coefficients of ũpxq, and thus the ghost point values
in (49) associated with the point x̃ on the Neumann boundary.

Algorithm 5 Construct the coefficient matrix A for a Neumann boundary.

1: r “ 0;
2: for ν “ 0, . . . , p´ 1 do
3: for µ “ 0, . . . , 2p do
4: r “ r ` 1;
5: for m̂ “ ´p, . . . , p do
6: for n̂ “ ´p, . . . , p do
7: c “ p2p` 1qpm̂` pq ` n̂` p` 1;
8: Apr, cq “ Bµy BxQ

νLm̂
`

px´ x̃q{∆x
˘

Ln̂
`

py ´ ỹq{∆y
˘
ˇ

ˇ

x“x̃
; Ź Elements of A from (59b)

9: end for
10: end for
11: end for
12: end for
13: for i “ 0, . . . , p do
14: for j “ ´p, . . . , p do
15: r “ r ` 1;
16: Apr, rq “ 1; Ź Elements of A from (59a)
17: end for
18: end for

Algorithm 6 Construct the right-hand side vector b for a Neumann boundary.

1: r “ 0;
2: for ν “ 0, . . . , p´ 1 do
3: for µ “ 0, . . . , 2p do
4: r “ r ` 1;
5: bprq “ BµyS`,νpỹ, tq; Ź Elements of b from (59b)
6: end for
7: end for
8: for î “ 0, . . . , p do
9: for ĵ “ ´p, . . . , p do

10: r “ r ` 1;
11: bprq “ Uî,j̃`ĵptq; Ź Elements of b from (59a)
12: end for
13: end for

The elements in line 8 of Algorithm 5, involving repeated applications of the operator Q on
the x-derivative of the Lagrange basis functions followed by successive y-derivatives, are obtained
approximately. The details of these approximations are similar to those given in Algorithm 3 for
the Dirichlet case. The main difference for the case of a Neumann boundary is the addition of a
discrete x-derivative applied to Vîrν, ks, to an appropriate order of accuracy, prior to applications of
the discrete y-derivatives. The y-derivatives of S`,νpỹ, tq in line 5 of Algorithm 6 are also computed
approximately.

Instead of solving the linear system in (46) at each time step (for q “ 1, 2), we prefer the stencil
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approach. Here, the stencil formula for the ghost points associated with a point x0,j̃ along the left
boundary becomes

Uî,j̃ “

p´1
ÿ

ν“0

j̃`p
ÿ

j“j̃´p

ᾱ
pν,jq

î,j̃
S`,jrν, ts `

p
ÿ

i“0

j̃`p
ÿ

j“j̃´p

β̄
pi,jq

î,j̃
Ui,jptq, î “ ´p, . . . ,´1, (61)

where S`,jrν, ts « S`,νpyj , tq for q ą 0 and ν “ 0, . . . , p´1. The coefficients in (61) for each boundary
point are obtained by manipulating the system

«

Ā11 Ā12

0 I

ff«

d1

d2

ff

“

«

D̄ySptq

Uptq

ff

. (62)

For the Neumann case, the block matrices Ā11 P Rm̃1ˆm̃1 and Ā12 P Rm̃1ˆm̃2 are obtained from the
approximations of the elements in line 8 of Algorithm 5. The vectors Sptq P Rm̃1 and Uptq P Rm̃2

contain S`,jrν, ts and Ui,jptq, respectively, and D̄y P Rm̃1ˆm̃1 contains the coefficients associated
with the discrete y-derivatives of S`,jrν, ts, ν “ 0, . . . , p ´ 1. Let C̄ᾱ P Rm̃1ˆm̃1 and C̄β̄ P Rm̃1ˆm̃2

solve the systems
Ā11C̄ᾱ “ D̄y, Ā11C̄β̄ “ ´Ā12, (63)

so that
d1 “ C̄ᾱSptq ` C̄β̄Uptq. (64)

As before, the sets of coefficients of the stencil formula in (61) are given by the elements along
selected rows of C̄ᾱ and C̄β̄ corresponding to the desired ghost values in d1.

4.3. LCBC conditions at a corner

As a representative case involving the conditions at a corner, let us consider the bottom-left
corner, x̃ “ p0, 0q, where two Dirichlet boundaries meet. The cases of a Neumann-Neumann corner
and a Dirichlet-Neumann corner are discussed in Appendix A. The physical (primary) boundary
are taken to be

upx, tq “ g`py, tq, x P BΩ`, (65a)

upx, tq “ gbpx, tq, x P BΩb, (65b)

for a some fixed time t. We start by specifying the interpolating polynomial ũpxq at known interior
data given by

ũ
`

î∆x, ĵ∆y
˘

“ Uî,ĵptq, î “ 1, . . . , p, ĵ “ 1, . . . , p. (66a)

Next, we apply tangential derivatives of the primary boundary conditions and compatibility con-
ditions given by

B
µ
y ũp0, 0q “ B

µ
y g`p0, tq

B
µ
x ũp0, 0q “ B

µ
xgbp0, tq

+

µ PM0, (66b)

and
B
µ
yQν ũp0, 0q “ B

µ
yR`,νp0, tq

B
µ
xQν ũp0, 0q “ B

µ
xRb,νp0, tq

+

ν “ 1, . . . , p, µ PMν , (66c)
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respectively, where R`,νpy, tq is defined in (44) and Rb,νpx, tq is defined by

Rb,νpx, tq
def
“

$

&

%

´Qν´1fpx, 0q, q “ 0,

B
qν
t gbpx, tq ´Ψνfpx, 0, tq, q “ 1, 2.

(67)

The sets Mν , ν “ 0, . . . , p, chosen to eliminate redundant constraints, are given by

Mν “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, 1, 2, 3, . . . , 2p´ 1, 2p, if ν “ 0, with an average for µ “ 0,

1, 2, 3, 4, . . . , 2p´ 1, 2p, if ν “ 1, with an average for µ “ 2,

1, 3, 4, 5, . . . , 2p´ 1, 2p, if ν “ 2, with an average for µ “ 4,

...
...

1, 3, 5, . . . , 2p´ 1, 2p, if ν “ p, with an average for µ “ 2p.

(68)

Note that there is one value for µ in each set Mν where the pairs in (66b) and (66c) are averaged
to resolve linearly dependent constraints (and to balance the constraints on the left and bottom
boundaries). The weights for the averages are ∆yµ and ∆xµ for the CBCs arising from the left
and bottom boundaries, respectively, to balance the tangential derivatives taken in the y and x
directions (following the previous discussion in Section 2.2). The m̃ “ p2p` 1q2 constraints in (66)
for the m̃ coefficients dm̂,n̂ of ũpxq are a generalization of the approach for the bottom-left corner
given in (23) for the wave equation. Ghost points near the corner can be obtained from the solution
of the linear system implied by (66) following a direct approach, or these ghost points can be written
in terms of the stencil formula

Uî,ĵ “

p
ÿ

ν“0

p
ÿ

j“´p

α̃
pν,jq

î,ĵ
R`,jrν, ts `

p
ÿ

ν“0

p
ÿ

i“´p

β̃
pν,iq

î,ĵ
Rb,irν, ts `

p
ÿ

i“1

p
ÿ

j“1

γ̃
pi,jq

î,ĵ
Ui,jptq, î P Ω̂c, (69)

where
Ω̂c

def
“

 

î “ p̂i, ĵq | ´ p ď p̂i, ĵq ă p z 1 ď p̂i, ĵq ă p
(

(70)

defines the set of local indices for the ghost-point values in (69). The time-dependent data R`,jrν, ts
and Rb,irν, ts in (69), assuming q “ 1, 2, are discrete approximations of R`,νpj∆y, tq and Rb,νpi∆x, tq,
respectively, for ν “ 1, . . . , p. The boundary conditions are specified in (69) by setting

R`,jr0, ts “ g`pj∆y, tq, j “ ´p, . . . , p, (71a)

Rb,ir0, ts “ gbpi∆x, tq, i “ ´p, . . . , p, (71b)

similar to previous specifications. The coefficients in the stencil formula are derived from the
m̃ˆm̃ linear system implied by (66) following the analysis described for the Dirichlet and Neumann
boundaries.

Our choice for the constraints in (66) is guided by the case when Q in (26) is the Laplacian
operator. For this case, the constraints are linearly independent. For the more general operator
Q with variable coefficients, the constraints remain linearly independent provided c11pxq ą 0,

c22pxq ą 0 and max
!

|c12pxq| {
a

c11pxqc22pxq
)

is small, with x evaluated at the corner. Should

these conditions be violated, the m̃ ˆ m̃ matrix A implied by (66) may become singular or badly
conditioned. For example, if c11 ą 0, c22 ą 0 and c12 are constants, and if c1 “ c2 “ c0 “ 0, then
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the determinant of A for the case p “ 1 (d “ 2) has the form

detpAq “ ´D∆x∆ypc11 ` c22qpc11c22 ´ 4c2
12q, D “ constant ą 0.

Thus, A becomes singular when |c12| “
?
c11c22{2. Another case for which A is rank deficient

occurs when c11 “ c22 “ 1, c12 “ 1{2, c1 “ c2 “ c0 “ 0 and ∆x “ ∆y, and for any value of p.

As noted earlier, we are motivated by high-order accurate discretizations of the model problem
in (3.1). For many problems of interest, this model problem is obtained by an orthogonal, or near-
orthogonal, mapping of a PDE in physical space involving the Laplacian operator. The resulting
mapped problem, of the form in section (3.1), would have |c12pxq| small relative to c11pxq and c22pxq
resulting in a nonsingular matrix A implied by the constraints in (66) for a Dirichlet-Dirichlet
corner. The matrices for the Neumann-Neumann and Dirichlet-Neumann corners, discussed in the
appendix, are also nonsingular under these conditions.

4.4. Conditioning of LCBC matrices

We are interested in the sensitivity of the computational procedures involving LCBC matrices to
data perturbations and round-off errors. We first note that the rows of the LCBC matrices for both
sides and corners vary in magnitude significantly. Therefore, we choose to use the equilibrate

function in MATLAB to optimize the conditioning of the LCBC matrices by permuting the rows
and then applying row and column scalings. The diagonal entries of each permuted and scaled
matrix are all one in magnitude while the off-diagonal elements are less than or equal to one. This
decreases the number of pivots needed for numerical stability in Gaussian elimination (see [41]).
We shall then adopt the scaling proposed by equilibrate to generate the condition numbers for
the numerical results presented below.

Let κpAq “ }A}}A´1} be the 2-norm condition number of an LCBC matrix A generated for a
point on a boundary or a corner, and let κmax be the maximum of κpAq for all points along the
four boundaries or for the four corners. We compute κmax for the following test cases:

1. We set Ω “ p0, 1q2, Q “ ∆ and take Dirichlet boundary conditions at x “ 0 and 1, y P r0, 1s,
and Neumann boundary conditions at y “ 0 and 1, x P r0, 1s. This case corresponds to the
numerical example presented later in Section 6.2.1.

2. We set Ω “ tx “ pρ cos θ, ρ sin θq | 1 ă ρ ă 2, 0 ă θ ă π{2u and Q “ ∆, and take Dirichlet
boundary conditions at ρ “ 1, θ P r0, π{2s and at θ “ 0, ρ P r1, 2s and Neumann boundary
conditions at ρ “ 2, θ P r0, π{2s and at θ “ π{2, ρ P r1, 2s. This case corresponds to the
numerical example presented in Section 6.2.3.

3. We set Ω to be the wavy channel domain defined in (130) for the problem described in
Section 6.4. The spacial operator is Qu “ D∆u´ v ¨∇u` γu, where D “ 0.2, v “ p0.5, 0.3q
and γ “ 1, and we use Dirichlet conditions for x P BΩ.

Figure 4 shows the computed values of κmax for the side and corner LCBC matrices as functions
of the grid spacing h used for each test case and for orders of accuracy d “ 2, 4 and 6. For the
first two test cases, we observe that κmax for the side and corner LCBC matrices are approximately
equal, and they are nearly independent of the grid spacing h, although κmax shows a moderate
increase with increasing values of the order of approximation d for Qd,h. The behavior of κmax for
the third test case shows more variation with h for the corner matrices when d “ 4 and 6. The
plots in Figure 5 show more details of the behavior of κmax as a function of h for d “ 4. There is
more variation for coarser grids, which we attribute to the affects of the lower-order terms in Q,
while the behavior of κmax appears to settle to a constant value as the grid spacing gets smaller
(and affects of the lower-order terms become less significant).
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Figure 4: Condition numbers of LCBC matrices as functions of the grid spacing h for test cases 1, 2 and 3.

Figure 5: Test case 3: κmax versus h for corner matrices at order d “ 4.

5. Analysis of the LCBC approach

In this section, we provide some results of an analysis of the LCBC approach. In particular, we
consider the solvability of the matrix systems associated with the constraints implied by the LCBC
method for points along a grid side and at a grid corner. We then consider symmetry properties of
the discrete approximations generated by the LCBC method for the case when the PDE involves
the Laplacian operator. Finally, we examine the stability of explicit time-stepping schemes for the
wave equation with numerical boundary conditions given by the LCBC approach.

5.1. Solvability of the LCBC matrix systems

We first consider conditions required for the LCBC matrix systems to be non-singular. This is
done for the case of a constant-coefficient operator Q given by

Q “ c11B
2
x ` 2c12BxBy ` c22B

2
y ` c1Bx ` c2By ` c0. (72)
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For this operator, we have the following result:

Theorem 1 (Solvability on a face). The matrix resulting from the order 2p “ 2, 4, 6 LCBC
constraints for the constant-coefficient operator Q in (72) with a Dirichlet or Neumann boundary
condition on a grid face is non-singular provided c11 ą 0 and ∆x is sufficiently small (left or right
face) or c22 ą 0 and ∆y is sufficiently small (bottom or top face). If c1 “ 0 (left face) or c2 “ 0
(right face), then the matrix is non-singular for any ∆x and ∆y.

Proof. Let us focus on the left boundary, while similar arguments hold for the other boundaries.
The form of the LCBC matrix system is given in (46), where the coefficient matrix A is obtained
from the constraints in (43) for a Dirichlet boundary and in (59) for a Neumann boundary. For
either a Dirichlet or Neumann boundary, the determinant of A, for order of accuracy 2p “ 2, 4, 6,
has the form

detpAq “ KpGppξq, ξ “
c1∆x

c11
, p “ 1, 2, 3, (73)

where Kp is a non-zero constant depending on ∆x, ∆y and c11, and where Gppξq is a polynomial
satisfying Gpp0q “ 1. For the Dirichlet case, the polynomials are given by

G1pξq “

ˆ

1´
ξ

2

˙3

,

G2pξq “

ˆ

1´
3ξ

2
`
ξ2

2
´
ξ3

18

˙5

,

G3pξq “

ˆ

1´ 3ξ `
11ξ2

4
´

1691ξ3

1440
`

121ξ4

480
´

11ξ5

400
`

ξ6

800

˙7

,

and for the Neumann case, we have

G1pξq “ 1,

G2pξq “

ˆ

1´
2ξ

9

˙5

,

G3pξq “

ˆ

1´
23ξ

30
`

11ξ2

75
´

ξ3

100

˙7

.

The result of the theorem follows from the form of the determinant of A in (73). As expected,
the lower order terms in (72) become less important for the solvability of the system as the grid
spacings tend to zero.

˝

The solvability conditions at a corner are more complicated. For this case, we focus on the
constant-coefficient operator in (72) with the coefficients of the lower-order terms set to zero,
i.e. c0 “ c1 “ c2 “ 0, and define the dimensionless parameters

γ “
c12

?
c11c22

, σ “

d

c11{∆x2

c22{∆y2
,

assuming c11 ą 0 and c22 ą 0. Recall that when choosing the corner compatibility conditions we
assumed that |c12| is small compared to c11 and c22, and this now corresponds to |γ| small. The

26



following theorem describes the solvability of the LCBC matrix systems for the Dirichlet-Dirichlet
(D-D), Neumann-Neumann (N-N) and Dirichlet-Neumann (D-N) corners.

Theorem 2 (Solvability at a corner). The matrices resulting from the LCBC constraints at D-
D, N-N and D-N corners for the constant-coefficient operator Q in (72) with c11 ą 0, c22 ą 0, and
c0 “ c1 “ c2 “ 0 are nonsingular provided any of the following conditions hold:

1. γ “ 0 (c12 “ 0), for orders 2p “ 2, 4, 6.

2. |γ| is sufficiently small, for orders 2p “ 2, 4.

3. γ ă 0 and |γ| is sufficiently small, for order 2p “ 6.

4. γ ą 0 and pσ ` 1{σqγ is sufficiently small, for order 2p “ 6.

Proof. We consider the corner where the left and bottom boundaries meet, while similar arguments
hold for the other corners. The form of the LCBC matrix system is given in (46), where the
coefficient matrix A is obtained from the constraints in (66), (A.2) and (A.6) for D-D, N-N and D-
N corners, respectively. For all three cases, the determinant of A, for order of accuracy 2p “ 2, 4, 6,
has the form

detpAq “ KpHppγqFppγ, σq, p “ 1, 2, 3, (74)

where Kp is a non-zero constant depending on ∆x, ∆y, c11 and c22, Hppγq is a polynomial satisfying
Hpp0q “ 1, and Fppγ, σq is a polynomial in γ with coefficients that depend on σ. For a D-D corner,
we have

H1pγq “ 1´ 4γ2,

H2pγq “
`

1´ 4γ2
˘2 `

1´ 28γ2 ` 208γ4 ´ 256γ6
˘

,

H3pγq “
`

1´ 4γ2
˘4 `

1´ 12γ2 ` 16γ4
˘2 `

1´ 104γ2 ` 3984γ4 ´ 68480γ6

`509440γ8 ´ 1278976γ10 ` 921600γ12
˘

,

and

F1pγ, σq “ 1,

F2pγ, σq “ 3

ˆ

σ `
1

σ

˙

´ 4γ,

F3pγ, σq “ 7200

ˆ

σ3 ` σ `
1

σ
`

1

σ3

˙

´ γ

„

3960

ˆ

σ4 `
1

σ4

˙

` 28070

ˆ

σ2 `
1

σ2

˙

` 26620



`γ2

„

13423

ˆ

σ3 `
1

σ3

˙

` 39483

ˆ

σ `
1

σ

˙

´ γ3

„

14399

ˆ

σ2 `
1

σ2

˙

` 28798



`γ4

„

5940

ˆ

σ `
1

σ

˙

.

For a N-N corner, we have

H1pγq “ 1,

H2pγq “ 1´ 4γ2,

H3pγq “ p1´ 4γ2q2
`

1´ 28γ2 ` 208γ4 ´ 256γ6
˘

,
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and

F1pγ, σq “ 1,

F2pγ, σq “ 27

ˆ

σ `
1

σ

˙

´ 32γ,

F3pγ, σq “ 56250

ˆ

σ3 ` σ `
1

σ
`

1

σ3

˙

´ γ

„

24750

ˆ

σ4 `
1

σ4

˙

` 194625

ˆ

σ2 `
1

σ2

˙

` 189750



` γ2

„

240310

ˆ

σ `
1

σ

˙

` 25450

ˆ

σ3 `
1

σ3

˙

´ γ3

„

71564

ˆ

σ2 `
1

σ2

˙

` 150040



` γ4

„

25344

ˆ

σ `
1

σ

˙

.

Finally, for a D-N corner, we have

H1pγq “ 1,

H2pγq “ 1´ 12γ2 ` 32γ4,

H3pγq “ p1´ 4γ2q2
`

1´ 64γ2 ` 1504γ4 ´ 16128γ6 ` 80640γ8 ´ 171008γ10 ` 122880γ12
˘

,

and

F1pγ, σq “ 1,

F2pγ, σq “ 3

ˆ

σ `
1

σ

˙

´ 4γ,

F3pγ, σq “ 135000

ˆ

σ3 ` σ `
1

σ
`

1

σ3

˙

´ 75γ

ˆ

660σ4 ` 7353σ2 ` 6523` 6418
1

σ2
` 1188

1

σ4

˙

` 5γ2

ˆ

35985σ3 ` 158555σ ` 126287
1

σ
` 54738

1

σ3

˙

´ γ3

ˆ

215985σ2 ` 520784` 239532
1

σ2

˙

` 35640γ4

ˆ

3σ ` 2
1

σ

˙

.

Note that when γ ă 0, the functions Fp are always positive and bounded away from zero. The
result of the theorem follows from the form of the determinant of A in (74).

˝

We note that a good quality grid usually aims to have σ « 1. One way to see this is to note
that if c11 ! c22 then there could be boundary layers near x “ 0 or x “ 1, which would require a
small value for ∆x to resolve the solution there. We also note that for order 2p “ 6 when γ ą 0
(c12 ą 0), we require not just γ to be small but also γσ and γ{σ to be small. Thus the corner
LCBC matrix could be poorly conditioned if σ becomes large or small when c12 ą 0. This could
occur, for example, if one only refined the grid in the x-direction.

5.2. Symmetry properties of the LCBC conditions

The next two theorems concern symmetry properties of the numerical boundary conditions
generated by the LCBC method for a boundary face and corner. These symmetry conditions
pertain to the case when Q is the Laplacian operator and the domain is represented by a Cartesian
grid. The first theorem considers the symmetry for a boundary face.
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Theorem 3 (Symmetry on a face). When applied to the operator Q “ ∆ on a Cartesian grid,
the LCBC approach on a face, at any order 2p “ 2, 4, 6, . . ., results in numerical boundary condi-
tions with odd symmetry for the case of homogeneous Dirichlet boundary conditions and with even
symmetry for the case of homogeneous Neumann boundary conditions, for example,

Ui ˆ́i,j “ ´Ui ˆ̀i,j , î “ 1, . . . , p, Dirichlet BC at i “ 0 or i “ Nx, (75a)

Ui ˆ́i,j “ Ui ˆ̀i,j , î “ 1, . . . , p, Neumann BC at i “ 0 or i “ Nx. (75b)

Proof. First consider the case of a homogeneous Dirichlet boundary condition on the left side,
i “ 0, away from the corner. Without loss of generality we may take x̃ “ 0 and ỹ “ 0, and then
the polynomial interpolant ũ can be written as

ũpx, yq “

2p
ÿ

n“0

2p
ÿ

m“0

an,m x
n ym, p “ 1, 2, . . . . (76)

We wish to show that ũpx, 0q is an odd function in x, so that

ũpx, 0q “ a1,0x` a3,0x
3 ` . . . a2p´1,0x

2p´1, (77)

for then we have ũp´x, 0q “ ´ũpx, 0q and the desired result follows. The CBCs in (43c) reduce to

Bµy∆ν ũp0q “ 0, ν “ 0, . . . , p, µ “ 0, . . . , 2p, CBCrµ, νs, (78)

where the case ν “ 0 follows since U0,j “ 0 from the homogeneous boundary condition. For the
purposes of the proof, we have labeled the conditions in (78) as CBCrµ, νs. We will show that (78)
implies that all even x-derivatives of ũ at x “ 0 are zero,

B2ν
x ũp0q “ 0, ν “ 0, . . . , p, (79)

which implies (77). The conditions in (79) can be shown as follows. We have Bµy ũp0q “ 0, for
µ “ 0, 1, . . ., since the Dirichlet conditions are homogeneous and since ũ is a polynomial of finite
degree. Then, from CBCr0, 1s, we see that (79) holds for ν “ 1 since

B2
xũp0q “ ´B

2
yũp0q “ 0, (80)

and from CBCrµ, 1s we also find

Bµy B
2
xũp0q “ ´B

µ`2
y ũp0q “ 0, µ “ 0, 1, . . . . (81)

Now from CBCr0, 2s, we find that (79) holds for ν “ 2, since

B4
xũp0q “ p´2B2

xB
2
y ´ B

4
yqũp0q “ 0, (82)

and from CBCrµ, 2s we also find

Bµy B
4
xũp0q “ 0, µ “ 0, 1, . . . . (83)

The process can be repeated to show (79).

The argument is similar for the case of a homogeneous Neumann boundary condition except that
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in this case it can be shown that all odd x-derivatives are zero,

B2ν`1
x ũp0q “ 0, ν “ 0, . . . , p, (84)

so that ũp´x, 0q “ ũpx, 0q.

˝

We now consider the symmetry at a corner. For this case, note that the LCBC conditions are
used to obtain values in ghost points in the corner of the extended grid and also at nearby ghost
points belonging to the adjacent faces, see Figure 3 for the case p “ 2 for example.

Theorem 4 (Symmetry at a corner). When applied to the operator Q “ ∆ on a Cartesian
grid, the LCBC approach applied at any corner and at any order 2p “ 2, 4, 6, . . ., results in numerical
boundary conditions on the adjacent faces with odd symmetry for the case of homogeneous Dirichlet
boundary conditions and with even symmetry for the case of homogeneous Neumann boundary
conditions. At a left boundary, for example, the symmetries are given in (75). Values at the
corner ghost points have even symmetry for Dirichlet-Dirichlet (D-D) or Neumann-Neumann (N-
N) corners and odd symmetry for Dirichlet-Neumann (D-N) corners. At a bottom-left corner, for
example, the values satisfy

Ui ˆ́i,j´ĵ “ Ui ˆ̀i,j`ĵ , î, ĵ “ 1, . . . , p, D-D or N-N corners, (85a)

Ui ˆ́i,j´ĵ “ ´Ui ˆ̀i,j`ĵ , î, ĵ “ 1, . . . , p, D-N corner. (85b)

Proof. Consider the case of homogeneous Dirichlet boundary conditions on the left side, i “ 0,
and the bottom side, j “ 0, so that we have a D-D corner at x “ p0, 0q and grid index i “ p0, 0q.
With ũ given in (76) we show that

ũp´x, yq “ ´ũpx, yq, ũpx,´yq “ ´ũpx, yq, (86)

and thus
ũp´x,´yq “ ũpx, yq. (87)

To show (86), we show

Bm1
x Bm2

y ũp0q “ 0, m1 “ 2k, m2 “ 0, 1, . . . , 2p, (88a)

Bm1
x Bm2

y ũp0q “ 0, m1 “ 0, 1, . . . , 2p, m2 “ 2k, (88b)

where k “ 0, 1, . . . , p.

Recall that ũ satisfies the boundary conditions in (66b) and the compatibility conditions in (66c)
with homogeneous boundary data, so that

B
µ
y∆ν ũp0q “ 0

B
µ
x∆ν ũp0q “ 0

+

ν “ 0, 1, . . . , p, µ PMν , (89)

where Mν is defined in (68). Using mathematical induction, we find that (89) implies

B
µ
y B

2ν
x ũp0q “ 0

B
µ
xB

2ν
y ũp0q “ 0

+

ν “ 0, 1, . . . , p, µ PMν . (90)
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Set m1 “ 2k for k “ 0, 1, . . . , p. The first set of conditions in (90) implies that

Bm1
x Bm2

y ũp0q “ 0, for m2 “ 1, 3, 5, . . . , 2k ´ 1, 2k, 2k ` 1, . . . , 2p, (91)

while the second set of conditions in (90) gives

Bm1
x Bm2

y ũp0q “ 0, for m2 “ 0, 2, 4, . . . , 2k. (92)

Hence, for m1 “ 2k, we have

Bm1
x Bm2

y ũp0q “ 0, for m2 “ 0, 1, 2, 3, . . . , 2p, (93)

for any k “ 0, 1, . . . , p. The result in (88b) follows using a symmetric argument. Therefore, we
have odd symmetry on the Dirichlet sides near the corner and even symmetry at the D-D corner.
The results for N-N and D-N corners follow using similar arguments.

˝
5.3. Stability of LCBC approximations for the wave equation

We now consider the stability of an explicit modified equation (ME) time-stepping algorithm for
the wave equation on a Cartesian grid using the LCBC approach at the boundary. For the present
model problem in (24), the standard wave equation corresponds to the case q “ 2 and Q “ c2∆
for a wave speed c ą 0, and the ME time-stepping schemes are given in (113), (114) and (115) for
orders of accuracy 2p “ 2, 4 and 6, respectively. In [42] it was shown that an ME scheme for the
wave equation in one space dimension is stable at any order of accuracy, 2p “ 2, 4, 6, . . ., under the
condition c∆t{∆x ă 1, where ∆t is the time-step. In two dimensions (or three dimensions), the
time-step condition depends on whether selected terms are dropped to retain a stencil width of 2p`1
or not. For example, at sixth-order, the term ∆2

4,hU
n
i appears, and it has a term proportional to

∆x4pD`xD´xq
4Uni which can be dropped (since it is also multiplied by ∆t2). If appropriate terms

are dropped so that the stencil width of the ME scheme is 2p ` 1, then the time-step restriction
for two-dimensional problems is

c2∆t2
´ 1

∆x2
`

1

∆y2

¯

ă 1, (94)

for orders of accuracy 2p “ 2, 4, 6, as given by Theorem 5 discussed below. We call this version
the compact ME scheme, and we conjecture that the condition in (94) holds at any even order
2p “ 2, 4, 6, . . . (with a similar result holding for three-dimensional problems).

The compact ME scheme with LCBC conditions thus has some nice properties. It achieves
high-order accuracy in space and time in a single step. In addition, the time-step restriction does
not change as the order of accuracy increases, in contrast to some other high-order accurate schemes
(e.g. explicit multi-step methods) where the stable time-step decreases significantly as the order of
accuracy increases.

Theorem 5 (Stability of approximations for the wave equation). The IBVP in (24) for the
wave equation with q “ 2 and Q “ c2∆ discretized to orders 2p “ 2, 4, 6 with the compact ME time-
stepping scheme and the LCBC method on a Cartesian grid with Dirichlet or Neumann boundary
conditions is stable under the time-step restriction given in (94).

Proof. Let the domain be Ω “ r0, Lxsˆr0, Lys, i.e. a physical domain with lengths Lx and Ly. We
consider the case of Dirichlet boundary conditions on the left and right faces and Neumann bound-
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ary conditions on the top and bottom. The proof for other combinations of boundary conditions
follow in a similar way. Let us look for normal mode solutions of the form

Wn
i “ An κix κ

j
y, (95)

where A is an amplification factor, pκx, κyq are constants and i “ pi, jq. Since the LCBC approach
leads to discrete boundary conditions that enforce even and odd symmetry, we can look for normal-
mode solutions in space that satisfy these symmetry conditions. In this case we find that the normal
modes are

Wn
i “ An˘ sin

´πkx
Lx

xi

¯

cos
´πky
Ly

yj

¯

, kx “ 1, 2, . . . , Nx ´ 1, ky “ 0, 1, 2, . . . , Ny, (96)

where A˘ are two possible values for the amplification factor (see below). Any grid function Vi
satisfying the boundary conditions can then be represented as a sum of normal modes,

V n
i “

Nx´1
ÿ

kx“1

Ny
ÿ

ky“0

V̂k sin
´πkx
Lx

xi

¯

cos
´πky
Ly

yj

¯

, (97)

for some coefficients V̂k, where k “ pkx, kyq. The general solution to the IBVP takes the form,

Uni “
Nx´1
ÿ

kx“1

Ny
ÿ

ky“0

´

An`,kV̂`,k `A
n
´,kV̂´,k

¯

sin
´πkx
Lx

xi

¯

cos
´πky
Ly

yj

¯

, (98)

where the coefficients V̂˘,k are determined from the two initial conditions.

For stability we choose ∆t so that |A˘,k| ď 1 for all valid kx and ky. It is straightforward to
find the symbols of D`xD´x and D`yD´y,

D`xD´x sin
´πkx
Lx

xi

¯

“ ´k̂2
x sin

´πkx
Lx

xi

¯

, (99a)

D`yD´y cos
´πky
Ly

yj

¯

“ ´k̂2
x cos

´πky
Ly

yj

¯

, (99b)

where

k̂x
def
“

sinpξx{2q

∆x{2
, k̂y

def
“

sinpξy{2q

∆y{2
, ξx

def
“

πkx
Lx

∆x, ξy
def
“

πky
Ly

∆y. (100)

Substituting (95) into the ME time-stepping schemes for the different orders of accuracy, determined
by p, leads to a quadratic equation for A,

A2 ´ 2bpA` 1 “ 0, p “ 1, 2, 3, (101)

where b depends on the various parameters of the discretization. Stability requires bp P R and
|bp| ă 1. Note that when bp “ ˘1 there is a double root for A which leads to algebraic growth
which we exclude.

For p “ 1,

b1 “ 1´ 2
`

λ̂2
x ` λ̂

2
y

˘

(102)
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where

λ̂x
def
“ c∆t

k̂x
2
, λ̂y

def
“ c∆t

k̂y
2
, (103)

with

|λ̂x| ď
c∆t

∆x
, |λ̂y| ď

c∆t

∆y
. (104)

Note that b1 ă 1 is clearly satisfied, while the condition b1 ą ´1 implies

max
tkx,kyu

`

λ̂2
x ` λ̂

2
y

˘

ă 1, (105)

and this implies the time-step restriction in (94).

For p “ 2,

b2 “ 1´ 2
´

λ̂2
x ` λ̂

2
y `

∆x2

12
λ̂2
x k̂

2
x `

∆y2

12
λ̂2
y k̂

2
y

¯

`
2

3

´

λ̂2
x ` λ̂

2
y

¯2
. (106)

From (101), we find A˘ “ b2 ˘
a

b22 ´ 1 which we express in terms of the four variables

pc∆t{∆x, c∆t{∆y,∆xk̂x,∆yk̂yq. For each pc∆t{∆x, c∆t{∆yq, we define

Amax “ max

$

’

’

&

’

’

%

max
´2ď∆xk̂xď2
´2ď∆yk̂yď2

|A`| , max
´2ď∆xk̂xď2
´2ď∆yk̂yď2

|A´|

,

/

/

.

/

/

-

, (107)

and find the region in the pc∆t{∆x, c∆t{∆yq plane such that Amax ď 1. We run a similar experiment
for p “ 3, where b3 takes the form

b3 “1´ 2

„

λ̂2
x

ˆ

1`
∆x2

12
k̂2
x `

∆x4

90
k̂4
x

˙

` λ̂2
y

ˆ

1`
∆y2

12
k̂2
y `

∆y4

90
k̂4
y

˙

`
2

3

„

λ̂4
x

ˆ

1`
∆x2

6
k̂2
x

˙

` λ̂4
y

ˆ

1`
∆y2

6
k̂2
y

˙

` 2λ̂2
xλ̂

2
y

ˆ

1`
∆x2

12
k̂2
x

˙ˆ

1`
∆y2

12
k̂2
y

˙

´
4

45

´

λ̂2
x ` λ̂

2
y

¯3
.

(108)

Figure 6 shows that the stability region, Amax ď 1, for both the fourth-order (p “ 2) and sixth-
order (p “ 3) accurate time-stepping schemes. The stability region for both schemes is found to lie
within the unit circle, and thus ∆t satisfies the condition in (94) when p “ 2 and 3.

˝
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Figure 6: Stability region of the fourth-order and sixth-order accurate ME time-stepping schemes for the wave
equation on a Cartesian grid using the LCBC approach.

In Appendix B, we provide an analytical proof for the stability results observed in Figure 6
when p “ 2.

6. Numerical results

The aim of this section is to demonstrate the accuracy of the LCBC method by considering
several examples involving second-order and higher-order accurate discretizations of the model
problem in (24). A semi-discrete scheme for this problem is given in (34), and our first task is
to describe suitable time-stepping schemes for the cases when q “ 1 and 2. We then utilize the
method of manufactured solutions to verify the accuracy of the fully discrete schemes with the
LCBC method for problems with constant and variable coefficients defined on rectangular and
curvilinear domains. For the latter case, a mapping is used to bring the problem to a unit-square
computational domain. Finally, we consider physically-motivated examples involving heat flow and
wave propagation as further tests of the LCBC method.

We note that when solving the wave equation, which has no inherent dissipation, some upwind
dissipation is often required to retain a stable time-stepping scheme for problems with variable
coefficients or for discretizations on curvilinear or overset grids. For wave equations in second-order
form an effective upwind dissipation is described in [43, 44]. For the results presented here, however,
no upwind dissipation has been added.

6.1. Fully discrete schemes

For the case of elliptic problems (q “ 0), the discretization in (34) becomes

#

Qd,hUi “ ´fpxiq, xi P Ωh,

Bd,hUi “ gpxiq, xi P BΩh,
(109)

where Qd,h is the d-th order accurate approximation of the differential operator Q given in (26)
applied for points xi on the grid Ωh. The discrete operator Bd,h is a d-th order accurate approx-
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imation of the boundary operator B given in (28) applied on the boundary BΩh, and the LCBC
method is used to obtain ghost values on the extended domain.

For the time-dependent cases (q “ 1, 2), we require methods of time-stepping. For these cases,
let tn “ n∆t, n “ 0, 1, . . . , Nt, for a fixed time step ∆t “ T {Nt, and let Uni « upxi, t

nq. For the
parabolic case (q “ 1), we consider an explicit forward-Euler (FE) time-stepping scheme as well
as implicit Backward Differentiation Formula (BDF) time-stepping schemes. For the explicit FE
scheme, we choose a stable time step ∆t given by 6

∆t “
cfl

b

`

αd
2

˘2
` β2

d

, (110)

where cfl ď 1 is a safety factor, set to cfl “ 0.9 for all calculations, and αd and βd are estimates
for the real and imaginary parts of the time-stepping eigenvalue corresponding to Qd,h with frozen
coefficient functions. These values are given by

αd “ rd

ˆ

c11,max

∆x2
`
c22,max

∆y2

˙

` sd
|c12|max

∆x∆y
` |c0|max

βd “ qd

ˆ

|c1|max

∆x
`
|c2|max

∆y

˙
(111)

where the maximum values of the coefficient functions (or their absolute values) are taken for
x P Ω, and the parameter values are taken to be prd, sd, qdq “ p4, 2, 1q, p16{3, 9{2, 3{2q and
p272{45, 131{261, 1199{756q, for d “ 2, 4 and 6, respectively. Details of the stability analyses
leading to these conditions can be found in Appendix C.1. For the implicit BDF schemes, we take

∆t “ mint∆x,∆yu, (112)

and match the temporal accuracy of the BDF scheme with the chosen spatial order of accuracy.
The fully discrete schemes for the hyperbolic case (q “ 2) are based on a modified equation (ME)
approach as discussed, for example, in [5] for the case of Maxwell’s equations in second-order form.
For the model problem here, the baseline second-order accurate (d “ 2) scheme is given by

$

’

’

’

’

&

’

’

’

’

%

D`tD´tU
n
i “ Q2,hU

n
i ` fpxi, t

nq, xi P Ωh,

B2,hU
n`1
i “ gpxi, t

n`1q, xi P BΩh,

U0
i “ u0pxiq, xi P Ωh,

U1
i “ u0pxiq `∆tu1pxiq `

∆t2

2 rQu0pxiq ` fpxi, 0qs , xi P Ωh,

(113)

6This condition arises from approximating the region of absolute stability of the time-stepping scheme by an ellipse
with semi-axes of lengths αd and βd.
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while the fourth and sixth-order accurate schemes (d “ 4 and 6) are

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

D`tD´tU
n
i “ Q4,hU

n
i ` fpxi, t

nq ` ∆t2

12

”

Q2
2,hU

n
i `Ψ2fpxi, t

nq

ı

, xi P Ωh,

B4,hU
n`1
i “ gpxi, t

n`1q, xi P BΩh,

U0
i “ u0pxiq, xi P Ωh,

U1
i “ u0pxiq `∆tu1pxiq

`∆t2

2 rQu0pxiq ` fpxi, 0qs `
∆t3

6 rQu1pxiq ` Btfpxi, 0qs

`∆t4

24

“

Q2u0pxiq `Ψ2fpxi, 0q
‰

, xi P Ωh,

(114)

and
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D`tD´tU
n
i “ Q6,hU

n
i ` fpxi, t

nq

`∆t2

12

”

Q̃2
4,hU

n
i `Ψ2fpxi, t

nq

ı

` ∆t4

360

”

Q3
2,hU

n
i `Ψ3fpxi, t

nq

ı

, xi P Ωh,

B6,hU
n`1
i “ gpxi, t

n`1q, xi P BΩh,

U0
i “ u0pxiq, xi P Ωh,

U1
i “ u0pxiq `∆tu1pxiq

`∆t2

2 rQu0pxiq ` fpxi, 0qs `
∆t3

6 rQu1pxiq ` Btfpxi, 0qs

`∆t4

24

“

Q2u0pxiq `Ψ2fpxi, 0q
‰

` ∆t5

120

“

Q2u1pxiq ` BtΨ2fpxi, 0q
‰

`∆t6

720

“

Q3u0pxiq `Ψ3fpxi, 0q
‰

, xi P Ωh,

(115)

respectively, where Q̃2
4,h directly approximates the continuous operator Q2 to fourth-order accuracy

rather than forming the square of the discrete operator Q4,h which would have a stencil greater
than 2p` 1. This approach leads to the compact ME scheme noted previously in Section 5.3.

For all three schemes, an estimate for a stable time step is given by

∆t “
cfl

b

c11,max

∆x2
`

c22,max

∆y2

, (116)

where cfl ă 1. We use cfl “ 0.9 for all numerical examples. Details of the stability analysis leading
to (116) can be found in Appendix C.2.

6.2. Convergence tests using the method of manufactured solutions

We first verify the accuracy of the fully discrete schemes with the LCBC method for the problem
in (24) using manufactured solutions. In this approach, we set the forcing functions of the PDE
and boundary conditions, and the initial conditions, to be
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%

fpx, tq “ Lquepx, tq ´Quepx, tq, x P Ω, t P p0, T s, q “ 0, 1, 2,

gpx, tq “ Buepx, tq, x P BΩ, t P r0, T s,

uα´1pxq “ B
α´1
t uepx, 0q, x P Ω, α “ 1, . . . , q, q “ 1, 2,

(117)

so that u “ uepx, tq is an exact solution of the problem in (24). For all tests, we select an exact
solution of the form

uepx, tq “ cospkxxq cospkyyqφptq, x P Ω, t P r0, T s, (118)
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where pkx, kyq “ p2π,
?

2πq are wave numbers, and φptq is taken to be

φptq “

$

’

&

’

%

1, if q “ 0,

t` 1, if q “ 1 and explicit FE time-stepping,

cospπtq, otherwise.

(119)

When q ‰ 0, we choose the time-stepping schemes and φptq such that the temporal accuracy is
at least equal to the spatial accuracy of the discretized problem. For example, the FE scheme,
used for parabolic problems, is first-order accurate in time. For this case, we choose φptq to be
a linear polynomial since the FE time-stepping scheme is exact for polynomials of degree one or
less and thus the convergence rates of the fully discrete scheme reflect the spatial accuracy. On
the other hand, the implicit BDF methods for problems with q “ 1 and the explicit schemes for
problems with q “ 2 have temporal orders of accuracy balanced with the spatial accuracy. For
such high-order accurate schemes, φptq may be any smooth function. Note that we use exact values
taken from the manufactured solution to start the multi-step BDF schemes.

We now consider a sequence of three tests of the fully discrete schemes.

6.2.1. Test 1. Square domain and constant-coefficient functions

The first test considers the set-up discussed previously in Section 2.2. The domain for the
problem is the unit square, Ω “ p0, 1q2, with Q “ ∆, the usual Laplacian operator. The previous
discussion focused on the wave equation, q “ 2, but here we also consider the cases when q “ 0
and 1. The boundary conditions on the left (x “ 0) and right (x “ 1) are taken to be Dirichlet
conditions, while Neumann conditions are assumed on the bottom (y “ 0) and top (y “ 1), as given
in (10). Numerical solutions are computed on uniform grids with ∆x “ ∆y “ h “ h0{2

j , h0 “ 1{10,
j “ 0, 1, 2, 3, and the maximum error between the numerical solution and the exact (manufactured)
solution is determined for each value of h, and at a time T “ 1 for the time-dependent cases, q “ 1, 2.

Figure 7 shows maximum errors versus grid spacing for the elliptic case (q “ 0), the parabolic
case (q “ 1) for both FE and BDF time-stepping, and the hyperbolic case (q “ 2). Calculations
are performed using schemes with order of accuracy d “ 2, 4 and 6. In each case, the computed
errors can be compared with reference lines indicating the design order of accuracy. We observe
that the computed errors show the expected convergence rates.

6.2.2. Test 2. Square domain and variable-coefficient functions

The second test also uses a unit-square domain and boundary conditions as in the previous test,
but now the coefficient functions in the operator Q defined in (26) are taken to be

c11pxq “
ex

2` x` y
, c12pxq “ xye´x´y´1, c22pxq “

ex`y

2` y
,

c1pxq “ 1` xy, c2pxq “ 1`
x

1` y
, c0pxq “ 2` x´ y.

Note that for this choice, we have

max
xPΩ

|c12pxq|
a

c11pxqc22pxq
« 0.3772,

so that the cross term is significant, but small enough so that the corner conditions are sufficiently
well conditioned. Numerical solutions are computed on uniform grids with ∆x “ ∆y “ h “ h0{2

j ,
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Figure 7: Maximum errors versus grid spacing h for Test 1 using manufactured solutions. Fully discrete schemes for
q “ 0 (upper left), q “ 1 and FE time-stepping (upper right), q “ 1 and BDF time-stepping (lower left), and q “ 2
(lower right).
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Figure 8: Maximum errors versus grid spacing h for Test 2 using manufactured solutions. Fully discrete schemes for
q “ 0 (upper left), q “ 1 and FE time-stepping (upper right), q “ 1 and BDF time-stepping (lower left), and q “ 2
(lower right).

h0 “ 1{10, j “ 0, 1, 2, 3, as before, and maximum errors are determined at T “ 1 for the time-
dependent cases.

Figure 8 shows maximum errors versus grid spacing for the elliptic case (q “ 0), the parabolic
case (q “ 1) for both FE and BDF time-stepping, and the hyperbolic case (q “ 2). Comparing the
computed errors with the reference lines, we again observe the expected rate of convergence of the
fully discrete schemes for d “ 2, 4 and 6.

6.2.3. Test 3. Curvilinear domain and constant-coefficient functions

As a final test using the method of manufactured solutions, we consider a problem defined on
an annular domain, ΩP “ tx “ pρ cos θ, ρ sin θq | ρ1 ă ρ ă ρ2, 0 ă θ ă θ2u, where pρ, θq are polar
coordinates. The parameters pρ1, ρ2q define the inner and outer radii of the problem domain and
θ2 defines its angular extent. In the annular domain, the problem is taken to be
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%

Lqu “ ∆u` fpx, tq, x P ΩP , q “ 0, 1, 2,

upx, tq “ g`px, tq, x P BΩP
` ,

upx, tq “ gbpx, tq, x P BΩP
b ,

Bnupx, tq “ grpx, tq, x P BΩP
r ,

Bnupx, tq “ gτ px, tq, x P BΩP
τ ,

B
α´1
t upx, 0q “ uα´1pxq, x P Ω

P
, α “ 1, . . . , q, q “ 1, 2,

(120)
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Figure 9: Maximum errors versus an approximate grid spacing h for Test 3 using manufactured solutions. Fully
discrete schemes for q “ 0 (upper left), q “ 1 and FE time-stepping (upper right), q “ 1 and BDF time-stepping
(lower left), and q “ 2 (lower right).

where BΩP
s for s “ `, r, b, τ correspond to the boundaries at ρ “ ρ1, ρ “ ρ2, θ “ 0 and θ “ θ2

respectively. The problem is transformed from the “physical” domain x P ΩP to the computational
domain r “ pr, sq P Ω “ p0, 1q2 using the mapping

x “ Gprq “

«
`

ρ1 ` rpρ2 ´ ρ1q
˘

cospsθ2q
`

ρ1 ` rpρ2 ´ ρ1q
˘

sinpsθ2q

ff

, r “ pr, sq P Ω. (121)

In terms of the mapped coordinates, the spatial operator of the PDE becomes

Qu “ B2
ru`

4

π2p1` rq2
B2
su`

1

p1` rq
Bru, (122)

for the choice ρ1 “ 1, ρ2 “ 2 and θ2 “ π{2. The mapped problem is discretized in the computational
domain using ∆r “ ∆r0{2

j , ∆r0 “ 1{10, j “ 0, 1, 2, 3, ∆s “ ∆r{2, and h “ minp∆r,∆sq “ ∆s.
Note that for each grid resolution j the corresponding grid spacings in physical space are approxi-
mately equal.

Figure 9 shows maximum errors at T “ 1 versus grid spacing. The calculations are performed
using various schemes for q “ 0, 1, 2 with order of accuracy d “ 2, 4 and 6. In each case, we observe
that the computed errors agree with the expected convergence rates.

6.3. Scattering of a plane wave from a cylinder

Moving on from tests involving the method of manufactured solutions, we now consider three
physically-motivated problems. The first of these problems involves the scattering of an incident
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plane wave from a cylinder of radius equal to one. The incident wave, traveling from left to right,
is given by

uincpx, tq “ cosrkpx´ ctqs, (123)

where k is the wave number and c is the wave velocity. An exact solution of the wave equation for
the scattered field upx, tq from a hard cylinder with u “ ´uincpx, tq for |x| “ 1 is given by

uepx, tq “ ´Re

«

e´ikct

˜

J0pkq

H
p1q
0 pkq

H
p1q
0 pkρq ` 2

8
ÿ

n“1

in
Jnpkq

H
p1q
n pkq

Hp1qn pkρq cospnθq

¸ff

, |x| ą 1, (124)

where Jn and H
p1q
n are Bessel and Hankel functions of the first kind, respectively, and pρ, θq are polar

coordinates (see [45]). Our aim is to compute the scattered field for this problem numerically by
solving a corresponding half-plane problem with a symmetry condition applied along the mid-line,
θ “ 0 and π for ρ ą 1. For this half-plane problem, we consider a finite domain given by

ΩP “ tx “ pρ cos θ, ρ sin θq | 1 ă ρ ă ρ8, 0 ă θ ă πu,

and let upx, tq satisfy
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B2
t u “ c2∆u, x P ΩP , t P p0, T s,

upx, tq “ ´uincpx, tq, ρ “ 1, θ P r0, πs,

upx, tq “ uepx, tq, ρ “ ρ8, θ P r0, πs,

Bnupx, tq “ 0, θ “ 0, θ “ π, ρ ą 1,

upx, 0q “ uepx, 0q, x P Ω
P
,

Btupx, 0q “ Btuepx, 0q, x P Ω
P
.

(125)

The exact solution of the problem in (125) is given by (124) for any choice of the outer radius
ρ8 ą 1 of the domain ΩP .

We solve (125) numerically to a final time T “ 1 for the case k “ 30, c “ 1 and ρ8 “ 2.
This is done by first mapping the problem to a unit-square computational domain using (121)
with ρ1 “ 1, ρ2 “ ρ8 and θ2 “ π. On the computational domain r “ pr, sq P Ω, we use the
explicit time-stepping schemes in (113), (114) and (115) corresponding to orders of accuracy equal
to d “ 2, 4 and 6, respectively, in both time and space. The LCBC method is used to handle the
boundary and corner conditions for each scheme. Numerical solutions are computed using grids
with ∆r “ ∆r0{2

j , ∆r0 “ 1{20, j “ 0, 1, 2, 3, and with ∆s “ ∆r{5 so that the grid spacings
in physical space are approximately equal. Figure 10 illustrates the results of the calculations.
Maximum errors are computed for each time-stepping scheme and for each grid resolution, and the
results are shown in the upper-left plot in the figure (using h “ mint∆r,∆su “ ∆s). Here, we
observe that the errors verify the expected convergence rates of the three schemes. The coarsest
grid used for the calculations is shown in the lower-left plot for reference. The plots in the right
column of the figure show the scattered field (top), the error in the scattered field (middle), and
the total field (bottom), all at T “ 1 computed using the sixth-order (d “ 6) accurate scheme on
the finest grid. We note that the error in the computed scattered field is smooth on the grid as
expected based on the convergence behavior of the solutions.
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Figure 10: Plane-wave scattering from a cylinder. Maximum errors at T “ 1 for solutions computed using the explicit
time-stepping schemes with d “ 2, 4 and 6 (upper left) and the coarsest grid for h “ 1{100 (lower left). Right column
shows the scattered field (top), error in the scattered field (middle) and the total field (bottom) at T “ 1 computed
using the sixth-order accurate scheme on the finest grid.
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6.4. Heat flow in a wavy channel

For the next case, we consider a heat flow problem in channel domain denoted by x P ΩP .
Assuming the temperature upx, tq is specified on the boundary of the domain, the problem is given
by
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’

&

’

%

ut “ D∆u´ v ¨∇u` γu, x P ΩP , t P p0, T s,

upx, tq “ gpx, tq, x P BΩP ,

upx, 0q “ u0pxq, x P Ω̄P ,

(126)

where D is a diffusivity, v is a convection velocity and γ is a reaction rate, all taken to be constants,
and u0pxq is the initial temperature. An exact solution for this problem can be constructed by first
considering the free-space solution of the PDE given by

uepx, tq “
eγt

4πDt

ˆˆ
R2

u0px
1q exp

ˆ

´|x´ x1 ´ vt|2

4Dt

˙

dx1. (127)

Assuming a Gaussian initial condition of the form

u0pxq “ expp´σ|x|2q, σ “ constant ą 0, (128)

the solution in (127) reduces to

uepx, tq “
eγt

1` 4σDt
exp

ˆ

´σ|x´ vt|2

1` 4σDt

˙

. (129)

We now set the Dirichlet boundary forcing gpx, tq in (126) to equal the free-space solution so
that (129) becomes the exact solution of the heat flow problem for any channel domain ΩP .

We let x P ΩP be a wavy channel domain given by

x “ G1pr, sq “ px2 ´ x1qr ` x1

y “ G2pr, sq “ py2 ´ y1qs` y1 ` hprq

+

pr, sq P Ω “ r0, 1s2, (130)

where px1, x2q “ py1, y2q “ p´1, 1q. The shape of the bottom and top walls of the wavy channel is
specified by

hprq “ Ac sinp2πrq,

where Ac is an amplitude. The heat flow problem in (126) is mapped to the unit-square Ω, and
numerical solutions are computed using the implicit BDF schemes with d “ 2, 4, 6 for the parameter
values D “ 0.2, v “ p0.5, 0.3q, γ “ 1, σ “ 6 and Ac “ 0.1. Note that the mapping in (130) is not
orthogonal unlike the annular mappings considered in previous problems.
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Figure 11: Heat flow in a wavy channel. Maximum errors at T “ 0.5 for solutions computed using the BDF time-
stepping schemes with d “ 2, 4 and 6 (upper left) and the coarsest grid for h “ 1{40 (lower left). Right column
shows the temperature (top) and its error (bottom) at T “ 0.5 computed using the sixth-order accurate scheme on
the finest grid.

Figure 11 shows the results of the calculations at the final time T “ 0.5. The upper-left plot
shows the maximum error in the solutions with d “ 2, 4, 6 for grids with h “ ∆r “ ∆s “ h0{2

j ,
h0 “ 1{40, j “ 0, 1, 2, 3. These errors verify the expected convergence rates. The lower-left plot
illustrates the grid used for the calculations, here for h “ 1{40, and the plots in the right column
show the sixth-order accurate solution and its error at T “ 0.5, both for the finest grid with
h “ 1{320. In particular, we observe that the error is smooth throughout the domain, including
the boundaries and corners.

6.5. Pulse propagation in curved channel

As a final test, we consider a wave propagation problem for upx, tq in curved channel with closed
ends. The domain of the channel ΩP is taken to be the quarter annulus described previously by
the mapping in (121) with ρ1 “ 1, ρ2 “ 2 and θ2 “ π{2. We assume that u “ Btu “ 0 initially,
and that a pulse is generated in the channel by setting upx, tq “ gppx, tq on the vertical boundary
x “ 0, y P r1, 2s denoted by x P BΩP

pulse. The form of this boundary forcing is taken to be

gppx, tq “ e´βpt´t0q
2

sinpωtq

„

1

2
cos

ˆ

2π

ˆ

y ´
3

2

˙˙

´
1

2

z`1

, (131)
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where β, t0 and ω are constants, and z “ d{2 for a calculation using a scheme with order of accuracy
equal to d. Assuming zero Neumann conditions on the remaining boundaries, the problem to solve
is
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%

B2
t u “ c2∆u, x P ΩP , t P p0, T s,

upx, tq “ gppx, tq, x P BΩP
pulse,

Bnupx, tq “ 0, x P BΩP zBΩP
pulse,

upx, 0q “ Btupx, 0q “ 0, x P Ω
P
.

(132)

Figure 12: Evolution of a pulse in a curved channel with closed ends. Solutions at times t “ 1, 2, . . . , 6 are computed
using the sixth-order accurate scheme in (115) for a grid with h “ 1{640, grid resolution j “ 3.

The pulse propagation problem in (132) is solved numerically for c “ 1, β “ 50, t0 “ 1 and
ω “ 6π. This is done by mapping the problem to the unit-square Ω, and then solutions are
computed using the second, fourth and sixth-order accurate time-stepping schemes given by (113),
(114) and (115), respectively. The grid spacings in the unit-square coordinates pr, sq are taken to be
∆r “ ∆r0{2

j , ∆r0 “ 1{40, j “ 0, 1, 2, 3, ∆s “ ∆r{2, and h “ minp∆r,∆sq “ ∆s. Figure 12 shows
the evolution of the pulse for the times t “ 1, 2, . . . , 6 as determined by the sixth-order accurate
scheme on the finest grid. Here we observe the forward propagation of the pulse at an early time
(t “ 1) and the subsequent interaction with the curved walls of the channel at later times (t “ 2, 3).
By t “ 4 the pulse has reached the lower flat wall of the channel, and then reflects backwards into
the channel at the final times (t “ 5, 6).
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Figure 13: Evolution of a pulse in a curved channel with closed ends. Behavior of the computed maximum-norm
errors at times t “ 3 (top) and t “ 6 (bottom). Estimated errors versus h (left) and errors in the sixth-order accurate
solution for the grid with h “ 1{160, grid resolution j “ 1.

Figure 13 shows the behavior of the computed error in the solutions at t “ 3 and 6. Since
an exact solution for the problem is not available, we compute the error approximately using a

Richardson extrapolation approach [9, 46]. Let U
pjq
i denote the solution computed on a grid with

mesh spacing hj at a time tn. The error is computed at a fixed time T “ tn, and so the dependence
on tn is suppressed for notational convenience. Assuming convergent schemes, we have

U
pjq
i « ue

`

x
pjq
i

˘

` C
pjq
i hσj ,

where uepxq is the exact solution (at tn “ T ), σ is the rate of convergence (for hÑ 0), and C
pjq
i is a

grid function (whose values are independent of hj and σ). Subtracting solutions at grid resolutions j
and j ` 1, assuming hj`1 “

1
2hj , gives

U
pjq
i ´RjU

pj`1q
i « C

pjq
i p1´ 2´σqhσj ,

where Rj is an operator that restricts a grid function at resolution j ` 1 to one at j. Taking the
maximum norm of both sides gives

∆Uj
def
“ }U

pjq
i ´RjU

pj`1q
i }8 « Cp1´ 2´σqhσj ,

where C is a positive constant. A similar expression involving solutions at grid resolutions j ` 1
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and j ` 2 can be used to give

σ « log2

ˆ

∆Uj
∆Uj`1

˙

, C «
∆Uj

p1´ 2´σqhσj
. (133)

The maximum error in the numerical solution at grid resolution j is then estimated as

}U
pjq
i ´ ue

`

x
pjq
i

˘

}8 « Chσj , (134)

where the convergence rate σ and constant C are given in (133). The convergence plots at tn “ 3
and tn “ 6 in the left column of Figure 13 are given by (134) using values for σ and C obtained
from solutions at grid resolutions j “ 1, 2, 3. The two plots show convergence rates that agree with
the expected order of accuracy of the explicit time-stepping schemes for d “ 2, 4 and 6. The plots
in the right column show representative behaviors of the computed error.

7. Conclusion

We have described a new approach for developing numerical approximations to boundary con-
ditions for high-order accurate finite difference approximations. In contrast to traditional one-sided
approximations, this new local compatibility boundary condition (LCBC) approach results in cen-
tered approximations that are generally more accurate and stable than one-sided approximations.
The LCBC approach uses a local polynomial representation of the solution whose coefficients are
defined using the given boundary conditions and additional compatibility boundary conditions de-
rived from the governing equations, as well as using (known) solution data at grid points in the
interior and on the boundary. The LCBC approach uses the boundary conditions and CBCs defined
at continuous level, which enables automatic construction of the local polynomial, an important
consideration when developing arbitrarily high-order accurate schemes. Values of the discrete so-
lution at ghost points are then determined by evaluation of the local polynomial. Algorithms have
been given for computing the local polynomial as well as for forming the discrete stencil approxi-
mations for the ghost point values which can be used to efficiently assign the ghost point values.
The LCBC approach at corners has also been described. In this case the boundary conditions
and compatibility conditions from the two sides adjacent to the corner are used to define the local
polynomial representation.

The LCBC approach was developed for general boundary-value problems (BVPs) and initial-
boundary-value problems (IBVPs) for second-order scalar PDEs, including elliptic, parabolic and
hyperbolic equations. The approach was formulated for two-dimensional domains that are described
by a smooth mapping from the reference parameter space unit square. Properties of the LCBC
approximations were analyzed. Conditions for the solvability of the LCBC equations were derived.
It was also shown that the LCBC approach results in even and odd symmetry conditions in some
important special cases. The stability of high-order approximations to the wave equation were also
analyzed.

Numerical results were presented that demonstrate the accuracy and stability of the approach.
These numerical tests included manufactured solutions, problems with known solutions, and prob-
lems where the errors were estimated using a grid refinement self-convergence approach. To test
the LCBC conditions, high-order accurate schemes were presented for discretizing the BVPs and
IBVPs. For time-dependent problems, formulae for choosing the maximal stable time-step were
given. Results were presented for orders of accuracy equal to two, four and six. In all cases the
numerical solutions converged at close to the expected rates.
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In future work we will consider extensions of the LCBC approach to BVPs and IBVPs in three
dimensions, problems with interfaces, problems involving vector PDEs such as those that appear
in electromagnetics or elasticity, and nonlinear problems.

Appendix A. LCBC corner conditions

Appendix A.1. Neumann-Neumann Corner

Consider the bottom-left corner, x̃ “ p0, 0q, where two Neumann boundaries meet. The physical
(primary) boundary are taken to be

Bxupx, tq “ g`py, tq, x P BΩ`, (A.1a)

Byupx, tq “ gbpx, tq, x P BΩb, (A.1b)

for some fixed time t. We start by specifying the interpolating polynomial ũpxq at known interior
data given by

ũ
`

î∆x, ĵ∆y
˘

“ Uî,ĵptq, î “ 1, . . . , p, ĵ “ 1, . . . , p. (A.2a)

Next, we apply tangential derivatives of the primary boundary conditions and compatibility con-
ditions given by

B
µ
y BxQ

ν ũp0, 0q “ BµyS`,νp0, tq

B
µ
xByQ

ν ũp0, 0q “ BµxSb,νp0, tq

+

ν “ 0, . . . , p´ 1, µ PMν , (A.2b)

respectively, where S`,νpy, tq is defined in (60) and

Sb,νpx, tq
def
“

$

&

%

´BxQ
ν´1fpx, 0q, q “ 0,

B
qν
t gbpx, tq ´ BxΨνfpx, 0, tq, q “ 1, 2.

(A.3)

The sets Mν , ν “ 0, . . . , p´ 1, chosen to eliminate redundant constraints, are given by

Mν “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, 1, 2, 3, . . . , 2p´ 1, 2p, if ν “ 0, with an average for µ “ 1,

0, 2, 3, 4, . . . , 2p´ 1, 2p, if ν “ 1, with an average for µ “ 3,

0, 2, 4, 5, . . . , 2p´ 1, 2p, if ν “ 2, with an average for µ “ 5,

...
...

0, 2, 4, 6, . . . , 2p´ 1, 2p, if ν “ p´ 1, with an average for µ “ 2p´ 1.

(A.4)

Appendix A.2. Dirichlet-Neumann Corner

Consider the bottom-left corner, x̃ “ p0, 0q, where a Dirichlet boundary on the left meets a
Neumann boundary at the bottom. The physical (primary) boundary are taken to be

upx, tq “ g`py, tq, x P BΩ`, (A.5a)

Byupx, tq “ gbpx, tq, x P BΩb, (A.5b)

for some fixed time t. We specify the interpolating polynomial ũpxq at known interior data:

ũ
`

î∆x, ĵ∆y
˘

“ Uî,ĵptq, î “ 1, . . . , p, ĵ “ 1, . . . , p. (A.6a)
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Next, we apply tangential derivatives of the primary boundary conditions and compatibility con-
ditions given by

B
µ1
y Qν ũp0, 0q “ B

µ1
y R`,νp0, tq

B
µ2
x ByQ

ν ũp0, 0q “ Bµ2x Sb,νp0, tq

+

ν “ 0, . . . , p´ 1, pµ1, µ2q PMν , (A.6b)

and
B
µ1
y Qν ũp0, 0q “ B

µ1
y R`,νp0, tq

)

ν “ p, µ1 “ 0, 2, 4, . . . , 2pp´ 1q, 2p, (A.6c)

respectively, where R`,νpy, tq is defined in (44) and Sb,νpx, tq is defined in (A.3).

The sets Mν , ν “ 0, . . . , p´ 1, chosen to eliminate redundant constraints, are given by

Mν “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pµ1, µ2q PMp1q
0 ˆMp2q

0 , if ν “ 0, with an average for pµ1, µ2q “ p1, 0q,

pµ1, µ2q PMp1q
1 ˆMp2q

1 , if ν “ 1, with an average for pµ1, µ2q “ p3, 2q,

pµ1, µ2q PMp1q
2 ˆMp2q

2 , if ν “ 2, with an average for pµ1, µ2q “ p5, 4q,

...
...

pµ1, µ2q PMp1q
p´1 ˆMp2q

p´1, if ν “ p´ 1, with an average for pµ1, µ2q “ p2p´ 1, 2p´ 2q,

(A.7)

where Mp1q
ν , Mp2q

ν , ν “ 0, . . . , p´ 1 are defined as

Mp1q
ν “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, 1, 2, 3, . . . , 2p´ 1, 2p, if ν “ 0,

0, 2, 3, 4, . . . , 2p´ 1, 2p, if ν “ 1,

0, 2, 4, 5, . . . , 2p´ 1, 2p, if ν “ 2,

...
...

0, 2, 4, 6, . . . , 2p´ 1, 2p, if ν “ p´ 1,

(A.8)

and

Mp2q
ν “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, 1, 2, 3, . . . , 2p´ 2, 2p´ 1, 2p, if ν “ 0,

1, 2, 3, 4, . . . , 2p´ 2, 2p´ 1, 2p, if ν “ 1,

1, 3, 4, 5, . . . , 2p´ 2, 2p´ 1, 2p, if ν “ 2,

...
...

1, 3, 5, . . . , 2p´ 2, 2p´ 1, 2p, if ν “ p´ 1.

(A.9)

Appendix B. Analytical proof of the stability of fourth-order LCBC approximations
of the wave equation

In this appendix, we provide an analytical proof of the stability of the fourth-order accurate
LCBC approximations of the wave equation. We have already demonstrated the stability of such
approximations in section 5.3 via a numerical approach. In the proof of theorem 5, we arrived at
the quadratic equation (101) for the amplification factor A which involved a parameter b2 defined
in (106). We have also defined the parameters k̂x, k̂y in (100) and required that |b2| ă 1 for all

values of k̂x, k̂y for the approximations to be stable.

We now set Λx “ c∆t{∆x, Λy “ c∆t{∆y, X “ p∆xk̂xq
2 and Y “ p∆yk̂yq

2, X,Y P r0, 4s. We
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write b2 as

b2 “ 1´
1

2

„

Λ2
xX

ˆ

1`
X

12

˙

` Λ2
yY

ˆ

1`
Y

12

˙

`
1

24

`

Λ2
xX ` Λ2

yY
˘2
,

and define the variable z “ Λ2
x ` Λ2

y.

From the numerical results in figure 6, we observe that

Given ∆t such that z ă 1, |b2| ă 1 for all X,Y P r0, 4s.

Proof. Assuming z ă 1, we aim to show |b2| ă 1 or b22 ă 1. For this, we write b22 ´ 1 “ F pF ` 2q
where

F pX,Y q “ ´
1

2

„

Λ2
xX

ˆ

1`
X

12

˙

` Λ2
yY

ˆ

1`
Y

12

˙

`
1

24

`

Λ2
xX ` Λ2

yY
˘2
,

“
1

24
Λ2
xpΛ

2
x ´ 1q

looooooomooooooon

A

X2 `
1

12
Λ2
xΛ2

y
looomooon

B

XY `
1

24
Λ2
ypΛ

2
y ´ 1q

looooooomooooooon

C

Y 2 ´
1

2
Λ2
xX ´

1

2
Λ2
yY. (B.1)

For stability we require ´2 ă F pX,Y q ă 0 for all values of X, Y . The function F pX,Y q in (B.1)
is a bi-variate quadratic function in X and Y . We find the discriminant of F to be

B2 ´ 4AC “ 1

144
Λ4
xΛ4

y ´
1

144
Λ2
xΛ2

ypΛ
2
x ´ 1qpΛ2

y ´ 1q,

“
1

144
Λ2
xΛ2

y

“

Λ2
xΛ2

y ´
`

Λ2
xΛ2

y ´ Λ2
x ´ Λ2

y ` 1
˘‰

,

“
1

144
Λ2
xΛ2

ypz ´ 1q ă 0,

which shows that F is an elliptic paraboloid. Also, with Λ2
x,Λ

2
y ă z ă 1, we find that A,B ă 1

and F is concave downwards. The maximum of F occurs at X “ Y “ 0 where F p0, 0q “ 0. The
minimum of F occurs at X “ Y “ 4 where

fpzq
def
“ F p4, 4q “ ´

8

3
z `

2

3
z2.

The function fpzq is a monotonically decreasing function with increasing z P p0, 1q. We find
limzÑ1 fpzq “ ´2 which is within the bound needed for stability. Hence, when z ă 1, b22 ă 1 and
the fourth-order accurate LCBC approximation of the wave equation is stable.
˝

Appendix C. Time-step restrictions

In this section we provide details of the determination of the time-step for the schemes used
in Section 6. For variable coefficient problems we freeze coefficients and consider the constant
coefficient operator

Q “ c11B
2
x ` 2c12BxBy ` c22B

2
y ` c1Bx ` c2By ` c0, (C.1)

where c11, c12, c22, c1, c2, c0 are constants. We then perform a von-Neumann stability analysis to
arrive at a time-step restriction for the frozen coefficients. The final time-step is chosen to enforce

50



stability over the range of possible coefficients in the problem at hand.

Appendix C.1. Parabolic time-step restrictions for method of lines schemes

We consider the parabolic problem

ut “ Qu, x P Ω “ r0, 2πs2, (C.2)

with Q given by (C.1) together with periodic boundary conditions in both x, y directions and an
initial condition. We consider a method of lines approximation. Let

xj “ pj1∆x, j2∆yq, j1 “ 0, 1, . . . , Nx, j2 “ 0, 1, . . . , Ny, (C.3)

denote the grid points for Ω with Nx ` 1 and Ny ` 1 points in the x and y directions, where
∆x “ 2π{Nx and ∆y “ 2π{Ny. Let Ujptq « upxj, tq denote the semi-discrete grid function.

Second-order accurate discretization. We discretize (C.2) to second-order accuracy in space

d

dt
Ujptq “ c11D`xD´xUj ` 2c12D0xD0yUj ` c22D`yD´yUj ` c1D0xUj ` c2D0yUj ` c0Uj. (C.4)

We perform a von-Neumann analysis to find the time-step restriction. The semi-discrete solution
is expanded in a discrete Fourier series in space. We thus make the ansatz

Ujptq “ V̂kptqe
ik¨xj , kx “ ´Nx{2, . . . , pNx{2q ´ 1, ky “ ´Ny{2, . . . , pNy{2q ´ 1,

where k “ pkx, kyq and where we have assumed Nx and Ny are even for convenience. Substitute
this ansatz into (C.4) and simplify to arrive at the standard test equation

dV̂k
dt

“ λ
p2q
k V̂k, (C.5)

where the time-stepping eigenvalue is

λ
p2q
k “ α` iβ,

α
def
“ ´c11 k̂

2
x ´ 2c12 k̂0x k̂0y ´ c22 k̂

2
y ` c0,

β
def
“ c1 k̂0x ` c2 k̂0y,

and where

k̂x
def
“

sinpξx{2q

∆x{2
, k̂y

def
“

sinpξy{2q

∆y{2
, (C.6)

k̂0x
def
“

sinpξxq

∆x
, k̂0y

def
“

sinpξyq

∆y
, (C.7)

ξx
def
“ kx∆x, ξy

def
“ ky∆y. (C.8)

Note that we have the bounds,

´ π ď ξx ď π, ´ π ď ξy ď π, (C.9)

|k̂x| ď
2

∆x
, |k̂y| ď

2

∆y
, (C.10)
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|k̂0x| ď
1

∆x
, |k̂0y| ď

1

∆y
. (C.11)

We now un-freeze the coefficients to obtain an estimate of the worst case time-stepping eigenvalue
λmax “ αmin ` iβmax as

αmin “ min
xPΩP

„

´
4 |c11pxq|

∆x2
´

2 |c12pxq|

∆x∆y
´

4 |c22pxq|

∆y2
` c0pxq



,

βmax “ max
xPΩP

„

|c1pxq|

∆x
`
|c2pxq|

∆y



,

where ΩP is the physical domain under consideration. We approximate the region of absolute
stability of the time-stepping scheme as an ellipse in the complex plane for z “ x` iy, (for schemes
not stable on the imaginary axis such as forward-Euler this assumes we are not too close to the
imaginary axis)

ˆ

x

α0

˙2

`

ˆ

y

β0

˙2

ď 1, (C.12)

and ensure that z “ λmax∆t lies within the approximate stability region. This leads to the condition,

ˆ

αmin∆t

α0

˙2

`

ˆ

βmax∆t

β0

˙2

ď 1, (C.13)

which can be re-arranged to give an inequality for ∆t.

For forward-Euler we approximate the region of absolute stability using ellipse parameters
α0 “ 2 and β0 “ 1.

Fourth-order accurate discretization. We now use fourth-order accurate centered differences in (C.4).
The time stepping eigenvalue is

λ
p4q
k “´ c11 k̂

2
x

„

1`
∆x2

12
k̂2
x



´ 2c12 k̂0x

„

1`
∆x2

6
k̂2
x



k̂0y

„

1`
∆y2

6
k̂2
y



´ c22 k̂
2
y

„

1`
∆y2

12
k̂2
y



` c1 ik̂0x

„

1`
∆x2

6
k̂2
x



` c2 ik̂0y

„

1`
∆y2

6
k̂2
y



` c0.

We shall use the bounds

k̂2
x

„

1`
∆x2

12
k̂2
x



ď
16

3∆x2
, (C.14)

ˇ

ˇ

ˇ
k̂0x

ˇ

ˇ

ˇ

„

1`
∆x2

6
k̂2
x



ď
3

2∆x
, (C.15)

and similar ones for the y variable to obtain an estimate for the worst case time-stepping eigenvalue
with real and imaginary parts given by

αmin “ min
xPΩP

„

´
16 |c11pxq|

3∆x2
´

9 |c12pxq|

2∆x∆y
´

16 |c22pxq|

3∆y2
` c0pxq



,

βmax “ max
xPΩP

„

3 |c1pxq|

2∆x
`

3 |c2pxq|

2∆y



.
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Sixth-order accurate discretization. For sixth-order accurate centered differences in (C.4), the time
stepping eigenvalue is

λ
p6q
k “´ c11 k̂

2
x

„

1`
∆x2

12
k̂2
x `

∆x4

90
k̂4
x



´ c22 k̂
2
y

„

1`
∆y2

12
k̂2
y `

∆y4

90
k̂4
y



´ 2c12 k̂0x

„

1`
∆x2

6
k̂2
x `

∆x4

30
k̂4
x



k̂0y

„

1`
∆y2

6
k̂2
y `

∆y4

30
k̂4
y



` c1 ik̂0x

„

1`
∆x2

6
k̂2
x `

∆x4

30
k̂4
x



` c2 ik̂0y

„

1`
∆y2

6
k̂2
y `

∆y4

30
k̂4
y



` c0.

We use the bounds

k̂2
x

„

1`
∆x2

12
k̂2
x `

∆x4

90
k̂4
x



ď
272

45∆x2
, (C.16)

ˇ

ˇ

ˇ
k̂0x

ˇ

ˇ

ˇ

„

1`
∆x2

6
k̂2
x `

∆x4

30
k̂4
x



ď
1199

756∆x
, (C.17)

and similar ones for the y variable to estimate the worst case time-stepping eigenvalue with real
and imaginary parts as follows

αmin “ min
xPΩP

„

´
272 |c11pxq|

45∆x2
´

1313 |c12pxq|

261∆x∆y
´

272 |c22pxq|

45∆y2
` c0pxq



,

βmax “ max
xPΩP

„

1199 |c1pxq|

756∆x
`

1199 |c2pxq|

756∆y



.

Appendix C.2. Time-step restriction for hyperbolic problems

We consider the hyperbolic problem

utt “ Qu, x P r0, 2πs2, (C.18)

with Q given in (C.1) together with periodic boundary conditions in both x, y directions and initial
conditions. We set Unj « upxj, t

nq where xj is defined in (C.3).

Second-order accurate discretization. We descretize (C.18) to second-order accuracy in space and
time

D`tD´tU
n
j “ c11D`xD´xU

n
j `2c12D0xD0yU

n
j `c22D`yD´yU

n
j `c1D0xU

n
j `c2D0yU

n
j `c0U

n
j , xj P Ωh.

(C.19)

We perform a Von-Neumann analysis to find the time-step restriction where we make the ansatz

Unj “ Aneik¨xj , kx “ ´Nx{2, . . . , pNx{2q ´ 1, ky “ ´Ny{2, . . . , pNy{2q ´ 1,

with k “ pkx, kyq and Nx,Ny assumed even. We plug the ansatz in (C.19) and simplify to arrive at
a quadratic equation for A

A2 ´ 2bA` 1 “ 0, (C.20)

where

b “ 1`
∆t2

2
Q̂h, (C.21)
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and
Q̂h “ ´c11k̂

2
x ´ 2c12k̂0xk̂0y ´ c22k̂

2
y ` ic1k̂0x ` ic2k̂0y ` c0. (C.22)

The parameters k̂x, k̂y, k̂0x, k̂0y are defined in (C.6) and (C.7).

For stability, we wish to find a bound on ∆t such that the roots of (C.20), A˘, satisfy
|A`| , |A´| ď 1, and that there be no double roots with |A| “ 1, to avoid algebraic growth in
time. From equation (C.20), we see that A`A´ “ 1. Therefore, A` “ eiθ and A´ “ e´iθ, for
θ P R. Furthermore, b “ pA` ` A´q{2 “ cos θ. Since there are double roots when b “ ˘1, we
require ∆t such that b P R and |b| ă 1.

For this problem, b is complex if c1 ‰ 0 or c2 ‰ 0 and then we cannot satisfy |A| ď 1. In this
case some dissipation should therefore be added to the scheme so that there is no growth in time.
We note that we could generalize our definition of stability to allow bounded growth in time in
which case the scheme could formally be stable using this extended definition of stability. This is
because as we refine the mesh, and assuming ∆t ď pconst.qmint∆x,∆yu then

b „ 1´
∆t2

2

´

c11k̂
2
x ` 2c12k̂0xk̂0y ` c22k̂

2
y

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

b̃

`Op∆tq, as ∆tÑ 0, (C.23)

since ∆t2|k̂0x| ď pconst.q∆t and ∆t2|k̂0y| ď pconst.q∆t. The contribution of the complex part of
the symbol to b in (C.23), which comes from the lower order terms, goes to zero like ∆t as ∆tÑ 0.
Therefore, provided |b̃| ă 1, we have |A˘| “ 1 ` Op∆tq and the scheme will thus be stable, with
bounded growth. Even in this case it is still recommended that dissipation be added to the scheme.

Consider then

b̃2 “1´∆t2
´

c11k̂
2
x ` 2c12k̂0xk̂0y ` c22k̂

2
y

¯

`
∆t4

4

´

c11k̂
2
x ` 2c12k̂0xk̂0y ` c22k̂

2
y

¯2
ă 1.

We look for a time-step ∆t such that

∆t2

4

´

c11k̂
2
x ` 2c12k̂0xk̂0y ` c22k̂

2
y

¯

ă 1. (C.24)

With the necessary condition that c11c22 ą c2
12, we find that

max
´πďξx,ξyăπ

”

c11k̂
2
x ` 2c12k̂0xk̂0y ` c22k̂

2
y

ı

“ 4

ˆ

c11

∆x2
`

c22

∆y2

˙

, (C.25)

occurs when pξx, ξyq “ p´π,´πq. Hence,

∆t ă
1

b

c11
∆x2

` c22
∆y2

. (C.26)

We obtain the bound in (C.25) by considering the maximum of the function

χpξx, ξyq “ c11k̂
2
xpξxq ` 2c12k̂0xpξxqk̂0ypξyq ` c22k̂

2
ypξyq. (C.27)

54



We find the critical points of χ using the equations

χξx “
c11

∆x2
sin ξx `

c12

∆x∆y
cos ξx sin ξy “ 0, (C.28)

χξy “
c22

∆y2
sin ξy `

c12

∆x∆y
sin ξx cos ξy “ 0. (C.29)

Seeing that cospξyq ‰ 0 (otherwise we arrive at a contradiction), equation (C.29) gives

sin ξx “ ´
∆x

∆y

c22

c12
tan ξy. (C.30)

We use (C.30) to rewrite (C.28) in terms of ξy,

sin ξy

˜

´
c11c22

c12

1

cos ξy
˘ c12

d

1´
∆x2

∆y2

c2
22

c2
12

tan2 ξy

¸

“ 0. (C.31)

If we suppose that

˘c12

d

1´
∆x2

∆y2

c2
22

c2
12

tan2 ξy “
c11c22

c12

1

cos ξy
,

square both sides and simplify to obtain

cos2 ξy ´
∆x2

∆y2

c2
22

c2
12

sin2 ξy “
c2

11c
2
22

c4
12

,

1´ sin2 ξy ´
∆x2

∆y2

c2
22

c2
12

sin2 ξy “
c2

11c
2
22

c4
12

,

sin2 ξy

ˆ

´c4
12 ´

∆x2

∆y2
c2

22c
2
12

˙

“ c2
11c

2
22 ´ c

4
12,

we find that c2
11c

2
22 ´ c

4
12 ă 0 ùñ c11c22 ă c2

12 which violates the necessary condition c11c22 ą c2
12.

Therefore, the function χpξx, ξyq has critical points when sinpξyq “ sinpξxq “ 0, or at p´π,´πq,p´π, 0q,
p0, πq, p0, 0q and is maximum at p´π,´πq.
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