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ON NON-HERMITIAN POSITIVE (SEMI)DEFINITE LINEAR
ALGEBRAIC SYSTEMS ARISING FROM DISSIPATIVE

HAMILTONIAN DAEs ∗

CANDAN GÜDÜCÜ† , JÖRG LIESEN† , VOLKER MEHRMANN†, AND DANIEL B. SZYLD§

Abstract. We discuss different cases of dissipative Hamiltonian differential-algebraic equations
and the linear algebraic systems that arise in their linearization or discretization. For each case we
give examples from practical applications. An important feature of the linear algebraic systems is
that the (non-Hermitian) system matrix has a positive definite or semidefinite Hermitian part. In
the positive definite case we can solve the linear algebraic systems iteratively by Krylov subspace
methods based on efficient three-term recurrences. We illustrate the performance of these iterative
methods on several examples. The semidefinite case can be challenging and requires additional
techniques to deal with “singular part”, while the “positive definite part” can still be treated with
the three-term recurrence methods.
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1. Introduction. It is well known that every matrix A ∈ Cn,n can be split into
its Hermitian and skew-Hermitian parts, i.e.,

(1.1) A = H + S, H =
1

2
(A+A∗) and S =

1

2
(A−A∗),

where A∗ is the Hermitian transpose (or the transpose in the real case) of A, so
that H = H∗ and S = −S∗. This simple, yet fundamental observation has many
useful applications. For example, Householder used it in [31, p. 69] to show that all
eigenvalues of A = H + S lie in or on the smallest rectangle with sides parallel to
the real and imaginary axes that contains all eigenvalues of H and of S. This result
is attributed to Bendixson [9], and was refined by Wielandt [56]. It shows that if H
is positive definite, then all eigenvalues of A have a positive real part, and therefore
such (in general non-Hermitian) matrices A are sometimes called positive real. Here
we call A = H+S positive definite or positive semidefinite if H has the corresponding
property.

Our first goal in this paper is to show that, while every matrix A ∈ Cn,n trivially
splits into A = H + S, there is an important class of practically relevant applications
where this splitting occurs naturally and has a physical meaning. The class of ap-
plications we consider is given by energy-based modeling using differential algebraic
equation (DAE) systems in dissipative Hamiltonian (dH) form, or for short dHDAE
systems. The applicability of this modeling approach has been demonstrated in a
variety of application areas such as thermodynamics, electromagnetics, fluid mechan-
ics, chemical processes, and general optimization; see, e.g., [15, 21, 27, 28, 29, 49].
Properties of dHDAE systems have been studied in numerous recent publications;
see, e.g., [7, 8, 22, 38, 39, 40, 41, 42, 51].
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We systematically discuss different cases of linear and constant-coefficient dHDAE
systems, and we illustrate these cases with examples from practical applications. The
linear algebraic systems that arise from the linearization and/or discretization of the
dHDAE systems are of the form A = H + S, where the Hermitian part H (and
hence A) is positive definite or at least positive semidefinite.

We also discuss how to solve the linear algebraic systems arising from dHDAE
systems. In the positive definite case, Krylov subspace methods based on efficient
three-term recurrences can be used. The semidefinite case can be challenging and
typically requires additional techniques that deal with the “singular part” of H , while
the “positive definite part” of H still allows an application of three-term recurrence
methods. We show that the formulation of the dHDAE system often leads to a linear
algebraic system where the “singular part” of H can be identified without much
additional effort. For problems where this is not the case we show how on the linear
algebraic level the “singular part” of H can be isolated and dealt with using a unitary
congruence transformation to a staircase form, and further via Schur complement
reduction to a block diagonal form.

The paper is organized as follows. In Section 2 we introduce the standard form of
linear and constant-coefficient dHDAE systems, and in Section 3 we give a systematic
overview of the different cases of these systems. In Section 4 we discuss the form of
linear algebraic systems arising from the time-discretization of dHDAE systems, and
we describe a staircase form for these systems. In Section 5 we discuss iterative meth-
ods based on three-term recurrences for the discretized systems, and in Section 6 we
present numerical examples with these methods applied to different cases of dHDAE
systems. The paper ends with concluding remarks in Section 7.

2. Linear dissipative Hamiltonian DAE systems. The standard form of
a linear dHDAE system, where for simplicity we consider the case of constant (i.e.,
time-invariant) coefficients, is given by

Eẋ = (J −R)Qx+ f,(2.1)

x(t0) = x0;(2.2)

see [8, 40], where this class is introduced and studied in the context of control problems
for port-Hamiltonian (pH) systems. The physical properties of the modeled system are
encoded in the algebraic structure of the coefficient matrices. The matrix E ∈ Cn,n is
called flow matrix, the skew-Hermitian structure matrix J ∈ Cn,n describes the energy
flux among energy storage elements, the Hermitian positive semidefinite dissipation
matrix R ∈ C

n,n describes energy loss and/or dissipation. The energy function or
Hamiltonian associated with the system (2.1) is given by the function

H(x) =
1

2
(x∗Q∗Ex),

and typically, since this is an energy, one has that

(2.3) E∗Q = Q∗E ≥ 0,

where H ≥ 0 means that the Hermitian matrix H is positive semidefinite. Note
that (2.3) implies that H(x) ≥ 0 for all states x.

Linear dHDAE systems of the form (2.1) often arise directly in mathematical mod-
eling, or as a result of linearization along a stationary solution for general, nonlinear
dHDAE systems; see, e.g., [42]. In many applications, furthermore, the matrix Q is
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the identity, and if not, it can be turned into an identity for a subsystem; see [41,
Section 6.3]. Thus, in the following we restrict ourselves to dHDAE systems of the
form

(2.4) Eẋ = (J −R)x+ f, where E = E∗ ≥ 0, J = −J∗, R = R∗ ≥ 0.

For analyzing the system (2.4) it is useful to transform it into a staircase form that
reveals its “positive definite part” and its “singular part”, as well as the common
nullspaces (if any) of the different matrices. Such a form was derived using a sequence
of spectral and singular value decompositions in [1, Lemma 5], and is adapted here
to our notation.

Lemma 2.1. For every dHDAE system of the form (2.4) there exists a unitary
(basis transformation) matrix Ṽ ∈ C

n,n, such that the system in the new variable

x̃ = Ṽ ∗x =




x̃1

x̃2

x̃3

x̃4

x̃5




}n1

}n2

}n3

}n4

}n5

has the 5× 5 block form




E11 E12 0 0 0
E21 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5



=(2.5)




J11 −R11 J12 −R12 J13 −R13 J14 0
J21 −R21 J22 −R22 J23 −R23 0 0
J31 −R31 J32 −R32 J33 −R33 0 0

J41 0 0 0 0
0 0 0 0 0







x̃1

x̃2

x̃3

x̃4

x̃5



+




f1(t)
f2(t)
f3(t)
f4(t)
f5(t)



,(2.6)

where n1, n2, n3, n4, n5 ∈ N0, and n1 = n4. If it is present in (2.5), the matrix[
E11 E12

E21 E22

]
(or just E22 if n1 = n4 = 0) is Hermitian positive definite, and if they

are present in (2.6), the matrices J33 − R33 and J41 = −J∗
14 are nonsingular.

¿From the staircase form (2.5)–(2.6) we immediately see that the initial value
problem (2.4) is uniquely solvable (for consistent initial values and sufficiently often
differentiable inhomogeneities f) if and only if the last block row and column in the
matrices (which contain only zeros) do not occur, i.e., if n5 = 0. If n5 6= 0, then x̃5

can be chosen arbitrarily. In the following we assume that n5 = 0, i.e., we assume
throughout that (2.4) is uniquely solvable. Equivalently, we assume that the pencil
λE − (J −R) is regular.

As shown in [1, Corollary 1], the differentiation index (i.e., the size of the largest
Jordan block associated with the eigenvalue ∞) of a regular pencil λE − (J − R) in
terms of the staircase form (2.5)–(2.6) is given by

zero if and only if n1 = n4 = 0 and n3 = 0 (or simply n2 = n),

one if and only if n1 = n4 = 0 and n3 > 0,

two if and only if n1 = n4 > 0.
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These are all possible cases that can occur. It is easy to see that the positive definite
case E = E∗ > 0 in (2.4) corresponds to a staircase form (2.5)–(2.6) with n2 = n and
hence to the index zero, regardless of the properties of J and R. On the other hand, a
singular matrix E = E∗ ≥ 0 corresponds to an index either one or two, depending on
the relation between the matrices E, J,R. Distinguishing between these three cases
will be important in our overview in the next section.

In numerical practice, a computation of the form (2.5)–(2.6) for a given dHDAE
system requires a sequence of nullspace computations, which can be carried out by
singular value decompositions. Unfortunately, these sequences of dependent rank deci-
sions may be very sensitive under perturbations; see, e.g., [13] where the construction
of similar staircase forms and the challenges are discussed. Also, these factorizations
are often not efficiently computable for large-scale problems. However, as we will
demonstrate with several examples in the next section, in many cases the structural
properties arising from physical modeling help to make this process easier.

3. Different cases and specific examples. We will now present a systematic
overview of different cases of systems of the forms (2.4) or (2.5)–(2.6) that occur
in applications, ordered by properties of E and the index of the (regular) pencil
λE − (J − R). The examples given in this section demonstrate the large variety of
applications for dHDAEs.

Case 1: Positive definite E, index zero. The case of E = E∗ > 0 in (2.4),
or n2 = n in (2.5)–(2.6), is the “simplest” one. This case usually leads to a positive
definite Hermitian part of the coefficient matrix in the linear algebraic system; see
Section 4 below.

Example 3.1 (index zero). Consider the classical second order representation of
a linear damped mechanical system, which is given by

(3.1) Mẍ+Dẋ+ Fx = f,

whereM,D,F ∈ R
n,n are Hermitian matrices with M,F > 0 and D ≥ 0; see, e.g., [53,

Chapter 1]. By introducing the variables, x̂2 = x and x̂1 = ẋ, equation (3.1) can be
written as

(3.2)

[
M 0
0 F

] [
˙̂x1

˙̂x2

]
=

([
0 −F
F 0

]
−
[
D 0
0 0

])[
x̂1

x̂2

]
+

[
f
0

]
,

which is of the form (2.4) with E =

[
M 0
0 F

]
= E∗ > 0.

Example 3.2 (index zero). The discretization of the poroelasticity equations
that model the deformation of porous media saturated by an incompressible viscous
fluid in first order formulation as in [2, Section 3.4] leads to a dHDAE of the form



Y 0 0
0 A 0
0 0 M





ẇ
u̇
ṗ


 =






0 −A D∗

A 0 0
−D 0 0


−



0 0 0
0 0 0
0 0 F







w
u
p


+



f
0
g


 ,(3.3)

where A,M, Y are Hermitian positive definite (where Y is of very small norm), F is
typically Hermitian positive semidefinite, and D is general, non-Hermitian. Here u
represents the discretized displacement field, w the associated discretized velocities,
and p the discretized pressure. Again we have a system of the form (2.4) with E =
diag(Y,A,M) = E∗ > 0.
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Case 2: Positive semidefinite E, index one. In this case we have a staircase
form (2.5)–(2.6) with n1 = n4 = 0 and n3 6= 0, which after renumbering the equations
and unknowns can be written as

(3.4)

[
E11 0
0 0

] [
ẋ1

ẋ2

]
=

[
J11 −R11 J12 −R12

J21 −R21 J22 −R22

] [
x1

x2

]
+ f,

where E11 = E∗
11 > 0 and where J22 −R22 is nonsingular. Note that if it is known in

advance that the given dHDAE has index one, the form (3.4) can be obtained from
(2.4) by a single (unitary) transformation that “splits off” the nullspace of E. Whether
the coefficient matrix A = H + S of the corresponding linear algebraic system (after
time discretization) in this case has a positive definite or semidefinite Hermitian part
H depends on the properties of R22. The Hermitian part is of the form H = E + τ

2R
(see Section 4 below), and hence a positive definite R22 will lead to a positive definite
H , which may be (highly) ill-conditioned, since R is multiplied by the potentially
small constant τ/2.

+
−EG

RG

IG
L I RL

RR

IR

C1V1

I1
C2 V2

I2

Fig. 3.1: A simple RLC circuit

Example 3.3 (index one). Consider the linear RLC circuit shown in Figure 3.1
(see [42, Example 4.1]), which is modeled by the following equations:

Lİ = −RLI + V2 − V1,

C1V̇1 = I − IG,
C2V̇2 = −I − IR,

0 = −RGIG + V1 + EG,

0 = −RRIR + V2.

Here RG, RL, RR > 0 represent resistances, L > 0 inductances, C1, C2 > 0 capaci-
tances, and EG a controlled voltage source. The equations can be written in the form
(3.4) with E = diag(L,C1, C2, 0, 0), the vector of unknowns x = [I∗, V ∗

1 , V
∗
2 , I

∗
G, I

∗
R]

∗,

J =




0 −1 1 0 0
1 0 0 −1 0
−1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0



, and R =




RL 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 RG 0
0 0 0 0 RR



,

so that E11 = E∗
11 = diag(L,C1, C2) > 0, and J22 − R22 = −diag(RG, RR) is non-

singular, and the nullspace of E is displayed directly. Note that most RLC circuits
(potentially with millions of equations and unknowns) have this index-one structure,
but occasionally they have index two [18].

Example 3.4 (index one). The space discretization of the unsteady incompress-
ible Stokes or linearized Navier-Stokes equations via finite element or finite difference
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methods typically leads to dHDAE systems of the form

(3.5)

[
M 0
0 0

] [
v̇
ṗ

]
=

([
AS B
−B∗ 0

]
−
[
−AH 0
0 −C

])[
v
p

]
+

[
f
g

]
,

where M = M∗ > 0 is the mass matrix, AS = −A∗
S , B

∗ is the discretized divergence
operator (normalized so that it is of full row rank), −AH = −A∗

H ≥ 0, and −C =
−C∗ > 0 is a stabilization term, typically of small norm; see, e.g., [17]. In the
Stokes case we usually have AS = 0. Here v and p denote the discretized velocity
and pressure, respectively. In terms of (3.4) we have the Hermitian positive definite
matrix E11 = M , and the nonsingular matrix J22 −R22 = −C.

Case 3: Positive semidefinite E, index two. In this case we have a staircase
form (2.5)–(2.6) with n1 = n4 > 0.

Example 3.5 (index two). Consider Example 3.2 in the quasi-stationary regime
(see [46]), where one usually sets Y = 0. After a permutation of the block rows, the
system has the form



M 0 0
0 A 0
0 0 0





ṗ
u̇
ẇ


 =






0 0 −D
0 0 A
D∗ −A 0


−



F 0 0
0 0 0
0 0 0







p
u
w


+



g
0
f


 .(3.6)

with A = A∗,M = M∗ positive definite. The form (2.5)–(2.6) with n3 = 0 is obtained
by performing a QR decomposition of the full row rank matrix [D∗ − A], and then
transforming the system accordingly.

Example 3.6 (index two). Consider Example 3.4 without stabilization, i.e.,
with C = 0. Let B∗ = UB[Σ 0]V ∗

B, be a singular value decomposition with unitary
matrices UB, VB, and a nonsingular diagonal matrix Σ (corresponding to the splitting
of the space of functions into the subspace of divergence free functions and its orthog-
onal complement). After a unitary similarity transformation we obtain a staircase
form (2.5)–(2.6) with n3 = 0 as follows:

(3.7)



M11 M12 0
M21 M22 0
0 0 0





˙̂v1
˙̂v2
˙̂p


 =



A11 A12 Σ
A21 A22 0
−Σ 0 0





v̂1
v̂2
p̂


+



f̂1
f̂2
0


 .

4. Obtaining and transforming the linear algebraic system. In order to
simulate the dynamical behavior of dHDAEs, time-discretization methods have to
be employed. In a general (non-linear) setting this is not an easy task, since the
methods have to be implicit and they should be structure preserving. Based on an
ansatz derived for standard pH systems in [35], such methods were derived for dHDAE
systems in [42]. It was shown, in particular, that Gauss-Legendre collocation methods,
like the implicit midpoint rule, are well suited for this purpose.

Here we continue to consider a linear dHDAE system of the form (2.4). Choosing,
e.g., a uniform time grid t0, . . . , tN with step size τ > 0, the implicit midpoint rule
yields a sequence of linear algebraic systems of the form

(4.1)
(
E +

τ

2
(R − J)

)
xk+1 = b(xk, τ)

for the time-discrete vectors xk = x(tk), k = 0, 1, 2, . . . . The linear algebraic system
(4.1) is of the form

(4.2) Ax = b with A = H + S, where H = E +
τ

2
R and S = −τ

2
J.
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Thus, the splitting A into its Hermitian and skew-Hermitian parts is a natural conse-
quence of the underlying mathematical model. By construction, the Hermitian part
is positive definite or positive semidefinite. Moreover, in many cases, for any matrix
norm we have H → E and S → 0 as τ → 0, so that for small step sizes τ we can
expect that the Hermitian part is dominant. This observation is of interest in the
context of iteratively solving (4.2); see Section 5 below.

Iterative methods for solving systems of the form (4.2) are often based on the
assumption that H is (positive) definite and hence nonsingular; see Section 5 below
for examples. In case of a singular matrix H , it is advantageous to identify its “sin-
gular part” and treat it separately in the numerical solution algorithm. As shown in
Section 3, the mathematical modeling frequently leads to a staircase form (2.5)–(2.6)
with block matrices, where the “singular part” of H is readily identified. If this is
not possible on the modeling level, one can apply an appropriate reduction (at least
in theory, or for small scale practical problems) on the algebraic level. Well-known
techniques from the literature that can be applied also in this context include Schur
complement constructions or null-space deflation; see, e.g., [12, 25, 54]. We will now
show how to transform A = H + S using simultaneous unitary similarity transforma-
tions to a staircase form, and further to a block diagonal form, where the “singular
part” is located in the bottom block.

The following result is a special case of the controllability staircase form [52]; see
also [1]. We present the proof because some of its features will be used later.

Lemma 4.1. Consider A = H + S ∈ Cn,n, where 0 6= H = H∗ ≥ 0 and
0 6= S = −S∗. Then there exist a unitary matrix U ∈ Cn,n, and integers n1 ≥ n2 ≥
· · · ≥ nr−1 > 0 and nr ≥ 0, such that

(4.3) U∗HU =

[
H11 0
0 0

]
and U∗SU =




S11 S12 0

S21 S22
. . . 0

. . .
. . . Sr−2,r−1

...
Sr−1,r−2 Sr−1,r−1 0

0 · · · · · · 0 Sr,r



,

where H11 = H∗
11 ∈ Cn1,n1 is positive definite, Sii = −S∗

ii ∈ Cni,ni for i = 1, . . . , r,
and Si,i−1 = −S∗

i−1,i = [Σi,i−1 0] ∈ Cni,ni−1 with Σi,i−1 being nonsingular for i =
2, . . . , r − 1.

Proof. The result is trivial when H is nonsingular (and thus positive definite),
since in this case it holds with U = I, r = 2, n1 = n, and n2 = 0.

Let 0 6= H = H∗ ≥ 0 be singular. We consider a full rank decomposition of H
with a unitary matrix U1 ∈ Cn,n,

(4.4) U∗
1HU1 =

[
Ĥ11 0
0 0

]
,

where we assume that Ĥ11 = Ĥ∗
11 ∈ Cn1,n1 , with 1 ≤ n1 < n, is positive definite. Note

that this factorization can be obtained from any rank-revealing factorization (e.g., QR
or SVD) and then applying the orthogonal factor via a congruence transformation.
Applying the same unitary similarity transformation to S gives the matrix

(4.5) Ŝ = U∗
1SU1 =

[
Ŝ11 Ŝ12

Ŝ21 Ŝ22

]
,

7



where Ŝ11 ∈ Cn1,n1 , and Ŝ21 = −Ŝ∗
12, since S is skew-Hermitian. If Ŝ21 = 0, then we

are done. Otherwise, let

Ŝ21 = W2

[
Σ21 0
0 0

]
V ∗
2

be a singular value decomposition, where Σ21 is nonsingular (and diagonal), and
W2 ∈ Cn1,n1 and V2 ∈ Cn−n1,n−n1 are unitary. We define U2 = diag(V2,W2) ∈ Cn,n,
which is unitary. Applying a unitary similarity transformation with this matrix to
(4.4) and (4.5) yields

U∗
2U

∗
1HU1U2 =

[
V ∗
2 Ĥ11V2 0

0 0

]
,

where V ∗
2 Ĥ11V2 ∈ Cn1,n1 is Hermitian positive definite, and

U∗
2U

∗
1SU1U2 =

[
V ∗
2 Ŝ11V2 V ∗

2 Ŝ12W2

W ∗
2 Ŝ21V2 W ∗

2 Ŝ22W2

]
=



S̃11 S̃12 0

S̃21 S̃22 S̃23

0 S̃32 S̃33




where S̃21 = [Σ21 0]. If S̃32 = 0 or S̃32 = [ ], we are done. Otherwise we continue

inductively with the singular value decomposition of S̃32, and after finitely many steps
we obtain a decomposition of the required form.

If for a given matrix A = H + S the transformation to the staircase form (4.3)
is known, then the equivalent linear algebraic system (U∗AU)(U∗x) = U∗b can be
solved using block Gaussian elimination. This amounts to solving a sequence of linear
algebraic systems having successive Schur complements as their coefficient matrices.
Let us have a closer look at this process.

For simplicity of notation, we set Â11 = H11 + S11. By construction, this matrix
is (non-Hermitian) positive definite. The set of (non-Hermitian) positive definite

matrices is closed under inversion; see, e.g., [34, p. 10]. Hence Â−1
11 exists and is also

positive definite. Then in the simplest nontrivial case of the staircase form (namely,
r = 3) we can write

U∗AU =



Â11 S12 0
S21 S22 0
0 0 S33




=




I 0 0

S21Â
−1
11 I 0

0 0 I





Â11 0 0
0 S1 0
0 0 S33





I Â−1

11 S12 0
0 I 0
0 0 I


 ,

where S1 = S22 − S21Â
−1
11 S12 is the Schur complement of Â11 in the top 2× 2 block.

Note that the inverses of the first and third matrix in the above factorization of U∗AU
are obtained by simply negating the off-diagonal blocks.

Since Â−1
11 is positive definite, this matrix can be written as

Â−1
11 = Ĥ11 + Ŝ11

for some matrices Ĥ11 = Ĥ∗
11 > 0 and Ŝ11 = −Ŝ∗

11. The Schur complement then is of
the form

S1 = S22 − S21Â
−1
11 S12 = S22 − S21(Ĥ11 + Ŝ11)S12

= (S21Ĥ11S
∗
21) + (S22 + S21Ŝ11S

∗
21),
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where we have used that S12 = −S∗
21. The Hermitian part of the Schur complement

is given by

S21Ĥ11S
∗
21 = Σ21 [I 0]Ĥ11

[
I
0

]
Σ∗

21.

By the Cauchy interlacing theorem, the eigenvalues of [I 0]Ĥ11

[
I
0

]
strictly interlace

the eigenvalues of Ĥ11. Consequently this matrix, and thus the Hermitian part and
by definition S1 are positive definite.

Suppose that we have a further block row in the staircase form, i.e., r = 4. Then
we can write

U∗AU =




I 0 0 0

S21Â
−1
11 I 0 0

0 0 I 0
0 0 0 I







Â11 0 0 0
0 S1 S23 0
0 S32 S33 0
0 0 0 S44







I Â−1
11 S12 0 0

0 I 0 0
0 0 I 0
0 0 0 I


 ,

where the Schur complement S1 is positive definite. Using the same idea as above
then gives another Schur complement S2 = S33 − S32S−1

1 S23, which again is positive
definite. Using this block Gaussian elimination procedure inductively we obtain the
following result.

Lemma 4.2. In the notation of Lemma 4.1, the matrix U∗AU can be transformed
via Schur complement reduction into the block diagonal form




Â11

S1

. . .

Sr−2

Sr,r



,

where Â11 = H11 +S11 and the Schur complements S1, . . . ,Sr−2 are positive definite.
Moreover, the skew-Hermitian Sr,r may not be always present.

Lemma 4.2 shows that the successive formation of Schur complements leads a
block diagonal matrix with all but the last block being positive definite, so that the
nullspace can be obtained just from the last block.

Example 4.1. Consider Example 3.6 with

E =



M11 M12 0
M21 M22 0
0 0 0


 , J =




0 0 Σ
0 0 0

−Σ 0 0


 , R =



−A11 −A12 0
−A21 −A22 0
0 0 0


 .

Then A = H + S (see (4.1)–(4.2)) is already in the staircase form (4.3) with

H11 =

[
M11 M12

M21 M22

]
+

τ

2

[
−A11 −A12

−A21 −A22

]
, S =

[
S11 S12

S21 S22

]
=




0 0 − τ
2Σ

0 0 0
τ
2Σ 0 0


 .

In the notation of Lemma 4.1 we have r = 3, and n1 ≥ n2 > 0 = n3. In order to
obtain the block diagonal form of Lemma 4.2 we have to form the Schur complement

S1 =
τ2

4
[Σ 0]H−1

11

[
Σ
0

]
,

9



which is positive definite.
The following corollary follows immediately from Lemma 4.2 and the fact that

the Schur complement of a skew-Hermitian matrix is again skew-Hermitian.
Corollary 4.3. Every Schur complement of a matrix with positive semidefinite

Hermitian part is again a matrix with this property.
In [48] a similar result is shown for symmetric multiple saddle point problems in

block tridiagonal form, that is to say, all consecutive Schur complements are positive
definite, given that the most upper-left block is positive definite.

5. Iterative methods for the linear algebraic systems. In this section we
discuss iterative methods for linear algebraic systems of the form Ax = b with A =
H + S.

A widely known method in this context is the HSS iteration, which was introduced
in [5]. Given an initial vector x(0) and some constant α > 0, the HSS iteration
successively solves linear algebraic systems with the (shifted) Hermitian and skew-
Hermitian parts of A by computing

(αI +H)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+ 1
2
) + b,

for k = 1, 2, . . . . There are numerous variants and extensions of the HSS iteration;
see, e.g., [3, 4, 5, 6, 10, 36] or [12, Section 10.3] for a summary of some results. As
shown in [5, Theorem 2.2], the HSS iteration with exact “inner solves” with αI +H
and αI + S converges for every α > 0, provided that H (and hence A) is positive
definite. However, in [11] it was noted that the convergence speed of the HSS iteration
is usually too slow to be competitive with other iterative methods, even when α is
chosen optimally (in the sense that it minimizes the spectral radius of the iteration
matrix). Therefore the HSS iteration is recommended to be used as a preconditioner
rather than as an iterative solver.

We will here focus on another approach, introduced in [55] (also see the earlier
paper [14]), which suggests to solve, instead of Ax = b with A = H+S, the equivalent
system

(5.1) (I +K)x = b̂, where K = H−1S, b̂ = H−1b.

This transformation can be interpreted as a preconditioning of the original system
with its Hermitian part, which of course requires that H is nonsingular. If we again
assume that H is positive definite, then this matrix defines the H-inner product
〈x, y〉H = y∗Hx. The adjoint of K with respect to the H-inner product, or simply
the H-adjoint, is given by

H−1K∗H = H−1(S∗H−1)H = −K,

hence the matrix K is H-normal(1), which is a necessary and sufficient condition for
K to admit an optimal three-term recurrence for generating an H-orthogonal basis
of the Krylov subspaces Kk(K, v) for each initial vector v; see [37, Theorem 4.6.2].
(Note that, in addition, this implies that K is diagonalizable and its eigenvalues are
purely imaginary.) This fact can be used for constructing Krylov subspace methods
based on three-term recurrences for solving the system (5.1). The method of [55] and
a minimal residual method of [44] are early and important examples. They appear to
be neither widely known nor thoroughly studied, with [50] being one of the few survey

10



papers that discuss both methods in some detail. We will therefore summarize the
most important facts about their implementation and mathematical properties here.

We first note that in matrix terms the three-term recurrence for generating an
H-orthogonal basis of Kk(K, b̂) yields a Lanczos relation of the form

(5.2) KVk = Vk+1Tk+1,k,

where Span(Vk) = Kk(K, b̂), V ∗
k HVk = Ik, and Tk+1,k is tridiagonal and skew-

Hermitian. Note that V ∗
k SVk = V ∗

k HVk+1Tk+1,k = Tk,k.

5.1. Widlund’s method. The method of Widlund [55] is an oblique projection
method with iterates xW

k determined by

xW
k ∈ Kk(K, b̂) such that rWk = b −AxW

k ⊥ Kk(K, b̂).

Using the Lanczos relation (5.2), we have xW
k = Vkyk for some vector yk that is

computed using the orthogonality property, i.e.,

0 = V ∗
k r

W
k = V ∗

k (b − (H + S)Vkyk) = V ∗
k Hb̂− (V ∗

k HVk + V ∗
k SVk)yk

= ‖b̂‖He1 − (Ik + Tk,k)yk.

The system (Ik + Tk,k)yk = ‖b̂‖He1 with the k × k skew-Hermitian matrix Ik + Tk,k

can be solved efficiently.

In [16, 26, 50] optimality properties are shown for the even and odd subsequences
{xW

2k} and {xW
2k+1}, namely that

∥∥x− xW
2k

∥∥
H

= min
z∈(I−K)K2k(K,b̂)

‖x− z‖H ,

and similarly for the odd subsequence. The eigenvalues of K are purely imaginary.
Let i[−λ, λ] for some λ > 0 be the smallest interval that contains these eigenvalues.
Then, similar to the CG method [30], the optimality property of Widlund’s method
leads to an error bound of the form

(5.3)

∥∥x− xW
2k

∥∥
H

‖x‖H
≤ 2

(√
1 + λ2 − 1√
1 + λ2 + 1

)k

,

and the same bound holds for the sequence
∥∥x− xW

2k+1

∥∥
H
/
∥∥x− xW

1

∥∥
H
; see [16] or [50,

Theorem 4.2]. The bound indicates that a “fast” convergence of the method can be
expected when λ > 0 is “small”.

5.2. Rapoport’s method. The method of Rapoport [44] is a minimal residual
method with iterates xR

k determined by

(5.4) xR
k ∈ Kk(K, b̂) such that rRk = b−AxR

k ⊥ (I +K)Kk(K, b̂).

Since the Lanczos relation (5.2) can be written as

(I +K)Vk = Vk+1

[
Ik + Tk,k

tk+1,ke
∗
k

]
≡ Vk+1T̃k+1,k,
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we obtain xR
k = Vkyk for some vector yk determined by the orthogonality property,

i.e.,

0 = ((I +K)Vk)
∗rRk = T̃ ∗

k+1,kV
∗
k+1H(b̂− (I +K)Vkyk)

= ‖b̂‖H T̃ ∗
k+1,ke1 − T̃ ∗

k+1,kT̃k+1,kyk.

Equivalently, yk is the solution of the least squares problem

min
y

‖‖b̂‖He1 − T̃k+1,ky‖2,

which can again be solved efficiently, since T̃k+1,k is tridiagonal.
Since A = H(I + K), we have rRk = H(I + K)(x − xR

k ), and we can write the
orthogonality property in (5.4) as

x− xR
k ⊥B Kk(I +K, b̂) = Kk(K, b̂),

where B ≡ (I + K)∗H(I + K) is Hermitian positive definite. Since xR
k ∈ Kk(K, b̂),

this is mathematically equivalent to the optimality property
∥∥x− xR

k

∥∥
B
= min

z∈Kk(K,b̂)
‖x− z‖B ;

see [37, Theorem 2.3.2]. We thus obtain
∥∥b−AxR

k

∥∥
H−1 =

∥∥H−1(b −AxR
k )
∥∥
H

=
∥∥(I +K)(x− xR

k )
∥∥
H

=
∥∥x− xR

k

∥∥
B
= min

z∈Kk(K,b̂)
‖x− z‖B

= min
z∈Kk(K,b̂)

‖b̂− (I +K)z‖H = min
z∈Kk(I+K,b̂)

‖b̂− (I +K)z‖H

= min
p(0)=1

deg(p)≤k

‖p(I +K)b̂‖H = min
p(0)=1

deg(p)≤k

‖H−1p(AH−1)b‖H(5.5)

= min
p(0)=1

deg(p)≤k

‖p(AH−1)b‖H−1 ,

where we have used that Kk(K, b̂) = Kk(I +K, b̂). The matrix I +K is H-normal(1),
and hence diagonalizable with an H-unitary matrix of eigenvectors, i.e., I + K =
Y ΛY −1 and Y ∗HY = I. Note that H1/2Y is unitary. Using the first expression in
(5.5) we thus obtain

∥∥b−AxR
k

∥∥
H−1 = min

p(0)=1
deg(p)≤k

‖p(I +K)b̂‖H

= min
p(0)=1

deg(p)≤k

‖H1/2Y p(Λ)Y −1H−1b‖2

≤ ‖(Y −1H−1/2)H−1/2b‖2 min
p(0)=1

deg(p)≤k

‖H1/2Y p(Λ)‖2

= ‖b‖H−1 min
p(0)=1

deg(p)≤k

‖p(Λ)‖2.

The polynomial minimization problem on the spectrum of I +K, which is contained
in a complex interval of the form 1 + i[−λ, λ] for some λ > 0, was considered in [20]
(see also [19]), and it leads to a convergence bound of the form

(5.6)

∥∥b−AxR
k

∥∥
H−1

‖b‖H−1

≤ 2

(
λ√

1 + λ2 + 1

)k

;
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see [50, Theorem 4.3]. As for Widlund’s method, this bound for Rapoport’s method
indicates that the convergence is “fast” when λ > 0 is “small”.

5.3. Comparison with GMRES. We will now compare the methods of Wid-
lund and Rapoport with GMRES [45]. Recall that the GMRES method applied to
Ax = b and starting with x0 = 0 has iterates xG

k that are determined by

xG
k ∈ Kk(A, b) such that rGk = b −AxG

k ⊥ AKk(A, b),

and that the orthogonality property of the method is equivalent to the optimality
property

∥∥rGk
∥∥
2
= min

z∈Kk(A,b)
‖b−Az‖2 = min

p(0)=1
deg(p)≤k

‖p(A)b‖2 .

Note that the GMRES method is well defined when A is nonsingular, but in contrast
to the methods of Widlund and Rapoport it is based on full rather than three-term
recurrences.

Analogously, an application of GMRES with x0 = 0 to the left-preconditioned
system H−1Ax = b̂ has iterates xLG

k that are characterized by

xLG
k ∈ Kk(H

−1A, b̂) such that rLG
k = b̂−H−1AxLG

k ⊥ H−1AKk(H
−1A, b̂).

This method is well defined whenH is nonsingular, but H does not need to be definite.
Note that Kk(K, b̂) = Kk(I+K, b̂) = Kk(H

−1A, b̂), and hence GMRES applied to the
left-preconditioned system uses the same search spaces for the iterates as the methods
of Widlund and Rapoport. The optimality property now is given by

∥∥rLG
k

∥∥
2
= min

z∈Kk(H−1A,b̂)
‖b̂−H−1Az‖2 = min

p(0)=1
deg(p)≤k

‖p(H−1A)b̂‖2(5.7)

= min
p(0)=1

deg(p)≤k

‖H−1p(AH−1)b‖2 = min
p(0)=1

deg(p)≤k

‖p(AH−1)b‖H−2 .

If we again write I+K = Y ΛY −1, then the last expression in (5.7) leads to the bound

(5.8)

∥∥rLG
k

∥∥
2

‖b̂‖2
≤ κ(Y ) min

p(0)=1
deg(p)≤k

‖p(Λ)‖2,

which reminds one of the standard GMRES convergence bound for diagonalizable
matrices, and where the minimization problem can be bounded as in (5.6). Moreover,
we have

‖rLG
k ‖2 = ‖b̂−H−1AxLG

k ‖2 = ‖H−1(b −AxLG
k )‖2 = ‖b−AxLG

k ‖H−2 ,

where b − AxLG
k can be considered the unpreconditioned residual of the GMRES

method applied to the left-preconditioned system.
Table 5.1 contains an overview of the mathematical characterizations and optimal-

ity properties of the four methods discussed above, where L-GMRES means GMRES
applied to the left preconditioned system.

We point out that several Krylov subspace methods with short recurrences have
been proposed in the literature for the solution of linear algebraic systems with
(shifted) skew-Hermitian or skew-symmetric matrices; see, e.g., the survey [50] or
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Mathematical characterization:

Widlund: xW
k ∈ Kk(K, b̂) such that rWk = b−AxW

k ⊥ Kk(K, b̂)

Rapoport: xR
k ∈ Kk(K, b̂) such that rRk = b−AxR

k ⊥ H−1AKk(K, b̂)

L-GMRES: xLG
k ∈ Kk(K, b̂) such that rLG

k = b̂ −H−1AxLG
k ⊥ H−1AKk(K, b̂)

GMRES: xG
k ∈ Kk(A, b) such that rGk = b−AxG

k ⊥ AKk(A, b)

Minimization properties:

Widlund:
∥∥x− xW

2k

∥∥
H

= min
z∈(I−K)K2k(K,b̂)

‖x− z‖H

Rapoport:
∥∥b−AxR

k

∥∥
H−1 = min

z∈Kk(K,b̂)
‖b−Az‖H−1 = min

p(0)=1
deg(p)≤k

∥∥p(AH−1)b
∥∥
H−1

L-GMRES:
∥∥b−AxLG

k

∥∥
H−2 = min

z∈Kk(K,b̂)
‖b−Az‖H−2 = min

p(0)=1
deg(p)≤k

‖p(AH−1)b‖H−2

GMRES:
∥∥b−AxG

k

∥∥
2

= min
z∈Kk(A,b)

‖b−Az‖2 = min
p(0)=1

deg(p)≤k

‖p(A)b‖2

Table 5.1: Mathematical characterization and minimization properties of the different
methods.

the more recent papers [23, 24, 32, 33]. Here we do not take these methods into
account, since our matrix K is skew-Hermitian with respect to the H-inner product,
so that methods for usual skew-Hermitian matrices are not directly applicable. More-
over, the methods of Widlund and Rapoport already implement the two most common
projection principles in this context, namely oblique and orthogonal projection onto
Krylov subspaces.

6. Numerical experiments. In this section we present numerical experiments
with the four iterative methods summarized in Table 5.1 applied to linear algebraic
systems of the form (4.2), which come from different cases discussed in Section 3. All
experiments were carried out in MATLAB R2019b on a cluster with an AMD EPYC
7302 16-Core Processor and 512GB memory.

We have implemented the methods of Widlund and Rapoport in MATLAB as
stated in [55] and [44], respectively, and we use the MATLAB implementation of (pre-
conditioned) GMRES. The methods of Widlund and Rapoport as well as L-GMRES
are based on preconditioning the system (4.2) with the Hermitian part H of A, and
hence they require solving a linear algebraic system with H in every step. In large-
scale problems one can compute a Cholesky decomposition of H , and then solve the
two triangular systems in every step. We point out that for a sequence of linear alge-
braic systems coming from a discretization with constant time steps as in (4.1), only
one Cholesky decomposition needs to be computed upfront. We will comment on our
use of the Choelsky decomposition in the different examples below.

As seen in Table 5.1, the four methods minimize different norms of residual or
error. We consider GMRES applied to the non-preconditioned system Ax = b as
the reference method. This method minimizes the 2-norm of the residual in every
step, and therefore we compare the residuals of all four methods in this norm. In all
experiments we start the iterative methods with x0 = 0, and run the iterations until
the relative residual 2-norm is smaller than a given tolerance.

6.1. Multi-body system (Case 1). We consider the holonomically constrained
damped mass-spring system illustrated in Figure 6.1 (taken from [43, Fig. 3.4]). The
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ith mass of weight mi is connected to the (i+1)st mass by a spring and a damper with
constants ki and di, respectively, and also to the ground by a spring and a damper
with constants κi and δi respectively. Additionally, the first mass is connected to the
last one by a rigid bar and it is influenced by a control.

Fig. 6.1: A damped mass-spring system with a holonomic constraint.

The vibration of this system is described by a descriptor system (see [43, equa-
tion (34)]), from which one obtains an equation of the form

Mp̈+Dṗ+ Fp = f,

where M = diag(m1, . . . ,mg) > 0 is the mass matrix, and D = D∗ ≥ 0 and F =
F ∗ > 0 are the tridiagonal damping and stiffness matrices, respectively. The resulting
first-order formulation gives the state equation of a dHDAE system of the form (3.2).
After time discretization we obtain a linear algebraic system of the form (4.2) with A
of order n = 2 · g, and the positive definite Hermitian part

H = E +
τ

2
R =

[
M + τ

2D 0
0 F

]
.

We consider linear algebraic systems for two different values of g, namely g =
5 × 103 and g = 106, and in each case we use time steps of four different orders of
magnitude, namely τ/2 = 10−4, 10−3, 10−2, 10−1. The right hand sides of the linear
algebraic systems are generated by the command randn in MATLAB. In each case we
compute one Cholesky decomposition of H using MATLAB’s chol function, and then
solve the two triangular systems in every iterative step of the methods of Widlund
and Rapoport, and L-GMRES with MATLAB’s backslash operator. The time for
computing the Cholesky decomposition is 0.0009s and 0.2070s for g = 5 × 103 and
g = 106, respectively, and is included in the running times of the methods of Widlund,
Rapoport, and L-GMRES shown in Tables 6.1 and 6.2. In the computations with the
iterative methods the tolerance for the relative residual norm is 10−12. In Figures 6.2
and 6.3 we plot the convergence curves of the four iterative methods for g = 5× 103

and g = 106, respectively.
The tables and figures show that GMRES is outperformed in terms of time and

iterative steps by the methods of Widlund, Rapoport and L-GMRES. This is not
surprising, since the latter three methods are all preconditioned by the dominant
Hermitian part. Moreover, in each case these three methods take approximately the
same number of steps to reach the stopping criterion. Because of the full recurrences,
L-GMRES in each case takes a (slightly) longer time than the methods of Widlund
and Rapoport.

We also observe that the number of steps required by the methods of Widlund,
Rapoport, and L-GMRES to reach the stopping criterion increases with increasing τ .
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τ/2 = 10−4 τ/2 = 10−3 τ/2 = 10−2 τ/2 = 10−1

Method Time Iter. Time Iter. Time Iter. Time Iter.
Widlund 0.003 3 0.005 4 0.004 5 0.003 7
Rapoport 0.002 2 0.004 3 0.008 4 0.005 6
L-GMRES 0.028 3 0.014 4 0.016 5 0.010 7
GMRES 0.032 35 0.029 37 0.088 39 0.030 44

Table 6.1: Multi-body system. Running times and iteration numbers for g = 5× 103.

τ/2 = 10−4 τ/2 = 10−3 τ/2 = 10−2 τ/2 = 10−1

Method Time Iter. Time Iter. Time Iter. Time Iter.
Widlund 0.458 3 0.533 4 0.687 6 0.930 9
Rapoport 0.334 2 0.424 3 0.619 5 0.939 8
L-GMRES 0.720 3 0.837 4 1.099 6 1.544 9
GMRES 4.839 28 4.734 28 5.553 29 5.525 31

Table 6.2: Multi-body system. Running times and iteration numbers for g = 106.

A heuristic explanation of this observation is that with increasing τ the Hermitian part
becomes “less dominant”, so that the gain of using it as a preconditioner, and hence
the advantage over (unpreconditioned) GMRES, becomes less pronounced. A more
analytic (though still not complete) explanation is given by the convergence bounds
(5.3), (5.6), and (5.8). For g = 5×103 the smallest (purely imaginary) interval i[−λ, λ]
containing these eigenvalues is given by

λ ≈ 3.1622× 10−5 for τ/2 = 10−4,

λ ≈ 3.1619× 10−4 for τ/2 = 10−3,

λ ≈ 3.1583× 10−3 for τ/2 = 10−2,

λ ≈ 3.1235× 10−2 for τ/2 = 10−1.

Thus, decreasing τ by a factor of 10 means that the spectrum of K “shrinks” by the
same factor. The faster convergence for smaller τ is indicated by the convergence
bounds, which say that the convergence of the three methods is “fast” when λ > 0
is “small”. (The same behavior and conclusion hold for g = 106, but in that case we
did not compute the eigenvalues of the matrix K.)

6.2. Stokes equation (Case 2). We consider the incompressible Stokes equa-
tion as in Example 3.4, and generate linear algebraic systems using the Q1−Q1 finite
element approximation of the (unsteady) channel domain problem in IFISS [47]. The
system matrices are of the form A = H + S with

H =

[
M − τ

2AH 0
0 − τ

2C

]
and S =

[
0 − τ

2B
τ
2B

∗ 0

]
,

where M − τ
2AH with AH = diag(A1, A1) is Hermitian positive definite. We use the

stabilization matrix − τ
2C = 10−3 τ

2A1, so that the methods of Widlund and Rapoport
are applicable. We use the grid parameters 6 and 9 in IFISS, which yields matrices B
of the sizes 8, 450×4, 225 and 526, 338×263, 169, respectively. Hence, for the matrices
A we have n = 12, 675 and n = 789, 507, respectively. The right hand sides f of the
linear algebraic systems are generated by the command randn in MATLAB.

We consider linear algebraic systems corresponding to the time steps τ/2 = 10−4

and τ/2 = 10−3. In each case we compute Cholesky decompositions of M − τ
2AH
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Fig. 6.2: Multi-body system. Relative residual norms of the four methods with τ/2 =
10−4, 10−3, 10−2, 10−1 (top left to bottom right) for g = 5× 103.

and − τ
2C using MATLAB’s chol function. For grid parameter 6, this takes about

0.01s for both M − τ
2AH and − τ

2C, and both values of τ/2. For grid parameter 9,
the computation of the Cholesky factors of M − τ

2AH and − τ
2C respectively takes

7.22s and 9.58s for τ/2 = 10−4, as well as 6.99s and 12.32s for τ/2 = 10−3. The
triangular systems with the Cholesky factors are then solved in every iterative step
of the methods of Widlund and Rapoport, and L-GMRES with MATLAB’s back-
slash operator. The time for computing the Cholesky decompositions are included in
the running times of the methods of Widlund, Rapoport, and L-GMRES shown in
Tables 6.3 and 6.4. Figures 6.4 and 6.5 show the corresponding convergence curves
of the four iterative methods. In the computations with the iterative methods the
tolerance for the relative residual norm is 10−12. We stopped the (unpreconditioned)
GMRES method after 1000 steps, and we report the value of the relative residual
norm attained at that point.

The observations in this example are similar to those for the multibody system in
Section 6.1. The methods of Widlund, Rapoport, and L-GMRES behave similarly in
terms of iterative steps, and L-GMRES takes a slightly longer time (in most cases) due
to the full recurrences. The number of steps of each of these three methods increases
with increasing τ . The smallest interval i[−λ, λ] containing the eigenvalues of K is
given by

λ ≈ 2.158 for
τ

2
= 10−4 and λ ≈ 4.336 for

τ

2
= 10−3

and hence the convergence bounds for the methods of Widlund, Rapoport, and L-
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Fig. 6.3: Multi-body system. Relative residual norms of the four methods with τ/2 =
10−4, 10−3, 10−2, 10−1 (top left to bottom right) for g = 106.

τ/2 = 10−4 τ/2 = 10−3

Method Time ‖Rel.Res.‖ Iter. Time ‖Rel.Res.‖ Iter.
Widlund 0.095 6.515× 10−14 33 0.121 1.816× 10−13 55
Rapoport 0.143 2.819× 10−13 33 0.128 7.707× 10−13 53
L-GMRES 0.140 5.938× 10−13 32 0.193 3.021× 10−13 50
GMRES 14.174 3.066× 10−09 1000 15.129 9.208× 10−13 996

Table 6.3: Stokes equation. Running times and iteration numbers for n = 12, 675.

GMRES again explain (to some extent) why the methods require fewer steps for
smaller τ . Finally, it is noteworthy that the residual norms of the method of Widlund
show rather large oscillations, while the method of Rapoport, which minimizes the
H−1-norm of the residual, converges smoothly.

6.3. Linearized Navier-Stokes equation without stabilization (Case 3).
As a final example we consider the linearized Navier-Stokes equation without stabi-
lization as in Example 3.6, and generate linear algebraic systems using the Q2 −Q1
finite element discretization of the (unsteady) channel domain problem in IFISS [47].
Now the systems are of the form

(6.1) Ax =

[
M − τ

2 (AH +AS)
τ
2B

− τ
2B

∗ 0

] [
v
p

]
=

[
f
0

]
= b,

where M − τ
2AH is Hermitian positive definite, AS = −A∗

S , and B is of full rank. We
use the “grid parameter” 6, so that B is of size 8, 450× 1, 089, and hence n = 9, 539.
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τ/2 = 10−4 τ/2 = 10−3

Method Time ‖Rel.Res.‖ Iter. Time ‖Rel.Res.‖ Iter.
Widlund 42.852 1.476× 10−13 33 56.062 2.264× 10−13 53
Rapoport 40.711 2.614× 10−13 35 56.777 4.293× 10−13 55
L-GMRES 43.831 6.587× 10−13 34 57.757 8.241× 10−13 50
GMRES 983.591 5.762× 10−06 1000 980.367 7.179× 10−05 1000

Table 6.4: Stokes equation. Running times and iteration numbers for n = 789, 507.
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Fig. 6.4: Stokes equation. Relative residual norms of the four methods with τ/2 =
10−4 and τ/2 = 10−3 (left and right) for n = 12, 675.

The vector f for the right hand side is also generated by IFISS. (In this example
we only use a relatively small value of n, since solving a large-scale non-Hermitian
Navier-Stokes problem requires additional preconditioning techniques that go beyond
the purpose of this paper.)

The methods of Widlund and Rapoport are not directly applicable to (6.1), since

the Hermitian part H =

[
M − τ

2AH 0
0 0

]
of A is singular. However, the system can be

solved via Schur complement reduction (cf. Lemma 4.2) by applying the four methods
(Widlund, Rapoport, L-GMRES, and GMRES) to systems with the matrices

Â11 = H11 + S11 = (M − τ

2
AH) + (−τ

2
AS) and S1 =

τ2

4
B∗Â−1

11 B,

which are both (non-Hermitian) positive definite. As in the Stokes equation in Sec-
tion 6.2, we use τ/2 = 10−4 and τ/2 = 10−3. We are here not interested in efficient
ways to deal with the Schur complement S1, but in the performance of the iterative
methods when applied to (non-Hermitian) positive definite matrices that depend on

the step size parameter τ . We therefore compute S1 exactly by inverting Â11 with
MATLAB’s backslash operator, which takes 4.087s and 2.712s for τ/2 = 10−4 and
τ/2 = 10−3, respectively. In order to apply the methods of Widlund, Rapoport,
and L-GMRES we compute incomplete Cholesky decompositions of H11 and of the
Hermitian part of S1 using MATLAB’s ichol function with drop tolerance 10−9.

In Table 6.5 we show the total time and number of iterative steps required by
the different methods for solving the two systems with Â11 and S1, as well as the
relative residual norm of the approximate solution of Ax = b obtained in this way.
The table also shows the corresponding values of (unpreconditioned) GMRES applied
to the system Ax = b, denoted by GMRES(A). Here we stopped the iteration after
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Fig. 6.5: Stokes equation. Relative residual norms of the four methods with τ/2 =
10−4 and τ/2 = 10−3 (left and right) for n = 789, 507.

τ/2 = 10−4 τ/2 = 10−3

Method Time Iter. ‖Rel.Res.‖ Time Iter. ‖Rel.Res.‖
Widlund 0.388 8 8.802× 10−13 0.075 6 2.881× 10−13

Rapoport 0.366 3 8.758× 10−13 0.067 4 2.875× 10−13

L-GMRES 0.464 9 2.114× 10−14 0.092 8 1.165× 10−13

GMRES 4.615 154 9.191× 10−13 2.931 119 7.429× 10−13

GMRES(A) 3.657 500 4.924× 10−05 3.402 500 1.561× 10−05

Table 6.5: Linearized Navier-Stokes equation without stabilization. Running times,
number of iterations, and relative residual norms at the final step for τ/2 = 10−4 and
τ/2 = 10−3.

500 steps, and we report the value of the relative residual norm attained at that point.
Figure 6.6 shows the convergence curves of the four methods applied to the sys-

tems with Â11 and S1. The behavior is similar to what we have observed in Sec-
tions 6.1 and 6.2, with the exception that in this example the method of Rapoport
performs slightly better than the method of Widlund and L-GMRES. Again, these
three methods outperform L-GMRES, and also GMRES(A) is not competitive. In
this example the (purely imaginary) eigenvalues of the matrix K corresponding to

Â11 are contained in the interval i[−λ, λ] with

λ ≈ 2.3516× 10−6 for τ/2 = 10−4 and λ ≈ 1.0083× 10−4 for τ/2 = 10−3,

and for the matrix K corresponding to the Schur complement S1 they are contained
in i[−λ, λ] with

λ ≈ 9.9225× 10−7 for τ/2 = 10−4 and λ ≈ 7.4483× 10−5 for τ/2 = 10−3.

Using these very small values of λ in the bounds (5.3), (5.6), and (5.8) explains the
fast convergence of the methods of Widlund and Rapoport, and L-GMRES for the
systems with Â11 and S1.

7. Concluding remarks. Dissipative Hamiltonian differential-algebraic equa-
tion (dHDAE) systems occur in a wide range of energy-based modeling applications,
including thermodynamics, electromagnetics, and fluid mechanics. These systems can
be classified using a staircase from, which reveals their differentiation index (either
zero, one, or two). We have given a systematic overview of the three different cases.
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Fig. 6.6: Linearized Navier-Stokes equation without stabilization. Relative residual
norms of the four methods applied to the systems with Â11 (top row) and S1 (bottom
row) with τ/2 = 10−4 and τ/2 = 10−3 (left and right).

An important common feature is that the matrices arising in the (space and time)
discretization of dHDAE systems split naturally into A = H+S, where the Hermitian
part H is positive definite or positive semidefinite. This feature can be exploited in
the numerical solution of the corresponding linear algebraic systems.

A focus of our work has been the case of positive definite H , which allows the
application of the Krylov subspace methods of Widlund and Rapoport. These meth-
ods were derived in the late 1970s, but have rarely been analyzed or even cited in the
literature so far. We have summarized their main mathematical properties, and we
have presented extensive numerical experiments with linear algebraic systems from
different dHDAE application problems. In these experiments the three-term recur-
rence methods of Widlund and Rapoport have consistently outperformed L-GMRES
and (unpreconditioned) GMRES. The behavior we have observed is consistent with
the convergence bounds for the methods of Widlund and Rapoport, which indicate a
fast convergence for the systems (I +K)x = b when K = H−1S is “small”. In time
discretizations of dHDAE systems this important feature is virtually “built in”, since
the skew-Hermitian part of the dHDAE is being multiplied by the (usually) small
time step parameter τ .

Overall, we have therefore presented a holistic approach combining energy-based
modeling using dHDAE systems, their structure-preserving discretization, and finally
a structure-adapted linear algebraic computation.

The case of a positive semidefinite H is challenging. We have shown in Lemma 4.2

21



that one can identify the “singular part” of A = H + S via a unitary transformation,
but this tool in not practical in large scale applications. However, in the mathematical
modeling the block structure of the dHDAE frequently exposes the “singular part”,
and no further transformation is necessary. In such cases, we can apply the methods
of Widlund and Rapoport to the “positive definite part” of the problem, and the
“singular part” must be solved by other means. A closer analysis of the positive
semidefinite case is a subject of future work.

Acknowledgments. We thank the anonymous referees as well as Andreas From-
mer and Karsten Kahl for helpful suggestions that have improved our presentation.
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