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Abstract
Obtaining strong linear relaxations of capacitated covering problems constitute a significant technical
challenge even for simple settings. For one of the most basic cases, the Knapsack-Cover (Min-
Knapsack) problem, the relaxation based on knapsack-cover inequalities has an integrality gap
of 2. These inequalities are exploited in more general problems, many of which admit primal-dual
approximation algorithms.

Inspired by problems from power and transport systems, we introduce a general setting in which
items can be taken fractionally to cover a given demand. The cost incurred by an item is given
by an arbitrary non-decreasing function of the chosen fraction. We generalize the knapsack-cover
inequalities to this setting an use them to obtain a (2 + ε)-approximate primal-dual algorithm. Our
procedure has a natural interpretation as a bucket-filling algorithm which effectively overcomes
the difficulties implied by having different slopes in the cost functions. More precisely, when some
superior segment of an item presents a low slope, it helps to increase the priority of inferior segments.
We also present a rounding algorithm with an approximation guarantee of 2.

We generalize our algorithm to the Unsplittable Flow-Cover problem on a line, also for the
setting of fractional items with non-linear costs. For this problem we obtain a (4 + ε)-approximation
algorithm in polynomial time, almost matching the 4-approximation algorithm known for the classical
setting.
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46:2 Approximating Non-Linear Covering Problems

1 Introduction

Covering problems have been heavily studied by the combinatorial optimization community.
Understanding their polyhedral descriptions, and how to approximate them, is a challenging
and important task even for simple variants. One of the main tools for obtaining strong linear
relaxations of covering problems are the knapsack-cover inequalities, introduced by Carr et
al. [9], and have been used extensively [4, 18, 3, 3, 8, 10, 19, 1, 20, 2, 22]. Although the
inequalities are exponentially many, they can be approximately separated up to a factor of 1+ε
in polynomial time. In many cases they are well adjusted for primal-dual algorithms, which
avoid having to solve the relaxation and yield faster combinatorial algorithms [4, 8, 10, 20].

In the classical Knapsack-Cover problem we are given a set of n items N and a demand
D ∈ N. Each item i has an associated covering capacity ui and cost ci. The objective is
to choose a subset of items covering D at a minimum cost. We introduce a new natural
generalization of this problem motivated by applications on the operation of power systems
and the design of public transport systems. In this version we can choose items partially at
a given cost, which might be non-linear. More precisely, each item i ∈ N have an associated
non-decreasing cost function fi : N → Q≥0 ∪ {∞}. We must choose a number xi ∈ N for
each i such that

∑
i∈N xi ≥ D. The cost of such solution is

∑
i∈N fi(xi). We can reduce the

Knapsack-Cover problem to this setting by considering fi(0) = 0, fi(1) = . . . = fi(ui) = ci

and fi(x) = ∞ for x > ui. We say that we are in the list model if the input contains
the numbers fi(0), fi(1), . . . , fi(D) explicitly as a list. In this case the reduction above is
pseudo-polynomial. On the other hand, if each fi is given by an oracle that outputs fi(x) for
any x, we say that we are in the oracle model. In this case the reduction above can be made
polynomial. We call our newly introduced problem the Non-Linear Knapsack-Cover problem.
Our setting also generalizes the Single-Demand Facility Location problem studied by Carnes
and Shmoys [8]. In this setting each item (facility) has an activation cost bi and then the
cost grows linearly at a rate of ai, that is, fi(0) = 0, fi(x) = bi + cix for x ∈ {1, . . . , ui}, and
fi(x) =∞ otherwise.

More generally, we study the Non-Linear variant of the Unsplittable Flow-Cover problem
on a path (UFP-cover), that extends the Non-Linear Knapsack-Cover problem. In the
original UFP-cover problem, first considered by Bar-Noy et al. [4], we have a discrete interval
I = {1, . . . , k} and a set N of n items, each one characterized by a capacity or height ui,
a cost ci, and a sub-interval Ii ⊆ {1, . . . , k}. We also have a demand Dt for each t ∈ I.
The problem consists on selecting the cheapest set of items such that the total height at
any point in I is at least the demand, that is, we must pick a set S minimizing

∑
i∈S ci

such that
∑

i∈S:Ii3t ui ≥ Dt for all t ∈ I. In this paper we generalize this problem to the
case where items can be taken partially. As before we are giving a non-decreasing function
fi = N→ Q≥0 ∪ {∞} for each item. We can choose to set the height of any item to a value
xi ∈ N by paying a cost fi(xi). We mush choose heights in order to cover the demand at
each point t ∈ I at a minimum total cost

∑
i fi(xi). Notice that this setting generalizes

Non-Linear Knapsack-Cover.
In this article we provide a generalization of the knapsack-cover inequalities to the

Non-Linear Knapsack-Cover problem, which we also apply to Non-Linear UFP-Cover. The
obtained relaxations yield primal-dual algorithms matching the classical settings. Namely,
for Non-Linear Knapsack-Cover we show a 2-approximation algorithm, and for Non-Linear
UFP-Cover a 4-approximation algorithm, both running in polynomial time in the list model.
For the oracle model, they can be adapted to yield a (2 + ε)- and (4 + ε)-approximation,
respectively, in polynomial time. Additionally, we show a rounding technique for the Non-
Linear Knapsack-Cover case also achieving a 2-approximation for the list model, together
with a polynomial time separation algorithm.
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Applications

One of our main motivations for considering non-linear cost functions comes from the Unit
Commitment Problem (UCP), a prominent problem in the operation of power systems. In
its most basic version, a central planner, called Independent System Operator (ISO), must
schedule the production of energy generated from a given set of power plants, in order
to satisfy a given demand. For the case of one time period, the problem corresponds to
Non-Linear Knapsack-Cover. More precisely, items correspond to power plants, and fi(x) is
the cost of producing x units of power by power plant i. A common issue in this setting is
that plants incur fixed costs for starting production, and after the resource is available, a
minimum amount of energy must be produced. It is worth noticing that after paying the
fixed cost the behavior of the cost functions might be non-linear and are often modelled by
convex quadratic functions [24].

On the other hand, Non-Linear UFP-Cover appears in the optimization of transport
systems. Consider an avenue with several bus stops {1, . . . , k}. We interpret the avenue as a
path network where bus stops correspond to edges. Passengers need to move (in a single
direction) within bus stops, and hence, we associate to each passenger a set of consecutive
bus stops (i.e., a path) which they need to traverse. The set of paths defines a flow that needs
to traverse the network. Hence, we obtain a demand Dt at each bus stop t, representing the
total number of passengers (amount of flow) that must traverse it. On the supply side, there
are potential bus transit lines, each covering some sub-path of the avenue, and hence covering
the demand on some subset of consecutive bus stops Ii = {fi, fi + 1, . . . , li} ⊆ {1, . . . , k}. As
the planner of this system, we must choose which lines to operate. Additionally, for each
chosen line, we must choose its operation frequency and the type of vehicle to use. Such
combinations of frequency and vehicle define the amount of passengers (demand) the line can
transport. Assume that for line i and each demand x, we can optimally choose (that is, we
have an oracle) the frequency and vehicle combination to minimize the operating cost of the
line, which we call fi(x). In other words, for each line i, we must choose a demand xi ≥ 0 to
cover, such that the total operation cost

∑
i fi(xi) is minimized. It is not hard to see that

covering the demand at each bus stop guarantees that all passengers can be transported.
Hence, it suffices that

∑
i:t∈Ii

xi ≥ Dt holds for each bus stop t ∈ {1, . . . , k}. Hence, we
obtain an instance of Non-Linear UFP-Cover.

We might wonder what type of cost functions fi one can get in this setting. There is a vast
literature concerning economies of scale in public transport lines: for instance, Mohring [21]
states that there are economies of scale in public transport, Fielbaum et al. [14] show that
they get exhausted. Coulombel and Monchambert [12] propose that the system could face
diseconomies of scale when the demand exceeds certain thresholds. Hence, techniques to
manage non-linear functions (that can have convex and concave regions) are needed.

Related Work

The use of the primal-dual method to derive approximation algorithms is introduced by
Bar-Yehuda and Even [5] and Chvátal [11], becoming one of the major tools for designing
approximation algorithms [23]. Bar-Noy et al. [4] are the firsts to consider the primal-
dual framework based on knapsack-cover inequalities. However, they pose their algorithm
in the equivalent local-ratio framework [6], even before the knapsack-cover inequalities
were introduced and without stating the underlying LP-relaxation. Their techniques yield
a 4-approximation algorithm and their analysis is tight [10]. Additionally, this problem
admits a quasi-polynomial time approximation scheme (QPTAS) [16]. On the other hand,
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Carnes and Shmoys [8] give an explicit description of the primal-dual method, obtaining
a 2-approximation algorithm for Knapsack-Cover, the Single-Demand Facility Location
problem, and the more general Single-item Lot-Sizing problem with Linear Holding Costs.
Cheung et al. [10] consider the Generalized Min-Sum Scheduling problem on a single machine
without release dates; they obtain a (4+ε)-approximation algorithm based on the primal-dual
framework on an LP with knapsack-cover inequalities. Finally, McCormick et al. [20] consider
covering problems with precedence constraints, where they give a primal-dual algorithm
with approximation ratio equal to the width of the precedence relations. We remark that
Non-Linear Knapsack-Cover can be modeled within this framework, but applying this result
to this case yields an unbounded approximation guarantee.

Outside the primal-dual framework, the literature is rich on the use of the knapsack-
cover inequalities and its generalizations together with rounding techniques. The problems
considered include the Min-Sum General Scheduling problem on a single [3] and multiple [22, 2]
machines, the Uniform [18] and Non-Uniform [19] Capacitated Multi-item Lot-sizing problem,
and Capacitated Facility Location [1]. On the other hand, it is not known if there exists a
compact set of constraints matching the strength of the knapsack-cover inequalities. Recently,
Bazzi et al. [7] gave a formulation with an integrality gap of 2 + ε for the Knapsack-Cover
problem with a quasipolinomial number of inequalities.

It is also worth mentioning that the most common technique for dealing with non-linear
cost functions in capacitated covering problems is a doubling technique: split the cost
function in segments where the function doubles. Then, each segment can be considered
independently as a single item. This technique removes the precedence dependence between
different segments, at factor 4 loss in the approximation ratio; see for example [3]. Similarly,
with a randomized shifting strategy an e-approximation is achievable [17, 15]. Our approach
strengthen the knapsack-cover inequalities and allows to avoid the extra loss.

Our Contribution

Let zij be a binary variable that represents whether xi ≥ j in the solution, i.e., if the j-th
unitary segment of item i is taken. Defining gij = fi(j) − fi(j − 1), then the cost of any
solution is

∑
ij gijzij , and for any solution to be feasible it must hold for all i, j that if zij = 1

then zi,j−1 = 1 . In a greedy algorithm, one might be tempted to take segments with low gij .
This fails as such segments might be preceded by another segment with gik � gij for k < j.
This poses two fundamental questions when assessing the value of a segment: (i) how to
take into consideration (mandatory) preceding segments of high cost? (ii) how to take into
account low costs segments to the right, specially considering segments that finally might
not be part of the final solution (since the demand can be completely covered by previous
segments)?

We introduce a natural variant of the knapsack-cover inequalities for non-linear cost
functions. These generalize the basic version of the inequalities, as well the generalization of
Carnes and Shmoys [8] for the Single-Demand Facility Location Problem. Our inequalities are
then used to derive a primal-dual algorithm that helps to handle the fundamental questions
stated above. Our algorithm can be interpreted as a water-filling algorithm. Each segment j
of an item i has a corresponding bucket Bij of capacity gij , representing an inequality in
the dual linear program. All buckets for a given item i are placed on a stairway, where
bucket Bij is on the j-th step of the stairs. A segment is taken, i.e. we set zij = 1, if its
corresponding bucket and all previous ones (which are in lower steps of the stairs) are full.
Water reaches buckets through two mechanisms. Water from an external source is poured
directly into each bucket at a rate of either 1 or 0 (units of water per time unit). The
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first time a bucket Bij becomes full, then the water arriving to this bucket spills to bucket
Bi,j−1, which now fills at a rate of 2 (as long as Bij is still receiving water from the external
source). If Bi,j−1 also becomes full and j > 2, then the water pouring into Bij and Bi,j−1
spills to Bi,j−2 which now fills at a rate of 3, etc. For a bucket to receive water from the
external source it must satisfy two properties: (i) its corresponding segment is not yet in
the primal solution, and (ii) all previous segments of the item are not enough to cover the
remaining demand. Our primal-dual algorithm helps to take care of the tensions implied by
the questions above by making buckets filling faster due to water spilled from higher buckets,
and prevents spilling water from a bucket if they are so high that they are useless to help
covering the remaining demand.

For the case of Non-Linear UFP-Cover, our algorithm works similarly. However, the
primal solution constructed with the algorithm might contain redundant segments due to
sub-intervals of I that might be covered in subsequent steps of the algorithm. For this reason
we need to perform a reverse-delete (or pruning) strategy to remove unnecessary segments,
in the reverse order in which they were introduced in the primal solution.

We notice that, for both algorithms, our analysis is tight as they achieve the same
performance guarantee as their classic variants [8, 10]. Additionally, the integrality gap of
our formulation for the Non-Linear Knapsack-Cover problem is also 2, as the same lower
bound of the the classical setting holds [9].

Finally, we show a rounding technique for the LP relaxation of the Non-Linear Knapsack-
Cover problem and a polynomial time separation algorithm for the generalized knapsack-cover
inequalities in the list model. These results, together with some of the proofs and extra
details, can be found in the full version of this manuscript [13].

2 A Generalization of the Knapsack-Cover Inequalities for
Non-Linear Knapsack-Cover

We first study the Non-Linear Knapsack-Cover problem. Recall that in this setting we
consider a demand D ∈ N and a set N of n items, each with a non-decreasing function fi.
We assume that all fi are defined over a common domain {0, 1, . . . ,m}, for some m ≤ D,
and that fi(0) = 0. Hence, each item i ∈ N has m segments of unit length, indexed by a
common set M = {1, . . . ,m}, each having a unit cost gij = fi(j)− fi(j − 1) ≥ 0. In what
follows we assume that our instance admits a feasible solution. We start by considering the
list model.

It is worth mentioning that the problem described can be solved in polynomial time
(respectively pseudo-polynomial) in the list (respectively oracle) model by a straightforward
adaptation of the classical dynamic program for Knapsack. In the oracle model the problem
is (weakly) NP-hard as it contains Knapsack-Cover as a special case. For this model the
dynamic program can be turned into an FPTAS also by adapting well known rounding
techniques [23]. However, these techniques alone cannot handle Non-Linear UFP-Cover.

2.1 Knapsack-Cover Inequalities for Non-Linear Costs
To write a linear relaxation of this problem, consider a ∈ {0, . . . ,m}N , where ai represents
that all segments j ∈ {1, . . . , ai} have been taken already for item i ∈ N (and ai = 0 represents
that no segment of i is taken yet). We face the residual problem, where we must decide about
segments not taken yet, and we must cover the residual demandD(a) := max{D−

∑
i∈N ai, 0}.

Recall that zij is a variable that indicates whether the j-th segment of item i is taken. Since
we must only cover the residual demand D(a), there is an optimal solution where zij = 0
for j > ai + D(a); therefore, we conclude that for item i we can only take up to segment
mi(a) := min{m, ai +D(a)}.

ICALP 2020
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Item 1:

Item 2:

F 0
1

1,2

F 1
1 F 2

1

3

F 0
2

3

F 1
2

2

F 2
2

LHS of Inequality (1) for a = (0, 1):

z11 + min{z12, z11}+ min{z13, z12, z11}

+

min{z22, z21}+ min{z23, z22, z21}

Figure 1 Example of an inequality in (1) for a given pair (a, F ), with n = 2 items, m = 3 segments
and demand D = 4. We consider a vector a with a1 = 0, a2 = 1, and hence m1(a) = m2(a) = 3. The
left side of the figure shows a specific index F . On the right is shown the left-hand-side (LHS) of the
convex inequality in (1), where we cover a term with a square if the corresponding term is chosen for
the inequality in (2) indexed by (a, F ). This yields the inequality z11 + z12 + z11 + z21 + z23 ≥ D(a),
where D(a) = 3. That is, 2z11 +z12 +z21 +z23 ≥ D(a), implying that τ(1, 1, a, F ) = 2, τ(1, 2, a, F ) =
τ(2, 1, a, F ) = τ(2, 3, a, F ) = 1, and all the other τ(i, j, a, F ) parameters equal 0.

To obtain a linear program, we relax the condition that zij = 1 implies zik = 1 for
k < j. To do so, note that in a feasible solution variable zij should never be larger than
min {zij , zi,j−1, . . . , zi1}, and hence we can replace in our formulation the appearance of
zij by this minimum. We conclude that the following is a relaxation of the Non-Linear
Knapsack-Cover problem, which we call [GKC]:

min
∑

i∈N,j∈M

gijzij

∑
i∈N

mi(a)∑
j=ai+1

min {zij , zi,j−1, . . . , zi1} ≥ D(a) for all a ∈ {0, . . . ,m}N , (1)

zij ≥ 0 for all i ∈ N, j ∈M.

We call the set of inequalities (1) the knapsack-cover inequalities for non-linear costs. This
relaxation can be easily linearized. Indeed, if a program has a constraint of the form
min{x1, x2} ≥ b, then we can replace it with x1 ≥ b and x2 ≥ b. More generally, if the
constraint is min{x1, x2}+min{x3, x4} ≥ b, then we must consider all constraints xi +xj ≥ b
for all i ∈ {1, 2} and j ∈ {3, 4}. More generally, convex inequality in (1) can be replaced
with exponentially many linear ones. The linear inequalities are constructed by replacing
each summand min {zij , zi,j−1, . . . , zi1} in (1) by one of its terms zij , zi,j−1, . . . , zi1.

Each of the new linear inequalities will be indexed by a pair (a, F ). The chosen notation
will prove useful when describing and analyzing the water-filling algorithm below, as they
will indicate which buckets are spilling water and which are receiving it. Consider a fixed
vector a as above. The index F indicates, for each item i ∈ N and segment j ∈M , which
term zip is selected from the set {zij , . . . , zi1} for each i, j. A given F can be thought as an
array of containers (F k

i )i∈N,k∈{0,...,m−1}. Each item i ∈ N corresponds to a row of this array,
with containers (sets) F 0

i , . . . , F
m−1
i . We distribute the set {ai + 1, . . . ,m} within these

containers, and thus
⋃
· m−1

k=0 F k
i = {ai + 1, . . . ,m}. Assigning an index j ∈ {ai + 1, . . . ,m} to

F k
i represents that in that inequality we select zi,j−k from {zij , . . . , zi1}. See Figure 1 for a

concrete example of this construction. The obtained set of inequalities is given by
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∑
i∈N

m−1∑
k=0

∑
j∈F k

i
:j≤mi(a)

zi,j−k ≥ D(a) for all (a, F ) ∈ F , (2)

where F is the set of all ordered pairs (a, F ) with a ∈ {0, . . . ,m}n, and F satisfies (i)⋃
· m−1

k=0 F k
i = {ai + 1, . . . ,m}, and (ii) if j ∈ F k

i then j − k ≥ 1 for all k, j. Let us consider
now a given pair (a, F ), an item i, and j > ai. The term zij might appear several times in
the respective constraint (2), depending on how many “minimums” are replaced by zij . If
k ∈ F k−j

i , then min{zik, zi,k−1, . . . , zi1} is replaced by zij . Moreover, recall that the residual
demand D(a) will never be covered by a segment zij for j > mi(a), and hence the number
of times that zij appears in the left-hand-side of the inequality is

τ(i, j, a, F ) = |{k ≥ j : k ∈ F k−j
i , k ≤ mi(a)}|. (3)

For a concrete example consider Figure 1.
With this definition, we obtain a linear relaxation that is equivalent to [GKC].

I Lemma 1. The convex program [GKC] is equivalent to

[P-GKC]:min
∑
i∈N

∑
j∈M

zijgij

s.t.
∑
i∈N

m∑
j=1

τ(i, j, a, F ) · zij ≥ D(a) for all (a, F ) ∈ F , (4)

z ≥ 0.

A routinary computation yields that the dual of this linear program, which we call [D-GKC],
is the problem of maximizing

∑
(a,F )∈F D(a)vaF subject to v ≥ 0 and∑

(a,F )∈F

τ(i, j, a, F ) · vaF ≤ gij for all i ∈ N, j ∈M. (5)

2.2 A 2-approximate Primal-Dual Algorithm
We provide a primal-dual 2-approximation algorithm based on the LP-relaxation [P-GKC]
and its dual [D-GKC]. It is worth having in mind the bucket representation of the algorithm
given above in the introduction.

Algorithm description

The water-filling algorithm described in the introduction is an intuitive representation of a
greedy algorithm for the dual [D-GKC]. Each bucket corresponds to a dual inequality: Each
of the inequalities in the dual [D-GKC] represents a bucket, the left hand size corresponds
to the amount of water in the bucket, while the right hand side is its capacity. The greedy
dual algorithm raises dual variables one by one starting from a dual solution v ≡ 0. In
each iteration of the main loop, we raise a variable vaF . The index a is chosen such that
ai represents the largest value ` for which all buckets Bi1, . . . , Bi` are full (or equivalently,
zi1 = . . . = zi` = 1), for each i ∈ N . To choose F , a segment j will belong to F k

i if and only
if the water from the external source falling into bucket Bij (if any) spills down to bucket
Bi,j−k. Number k is chosen such that it is the smallest number for which Bi,j−k is not full,
representing the idea that the water of full buckets falls down to the previous buckets on
the stairs. Also, buckets receiving water from the external source are the buckets Bij with
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ai + 1 ≤ j ≤ mi(a). This way, τ(i, j, a, F ) corresponds to the filling rates of bucket Bij in
the current iteration, which considers the water directly from the external source and the
water spilled from higher buckets. We stop raising variable vaF as soon as one dual inequality
becomes tight, i.e., some bucket Bij becomes full. After, we update the value of z by setting
zik = 1 if Bi` is full for all ` ≤ k. Notice as we do not require that k ≤ mi(a), and hence the
returned primal solution might not satisfy the total demand exactly. Finally, we update a
and F as described above and repeat the main loop until the residual demand D(a) equals 0.
The pseudo-code is given in Algorithm 1. The algorithm calls a sub-routine (Line 14) that
explains how to update F when a bucket gets full but cannot be taken, which is given in
Algorithm 2.

Algorithm 1 Primal-Dual Water-Filling Algorithm for Non-Linear Knapsack-Cover.

1: z, v ← 0; % primal and dual solutions.

2: a← 0; % ai represents the largest value for which buckets Bi1, . . . , Bi,ai are full.

3: F k
i ← ∅ ∀i ∈ N, k ∈M ;

4: F 0
i ←M ; % j ∈ F k

i iff water from bucket Bij falls to bucket Bi,j−k.

5: while D(a) > 0 do
6: Increase vaF until a dual constraint indexed by (i, j), for some item i ∈ N and segment
j ∈M , becomes tight. % Bucket Bij becomes full.

% Update zij:

7: if j = ai + 1 then
8: Let q > ai be the maximum number such that Bi,ai+1, . . . , Biq are full.
9: for ` = j, . . . , q do

10: zi` ← 1; % Take available segments.

11: end for
12: ai ← q;
13: else % If we cannot raise variable zij:

14: F ← Update(F, i, j, a) % Call Algorithm 2 to update the sets F

15: end if
16: end while
17: return v, z.

Algorithm 2 Updating Buckets Subroutine

input a, i, j, F % a, F represent the current state of the buckets, i, j represent which

is the bucket that just got full. We require j > ai + 1.
Let p < j be the maximum number so that Bip is not full.
Let q > j be the minimum number so that Biq is not full (and q = m+ 1 if Bij , . . . , Bim

are all full).
for ` = j, j + 1, . . . , q − 1 do
F `−j

i ← F `−j
i \ {`} and F `−p

i ← F `−p
i ∪ {`} % The water from the external source

falling to Bi`, which was previously spilling to bucket Bij, now spills to bucket Bip.

end for
return F
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Analysis

The algorithm terminates, as each iteration of the main loop (Line 5) corresponds to some
bucket that becomes full, so we enter the while loop at most nm times. The main challenge
is to show that the algorithm is 2-approximate.

It follows directly that the dual solution constructed is feasible through the execution of
the algorithm. The primal solution is feasible as we kept iterating the main loop until the
residual demand D(a) is zero. As in most approximate primal-dual algorithms, the crux of
the analysis is to show that an approximate form of the complementary slackness conditions
are satisfied. This is summarized in the next key lemma.

I Lemma 2. Let v̄, z̄ be the primal and dual solutions computed by the algorithm. Then,for
all (a, F ) ∈ F such that v̄aF > 0, it holds that

∑
i∈N

m∑
j=1

τ(i, j, a, F )z̄ij ≤ 2D(a).

Proof. Let (̄ı, ̄) be the indices of the dual inequality that became tight in the last iteration
of the algorithm, and let z̄, v̄ be the output primal and dual solutions.

Let us fix a variable vaF > 0 and consider the iteration of the main loop of the al-
gorithm where we were raising that variable. For a given item i ∈ N , the expression∑

j≥1 τ(i, j, a, F )z̄ij represents the total number of buckets that are receiving water from
the external source and whose water is spilling to some bucket that ends up in the final
solution. We analyze the last item separately from the other items. Regarding item ı̄, notice
that

∑
j≥1 τ (̄ı, j, a, F )z̄ı̄j ≤ D(a), just because the buckets obtaining water from the external

source are in the interval aı̄ + 1, . . . ,mı̄(a), which are at most D(a) many.
Consider now i 6= ı̄ and a bucket Bij that is “part”of τ(i, j′, a, F ) for some segment j′

included in the final solution, that is, either j′ = j or Bij is pouring into Bij′ , case in which
all the buckets between j and j′ are full in this iteration of the algorithm. Then, as z̄ij′ = 1,
by construction Bij will be taken as well; that is, z̄ij = 1. Additionally, no water (either
directly or indirectly) reaches a bucket Bik with k ≤ ai, and hence τ(i, k, a, F ) = 0. So the
quantity

∑
i∈N\{ı̄}

∑
j≥1 τ(i, j, a, F )z̄ij is upper bounded by the total number of buckets in

the final solution, of items other than ı̄, that are above a. This number cannot be higher than
D(a), otherwise the algorithm would have finished before filling the last bucket Bı̄,̄. J

The proof of the next theorem follows from the previous lemma and standard techniques
from primal-dual analysis. The details are deferred to the full version.

I Theorem 3. Algorithm 1 is a polynomial time 2-approximation algorithm for Non-Linear
Knapsack-Cover in the list model.

The extension of this theorem to the oracle model is given in Section 4.

3 Unsplittable Flow-Cover on the Line

We now show that extending the ideas of Section 2 we can also achieve a 4-approximation for
the Non-Linear UFP-Cover problem. Recall that an instance of this problem is given by an
interval I = {1, . . . , k}, a set N of n items, where each item is characterized by a capacity or
height ui, a cost ci, and a sub-interval Ii ⊆ {1, . . . , k}. We also have a demand Dt for each
t ∈ I.
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In the non-linear case, we can choose the height of each item from within a set M =
{1, . . . ,m}. In other words, each item consists of a list of (vertical) segments, and one must
choose a prefix of them. Again, we first focus on the list model where the costs of segments
gi1, gi2, . . . , gim are given in a list. As before, we use variables zij ∈ {0, 1} to represent if
segment j of item i is in the solution. With this the cost is

∑
i∈N

∑
j∈M zijgij and the

constraint that each demand must be covered is given by∑
i∈N :t∈Ii

∑
j∈M

zij ≥ Dt for all t ∈ I. (6)

Finally, we require that zi,j+1 = 1⇒ zij = 1 for all i ∈ N, j ∈ {1, . . . ,m− 1}.
We now present the problem using the generalized knapsack-cover inequalities, and the

relaxation explained in Section 2, applied to each inequality in (6) separately. For this, define
Dt(a) = max

(
Dt −

∑
i:t∈Ii

ai, 0
)
and τ(i, j, a, F, t) = {k ≥ j : k ∈ F k−j

i , k ≤ mi(a)}, where
mi(a) = min{m, ai +Dt(a)}. The relaxed primal problem, which we call [P-UFP], asks to
minimize

∑
i,j zijgij for z ≥ 0 subject to∑

i:t∈Ii

∑
j≥1

τ(i, j, a, F, t) · zij ≥ Dt(a) for all (t, a, F ) ∈ H

where H is the set of triplets (t, a, F ) where t ∈ I and (a, F ) ∈ F , as defined in Section 2.2.
This yields a dual relaxation [D-UFP], whose objective is max

∑
(a,t,F )∈H vatF ·Dt(a), and

we must optimize over all v ≥ 0 satisfying∑
(a,t,F )∈H:t∈Ii

τ(i, j, a, F, t) · vatF ≤ gij for all i ∈ N, j ∈M. (7)

Algorithm Description

Our primal-dual algorithm is given in Algorithm 3. In this case our approach has two phases.
During the growing phase (Lines 5–15), we construct a dual solution, which then directly
implies a feasible primal solution. In the pruning phase (Lines 16–20) we remove unnecessary
segments from the primal solution. As before, for each item i ∈ N we have a stair of buckets,
where each bucket Bij corresponds to a given inequality in the dual, indexed by j ∈ M
and i ∈ N . In each iteration of the growing phase buckets receive water (that might fall
to inferior buckets) from an external source at a rate of 1 or 0. Once we define the rates,
the water dynamics work in exactly the same way as in Section 2.2: water reaching a given
bucket that is full is spilled to the next bucket to the left until it reaches a bucket that is not
full. The only difference is that only some of the items receive water. More precisely, in a
given iteration of the growing phase, we select t ∈ I with largest unsatisfied demand Dt(a)
(break ties arbitrarily). This is a greedy criterion to increase the dual objective function as
fast as possible. Only buckets for items i ∈ I such that t ∈ Ii receive water from the external
source. For such an item i, the subset of buckets receiving water from the external source
are again buckets Bij with j ∈ {ai + 1, . . . ,mi(a)}. The water dynamics can be emulated
by raising a single dual variable at a time. Notice that the only difference to the dual in
Section 2 is that when raising a given variable vatF , only inequalities for items i ∈ N where
t ∈ Ii are affected, corresponding to the fact that only buckets corresponding to such items
receive water from the external source.

When one or more buckets become full, we pick one of these buckets. As before, a full
bucket means that the corresponding segment (i, j) is available. We take a given segment, that
is, we define a primal variable zij to 1, as soon as all preceding buckets of item i are available.
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In other words, if Bij becomes full for j = ai + 1, then we take set zij = . . . = ziq = 1
where Bij , . . . , Biq are full but Bi,q+1 is not. This is the case even if q > mi(a). All taken
buckets (or segments) are considered to be a “block”, denoted by bij (where j denotes the
first segment of the block). After this we update t and continue with a new iteration of the
main loop of the growing phase.

Although this first phase gives a feasible primal solution, some blocks might have become
redundant, that is, the solution would remain feasible without them. In the second phase we
remove redundant blocks when we can. To do this, we check for each block bij , in reverse
order in which they were added, whether removing the block from the primal solution makes
the given primal unfeasible. If bij is redundant and it is the superior block (i.e., the block
containing the highest segment that is still in the solution) of its item, we remove it; if bij is
redundant but there are blocks over it in the solution when it is checked, we cannot remove
it (the solution would become unfeasible). Note that doing so, all the superior blocks that
are in the final solution are not redundant.

Algorithm 3 Primal-Dual Algorithm for Non-Linear UFP-Cover.

1: z, v ← 0 % primal and dual solutions.

2: a← 0
3: F k

i ← ∅ for all i, k ≥ 1; F 0
i ←M

4: Bi ← ∅ for all i % Set containing the blocks of item i.

5: while Dt(a) > 0 for some t do
6: Select t that maximizes Dt(a) (break ties arbitrarily).
7: Increase vatF until a dual constraint indexed by (i, j), for some item i and segment j,

becomes tight. Break ties in favor of a bucket with smallest index j.
8: if j > ai + 1 then
9: F ← Update(F, i, j, a) % Water pouring into Bij pours into a lower bucket.

10: else
11: Let q > ai be the maximum number such that j′ /∈ F 0

i for all j′ = j + 1, . . . , q % we

take all full buckets that poured into Bi,ai+1, even the ones that are now truncated.

12: Set ai ← q

13: Set Bi ← Bi ∪ bij , with bij = {j, . . . , q} % bij is a block that enters the primal

solution.

14: end if
15: end while
16: for all bij in reversed order in which they are defined in the growing phase do
17: if bij can be removed from the primal solution without leaving any demand unsatisfied

and j ≥ j′ for all j′ such that bij′ ∈ Bi then
% We eliminate redundant blocks, unless they have a superior block over it

18: Bi ← Bi \ bi,j

19: end if
20: end for
21: return z, where zij = 1 for j ≤

∑
bik∈Bi

|bik|.

The proof of correctness is analogous as in Section 2.2. To show the approximation factor
we need the following key lemma.

I Lemma 4. Consider the output (z, v) of the algorithm. Let (a, t, F ) such that vatF > 0.
Then∑

i:t∈Ii

∑
j≥1

τ(i, j, a, F, t) · zij ≤ 4Dt(a).
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Proof. Let us fix a variable vatF > 0 raised in the main loop of the growing phase. Denote
by Bi the set of blocks for each i at the end of the pruning phase. Out of those, consider the
ones that are above a, and that contribute to fulfill the demand in t, that is, Sta = {bij ∈
∪i∈NBi : t ∈ Ii, j ≥ ai + 1}. Let us denote by bi the superior block of each item (i.e. bi = bij

with bij ∈ Sta and j ≥ j′ for all j′ such that bij′ ∈ Bi). For each of these superior blocks,
as they were not removed, it must exist some ti ∈ I such that its demand would become
unsatisfied when removing bi, which is of course also true if we look only at the blocks in
Sta, i.e.,

Dti
(a) >

 ∑
bkj∈Sta

|bkj |

− |bi|. (8)

Inequality (8) is true because we removed the blocks in a reversed order, and the blocks
that conform a were introduced before bi in the growing phase. Let us classify the blocks in
Sta into two subsets, SL

ta = {bi` ∈ Sta : ti ≤ t} and SR
ta = {bi` ∈ Sta : ti > t}.

We divide the proof of Lemma 4 into two analogous inequalities. Let us show that∑
i:t∈Ii

∑
j:bij∈SR

ta

zijτ(i, a, t, F ) ≤ 2Dt(a). (9)

To do this, define tR = min{ti : bi ∈ SR
ta}. Note that tR is covered by every interval Ii with

bi in SR
ta, as they cover t (which is at most tR) and their ti (which is larger or equal than

tR). Define (i1, j1) such that ti1 = tR and bi1 = bi1,j1 . On the one hand, by definition of τ ,
we have that zi1,j1τ(i1, j1, a, t, F ) ≤ τ(i1, j1, a, t, F ) ≤ Dt(a). On the other hand we study∑

i:t∈Ii

∑
j:Bij∈SR

ta,
(i,j) 6=(i1,j1)

zijτ(i, j, a, F, t).

Consider an item i 6= i1, and the iteration while increasing variable vatF . The summands
are the number of buckets that were spilling over each of the segments above ai that are
in the final solution (because we only sum when zij = 1, and buckets Bik for k ≤ ai do
not receive water). This quantity cannot be higher than the sum of the cardinality of all
the blocks above ai in the final solution (recall that when blocks are taken in Line 11, they
include truncated buckets that have poured onto the taken segments). For i1, the same
argument holds, but the superior block bi1 does not need to be considered because it never
poured onto the inferior blocks (otherwise they would have been the same block). Thus it
holds that∑

i:t∈Ii

∑
j:bij∈SR

ta,
(i,j) 6=(i1,j1)

zijτ(i, j, a, F, t) ≤
∑

bij∈SR
ta,

(i,j)6=(i1,j1)

|bij | ≤ DtR(a) ≤ Dt(a). J

With this lemma we can show the following main results. The first proof follows from
standard LP techniques which are completely analogous to the proof of Theorem 3. The
extension to the oracle model is given in Section 4.

I Theorem 5. Algorithm 3 is a polynomial 4-approximation algorithm for Non-Linear
UFP-Cover in the list model.
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4 Arbitrary non-decreasing functions

We now show how to adapt our algorithms in Sections 2 and 3 for the more general oracle
model. Here we assume that each function fi : {0, . . . ,m} → Q≥0 ∪ {∞}, where m ≤ D

is not necessarily polynomially bounded. We assume that each function fi is given by an
oracle, such that a polynomial number of bits is enough to describe all values fi(x). Using
standard techniques, we first approximate each function fi by a piece-wise constant function
with a polynomial number of steps. After, we discuss how to emulate Algorithm 1 and 3 in
polynomial time for such functions.

First of all, by scaling we can assume, without loss of generality, that fi(x) ∈ N ∪ {∞}.

I Lemma 6. Consider ε > 0 and let f : {1, . . . ,m} → N∪{∞} be a non-decreasing function.
Let fmax be the maximum finite value of f(x). There exists a non-decreasing piece-wise
constant function f̃ such that

f(x) ≤ f̃(x) ≤ (1 + ε)f(x) for all x ∈ {1, . . . ,m},

where (f̃(x))x∈N takes at most dlog1+ε fmaxe+ 1 many different values. The function f̃ can
be computed in polynomial time.

Proof. To prove the lemma we can assume that f(x) > 0, as the values f(x) = 0 just
corresponds to separate piece in f̃ . For all other x ∈ {1, . . . ,m}, we can simply set f̃(x) =
(1 + ε)dlog1+ε f(x)e. The constant-wise pieces (intervals) of f̃ can be easily computed in
polynomial time with a binary search approach. J

We now sketch how to adapt the algorithms of Sections 2 and 3 for this scenario. Let f̃i be
the obtained function after applying the last lemma to fi. We partition the set {0, 1, . . . ,m}
in intervals Ji1, Ji2, . . . , Jimi correspondent to the piece-wise constant pieces of f̃i, that is
f̃i(x) = f̃i(x′) if x, x′ ∈ Jik. We denote by uik ∈ N the cardinality of interval Jik ⊆ N. To
adapt the algorithms, note that as they originally deal with unitary segments, a piecewise
constant function can be replaced (preserving the same costs for any solution) by a piecewise
constant function with a pseudopolynomial number of unitary segments. More precisely, if
Jik = {`, ` + 1, . . . , u}, then gi` = f̃i(`) − f̃i(` − 1), and gir = 0 for all r ∈ {` + 1, . . . , u}.
Applying our algorithms to this instance would imply a pseudopolynomial running time.
However, as all but mi many buckets for item i has zero capacity gij , we can handle all of
them simultaneously to make our algorithms run in polynomial time.

To do this, we can process all segments in Jik in a single step: when the algorithm
begins, all their respective buckets but the first one get instantaneously full, so the first one
will receive water at a rate equal to the length of the constant interval (equivalently, the
interval Jij is represented by a bucket of height gij that gets filled at a rate uij). Any time a
bucket pours onto some inferior bucket, its rate also increases by the length of the interval
corresponding to the pouring bucket. Truncations, given by the fact that in a given iteration
only buckets Bij for j ∈ {ai + 1, . . . ,mi(a)} get water from the external source for each item
i, make these rates diminish accordingly. With these rules, the algorithms can be easily
adapted to run in polynomial time implying the following theorems.

I Theorem 7. There exists a polynomial time (2 + ε)-approximation for the Knapsack-Cover
Problem with Non-Linear Costs and arbitrary non-decreasing functions.

I Theorem 8. There exists a (4 + ε)-approximation for the Unsplittable Flow-Cover on the
Line Problem with Non-Linear Costs and arbitrary non-decreasing functions.
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