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Abstract

In a stochastic reaction network setting we consider the problem of tracking the fate of individual
molecules. We show that using the classical large volume limit results, we may approximate the
dynamics of a single tracked molecule in a simple and computationally efficient way. We give examples
on how this approach may be used to obtain various characteristics of single-molecule dynamics (for
instance, the distribution of the number of infections in a single individual in the course of an epidemic
or the activity time of a single enzyme molecule). Moreover, we show how to approximate the overall
dynamics of species of interest in the full system with a collection of independent single-molecule
trajectories, and give explicit bounds for the approximation error in terms of the reaction rates.
This approximation, which is well defined for all times, leads to an efficient and fully parallelizable
simulation technique for which we provide some numerical examples.

1 Introduction

Recent advances in modeling molecular systems, especially our improved ability to track individual
proteins, and the deluge of data from the observations of both molecular and macro system (think,
for instance, of the ongoing COVID-19 pandemic), have created new scientific challenges of considering
models of very high resolution where the dynamics of a specific bio-molecule or a particular individual
are of interest. In general, such ’agent-based’ models are known to be computationally very costly, due to
complex stochastic dynamics and highly noisy behavior of individual agents. However, it appears that,
at least in some cases, simple yet satisfactory approximation of individual molecular trajectory may be
directly inferred with the help of a classical approach of stochastic chemical kinetics that assumes that all
molecules or individuals are indistinguishable and consequently focuses only on their aggregated counts.
As an example of one such idea, originally proposed in [7] and latter expanded in [15], consider the
stochastic ’susceptible-infected’ (SI) chemical reaction network where a collection of m + n molecules
(or individuals) is partitioned into two types: susceptible (S) and infected (I) with initially n being of
type S and remaining m of type I. The stochastic network evolves in time according to a Markov jump
process that counts the ’infection events’, that is, the interactions of one molecule of I-type with one
molecule of S-type. Each such interaction creates a new molecule of I-type and removes one of S-type
(equivalently, a molecule changes its type from S to I). Accordingly, in the reaction network notation
described below in Section 2.2 this model may be represented as

S + I −−→ 2I. (1.1)

If the rate constant of the above reaction is β/n and we assume the usual mass action kinetics [3], it is
well know that the above stochastic reaction network satisfies the law of large numbers, in the sense that
as m,n→∞ and m/n→ ρ > 0 the surviving proportion st of the S-type molecules follows the logistic
equation that may be written in the form

− ṡt/st = β(1 + ρ− st) st(0) = 1. (1.2)

Consequently, for t ≥ 0 we have

st =
1 + ρ

1 + ρ exp(β(1 + ρ)t)
. (1.3)

Thus, from the viewpoint of a single, randomly selected S-type molecule, the quantity st defines a
survival function describing the limiting probability of surviving beyond time t > 0. The formula (1.3)
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Figure 1: Survival approximation in the SI model. The empirical trajectory of the proportion of
the remaining S molecules in the SI model described in (1.1) as compared to the deterministic function
st defined in (1.2) and the average of 1, 000 independent single trajectories of individuals who become
infected according to st. For the simulation we considered n = 1, 000, m = 10, β = 1, and ρ = 0.01.

led to the method of approximating the distribution of surviving molecules of S dubbed ‘dynamical
survival analysis’ (DSA) described in [15] and applied recently to epidemic modeling [8, 9, 14, 21, 23].
The idea is further illustrated in Figure 1 where the average of the Markov process (1.1) is compared to
the average of independent realizations of single molecule dynamics (which may be efficiently calculated
using modern parallel computing capabilities). Note (1.2) may be also interpreted as the equation for the
hazard function associated with st. This fact has some relevance for statistical inference, and is further
exploited, for instance, in [9, 15].

Beyond the simple SI example, the DSA approach has been applied (mostly in the context of epi-
demics) only to a handful of reaction networks representing the so-called one-directional transfer models
[7]. In all such networks individual molecules can only change their state in an ordered way, hence
previously visited states are no longer attainable (for instance in the SI model a molecule of S-type can
only change into I-type, but not vice-versa).

In the current paper we formally expand the survival function approach for tracking the fate of in-
dividual molecules to a much broader class of networks, including those where molecules can return to
their previous stages. A simple example is obtained by augmenting the SI network with the additional
reaction I → S, leading to the so-called SIS model (which is of interest in epidemiology) discussed in
more detail in Example 4.2 below. To establish our results for such networks, we explore a different
representation of the DSA approximation, which does not explicitly involve the survival function. Con-
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tinuing with the SI model example, denote by Y i(t) the binary variable that takes value 1 or 0 according
to whether i-th molecule is of type S or I. The limit dynamics of an i-th individual molecule (initially
of type S) is then given by

Y i(t) = 1−N i

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
where N i is the unit Poisson process tracking the transition of the i-th molecule from S-type to I-type.
Note that the argument of N i is the cumulative hazard corresponding to integral of the right-hand side of
(1.2) (see [15]). Such Poisson process representation is of course completely equivalent to simply having
the time of switching of the i-th molecule from S to I follow the survival function (1.3), but it allows
for a description of more complex scenarios than one-directional transfer models. For example, we will
prove below that the limit dynamics of a single molecule in the SIS model can be written as

Y i(t) = 1−N i
1

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
+N i

2

(
κ

∫ t

0

(1− Y i(u))du

)
for independent and identically distributed unit-rate Poisson processes N i

1 and N i
2. Here, κ is the rate

constant of the reaction I → S.
In this work we study the Poisson process representation of the DSA approximation and give con-

ditions under which it describes a single-molecule trajectory of the original network. In particular, we
explicitly derive error bounds of the DSA approximation, in terms of the underlying reaction network
rates. We illustrate via numerical examples how this novel technique could be useful to infer quantities
pertaining to single-molecule dynamics (such as the distribution of the number of infections a single
individual undergoes in a SIS model, or the time a single enzyme spends in the bound state) in a
computationally efficient way.

Further, we consider the problem of comparing the dynamics of an original full reaction network with
that of a collection of independent approximations of single-molecule trajectories and provide explicit
bounds on the error. Having the dynamics of the whole system approximated by a number of indepen-
dent trajectories allows for computationally efficient simulation techniques, that are fully parallelizable.
Moreover, since the DSA approximation is defined for all times, it does not suffer from the problem of
exiting the state space as it is known to happen in other methods such as diffusion approximations or tau
leaping [5, 6, 12, 18]. Finally, the independence of the single-molecule trajectories also allows for much
simplified statistical inferential procedures. Such applications were already considered in the context of
SIR networks in recent papers on the COVID-19 pandemic [8, 9, 14, 21, 23]. A thorough investigation
of these techniques in general reaction networks is currently being conducted and will appear in a future
work.

The paper is organized as follows: in Section 2 we provide the necessary concepts pertaining to
reaction network theory followed by the result on the approximation in classical scaling in Section 3.
In Section 4 we give a formal definition of what we refer to as ‘status’ of the molecules of interest. In
Section 5 we state our main results. In particular, in Section 5.1 we give the theorem on the Poisson
process representation of the DSA approximation for a single-molecule trajectory, and give examples of
its applications in Section 5.2. Finally, in Section 5.3 we state the result on the approximation of the
original full network via independent single-molecule trajectories, and give numerical examples. Proofs
and explicit error bounds are given in the Appendix A.

2 Background definitions

2.1 Notation

We denote by R, R>0, and R≥0 the real, positive real, and non-negative real numbers, respectively. Sim-
ilarly, we denote by Z, Z≥1, and Z≥0 the real, positive real, and non-negative real numbers, respectively.
Given a number r ∈ R, we denote by |r| its absolute value, and by brc the largest m ∈ Z such that
m ≤ r.

Given a vectors v ∈ Rn, we denote its ith component by vi, for all 1 ≤ i ≤ n. We further denote

‖v‖∞ = max
1≤i≤n

|vi| and bvc = (bv1c, . . . , bvnc).
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Given two vectors u, v ∈ Rn≥0, we write

uv =

m∏
i=1

uvii ,

with the convention that 00 = 1. We also write u ≥ v if the inequality holds component-wise. Further-
more, for any vector v ∈ Zn≥0, we write

v! =

m∏
i=1

vi! .

Given a set A, we denote its cardinality by #A or, if it leads to no ambiguity, by |A|. We assume the
reader is familiar with basic notions from stochastic process theory, such as the definition of continuous-
time Markov chains and Poisson processes [19].

Consider a sequence of random variables {Xn}n∈Z≥0
and a random variable X, all defined on the same

probability space and with values in a normed space (E, ‖ · ‖). We say that Xn converges in probability
to X if for all η ∈ R>0

lim
n→∞

P (‖Xn −X‖ > η) = 0.

Given a topological space E we will denote by DE [0, T ] the set of right-continuous left-bounded
functions defined from [0, T ] to E, endowed with the Skorokhod J1 topology. In particular, we say that
the sequence of processes {Xn} with sample paths in DE [0, T ] converges in probability to the process
X (or simply that Xn converges in probability to X) if the Skorokhod distance between Xn and X
converges to 0 in probability (for more details, see for example [11, Chapter 3]).

2.2 Stochastic reaction networks

A reaction network is a triple G = {X , C,R}, where (a) X is an ordered finite sequence of d symbols,
called species; (b) C is a finite set of linear combinations of species over Z≥0, called complexes; (c) R is a
finite set of elements of C ×C, called reactions. We assume that no element of the form (y, y) is in R, for
any complex y, even though our results do not depend on this assumption. Following the usual notation
of reaction network Theory, we further denote a reaction (y, y′) ∈ R by y → y′. We finally assume
that each complex appears in at least one reaction, and that each species has a positive coefficient in at
least one complex. Under this assumption and up to ordering of the set of species, a reaction network
is uniquely determined by the set R, or equivalently by the directed graph (C,R), called reaction graph.
As an example, consider the reaction graph

A+B −−⇀↽−− 2B, B −−→ C. (2.1)

In this case, the associated species are A, B, and C, C = {A + B, 2B,B,C}, and R = {A + B →
2B, 2B → A+B,B → C}.

In this paper we will implicitly identify R|X | with Rd, and therefore each S ∈ X with a canonical basis
vector of Rd. With this in mind, the complexes are linear combination of species and can be therefore
considered as vectors in Zd≥0. As an example, if we order the species of (2.1) alphabetically, then the
complex A+B can be associated with the vector (1, 1, 0), the complex 2B can be associated with (0, 2, 0),
the complex C with (0, 0, 1), and so on. We will tacitly use the identification of complexes with integer
vectors throughout the paper. Moreover, for each vector v ∈ Rd and for each species S ∈ X we denote
by vS the entry of v related to the canonical vector associated with S. We further define the support of
v as supp(v) = {S ∈ X : vS > 0}. As an example, with the species of (2.1) alphabetically ordered, the
support of (1, 1, 0) is {A,B}, the support of (0, 2, 0) is {B}, and so on.

Deterministic and stochastic dynamical systems can be associated with a reaction network. The
stochastic model is usually utilized when few individuals are present, so the stochastic component of the
dynamic behaviour should not be ignored. In this case, the time evolution of the number of individuals
of the different species is considered, for certain given propensities of the reactions to occur, and modeled
via a continuous time Markov chain. More precisely, a stochastic kinetics for a reaction network G is a
correspondence between a reaction y → y′ and a rate function λy→y′ : Zd≥0 → R≥0, such that λy→y′(x) >
0 only if x ≥ y. A stochastic reaction system is a continuous time Markov chain {X(t) : t ≥ 0} with
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state space Zd≥0 and transition rates from a state x to a state x′ defined by

q(x, x′) =
∑

y→y′∈R
y′−y=x′−x

λy→y′(x).

The associated generator is defined by

Af(x) =
∑

y→y′∈R
λy→y′(x)

(
f(x+ y′ − y)− f(x)

)
for any function f : Zd≥0 → R and any x ∈ Zd≥0. Equivalently, the process X can be described by

X(t) = X(0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ ∞
0

λy→y′(X(s))ds

)
,

where the processes {Ny→y′}y→y′∈R are independent unit-rate Poisson processes. For more details on
this representation, we refer to [3] or [11, Chapter 6].

In the deterministic setting, the concentration of the different species are assumed to evolve according
to an ordinary differential equation (ODE). Specifically, a deterministic kinetics for a reaction network
G is a correspondence between the reactions y → y′ and the rate function λy→y′ : Rd≥0 → R≥0, such that
λy→y′(x) > 0 only if xi > 0 whenever yi > 0. A deterministic reaction system is the solution to the
ordinary differential equation

d

dt
Z(t) =

∑
y→y′∈R

(y′ − y)λy→y′(x). (2.2)

While our results hold in a more general scenario, all the simulations we show assume mass-action
kinetics, a popular choice of kinetics derived by the assumption that all the species molecules are well-
mixed in the available volume [3]. Specifically, a stochastic reaction system is a stochastic mass-action
system if for every reaction y → y′ ∈ R we have

λy→y′(x) = κy→y′
x!

(x− y)!
1{x≥y},

for some positive constant κy→y′ called rate constant. Similarly, a deterministic reaction system is a
deterministic mass-action system if for every reaction y → y′ ∈ R we have

λy→y′(x) = κy→y′x
y,

for some positive constant κy→y′ also called rate constant.

3 Classical scaling

Consider a reaction network G = {X , C,R}, and a family of stochastic kinetics {λVy→y′ : y → y′ ∈ R}
indexed by V . Let XV denote the associated continuous time Markov chain. V should be thought to as
a parameter expressing the volume, or the magnitude of the number of the present individuals. Under
the following technical but reasonable assumption the classical scaling of [11, 16] holds:

Assumption 3.1. We assume that for any reaction y → y′ ∈ R there exists a locally Lipschitz function
λy→y′ : Rd≥0 → Rd≥0 such that for any compact set K ⊂ Rd≥0 we have

lim
V→∞

sup
z∈K

∣∣∣∣∣λVy→y′(bV zc)V
− λy→y′(z)

∣∣∣∣∣ = 0.

Theorem 3.1. Assume that Assumption 3.1 holds. Furthermore, assume that the random variables
XV (0)/V converge in probability to a constant z∗ as V goes to infinity. Finally, let {Z(t) : t ≥ 0} be
the unique solution to (2.2) with Z(0) = z∗. Then, for any ε > 0 and any T > 0

lim
V→∞

P

(
sup
t∈[0,T ]

∥∥∥∥XV (t)

V
− Z(t)

∥∥∥∥
∞
> ε

)
= 0.
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Note that the distribution of the fate of a single molecule is not given, since the classical scaling
concerns average dynamics. The goal of this paper is to address this issue, by providing a technique to
simulate an approximation of the time evolution of a single observable species, as described in the next
section.

4 Molecular status

We consider the problem of tracking the fate of an individual molecule through its transformations into
different species in a certain stochastic reaction network. For instance, we could be interested in the
change in status of a single tracked individual of type S in the SI model, discussed in the Introduction.
To introduce a more general scenario where it is desirable to track the time evolution of different parts
of a species molecule, we give the following example.

Example 4.1. Consider the following reaction network, depicting a Michaelis-Menten mechanism where
the product protein and the enzyme can spontaneously transform into each other:

E + S −−⇀↽−− C −−→ E + P, P −−⇀↽−− E. (4.1)

In particular, the complex C represents a molecule of substrate S and enzyme E bound together. When
the bond is broken, the molecule of enzyme is released while the molecule of substrate is either released or
transformed into the product P . Suppose we want to keep track of the history of a molecule of substrate
S. If we were dealing with a classic Michaelis-Menten kinetics, i.e. without the reactions P 
 E, then
we could simply consider S, C, and P as status for the tracked molecule, corresponding to unbound
substrate, bound substrate, and product, respectively. Since the reactions P 
 E are present, if we
want to keep track of the fate of a molecule of substrate we need to take into account the fact that it
can ultimately (via complex, then protein) be transformed into an enzyme, so E becomes a possible
status of the molecule. We now need to differentiate between the parts of a complex molecule of C that
a molecule of E and a molecule of S get transformed into by the reaction E + S → C. The part of a
(complex) molecule of C that a molecule of E gets transformed into will become a free enzyme again
via the reaction C → E + P , while the part a molecule of C that a molecule of S gets transformed into
will become a molecule of product P via C → E + P . Here and below by “part of a molecule” we mean
a part of a molecular complex rather then one of atoms comprising the specific molecule. To formally
describe such dynamics we consider {E,S, P,CE , CS} as the set of molecular status, where CE denotes
we are tracking a molecule of E bound in the complex C, and CS denotes we are tracking a molecule
of S bound in C. Note that some status correspond to species, some other status do not. In order to
avoid any notational confusion between the potentially different sets of chemical species and molecule
status, we adopt the convention of using tildes for status. In the present example, we will denote the set
of tracked molecule status by {Ẽ, S̃, P̃ , C̃E , C̃S}.

Based on the above example, we see that the molecules whose dynamics we want to follow may or
may not correspond to a subset of the chemical species X . To deal with this general setting, we formally
represent status by a set T of symbols endowed with a function σ : T → X ∪{0} which links every status

with its corresponding species in X . For instance, in Example 4.1 above we will choose σ(S̃) = S and

σ(C̃E) = C. Note that the number of status defined in this way can be less than, equal to, or larger
than the number of species. A molecule that changes its status with time will be referred to as a tracked
molecule.

The set T needs to include the special state ∆ to denote the potential degradation of the tracked
molecule, and we set σ(∆) = 0. To simplify the notation, for all x, y ∈ Zd≥0 and τ ∈ T \{∆} we denote by
θy(τ, x) the probability that a certain molecule of species σ(τ) is chosen if yσ(τ) molecules are uniformly
drawn out of xσ(τ) molecules of σ(τ) available. Specifically,

θy(τ, x) =


(
xσ(τ) −1

yσ(τ)−1
)

(xσ(τ)
yσ(τ)

)
=

yσ(τ)

xσ(τ)
if xσ(τ) ≥ yσ(τ) ≥ 1

0 otherwise

.

For completeness, we define θy(∆, x) = 0. Finally, note that in reactions such as 2A → B + C we
can imagine a molecule of A is transformed into a molecule of B, while the other molecule of A turns

6



into a molecule of C. If we are tracking the fate of A molecules and the reaction 2A → B + C oc-
curs, it is reasonable to assume the molecule we are tracking has a 50% change of turning into a
molecule of B, and a 50% change of becoming a molecule of C. We denote these probabilities with
p2A→B+C(A,B) and p2A→B+C(A,C), respectively, and in general allow for different value choices, as
along as p2A→B+C(A,B) + p2A→B+C(A,C) = 1. The definition of tracking stochastic reaction system in
the most general setting is below.

Definition 4.1 (Tracking stochastic reaction system). Let G = {X , C,R} be a reaction network. Con-
sider a family of stochastic kinetics {λVy→y′ : y → y′ ∈ R} indexed by V , and let XV denote the
associated continuous time Markov chains. Let T be a set of status. We define the tracking stochastic
reaction system as the continuous-time Markov chain (Y V , XV ) with state space T ×Zd≥0 and transition
rates

q
(

(∆, x), (τ ′, x′)
)

= 1{τ ′}(∆)
∑

y→y′∈R
y′−y=x′−x

λVy→y′(x)

and for all τ 6= ∆

q
(

(τ, x), (τ ′, x′)
)

=
∑

y→y′∈R
y′−y=x′−x

(
(1− θy(τ, x))1{τ ′}(τ) + θy(τ, x)py→y′(τ, τ

′)
)
λVy→y′(x),

where for all reactions y → y′ ∈ R the following holds:

• for any τ ∈ T , τ ′ ∈ T ∪ {∆} we have 0 ≤ py→y′(τ, τ ′) ≤ 1;

• py→y′(τ, τ
′) = 0 whenever σ(τ) /∈ supp(y) or σ(τ ′) /∈ supp(y′) ∪∆;

• if σ(τ) ∈ supp(y) then ∑
τ ′∈T :σ(τ ′)∈supp(y′)∪∆

py→y′(τ, τ
′) = 1.

In the above definition, the usual stochastic reaction system is coupled with the fate of a single tracked
molecule: a molecule in status τ can transform whenever a reaction y → y′ occurs, with a probability
given by θy(τ, τ ′). By definition, the quantity θy(τ, τ ′) denotes precisely the probability that the tracked
molecule takes part in the reaction y → y′, assuming that the reacting molecules are uniformly chosen
among those present. If that happens, the new state of the tracked molecule is drawn according to the
probability distribution {py→y′(τ, τ ′)}τ ′∈supp(y′)∪∆ (see Example 4.3 for a case where this distribution
is non-trivial). If the tracked molecule is irreversibly degraded, its status becomes ∆ and cannot be
further changed. In what follows, we will sometimes identify the state space of Y V , given by T , with
the canonical basis of R|T |, similarly to how complexes are implicitly identified with vectors in Rd.

The only technical requirement to have a tracking stochastic reaction system is establishing a rule on
the status changes of the tracked molecules involved in a reaction. Mathematically, this can always be
done. For instance, choose T = X and let σ be the identity. Consider a reaction y → y′. If ‖y‖1 ≤ ‖y′‖1,
then an injective map from the molecules consumed to the molecules created can be defined, giving a
rule for molecular status change. If instead ‖y‖1 > ‖y′‖1, then any molecule consumed can be either
injectively mapped to a molecule created, or mapped to the cemetery status ∆. Hence, formally the
requirements of Definition 4.1 can always be satisfied for some choices of T and σ. However, care needs
to be exercised if we want status changes to reflect physical properties of the system (see Example 4.1).

Remark 4.1. The generator of a tracking stochastic reaction system, as defined in Definition 4.1, is given
by

Af(∆, x) =
∑

y→y′∈R
λVy→y′(x)

(
f(∆, x+ y′ − y)− f(∆, x)

)
and for τ 6= ∆

Af(τ, x) =
∑

y→y′∈R
(1− θy(τ, x))λVy→y′(x)

(
f(τ, x+ y′ − y)− f(τ, x)

)
+

∑
y→y′∈R

∑
τ ′∈supp(y′)∪∆

θy(τ, x)py→y′(τ, τ
′)λVy→y′(x)

(
f(τ ′, x+ y′ − y)− f(τ, x)

)
,
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for all functions f : (T )× Zd≥0 → R.

Example 4.2. Consider the SI reaction network described in (1.1), which we repeat here for convenience:

S + I −−→ 2I. (4.2)

In this case, we are interested in describing the history of susceptible individuals who become infected.
The set of status is therefore T = {S̃, Ĩ} with σ(S̃) = S and σ(Ĩ) = I. Furthermore, we choose the

probabilities pS+I→2I(S̃, Ĩ) = 1 and pS+I→2I(Ĩ , Ĩ) = 1. Alternatively, one can simply consider T = {S̃},
with the understanding that whenever a susceptible individual gets infected we consider it as irreversibly
degraded, and its state becomes ∆. In this case, pS+I→2I(S̃,∆) = 1.

The state of single individuals can be tracked also in the more complex model

S + I −−→ 2I, I −−→ S. (4.3)

Here, the set of status is {S̃, Ĩ}, with σ(S̃) = S and σ(Ĩ) = I, and the transformation probabilities are

pS+I→2I(S̃, Ĩ) = 1, pS+I→2I(Ĩ , Ĩ) = 1, pI→S(Ĩ , S̃) = 1. Here, relevant questions on the fate of a single
individual could concern, for example, the number of infections it undergoes in a given time, or after
how long the nth infection occurs. We can even extend the model to include migrations, and obtain

S + I −−→ 2I, I −−→ S, 0 −−⇀↽−− S, 0 −−⇀↽−− I. (4.4)

In this case, it is natural to assume pS→0(S̃,∆) = 1 and pI→0(Ĩ ,∆) = 1. Relevant questions could involve,
for example, the average number of infection a susceptible individual undergoes before migrating.

Example 4.3. Consider the following reaction network, where a protein P promotes its own phospho-
rylation:

2P −−→ P + P ∗, P ∗ −−→ P, P −−→ 0. (4.5)

Here, we may assume we are interested in observing the dynamics of a molecule of protein P . Hence, the
set of status is {P̃ , P̃ ∗} with σ(P̃ ) = P and σ(P̃ ∗) = P ∗. It is natural to assume that the two molecules
of P involved in the reaction 2P → P +P ∗ have the same probability of being phosphorylated or serving
as the reaction catalyst. Hence, p2P→P+P∗(P̃ , P̃ ) = p2P→P+P∗(P̃ , P̃

∗) = 1/2. The other transformation

probabilities are given by pP∗→P (P̃ ∗, P̃ ) = 1 and pP→0(P̃ ,∆) = 1.

Example 4.4. Consider the reaction network of Example 4.1:

E + S −−⇀↽−− C −−→ E + P, P −−⇀↽−− E. (4.6)

We consider the set of status {Ẽ, S̃, P̃ , C̃E , C̃S}, as described above. In this case the function σ associates

every status of the molecules with the chemical species they are part of: σ(Ẽ) = E, σ(S̃) = S, σ(P̃ ) = P ,

σ(C̃E) = C, and σ(C̃S) = C. The transformation probabilities are given by

pE+S→C(Ẽ, C̃E) = 1 pC→E+S(C̃E , Ẽ) = 1 pC→E+P (C̃E , Ẽ) = 1

pE+S→C(S̃, C̃S) = 1 pC→E+S(C̃S , S̃) = 1 pC→E+P (C̃S , P̃ ) = 1

pP→E(P̃ , Ẽ) = 1 pE→P (Ẽ, P̃ ) = 1

Remark 4.2. The interpretation of a tracking stochastic reaction system is that of a regular stochastic
reaction system with the subsequent tranformations of a given particle being tracked. If the initial state
Y V (0) of the tracked molecule is not present in the initial XV (0), that is if XV

σ(Y V (0))(0) = 0, then

the initial condition of (Y V , XV ) is not consistent with the interpretation of the process. The process
(Y V , XV ) is still well-defined and its evolution can be studied, but its interpretation is no longer valid.
In order to obtain meaningful results, we therefore tacitly assume that XV

σ(Y V (0))(0) > 0, even if we do

not require it formally.
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4.1 Representation as a regular stochastic reaction network

In this section we show how a tracking stochastic reaction system (Y V , XV ) can be realized as a regular
stochastic reaction system with species set given by T tX , where t denotes a disjoint union. In particular,

the state space is Z|T |≥0 × Zd≥0, where for convenience we consider the first coordinates to refer to T , and

the rest to the species of the original process X . We denote by (x̃, x) a generic state in Z|T |≥0 × Zd≥0.

Consider the set of reactions R∪ R̃ where

R̃ = {τ + y → τ ′ + y′ : y → y′ ∈ R, τ, τ ′ ∈ T and py→y′(τ, τ
′) > 0}

and endow them with the following reaction rates:

λVy→y′(x̃, x) =
∑
τ∈T

x̃τ (1− θy(τ, x))λVy→y′(x)

λVτ+y→τ ′+y′(x̃, x) = x̃τθy(τ, x)py→y′(τ, τ
′)λVy→y′(x).

Note that the second component of the process has the same transitions as XV , with exactly the same
rates. Hence, we can safely denote the process associated with the above stochastic reaction network
by (Ỹ V , XV ). Note that the quantity

∑
τ∈T x̃τ is conserved by all possible transitions. Hence, if we

consider an initial condition (Ỹ (0), X(0)) with
∑
τ∈T Ỹτ (0) = 1, then at any time point t exactly one

entry of the vector Ỹ (t) is 1, and the other entries are zero. It follows that there is a bijection between

the possible values of Ỹ and T , given by the function supp(Ỹ (t)). In this case, by identifying status with
vectors of the canonical basis of R|T | as already done in the paper for the species in X , the transition
rates can be equivalently written as

λVy→y′(x̃, x) =
∑
τ∈T

1{τ}(x̃)(1− θy(τ, x))λVy→y′(x)

λVτ+y→τ ′+y′(x̃, x) = 1{τ}(x̃)θy(τ, x)py→y′(τ, τ
′)λVy→y′(x),

Hence, if
∑
τ∈T Ỹτ (0) = 1 then the transitions and the rates of (Y V , XV ) and (Ỹ V , XV ) coincide, and

(Y V , XV ) can be therefore realized as a stochastic reaction network with an appropriate initial condition.
In particular, we can write

XV (t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(X
V (s))ds

)
(4.7)

Y V (t) = Y V (0) +
∑

y+τ→y′+τ ′∈R̃

(τ ′ − τ)Ny+τ→y′+τ ′

(∫ t

0

λVτ+y→τ ′+y′(Y
V (s), XV (s))ds

)
(4.8)

where Nr for r ∈ R∪ R̃ are independent unit-rate Poisson processes. Note that with the above writing,
all the processes in the set {(Y V , XV )}V ∈Z≥1

can be defined on the same probability space.

5 Results

In this section we state our main results and illustrate their applications.

5.1 Classical scaling for the fate of a single molecule

In this section we state a law of large number for the process Y V . In order to do this, we consider a
family of tracking stochastic reaction systems (Y V , XV ), with V varying in the integer numbers greater
than one. We then assume that Assumption 3.1 is satisfied for some locally Lipschitz functions λy→y′ ,
and denote by Z the solution to (2.2). Hence, we know by Theorem 3.1 that V −1XV will converge to Z
path-wise with the uniform convergence topology over compact intervals of time, for V going to infinity.

In this section we express (Y V , XV ) by means of independent unit-rate Poisson processes, as in (4.7)
and (4.8). With the notation introduced in the previous section in mind, we have the following first
technical result:
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Lemma 5.1. Assume that Assumption 3.1 holds. Then, for any τ + y → τ ′ + y′ ∈ R̃, any w ∈ T , and
any compact set K ⊂ Rd>0 we have

lim
V→∞

sup
z∈K

∣∣∣λV
τ+y→τ ′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ = 0, (5.1)

where the function λτ+y→τ ′+y′ : T × Rd≥0 is defined as

λτ+y→τ ′+y′(w, z) = 1{w}(τ)py→y′(τ, τ
′)yσ(τ)

λy→y′(z)

zσ(τ)

if both zσ(τ) and yσ(τ) are positive, and zero otherwise. Moreover, the function λτ+y→τ ′+y′ is locally

Lipschitz if restricted to T × Rd>0.

Proof. If yσ(S) = 0, then both λV
τ+y→τ ′+y′∈R̃

and λy→y′ are constantly zero, hence (5.1) holds. If yσ(S)

is positive, then for all z ∈ K we have∣∣∣λV
τ+y→τ ′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ = 1{w}(τ)py→y′(τ, τ
′)

∣∣∣∣θy(τ, bV zc)λVy→y′(bV zc)− yσ(S)
λy→y′(z)

zσ(S)

∣∣∣∣
Let m = minz∈K zστ , which is positive because K is a compact set contained in Rd>0. If V is large
enough such that V m > yστ then

∣∣∣λV
τ+y→τ ′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ = 1{w}(τ)py→y′(τ, τ
′)yσ(S)

∣∣∣∣∣ λVy→y′(bV zc)
V · (bV zσ(τ)c/V )

− λy→y′(z)

zσ(S)

∣∣∣∣∣
Hence, (5.1) follows from Assumption 3.1 and

max
z∈K

∣∣∣∣bV zσ(τ)c
V

− zσ(τ)

∣∣∣∣ ≤ 1

V
.

To conclude the proof, we only need to show that λτ+y→τ ′+y′ restricted to T ×Rd>0 is locally Lipschitz.
However, this follows from it being the product (up to multiplication by a constant) of the two locally
Lipschitz functions z 7→ 1/zσ(τ) and λy→y′ .

The main goal of this section is to prove a classical scaling limit for a single-molecule trajectory. To
this aim, define the process Y by

Y (t) = Y (0) +
∑

τ+y→τ ′+y′∈R̃

(τ ′ − τ)Nτ+y→τ ′+y′

(∫ t

0

λτ+y→τ ′+y′(Y (s), Z(s))ds

)
. (5.2)

Then, the following result holds, where we implicitly identify the states of Y V and Y with the canonical
basis of R|T |. Note that the assumption that all the components of the solution Z are strictly positive
in the time interval [0, T ] is made, but this is only a mild restriction to avoid unnecessary technicality,
and is always verified under mass-action kinetics as long as Z(0) ∈ Rd>0 (see Remark 5.1). The proof of
the result is postponed to Appendix A, where more precise bounds are given.

Theorem 5.2. Assume that Assumption 3.1 holds. Furthermore, assume that the random variables
XV (0)/V converge in probability to some z∗ ∈ Rd>0 as V goes to infinity, and let Z(0) = z∗. Assume
that the solution Z to (2.2) with Z(0) = z∗ exists over the interval [0, T ] and that

m = min
i=1,2,...,d
u∈[0,T ]

Zi(u) > 0.

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then

lim
V→∞

sup
t∈[0,T ]

P
(
Y V (t) 6= Y (t)

)
= lim
V→∞

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
= 0. (5.3)
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Figure 2: The process Y in SIS model. Consider the model (4.3), and let Y be as in (5.2). The
first panel shows the concentration of infected individuals ZI according to the deterministic solution to
(2.2) with ZS(0) = 0.99 and ZI(0) = 0.01. Mass-action kinetics is assumed, with the rate constants of
S + I → 2I and I → S being 1 and 0.5, respectively. According to (5.2), ZI determines the rate at
which the single-individual process Y turns from ’susceptible’ to ’infected’. The last three panels show
independent realizations of Y . The times in the x-axes of the four panels are aligned.

Remark 5.1. If we consider mass-action kinetics, then the deterministic solutions never touch the bound-
aries, provided that the initial condition is strictly positive [22]. In this case, the existence ofm as assumed
in Theorem 5.2 is then guaranteed by z∗ ∈ Rd>0.

Remark 5.2. Theorem 5.2 implies finite dimensional distribution convergence of Y V to Y in the following
sense: for all 0 ≤ t1 < t2 < · · · < tn ≤ T we have

P

(
max

1≤i≤n
‖Y V (ti)− Y (ti)‖∞ > 0

)
≤

n∑
i=1

P
(
‖Y V (ti)− Y (ti)‖∞ > 0

)
,

and the latter tends to 0 as V tends to ∞, under the conditions of Theorem 5.2.

Some simulations of the process Y are proposed in Figure 2 for the case of the SIS model (4.3).
We conclude this section with the following result, concerning the convergence of Y V to Y as processes
with sample paths in DT [0, T ]. We note how this result is necessary for the convergence of continuous
functionals of DT [0, T ], as highlighted in Section 5.2.

Theorem 5.3. Assume that Assumption 3.1 holds. Furthermore, assume that the random variables
XV (0)/V converge weakly to a constant z∗ as V goes to infinity, and let Z(0) = z∗. Assume that the
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solution Z to (2.2) with Z(0) = z∗ exists over the interval [0, T ] and that

m = min
S∈X
u∈[0,T ]

ZS(u) > 0.

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then Y V converges in probability to Y
as processes with sample paths in DT [0, T ] (where we identify T with the elements of the canonical basis
of R|T | and embed it with the metric ‖ · ‖∞, or any equivalent one).

The proof is given in Appendix A.

5.2 Applications of Theorem 5.3

The convergence of Theorem 5.3 allows us to state convergence in probability of f(Y V ) to f(Y ), where
f : DT [0, T ]→ R is a functional that is continuous with respect to the Skorokhod J1 topology. Classical

examples are f(x) = supt∈[0,T ] ‖x(t)‖∞, f(x) =
∫ T

0
φ(x(s))ds for some continuous function φ, or f(x) =

supt∈[0,T ](x(t) − x(t−)) where x(t−) = limh↑t x(h) (see for example [11, Chapter 3]). More concretely,
a functional we may want to consider is the number of times an individual gets infected in the interval
[0, T ], assuming the model of equation (4.3) is in place. We denote this functional by ψ. Note that
the convergence of XV /V to its deterministic fluid limit, as stated in Theorem 3.1, does not give any
mean of inferring the distribution of ψ(Y V ). However, knowing that ψ(Y V ) converges in probability
to ψ(Y ), if V is large enough we can approximate the distribution of the former by the distribution of
the latter. Obtaining an estimate of the distribution of ψ(Y ) only requires the simulation of enough
independent copies of Y , whose jump rates are deterministic and therefore do not require a simulation of
XV to be computed, as opposed to the much more expensive strategy of simulating multiple independent
trajectories of (Y V , XV ) via the Gillespie algorithm (which is especially cumbersome for large values of
V ). The empirical distributions obtained with he two strategies are compared in Figure 3. Similarly, we
can apply our results to a Michaelis-Menten mechanism. Consider the model

E + S −−⇀↽−− C −−→ E + P, P −−→ S, (5.4)

where the enzyme activities counterbalances a spontaneous transformation of molecules of type P into
molecules of type S. To measure the activity level of the enzymes, we may want to study for how long
a randomly chosen enzyme molecule is in bound state C up to a given time T . Let us call this quantity
υ(Y V ). The classical scaling of Theorem 3.1 does not allow for inference of the distribution of υ(Y V ), but
Theorem 5.3 ensures that it converges to the distribution of υ(Y ) as V tends to ∞. Figure 4 compares
the empirical distributions of υ(Y V ) and υ(Y ) obtained by the simulation of 1, 000 independent copies
of (Y V , XV ) and 1, 000 independent copies of Y , respectively. For this comparison we chose V = 1, 000.

5.3 Approximating the system dynamics with single-molecule trajectories

Let X ⊆ X be the set of tracked species, i.e. the set of chemical species whose molecules (or parts thereof)
can be tracked:

X = {S ∈ X : S = σ(τ) for some τ ∈ T \ {∆}}.

Moreover, let π : Rd → R|X | be the projection of the state space onto the coordinates relative to the
species in X . The aim of this section is to approximate the dynamics of π(XV ) by means of a sum
of independent processes distributed as in (5.2) (potentially with rescaled dynamics, as shown in the
statement of Theorem 5.5). Note that the goal of such an approximation is not to provide a faster
simulation method than those present in the literature: our goal is to break down the dynamics of
several correlated particles into a set of independent single-molecule trajectories which could be simulated
simultaneously by a highly parallelizable algorithm. We begin by identifying each status τ ∈ T \ {∆}
with a different part of the molecules of the species σ(τ): m molecules of species S ∈ X are available
at time t if and only if for all status τ with σ(τ) = S the quantity of the tracked molecules in status τ
is m at time t. Under this assumption, clearly the process XV can be expressed in terms of the status
changes of its tracked molecules, which are typically not independent of each other. We further restrict
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Figure 3: Empirical distribution of number of infections in SIS model. Consider the model
(4.3), and let ψ be the number of infections a randomly selected individual undergoes up to time T . The
empirical distributions of ψ(Y V ) and ψ(Y ) are compared, the former obtained by the simulation of 1,000
independent copies of (Y V , XV ) via the Gillespie algorithm (applied to the formulation in terms of usual
stochastic reaction networks discussed in Section 4.1), and the latter obtained via the simulation of 1,000
copies of Y . Here, V = 1, 000 and the initial portion of infected individuals is 1% (so we are initially
close to the boundary and we may expect some minor discrepancy between XV /V and its deterministic
limit Z, see also Figure 5). Mass-action kinetics is assumed, with the rate constants of S + I → 2I and
I → S being 1 and 0.5, respectively.
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Figure 4: Empirical density of time in bound state in Michaelis-Menten model. Consider the
model (5.4), and let υ be the time a randomly selected molecule of enzyme is in bound state C up to time
T . The empirical distributions of υ(Y V ) and υ(Y ) are compared, the former obtained by the simulation of
1,000 independent copies of (Y V , XV ) via the Gillespie algorithm (applied to the formulation in terms of
usual stochastic reaction networks discussed in Section 4.1), and the latter obtained via the simulation of
1,000 copies of Y . Here, V = 1, 000 and Z(0) = X(0)/V = (0.5, 10, 0.5, 1), where the species are ordered
as in E,S,C, P . Mass-action kinetics is assumed, with the rate constants of E + S → C, C → E + S,
C → E + P , and P → S being 1, 5, 1, and 0.5, respectively.
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ourselves to models that are sub-conservative with respect to the tracked molecules. This means that
while a tracked molecule can potentially be degraded (by changing its status to ∆), their total mass never
increases. Equivalently, we assume that each time a tracked molecule is created it is by transformation
of another molecule. We assume sub-conservativeness for simplicity: we want to consider independent
single-molecule fates, whose agglomeration is still able to approximately describe the dynamics of the
whole system. If we allowed for mass creation, we would need to introduce new molecules over time and
track them. Defining the molecule creation times over a finite interval of time independently on each
other is technically possible if the creation rate changes deterministically: it is sufficient to first simulate
a Poisson random variable counting the total number of new molecules in the finite time interval, then
consider each creation time as independent of the others with probability density proportional to the
deterministic creation rate. However, this procedure requires the introduction of further notation and for
the sake of clarity we decided to only present the simpler case of sub-conservative models (with respect
to the status).

Assumption 5.1. Let (Y V , XV ) be a family of tracking stochastic reaction systems. We assume that
for each reaction y → y′ ∈ R and for each τ ′ ∈ T \ {∆}∑

τ,∈T \{∆}

yσ(τ)py→y′(τ, τ
′) = y′σ(τ ′)

For all S ∈ X , τ ∈ T \ {∆} define

σ−1(S) = {τ ′ ∈ T : σ(τ ′) = S} and α(S) = #σ−1(S)

The sub-conservation of the model with respect to the tracked molecules is formally stated as follows.

Lemma 5.4. Let (Y V , XV ) be a family of tracking stochastic reaction systems satisfying Assumption 5.1.
Then, for all V ∈ Z≥1 and for all t ∈ R>0

‖π(XV (t))‖1 ≤
∑
S∈X

α(S)XV
S (t) ≤

∑
S∈X

α(S)XV
S (0). (5.5)

Proof. The first inequality of (5.5) simply follows from the fact that the quantities α(S) are greater than
or equal to 1. For the second inequality, simply note that if a reactions y → y′ ∈ R occurs at time t,
then ∑

S∈X

α(S)XV
S (t)−

∑
S∈X

α(S)XV
S (t−) =

∑
S∈X

α(S)y′S −
∑
S∈X

α(S)yS

=
∑

τ ′∈T \{∆}

y′σ(τ ′) −
∑

τ∈T \{∆}

yσ(τ)

=
∑

τ ′∈T \{∆}

∑
τ,∈T \{∆}

yσ(τ)py→y′(τ, τ
′)−

∑
τ∈T \{∆}

yσ(τ)

≤
∑

τ∈T \{∆}

yσ(τ) −
∑

τ∈T \{∆}

yσ(τ) = 0.

Note that in the third equality we used Assumption 5.1, and in the last equality we used∑
τ ′∈T \{∆}

py→y′(τ, τ
′) ≤ 1.

Since the quantity
∑
S∈X α(S)XV

S is not increasing with the occurrence of a reaction, (5.5) is proven.

The main result of this section is the following one, a more detailed version of which is proven in

the Appendix. In particular, in Theorem A.4 a convergence rate of the order of e−C
√
V for a positive

constant C is proven, provided that the initial conditions of XV and X̃V are close enough.

15



Theorem 5.5. Assume that Assumptions 3.1 and 5.1 are satisfied, and consider a family of tracking
stochastic reaction systems (Y V , XV ). Assume that V −1XV (0) converges in distribution to some z∗ ∈
Rd>0 as V goes to infinity and E[π(XV (0))] < ∞ for all V ∈ Z≥1. Assume that the solution Z to (2.2)

with Z(0) = z∗ exists over the interval [0, T ]. Let X̃V (0) = bV z∗c and define the process X̃V by

X̃V (t) =
∑

τ∈T \{∆}

X̃Vσ(τ)(0)∑
i=1

σ(Y τ,i(t))

α(σ(Y τ,i(t)))
, (5.6)

where the processes (Y τ,i)τ∈T \{∆},i∈Z≥1
are independent and satisfy

Y τ,i(t) = τ +
∑

τ ′+y→τ ′′+y′∈R̃

(τ ′′ − τ ′)Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du

)
,

for a family of independent, identically distributed unit-rate Poisson processes {Nτ,i
r }τ∈T \{∆},i∈Z≥1,r∈R̃.

Then,

lim
V→∞

E

[
sup

0≤s≤t

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
]

= 0.

Note that in the definition of X̃V above we consider the number of independent single-molecule
trajectories to match the number of molecules (or parts thereof) of trackable species that are in the
system at time 0. A natural question is whether a good approximation of the original model XV can be
obtained by considering the agglomeration of less independent single-molecule trajectories. However, a
detailed study of the error in this case is out of the scope of the present paper.

Example 5.1. Consider the SIS model of equation (4.3). We assume XV
S (0) = 0.99V and XV

I (0) =
0.01V , and let V = 1, 000. We wish to approximate the number of susceptible individuals by

XV
S (t)

V
≈ X̃V

S (t)

V
.

In order to test the performance of the above approximation, we simulate 100 independent copies of
XV and X̃, and plot them against each other in Figure 5. It is perhaps not surprising to note a higher
variance for the trajectories of XV with respect of those of X̃V : the former is the result of several
single-molecule trajectories that are naturally correlated with each other, specifically the rate at which
a single molecule changes state is stochastic and given by the current state of all the other molecules.
In the approximation, the dynamics of the single tracked molecules are independent and their rates of
transitions between states are completely determined by the deterministic solution Z, which leads to
fewer stochastic fluctuations. However, we do observe a discrepancy between the two models only at the
beginning of the trajectories, when the number of infected individuals is rather low (only 10 individuals
in the initial condition) and the deterministic approximation given by Theorem 3.1 is perhaps not yet
accurate enough. As a matter of fact, Figure 6 shows that the difference in variance is considerably
reduced if the initial counts of infected individuals is increased to 100.

We are interested in bounding

P

(
sup

0≤t≤T

∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ > ε

)
, (5.7)

for a fixed ε ∈ R>0. Assume mass-action kinetics and let κ1 and κ2 be the rate constants of S + I →
2I and I → S, respectively. Moreover, assume for simplicity that XV (0) = X̃V (0) = V Z(0) and
XV
S (0) + XV

I (0) = V . Since the total number of individual is conserved, for all 0 ≤ t ≤ T we have

XV
S (t)+XV

I (t) = V . By superposition there exist two independent unit-rate Poisson processes ÑS+I→2I

and ÑI→S such that for all 0 ≤ t ≤ T and for a fixed V we have (with a simplified notation that does
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not take into account the initial values of the independent single individual trajectories)

ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
=

V∑
i=1

N i
S̃+S+I→Ĩ+2I

(∫ t

0

1{S̃}(Y
i(u))ZI(u)du

)

ÑI→S

(∫ t

0

κ2X̃
V
I (u)du

)
=

V∑
i=1

N i
Ĩ+I→S̃+S

(∫ t

0

1{Ĩ}(Y
i(u))du

)
.

Then,∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +
1

V

∫ t

0

κ1X
V
S (u)

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ du
+

∫ t

0

κ1

∣∣∣∣∣XV
S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ZI(u)du+

∫ t

0

κ2

∣∣∣∣∣XV
I (u)

V
− X̃V

I (u)

V

∣∣∣∣∣ du,
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Figure 5: Comparison in SIS model. Comparison of 100 independent trajectories of XV
S /V and

X̃V
S /V , considering the SIS model described in (4.3). Here, XV

S (0) = 0.99V , XV
I (0) = 0.01V , and

V = 1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S being 1
and 0.5, respectively.
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Figure 6: Comparison in SIS model. Comparison of 100 independent trajectories of XV
S /V and

X̃V
S /V , considering the SIS model described in (4.3). Here, XV

S (0) = 0.9V , XV
I (0) = 0.1V , and V =

1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S being 1 and
0.5, respectively.
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where

∆(t) =
1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1

V
XV
S (u)XV

I (u)du

)
−
∫ t

0

κ1

V
XV
S (u)XV

I (u)du

∣∣∣∣
+

1

V

∣∣∣∣NI→S (∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣
+

1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣
+

1

V

∣∣∣∣ÑI→S (∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ .
Using XV

I (t) = V −XV
I (t) and ZI(t) ≤ 1 for all 0 ≤ t ≤ T we obtain∣∣∣∣∣XV

S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +

∫ t

0

κ1

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ du
+

∫ t

0

(κ1 + κ2)

∣∣∣∣∣XV
S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ du.
By taking the supremum on 0 ≤ t ≤ T on both sides and by applying the Gronwall inequality, we have

sup
0≤t≤T

∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤
(

sup
0≤t≤T

∆(t) + κ1T sup
0≤t≤T

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣) e(κ1+κ2)T .

For notational convenience, let ν = εe−(κ1+κ2)T . Hence, (5.7) is smaller than

P

(
sup

0≤t≤T
∆(t) >

ν

2

)
+ P

(
sup

0≤t≤T

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ > ν

2κ1T

)
. (5.8)

By noting that P (sup0≤t≤T ∆(t) > ν/2) is smaller than

P

(
sup

0≤t≤T

1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1

V
XV
S (u)XV

I (u)du

)
−
∫ t

0

κ1

V
XV
S (u)XV

I (u)du

∣∣∣∣ > ν

8

)
+ P

(
sup

0≤t≤T

1

V

∣∣∣∣NI→S (∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣ > ν

8

)
+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣ > ν

8

)
+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑI→S (∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ > ν

8

)
,

we obtain that (5.8) is smaller than

12 exp

(
κ1eT

2
− ν

24

√
V

)
+ 12 exp

(
κ2eT

2
− ν

24

√
V

)
+ 6 exp

(
κ1eT

2

(
1 +

ν

κ1T

)2

+
κ2eT

2

(
1 +

ν

κ1T

)
− ν

12κ1T
e−T (κ1−κ2)−ν

√
V

)

by Lemma A.1 and Theorem A.2 (for the special case of the SIS model, see Example A.1). We note that
exp(h) is defined as eh for all real numbers h. It follows that (5.7) tends to 0 as V tends to ∞ with the

same rate as e−C
√
V for some positive constant C. This is always the case, and bounds for more general

models are provided by Theorem A.4.
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A Proofs and explicit bounds

In this section we give proofs for the results stated above, together with more precise bounds on the
quantities of interest. To this aim, we first define the following quantities: for all V ∈ Z≥1 and ε ∈ R>0

let

AV,ε,t =

{
sup
u∈[0,t]

∥∥∥∥XV (u)

V
− Z(u)

∥∥∥∥
∞
≤ ε

}
and pV,ε,t = P (AcV,ε,t) = 1− P (AV,ε,t),

where the superscript “c” denotes the complement. Note that, for any fixed V and ε, the sequence of
events AV,ε,t is monotone in t, and pV,ε,t is a non-decreasing function of t attaining its maximum for the
value t = T .

Define the Zd≥0-valued process XV,ε on [0, T ] in the following way: for any S ∈ X and any t ∈ [0, T ],
let

XV,ε
S (t) = min{max{XV

S (t), V ZS(t)− V ε}, V ZS(t) + V ε}. (A.1)

Hence, by definition for all t ∈ R>0 ∥∥∥∥XV,ε(t)

V
− Z(t)

∥∥∥∥
∞
≤ ε.

Moreover, define the process X̂V,ε by

X̂V,ε(t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(X
V,ε(u))du

)
for all t ∈ [0, T ], where the processes Ny→y′ are the same as in (4.7). Note that for any u ∈ [0, t] we have

1AV,ε,tX
V,ε(u) = 1AV,ε,tX

V (u) = 1AV,ε,tX̂
V,ε(u). In particular, it follows that

sup
0≤u≤t

∥∥∥∥XV,ε(u)

V
− Z(u)

∥∥∥∥
∞
≤ 1AV,ε,t sup

0≤u≤t

∥∥∥∥∥X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

+ 1AcV,ε,tε

≤ sup
0≤u≤t

∥∥∥∥∥X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

. (A.2)

The last inequality follows from noting that if AcV,ε,t occurs and if

u∗ = inf

{
u ∈ [0, t] :

∥∥∥∥XV (u)

V
− Z(u)

∥∥∥∥
∞
≥ ε
}
,

then XV,ε(u) = XV (u) = X̂V,ε(u) for all u ∈ [0, u∗) and X̂V,ε(u∗) = XV (u∗). Moreover, by the right
continuity of XV and Z u∗ is in fact a minimum, which implies∥∥∥∥XV (u∗)

V
− Z(u∗)

∥∥∥∥
∞
≥ ε.

Hence

1AcV,ε,t sup
0≤u≤t

∥∥∥∥∥X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≥ 1AcV,ε,t

∥∥∥∥∥X̂V,ε(u∗)

V
− Z(u∗)

∥∥∥∥∥
∞

= 1AcV,ε,t

∥∥∥∥XV (u∗)

V
− Z(u∗)

∥∥∥∥
∞
≥ 1AcV,ε,tε.
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For any t ∈ [0, T ] and any ε ∈ R>0 let

Ωε,t1 = {Z(u) + h : u ∈ [0, t], h ∈ Rd, ‖h‖∞ ≤ ε} ∩ Rd≥0

be the (one-dimensional) neighbourhood of the solution Z on the interval [0, t] with amplitude ε, inter-

sected with the non-negative orthant. Note that for all t ∈ [0, T ] we have XV,ε(t)/V ∈ Ωε,V1 . Similarly,
let

Ωε,t2 = {(Z(u) + h, Z(u) + h′) : u ∈ [0, t], h, h′ ∈ Rd, ‖h‖∞ ≤ ε, ‖h′‖∞ ≤ ε} ∩ R2d
≥0

be the two-dimensional neighbourhood of the Z restricted to [0, t] with amplitude ε, intersected with the
non-negative orthant.

To conclude, it is convenient to introduce in this section a notation for centered Poisson processes:
given a Poisson process N , we denote by N the process defined by N(t) = N(t) − t for all t ∈ R≥0.
In order to bound pV,ε,t from above and prove Theorem 5.5 we need the following results concerning
centered Poisson processes. For completeness, we provide a proof as we were not able to find it in the
literature, even if small variations of Lemma A.1 are well-known and obtained as an application of Doob’s
inequality or Kolmogorov’s maximal inequality.

Lemma A.1. Let N be a Poisson process and let T, ε ∈ R>0. Then, for all n ∈ Z≥1

P

(
sup

t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
≤ 6 exp

(
e

2
T − ε

√
n

3

)
.

Proof. For all j ∈ Z≥1 and all h ∈ R>0 define

Ξhj =

2jh⋃
i=0

{
i

2j

}
. (A.3)

Since N is almost surely right continuous, we have that for all n ∈ Z≥1 and all T ∈ R>0

sup
t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ = lim
j→∞

max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣
almost surely. Since for all j ∈ Z≥1 we have ΞnTj ⊂ ΞnTj+1, by continuity of the probability measure we
have

P

(
sup

t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
= lim
j→∞

P

(
max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
.

By Etemadi’s inequality we have

P

(
max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
≤ 3 max

t∈ΞnTj

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
.

Moreover, for any real β ∈ (0, 1) and any real t ∈ (0, nT ) we have

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
≤ P

(
N(t)

n
>
ε

3

)
+ P

(
−N(t)

n
>
ε

3

)
= P

(
e
nβN(t)

n > e
nβε

3

)
+ P

(
e−

nβN(t)
n > e

nβε
3

)
≤ 2 exp

(
−n

βε

3

)
exp

(
t(en

β−1

− 1− nβ−1)
)

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
en

β−1

)
,

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
e

)
,
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where the inequality in the third line follows from the Markov’s inequality and the known form of the mo-

ment generating function of a Poisson random variable, which leads to E[en
β−1N(t)] = e−n

β−1tet(e
nβ−1

−1)

and E[e−n
β−1N(t)] = en

β−1tet(e
−nβ−1

−1). Hence, for all n ∈ Z≥1 we have that both E[en
β−1N(t)] and

E[e−n
β−1N(t)] are less than or equal to et(e

nβ−1
−1−nβ−1). The inequality in the forth line derives from

the Taylor expansion of the exponential function. By choosing β = 1/2 we have

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
≤ 2 exp

(
−ε
√
n

3

)
exp

(e
2
T
)
,

which completes the proof.

A.1 Estimates for pV,ε,t

Many papers have focused on quantifying the distance between the process XV and its fluid limit Z.
Among these, we list [1, 2, 4, 13, 17, 20] with no claim of completeness. Here we use Lemma A.1 to
show the following upper bound on pV,ε,t. While similar estimates are known in the reaction network
community, we give a formal proof of the bound we propose as we could not find it in the literature.
Before stating the result, we define the following quantities:

R = max
y→y′∈R

‖y′ − y‖∞,

Λε,t0 = sup
z∈Ωε,t1

∑
y→y′∈R

λy→y′(z), Λε,t1 =

∫ t

0

Λε,u0 du

Lε,t0 = sup
(z,z′)∈Ωε,t2

z 6=z′

∑
y→y′∈R

|λy→y′(z)− λy→y′(z′)|
‖z − z′‖∞

, Lε,t1 =

∫ t

0

Lε,u0 du

δV,ε,t0 = sup
z∈Ωε,t1

∑
y→y′∈R

∣∣∣∣∣λVy→y′(bV zc)V
− λy→y′(z)

∣∣∣∣∣ , δV,ε,t1 =

∫ t

0

δV,ε,u0 du

ηV,ε,t(γ) = e−L
2ε,t
1 γε− δV,2ε,t1 ,

where in the last definition γ is any real number in (0, 1]. Note that Λε,t0 and δV,ε,t0 are finite for any
t ∈ [0, T ], since the solution Z exists up to time T and the functions λy→y′ are locally Lipschitz by
Assumption 3.1. The local Lipschitzianity of the functions λy→y′ also implies that Lε,t0 is finite for all

ε ∈ R>0 and t ∈ [0, T ]. It also follows from Assumption 3.1 that δV,ε,t0 tends to zero as V tends to

infinity. Furthermore, note that for fixed V ∈ Z≥1 and ε ∈ R>0, the quantities Λε,t0 , Lε,t0 , and δV,ε,t0 are
all non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0, and V ∈ Z≥1 we have

Λε,t1 ≤ tΛ
ε,t
0 , Lε,t1 ≤ tL

ε,t
0 , and δV,ε,t1 ≤ tδV,ε,t0 .

It follows that for all t ∈ [0, T ], ε ∈ R>0, and γ ∈ (0, 1] the quantity ηV,ε,t(γ) tends to the positive

quantity e−L
2ε,t
1 γε as V tends to infinity. We can now state the following theorem.

Theorem A.2. For any ε, t ∈ R>0, any γ ∈ (0, 1], and any V ∈ Z≥1 large enough such that ηV,2ε,t(γ) >
0, we have

pV,ε,t ≤ pV,(1−γ)εe−L
2ε,t
1 ,0 + 6 exp

(
e

2
Λ2ε,t

1 +
e

2
δV,2ε,t1 − 1

3R
ηV,ε,t(γ)

√
V

)
Proof. First, note that

pV,ε,t = P

(
sup
u∈[0,t]

∥∥∥∥XV (u)

V
− Z(u)

∥∥∥∥
∞
> ε

)
= P

(
sup
u∈[0,t]

∥∥∥∥XV,2ε(u)

V
− Z(u)

∥∥∥∥
∞
> ε

)

= P

(
sup
u∈[0,t]

∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

> ε

)
.
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Moreover, by superposition, for all V ∈ Z≥1 and all ε ∈ R>0 we can define a unit-rate Poisson process
UV,2ε coupled with XV in such a way that for all t ∈ R≥0

UV,2ε

 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,2ε(u))du

 =
∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(X
V,2ε(u))du

)
.

Hence, by using (2.2) we have∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤

∥∥∥∥∥X̂V,2ε(0)

V
− Z(0)

∥∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣
∑

y→y′∈R
Ny→y′

(∫ u

0

λVy→y′(X
V,2ε(w))dw

)∣∣∣∣∣∣
+

∫ u

0

∣∣∣∣∣∣
∑

y→y′∈R

(
λVy→y′(X

V,2ε(w))

V
− λy→y′

(
XV,2ε(w)

V

))
dw

∣∣∣∣∣∣
+

∫ u

0

∣∣∣∣∣∣
∑
y→y′

(
λy→y′

(
XV,2ε(w)

V

)
− λy→y′(Z(w))

)
dw

∣∣∣∣∣∣
≤
∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣
+ δV,2ε,u1 +

∫ u

0

L2ε,w
0

∥∥∥∥XV,2ε(w)

V
− Z(w)

∥∥∥∥
∞
dw

By using (A.2), by taking the supremum over [0, t] on both sides we obtain

sup
0≤u≤t

∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤
∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

+
R

V
sup

0≤u≤t

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣
+ δV,2ε,t1 +

∫ t

0

L2ε,u
0 sup

0≤w≤u

∥∥∥∥∥X̂V,2ε(w)

V
− Z(w)

∥∥∥∥∥
∞

du.

By Gronwall’s inequality we get

sup
0≤u≤t

∥∥∥∥∥X̂V,2ε(t)

V
− Z(t)

∥∥∥∥∥
∞

≤eL
2ε,t
1

∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

+
ReL

2ε,t
1

V
sup

0≤u≤t

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣
+ eL

2ε,t
1 δV,2ε,t1 .

By noting that for all t ∈ R≥0

sup
z∈Ω2ε,t

1

∑
y→y′∈R

λVy→y′(bV zc)
V

≤ Λ2ε,t
0 + δV,2ε,t0 ,

we get

pV,ε,t ≤P
(
eL

2ε,t
1

∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞
> (1− γ)ε

)
+ P

(
ReL

2ε,t
1 sup

0≤u≤V (Λ2ε,t
1 +δV,2ε,t1 )

∣∣∣∣∣U
V,2ε

(u)

V

∣∣∣∣∣+ eL
2ε,t
1 δV,2ε,t1 > γε

)
for any γ in (0, 1]. The proof is concluded by Lemma A.1.
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Example A.1. Consider the SIS reaction network described in (4.3). In this case, in accordance with
the classical mass-action choice of kinetics we have

λVS+I→2I(x) =
1

V
κ1xSxI and λVI→S(x) = κ2xI

for some positive constants κ1 and κ2. Hence, Assumption 3.1 is satisfied with

λS+I→2I(z) = κ1zSzI and λI→S(z) = κ2zI .

The corresponding solution Z exists for all non-negative times t, for all initial conditions Z(0) = z∗.
Moreover, note that the sum of infected and susceptible individuals is kept constant, hence for all
t ∈ R>0 we have ZS(t) + ZI(t) = z∗S + z∗I = ‖z∗‖1. In this case we can obtain the following rough
estimates

R = 2, Λε,t0 ≤ (‖z∗‖1 + ε)[κ1(‖z∗‖1 + ε) + κ2], Lε,t0 ≤ κ1(‖z∗‖1 + ε) + κ2,

δV,ε,t0 = 0, ηV,ε,t ≥ εe−tκ1(‖z∗‖1+2ε)+tκ2 .

If we assume XV (0) = V z∗, then pV,0,0 = 0. It follows from Theorem A.2 with the choice γ = 1 that in
this case

pV,ε,t ≤ 6 exp

(
t

2
(‖z∗‖1 + 2ε)[κ1(‖z∗‖1 + 2ε) + κ2]− ε

√
V

6
e−t[κ1(‖z∗‖1+2ε)−κ2]

)
,

where exp(h) is defined as eh for all real numbers h.

A.2 Proof of Theorem 5.2

First of all, we define some quantities that are useful to give specific bounds on our approximation error.
Define

Λ̃t0 = max
τ∈T

∑
τ+y→τ ′+y′∈R̃

λτ+y→τ ′+y′(τ, Z(t)),

L̃ε,t0 = sup
(z,z′)∈Ωε,t2

z 6=z′

max
τ∈T

∑
τ+y→τ ′+y′∈R̃

|λτ+y→τ ′+y′(τ, z)− λτ+y→τ ′+y′(τ, z
′)|

‖z − z′‖∞

δ̃V,ε,t0 = sup
z∈Ωε,t1

max
τ∈T

∑
τ+y→τ ′+y′∈R̃

|λVτ+y→τ ′+y′(τ, bV zc)− λτ+y→τ ′+y′(τ, z)|

Λ̃t1 =

∫ t

0

Λ̃u0du, L̃ε,t1 =

∫ t

0

Lε,u0 du, δ̃V,ε,t1 =

∫ t

0

δ̃V,ε,u0 du.

Note that Λ̃t0 is finite for any t ∈ [0, T ], due to the fact that Z is defined over the whole interval [0, T ].

Moreover the functions λτ+y→τ ′+y′ are locally Lipschitz on Rd>0 by Lemma 5.1, hence L̃ε,t0 is finite for

all t ∈ [0, T ]. Finally, δ̃V,ε,t0 is finite for all t ∈ [0, T ] by Lemma 5.1. Note that, for fixed V and ε, the

quantities L̃ε,t0 and δ̃V,ε,t0 are non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0,
and V ∈ Z≥1 we have

Λ̃t1 ≤ tΛ̃t0, L̃ε,t1 ≤ tL̃
ε,t
0 , and δ̃V,ε,t1 ≤ tδ̃V,ε,t0 . (A.4)

Before proving Theorem 5.2 we show the following stronger result.

Theorem A.3. Assume that Assumption 3.1 holds. Furthermore, assume that the random variables
XV (0)/V converge in probability to a constant z∗ as V goes to infinity. Assume that the solution Z to
(2.2) with Z(0) = z∗ exists over the interval [0, T ] and that

m = min
S∈X
u∈[0,T ]

ZS(u) > 0.
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Finally, assume that Y V (0) = Y (0) for all positive integers V . Then,

P
(
Y V (t) 6= Y (t)

)
= E

[
‖Y V (t)− Y (t)‖∞

]
. (A.5)

Moreover, for any 0 < ε < m

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ pV,ε,T + (δ̃V,ε,T1 + εL̃ε,1 )e2Λ̃T1 .

Proof. First, note that

‖Y V (t)− Y (t)‖∞ =

{
1 if Y V (t) 6= Y (t)

0 if Y V (t) = Y (t)
, (A.6)

hence (A.5) holds. Consider the process

Ŷ V (t) = Y (0) +
∑

τ+y→τ ′+y′∈R̃

(τ ′ − τ)Nτ+y→τ ′+y′

(∫ t

0

λVτ+y→τ ′+y′(Ŷ
V (u), XV,ε(u))du

)
. (A.7)

Note that if τ ′ 6= τ then ‖τ ′ − τ‖∞ = 1. Moreover, for a unit-rate Poisson process N , we have

|N(t1)−N(t2)| =

{
N(t1)−N(t2) if t1 ≥ t2
N(t2)−N(t1) otherwise

.

In any case, |N(t1) − N(t2)| is distributed as N(|t1 − t2|). By equations (5.2) and (A.7), using the
triangular inequality, we obtain

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ E

 ∑
τ+y→τ ′+y′∈R̃

‖τ ′ − τ‖∞
∣∣∣∣Nτ+y→τ ′+y′

(∫ t

0

λVτ+y→τ ′+y′(Ŷ
V (u), XV,ε(u))du−

∫ t

0

λτ+y→τ ′+y′(Y (u), Z(u))du

)∣∣∣∣


≤ E

∫ t

0

∑
τ+y→τ ′+y′∈R̃

∣∣∣λVτ+y→τ ′+y′(Ŷ
V (u), XV,ε(u))− λτ+y→τ ′+y′(Y (u), Z(u))

∣∣∣ du


≤ Υ1 + Υ2 + Υ3

where

Υ1 = E

∫ t

0

∑
τ+y→τ ′+y′∈R̃

∣∣∣∣λVτ+y→τ ′+y′(Ŷ
V (u), XV,ε(u))− λτ+y→τ ′+y′

(
Ŷ V (u),

XV,ε(u)

V

)∣∣∣∣ du


Υ2 = E

∫ t

0

∑
τ+y→τ ′+y′∈R̃

∣∣∣∣λτ+y→τ ′+y′

(
Ŷ V (u),

XV,ε(u)

V

)
− λτ+y→τ ′+y′(Ŷ

V (u), Z(u))

∣∣∣∣ du


Υ3 = E

∫ t

0

∑
τ+y→τ ′+y′∈R̃

∣∣∣λτ+y→τ ′+y′(Ŷ
V (u), Z(u))− λτ+y→τ ′+y′(Y (u), Z(u))

∣∣∣ du


Since for every τ + y → τ ′ + y′ ∈ R̃ we have

λVτ+y→τ ′+y′(w, x) = 1{τ}(w)λVτ+y→τ ′+y′(τ, x) for all x ∈ Zd≥0, w ∈ T
λτ+y→τ ′+y′(w, z) = 1{τ}(w)λVτ+y→τ ′+y′(τ, z) for all z ∈ Rd≥0, w ∈ T ,
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we can write Υ1 ≤ δ̃V,ε,t1 . Similarly, Υ2 ≤ εL̃ε,t1 . Finally,

Υ3 = E

∫ t

0

∑
τ+y→τ ′+y′∈R̃

∣∣∣1{τ}(Ŷ V (u))− 1{τ}(Y (u))
∣∣∣λτ+y→τ ′+y′(τ, Z(u))du


≤ E

[∫ t

0

∑
τ∈T

∣∣∣1{τ}(Ŷ V (u))− 1{τ}(Y (u))
∣∣∣ Λ̃u0du

]

=

∫ t

0

2P
(
Y V (u) 6= Y (u)

)
Λ̃u0du = 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u0du,

where in the last equality we used (A.5). In conclusion,

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t1 ) + 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u0du.

By the Gronwall inequality we then have

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t1 )e2Λ̃t1 .

The result follows by taking the sup over t ∈ [0, T ] on both sides (the quantity on the right-hand side of
the inequality is non-decreasing in t) and by noting that 1AV,ε,T Ŷ

V (t) = 1AV,ε,T Y
V (t) for all t ∈ [0, T ].

Hence,

‖Y V (t)− Y (t)‖∞ = ‖Y V (t)− Y (t)‖∞1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞1AV,ε,T
≤ 1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞1AV,ε,T
≤ 1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞.

We are now ready to prove Theorem 5.2

Proof of Theorem 5.2. It follows from Theorem A.3 that P
(
Y V (t) 6= Y (t)

)
= E

[
‖Y V (t)− Y (t)‖∞

]
.

Moreover, for any ε > 0 we have limV→∞ pV,ε,T = 0 by Theorem 3.1, and limV→∞ δ̃V,ε,T1 = 0 by
Lemma 5.1 and (A.4). Hence,

lim
V→∞

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ εL̃ε,T1 e2Λ̃T1 ,

which concludes the proof by the arbitrariness of ε > 0 and by the fact that L̃ε,T0 (hence L̃ε,T1 ) is
non-decreasing in ε.

26



A.3 Proof of Theorem 5.5

Similarly to what was done in the previous section, we define the following quantities to give an upper
bound for our approximation error. Define

R̂ = max
y→y′∈R

‖π(y′ − y)‖∞, r̂ = max
τ+y→τ ′+y′∈R̃

∥∥∥∥ σ(τ ′)

α(σ(τ ′))
− σ(τ)

α(σ(τ))

∥∥∥∥
∞
,

Λ̂t0 = r̂
∑

τ+y→τ ′+y′∈R̃

λτ+y→τ ′+y′(τ, Z(t)), Λ̂t1 =

∫ t

0

Λ̂u0du,

Λ̂t2 = max
τ∈T \{∆}

∑
τ+y→τ ′+y′∈R̃

∫ t

0

λτ+y→τ ′+y′(τ, Z(u))du,

Λ̂V,ε,t3 =

∫ t

0

sup
z∈Ωε,u1

∑
y→y′∈R

λVy→y′(bV zc)
V

du,

ωε,t = r̂ sup
(z,z′)∈Ωε,t2

‖z−z′‖∞≤ε

∑
τ+y→τ ′+y′∈R̃

|λτ+y→τ ′+y′ (τ, z)− λτ+y→τ ′+y′(τ, z
′)| ,

ζε,t =

∫ t

0

(‖Z(u))‖∞ + ε)du.

Note that Λ̂t0, Λ̂t2, and ζε,t are finite for any t ∈ [0, T ], because Z is defined over the whole interval
[0, T ] and the functions λτ+y→τ ′+y′ are continuous on Rd>0 by Lemma 5.1. Lemma 5.1 also implies that

ωε,t is finite for all t ∈ [0, T ] and ε ∈ R>0. Finally, Λ̂V,ε,t3 is finite by Assumption 3.1. Note that, for

fixed V and ε, the quantities Λ̂V,ε,t3 , ωε,t, and ζε,t are non-decreasing functions of t.
We now state and prove the following result, which immediately implies Theorem 5.5. Note that

δV,ε,t1 is as defined in Section A.1.

Theorem A.4. Consider a family of tracking stochastic reaction systems (Y V , XV ), and assume that

Assumptions 3.1 and 5.1 are satisfied. Let z∗ ∈ Rd>0 and X̃V (0) = bV z∗c. Define the process X̃V by

X̃V (t) =
∑

τ∈T \{∆}

X̃Vσ(τ)(0)∑
i=1

σ(Y τ,i(t))

α(σ(Y τ,i(t)))
,

where the processes (Y τ,i)τ∈T \{∆},i∈Z≥1
are independent and satisfy

Y τ,i(t) = τ +
∑

τ ′+y→τ ′′+y′∈R̃

(τ ′′ − τ ′)Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y (u)τ,i, Z(u))du

)
,

for a family of independent, identically distributed unit-rate Poisson processes {Nτ,i
r }τ∈T \{∆},i∈Z≥1,r∈R̃.

For arbitrary ν1, ν2, ν3 ∈ R>0 define

ν = eΛ̂T1

(
R̂ν1 + r̂ν2 + ν3 + R̂δV,ε,T1 + ωε,T ζε,T

)
Then,

P

(
sup

0≤t≤T

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)
≤ 6 exp

(
eΛ̂V,ε,t3

2
− ν1

√
V

3

)

+ 6 exp

(
ecΛ̂t2

2
− ν2

√
V

3

)
+ P

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

> ν3

)
+ pV,ε,T ,

where c =
∑
S∈X α(S)z∗S.
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Proof. By the superposition property of Poisson processes, for all V ∈ Z≥1 there exist two unit-rate
Poisson processes UV1 and UV2 such that for all t ∈ R≥0

UV1

 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

 =
∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(X
V,ε(u))du

)
and

UV2

 ∑
τ∈T \{∆}

X̃Vσ(τ)(0)∑
i=1

∑
τ ′+y→τ ′′+y′∈R̃

∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du


=

∑
τ∈T \{∆}

X̃Vσ(τ)(0)∑
i=1

∑
τ ′+y→τ ′′+y′∈R̃

Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du

)
Note that

X̃V (t) = X̃V (0) +
∑

τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)
×

×Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y (u)τ,i, Z(u))du

)
.

Hence, by triangular inequality,

sup
0≤u≤t

∥∥∥∥∥π(X̂V,ε(u))

V
− X̃V (u)

V

∥∥∥∥∥
∞

≤

∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+

5∑
i=1

Υi

where

Υ1 = sup
0≤u≤t

∑
y→y′∈R

‖π(y′ − y)‖∞
1

V

∣∣∣∣Ny→y′

(∫ u

0

λVy→y′(X
V,ε(w))dw

)∣∣∣∣
≤ R̂

V
sup

0≤u≤t

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,ε(w))dw

∣∣∣∣∣∣
Υ2 = sup

0≤u≤t

∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

∥∥∥∥ σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞
×

× 1

V

∣∣∣∣Nτ,i

τ ′+y→τ ′′+y′

(∫ u

0

λτ ′+y→τ ′′+y′(Y
τ,i(w), Z(w))dw

)∣∣∣∣
≤ r̂

V
sup

0≤u≤t

∣∣∣∣∣∣∣U
V

2

 ∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

∫ u

0

λτ ′+y→τ ′′+y′(Y
τ,i(w), Z(w))dw


∣∣∣∣∣∣∣

Υ3 = sup
0≤u≤t

∑
y→y′∈R

‖π(y′ − y)‖∞
∫ u

0

∣∣∣∣∣λVy→y′(XV,ε(w))

V
− λy→y′

(
XV,ε(w)

V

)∣∣∣∣∣ dw
≤ R̂δV,ε,t1

Υ4 = sup
0≤u≤t

∥∥∥∥∥ ∑
y→y′∈R

π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw

−
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ ′)(w)

V
λτ ′+y→τ ′′+y′(τ

′, Z(w))dw

∥∥∥∥∥
∞
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Υ5 = sup
0≤u≤t

∥∥∥∥∥ ∑
τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ ′)(w)

V
λτ ′+y→τ ′′+y′(τ

′, Z(w))dw

− 1

V

∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

λτ ′+y→τ ′′+y′(Y
τ,i(w), Z(w))dw

∥∥∥∥∥
∞

We first focus on rewriting Υ4 and Υ5. To this aim, first note that by identifying species with canonical
vectors of Rd as previously done in the paper, we have that for all y ∈ C

π(y) =
∑
S∈X

ySS =
∑

τ∈T \{∆}

yσ(τ)σ(τ)

α(σ(τ))
.

Hence, for all y → y′ ∈ R

π(y′ − y) =
∑

τ ′∈T \{∆}

yσ(τ ′)σ(τ ′)

α(σ(τ ′))
−

∑
τ∈T \{∆}

yσ(τ)σ(τ)

α(σ(τ))

=
∑

τ ′∈T \{∆}

σ(τ ′)

α(σ(τ ′))

∑
τ∈T \{∆}

yσ(τ)py→y′(τ, τ
′)−

∑
τ∈T \{∆}

yσ(τ)

α(σ(τ))
σ(τ),

where we used Assumption 5.1 in the last equality. By recalling that σ(∆) = 0 and
∑
τ ′∈T py→y′(τ, τ

′)
for all y → y′ ∈ R and τ ∈ T , we further obtain

π(y′ − y) =
∑
τ ′∈T

σ(τ ′)

α(σ(τ ′))

∑
τ∈T \{∆}

yσ(τ)py→y′(τ, τ
′)

−
∑

τ∈T \{∆}

yσ(τ)

α(σ(τ))
σ(τ)

∑
τ ′∈T

py→y′(τ, τ
′)

=
∑

τ∈T \{∆}

∑
τ ′∈T

(
σ(τ ′)

α(σ(τ ′))
− σ(τ)

α(σ(τ))

)
yσ(τ)py→y′(τ, τ

′).

It follows that∑
y→y′∈R

π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw

=
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

yσ(τ ′)py→y′(τ
′, τ ′′)λy→y′

(
XV,ε(w)

V

)
dw

=
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ)(w)

V
λτ ′+y→τ ′′+y′

(
τ ′,

XV,ε(w)

V

)
dw,

which in turn implies

Υ4 ≤ sup
0≤u≤t

∑
τ ′+y→τ ′′+y′∈R̃

∥∥∥∥ σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞
×

×
∫ u

0

XV,ε
σ(τ)(w)

V

∣∣∣∣λτ ′+y→τ ′′+y′ (τ ′, XV,ε(w)

V

)
− λτ ′+y→τ ′′+y′(τ ′, Z(w))

∣∣∣∣ dw
≤ωε,tζε,t.

By summing over the values of the single-molecule trajectories, we also have

∑
τ∈T \{∆}

X̃Vσ(τ)(0)∑
i=1

λτ ′+y→τ ′′+y′(Y
τ,i(w), Z(w)) = X̃V

σ(τ ′)(w)λτ ′+y→τ ′′+y′(τ
′, Z(w)),
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which implies

Υ5 ≤ sup
0≤u≤t

∑
τ ′+y→τ ′′+y′∈R̃

∥∥∥∥ σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞

∫ u

0

∣∣∣∣∣X
V,ε
σ(τ ′)(w)

V
−
X̃V
σ(τ ′)(w)

V

∣∣∣∣∣λτ ′+y→τ ′′+y′(τ ′, Z(w))dw

≤
∫ t

0

∥∥∥∥∥XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du

=1AcV,ε,t

∫ t

0

∥∥∥∥∥XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du+ 1AV,ε,t

∫ t

0

∥∥∥∥∥X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du.

≤1AcV,ε,tM
V,ε,t +

∫ t

0

∥∥∥∥∥X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du,

where

MV,ε,t =

∫ t

0

(
‖Z(u)‖∞ + ε+

∑
S∈X

α(S)
X̃V
S (0)

V

)
Λ̂u0du

is an almost surely finite random variable, non-decreasing in t. Hence, putting everything together and
applying the Gronwall inequality we have that almost surely

sup
0≤t≤T

∥∥∥∥∥π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

≤ eΛ̂T1
R̂

V
sup

0≤t≤T

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

∣∣∣∣∣∣
+ eΛ̂T1

r̂

V
sup

0≤t≤T

∣∣∣∣∣∣∣U
V

2

 ∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du


∣∣∣∣∣∣∣

+ eΛ̂T1

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+ R̂δV,ε,T1 + ωε,T ζε,T + 1AcV,ε,TM
V,ε,T

)
.

Now note that if A1, A2, . . . , Aj are random variables and a1, a2, . . . , aj are positive real numbers, then

P

(
j∑
i=1

Ai >

j∑
i=1

ai

)
≤ P

(
j⋃
i=1

(Ai > ai)

)
≤

j∑
i=1

P (Ai > ai).

Hence, if ν is as in the statement of the theorem and ν < ε,

P

(
sup

0≤t≤T

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)
= P

(
sup

0≤t≤T

∥∥∥∥∥π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)

≤ P

 1

V
sup

0≤t≤T

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

∣∣∣∣∣∣ > ν1


+ P

 1

V
sup

0≤t≤T

∣∣∣∣∣∣∣U
V

2

 ∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du


∣∣∣∣∣∣∣ > ν2


+ pV,ε,T .

Since for all t ∈ [0, T ] ∫ t

0

λVy→y′(X
V,ε(u))du ≤ V Λ̂V,ε,t3

and ∑
τ∈T \{∆}

∑
τ ′+y→τ ′′+y′∈R̃

X̃Vσ(τ)(0)∑
i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y
τ,i(u), Z(u))du ≤ V cΛ̂t2,

the proof is concluded by Lemma A.1.
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Proof of Theorem 5.5. Note that by Lemma 5.4 and by the fact that α(S) ≥ 1 for all S ∈ X in (5.6),∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
1

≤
∥∥∥∥π(XV (h))

V

∥∥∥∥
1

+

∥∥∥∥∥X̃V (h)

V

∥∥∥∥∥
1

≤ 1

V

∑
S∈X

α(S)
(
XV
S (0) + X̃V

S (0)
) .

Under the assumption that both XV (0) and X̃V (0) have finite expectation and converge in probability
to z∗, and by the equivalence of norms in finite dimension, we conclude there exists M ∈ R>0 such that

sup
V ∈Z≥1

E

[∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤M.

Hence, if ν is as in Theorem A.4, we have that

E

[
sup

0≤t≤T

∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤ ν + 6Me

Λ̂
V,ε,t
3
2 − ν1

√
V

3

+ 6Me
cΛ̂t2

2 −
ν2
√
V

3 +MP

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

> ν3

)
+MpV,ε,T .

The proof is concluded if we can show that for all T ∈ R>0 and any arbitrary η > 0, we can fix
ν1, ν2, ν3 ∈ R>0 and ε ∈ (0,m) such that ν < η for large enough values of V . Indeed, for any fixed
ε ∈ (0,m), T ∈ R>0 the other terms on the right-hand side of the above inequality tend to zero as V
goes to infinity. To show that ν can be made smaller than η, simply note that ν1, ν2, ν3 can be chosen
as small as desired among the positive real numbers, δV,ε,T1 tends to zero as V goes to infinity for all
fixed ε ∈ (0,m) by Assumption 3.1, and ωε,T tends to zero as ε tends to zero because the functions
λτ+y→τ ′+y′ are locally Lipschitz on T × Rd>0 by Lemma 5.1.

A.4 Proof of Theorem 5.3

Note that under the assumptions of Theorem 5.3, for all t ∈ [0, T ] Y V (t) converges in probability to Y (t)
by Theorem 5.2. Hence, in order to prove Theorem 5.3, we need to show relative compactness of {Y V }
as a sequence of processes with sample paths in DT [0, T ], and conclude by [10, Lemma A2.1], stated
here for convenience.

Theorem A.5 (Lemma A2.1 in [10]). Consider a sequence of stochastic processes {UV } with sample
paths in DE [0, T ] defined on the same probability space. Suppose that {UV } is relatively compact in
DE [0, T ], (in the sense of convergence in distribution) and that for a dense set H ⊆ [0,∞), {UV (t)}
converges in probability in E for each t ∈ H. Then {UV } converges in probability in DE [0, T ].

To prove relative compactness of {Y V }, we use [11, Corollary 7.4, Chapter 3], which we state here
for convenience.

Theorem A.6 (Corollary 7.4 in Chapter 3 of [11]). Let (E, r) be complete and separable, and let {UV }
be a sequence of stochastic processes with sample paths in DE [O, T ]. Then {UV } is relatively compact if
and only if the following two conditions hold:

1. For every ε > 0 and rational t > 0, there exists a compact set Γε,t ⊆ E such that

lim inf
V→∞

P
(
UV (t) ∈ Γε,t

)
≥ 1− ε.

2. For every ε > 0 and T > 0, there exists δ > 0 such that

lim sup
V→∞

P

(
inf
{si}

max
i

sup
s,t∈[si−1,si)

r(UV (s), UV (t)) ≥ ε

)
≤ ε,

where {si} ranges over all time sequences of the form 0 = s0 < s1 < · · · < sn−1 < T ≤ sn with
min1≤i≤n(si − si−1) > δ and n ≥ 1.
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In our case, the topological space T with the distance induced by ‖ · ‖∞ is discrete, complete, and
separable. It is also compact, so the first condition in the theorem above is always satisfied. Moreover,
if a jump occurs at time t then ‖Y V (t−) − Y V (t)‖∞ = 1. Let tVi with i ∈ Z≥1 denote the time of the
ith jump of Y V , let tV0 = 0, and let TV be the time of the last jump of Y V in [0, T ]. Then, as a direct
consequence of the theorem above we can state that the sequence of stochastic processes {Y V } with
sample paths in DT [O, T ] is relatively compact if and only if for all ε > 0 there exists δ > 0 such that

lim sup
V→∞

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ ε.

Fix δ ∈ R>0 and for all j ∈ Z with −1 ≤ j ≤ T/δ let NV,δ
j be the number of jumps of Y V in the interval

[j/δ,min{j/δ+2δ, T}]. The NV,δ
j are introduced to control the time between jumps: whenever two jumps

occur at times differing for less than δ, there necessarily exists an interval [j/δ,min{j/δ + 2δ, T}] with

j ≥ 0 containing both of them. Also, whenever the time of a jump is smaller than δ, then NV,δ
−1 ≥ 1.

Hence, for all ν ∈ R>0 with ν > m,

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ P

(
NV,δ
−1 ≥ 1 or max

j=1,...,bT/δc
NV,δ
j ≥ 2

)

≤ P
(
NV,δ
−1 ≥ 1

)
+

bT/δc∑
j=1

P (NV,δ
j ≥ 2)

≤ P
(

sup
0≤t≤T

∥∥∥∥XV

V
(t)− Z(t)

∥∥∥∥
∞
> ν

)
+ P (Nν(δ) ≥ 1) +

T

δ
P (Nν(2δ) ≥ 2),

where Nν is a Poisson process with rate

Bν = sup
N∈Z≥1

sup
z∈Ων,T1

max
S̃∈T

∑
S̃+y→S̃′+y′∈R̃

λV
S̃+y→S̃′+y′(S̃, bV zc),

which is finite by Lemma 5.1. Hence, by Theorem 3.1

lim sup
V→∞

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ (1− e−δBν ) +

T

δ
(1− e−2δBν − 2δBνe

−2δBν ),

which tends to 0 as δ tends to 0. The proof is completed.
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