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Abstract. We introduce a mathematical model of savanna vegetation dynamics.
The usual approach of nonequilibrium ecology is extended by including the impact
of wet and dry seasons. We present and rigorously analyze a model describing a
mixed woodland-grassland ecosystem with stochastic environmental noise in the
form of vegetation biomass losses manifesting fires. Both, the probability of ig-
nition and the strength of these losses depend on the current season (as well as
vegetation growth rates etc.). Formally it requires an introduction and analysis of
a system that is a piecewise deterministic Markov process with parameters switch-
ing between given constant periods of time. We study the long time behavior of
time averages for such processes.

1. Introduction

Seasonality is a very important feature of various ecological systems that affects
their characterization in many ways. Defined as persistent periodic changes of en-
vironmental variables like temperature, rainfall, etc. it is crucial to understand
population dynamics of many systems [52]. Despite its importance and universality,
seasonality is usually not explicitly present in mathematical modeling attempts in
ecology. Existing formal inclusion of seasons in models is often analyzed only nu-
merically or based on Floquet theory [29, 52]. We propose a seasonal model that is
formally a stochastic hybrid process that jumps between two piecewise deterministic
Markov processes (PDMPs, [14]) reflecting repeated switching between two seasons.
Although we focus on the example of savanna dynamics model, we provide a general
theory that can be used for other, formally similar, models or in situations with
more than two seasons present.

Savannas are biomes characterized generally as mixed tree-grass systems [43] and
cover around 20% of Earth’s land surface. The competition for resources between
trees and grasses is regulated by many factors including herbivore activity, tem-
porary changes in water availability and fires [50]. There is a rich literature on
savanna models [55] based on incorporating into dynamical system vegetation losses
due to fires with constant [26, 54] or random [16, 3] frequency. Despite its ecological
significance and prospective impact on model parameters, these approaches do not
include explicit representation of seasonality. We take into account facts that in
humid/mesic savannas rainfall happens primarily in wet seasons, boosting the veg-
etation growth, and results in more grass fuel for fires, happening more frequently
in dry seasons, that cause then more damage to tree cover (see [53, 40, 1, 51] and
the references therein). Most up-to-date savanna dynamics models that take rainfall
and/or soil moisture into account refer to their mean annual value (e.g. [49, 45, 44]).

2000 Mathematics Subject Classification. 60J25, 92D25, 92D40.
Key words and phrases. seasonality, savanna, tree-grass coexistence, herbivores, fire-vegetation

feedback, piecewise deterministic Markov process.
This research was supported in part by the Polish NCN grant 2017/27/B/ST1/00100.

1

ar
X

iv
:2

21
1.

05
85

9v
1 

 [
m

at
h.

PR
] 

 1
0 

N
ov

 2
02

2



2 PAWE L KLIMASARA AND MARTA TYRAN-KAMIŃSKA

Even when annual mean rainfall changes each year then these are much smaller vari-
ations in water availability than between seasons. Moreover, the duration of wet and
dry seasons usually are not the same. Nevertheless, there is no direct presence of
wet and dry seasons in these models.

In Section 2 we introduce a simple seasonal model of savanna vegetation dynam-
ics. A system of logistic equations describes growth of tree and grass biomasses and
without disturbances it would result in woodland (the trees outcompete grasses).
We add random fire events manifested as discrete biomass losses. The probability
of ignition and fire severity increase with grass biomass (fuel load). Later in Section
3 we focus on more complicated version of this model where we introduce two more
equations describing grazers and browsers populations that additionally impact the
vegetation dynamics. We provide figures of sample trajectories illustrating the be-
havior of these systems. The resulting models are stochastic only due to randomly
occurring fires. The seasons are present in these models as repeated deterministic
switching of growth rate parameters. This is entirely different setting than random
switching between model parameters that has been used recently in PDMP models,
e.g. in ecological dynamics [7, 5, 10, 24, 23, 20, 21], epidemiology [8], or population
genetics [19].

To follow seasonal changes we introduce additional time variable measuring the
duration of stay in a given season. This allows us to represent the savanna mod-
els as PDMPs in Section 4 and provide sufficient conditions for their ergodicity
(Theorem 4.1). Due to periodic changes we cannot study the usual convergence of
distributions of such processes and we must look at convergence of time averages.
In Section 5 we explore formally the long time behavior of averages of homogeneous
Markov processes and we formulate one of the main results of the paper that T -
processes, as in [47, 36], satisfying a Foster-Lyapunov type condition (CD2) in [36]
are mean-ergodic (Theorem 5.1). Then we show that our savanna model PDMPs
are such T -processes (Theorem 5.3) which implies Theorem 4.1. In Section 6 we
provide the proof of Theorem 5.1. The paper concludes with a short discussion.

2. A basic model of savanna dynamics with seasonality

We start with adding seasonality into a simple model to grasp the actual problem
with such modeling approach without intricacies of extended models rich in details
and parameters. Basically as our minimal model we continue our work from [31]
based on [4] and modify the model presented there. It is a simple competition model
between trees and grasses referred to as their biomass amounts (denoted as W and
G respectively) in the system of differential equations:

dW
dt = rwW

(
1− W

Kw

)
,

dG
dt = rgG

(
1− G

Kg
− W

Kw

)
,

where rw and rg are the respective growth rates, while the carrying capacities for the
biomass amounts are Kw and Kg. We normalize both ’amount of biomass’ variables
to lie in [0, 1] by the change of variables:

w(t) =
W (t)

Kw
, g(t) =

G(t)

Kg
,
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and hence the model has the form:

(2.1)

{
dw
dt = rww (1− w) ,
dg
dt = rgg (1− g − w) .

Observe that (2.1) has three stationary solutions (1, 0), (0, 0), and (0, 1), and that
the point (1, 0) is asymptotically stable.

We add fires to this model and assume that they occur randomly with

Pr
(
occurrence of fire in (t, t+ ∆t)

∣∣w(t) = w, g(t) = g
)

= λ(w, g)∆t+ o(∆t),

where the function λ : [0, 1]2 → R+ is continuous. We denote the consecutive mo-
ments of fire events by t1, t2, . . . The impact of fire in the model is implemented as
the appropriate biomass losses according to

(2.2)

{
w(tn) = w(t−n )−Mw w(t−n ),

g(tn) = g(t−n )−Mg g(t−n ),

where Mw,Mg ∈ (0, 1) are constants and v(t−) = lims→t− v(s) for v ∈ {w, g}. When
fires occur at fixed deterministic times tn+1 = tn + τ , where τ is a constant, one
obtains impulsive systems (see e.g. [55] or [26] with α = 1).

The assumption that impact of fires is described discretely via constant biomass
losses can be improved by a more general setting of random losses. To this end
we replace the constants Mw and Mg with random variables. Their distribution
can depend on the current biomass amounts. Moreover such setup can be extended
even more by including the seasonality. Thus we introduce two savanna seasons
(wet and dry) and code them with variable i, where i = 0 refers to the dry season
while i = 1 to the wet one. Some model parameters change between seasons. Thus
e.g. riw and rig denote the growth rates in the ith season. The seasons are time
intervals changing alternately and to include this fact in the model we add a new
clock variable ζ describing how long the current season lasts and hence schedules
the moments when variable i switches its value. The length of the ith season will be
denoted by the constant value ζim. Additionally, by introducing a two-dimensional
variable ξ for biomass amounts, the differential equation in the ith season takes the
final form:

(2.3)

{
dξ
dt = bi(ξ),
dζ
dt = 1,

where ξ =

(
w
g

)
and bi(ξ) =

(
riww (1− w)

rigg (1− g − w)

)
.

Each time ζ reaches its maximal value ζim, the present season ends and hence we
reset the ’duration of stay in a season’ that is the value of ζ to 0 and swap the
model dynamics by changing all the affected parameters (via switching i to 1 − i
everywhere). Note that the long time behavior of ξ is the same as for (2.1).

Accordingly, the introduction of seasons changes the fire events description to:

(2.4) Pr
(
occurrence of fire in (t, t+ ∆t)

∣∣ ξ(t) = ξ, ζ(t) = ζ, i(t) = i
)

= λi(ξ, ζ)∆t+ o(∆t),

where λi is a positive continuous function. We assume that in the ith season for
each ξ and ζ there exists a probability measure P i(ξ, ζ, A) describing both biomass
changes due to random fire events

(2.5) Pr
(
ξ(tn) ∈ A

∣∣ ξ(t−n ) = ξ, ζ(t−n ) = ζ, i(t−n ) = i
)

= P i(ξ, ζ, A)
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for any Borel subset A of R2. In particular, we consider

(2.6) P i(ξ, ζ, A) =

∫
Θ
1A
(
Siθ(ξ)

)
piθ(ξ, ζ)νi(dθ),

where Θ = (0, 1)2, νi is a Borel measure on Θ, (θ, ξ, ζ) → piθ(ξ, ζ) is a continuous
function such that

(2.7)

∫
Θ
piθ(ξ, ζ)νi(dθ) = 1.

The transformation Siθ describes the biomass loss due to fire and to simplify presen-
tation we take

(2.8) Siθ(ξ) =
(
(1− θw)w, (1− θg)g

)
, ξ = (w, g) ∈ (0, 1)× (0, 1], θ = (θw, θg).

Assuming that these losses are constant fractions of available amounts before the fire
incident we have piθ(ξ, ζ) ≡ 1 and νi(dθ) = δ(M i

w,M
i
g)(dθ), where M i

w,M
i
g ∈ (0, 1) are

constants and δM is the Dirac measure at the point M = (M i
w,M

i
g). On the other

hand when these losses are random we can take as νi the usual Lebesgue measure
on the unit square (0, 1)2. Then for each (ξ, ζ) the function θ 7→ piθ(ξ, ζ) describes
the density of the distribution of biomass losses due to fire. In Figure 1 we display
sample graphs of wood and grass biomasses in time, including losses due to random
fires and changes of seasons.
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Figure 1. Sample trajectories of the stochastic process in (2.3)–
(2.5) with parameters for the dry season r0

w = 0.05, r0
g = 2.5, M0

w =

0.35, M0
g = 0.2, λ0(w, g, ζ) = 0.09g + 0.01, ζ0

m = 7 and for the wet

season r1
w = 0.1, r1

g = 10.75, M1
w = 0.2, M1

g = 0.05, λ1(w, g, ζ) =

0.001g + 0.02, ζ1
m = 5. The green line represents the graph of the

grass biomass amount over time t 7→ g(t), and the black line refers
to the wood biomass t 7→ w(t)
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3. A savanna model featuring herbivores and seasonality

We extend the model from the previous section by adding populations of herbi-
vores depending on the food availability (grass for grazers and trees for browsers).
We start with introduction of the population dynamics model that we later complete
by adding random fire events and seasonality. The differential equations describing
the dynamics of tree and grass biomasses contain additional terms referring to the
presence of herbivores:

dW
dt = rwW

(
1− W

Kw

)
− cWHBW,

dG
dt = rgG

(
1− G

Kg
− W

Kw

)
− cGHGG,

where HG, HB are populations of grazers and browsers and cW , cG denote con-
sumption coefficients of woody/grass biomass by browsers/grazers, accordingly. We
describe the population dynamics of herbivores as in [50] by:{

dHG
dt = eGHGG− dGH2

G,
dHB
dt = eWHBW − dBH2

B,

where eW , eG are consumption and conversion efficiency coefficients of woody/grass
biomass by browsers/grazers and dB, dG denote death rates of browsers and grazers,
respectively.

Similarly to the model from Section 2 we normalize biomass amounts and addi-
tionally redefine the herbivore population variables by

w(t) =
W (t)

Kw
, g(t) =

G(t)

Kg
, hG(t) =

dGHG(t)

eGKg
, hB(t) =

dBHB(t)

eWKw
,

which enforces us to change the parameters as well

cw ≡ cW
eg
dG
, cg ≡ cG

ew
dB
, ew ≡ eWKW , eg ≡ eGKG.

These modifications lead to the simpler system of differential equations:

(3.1)


dw
dt = rww (1− w)− cwhBw,
dg
dt = rgg (1− g − w)− cghGg,
dhG
dt = eghG (g − hG) ,
dhB
dt = ewhB (w − hB) .

This system has a unique positive stationary point

w =
rw

rw + cw
, g =

rg
rg + cg

cw
rw + cw

, hG = g, hB = w,

and it is asymptotically stable. Again, we add alternating seasons, dry (i = 0)
and wet (i = 1), by changing the plant growth rates riw, rig along with them. We
illustrate the long time behavior of this system in Figure 2. A typical periodicity of
seasonal models is clearly visible in this figure.

Finally we may incorporate the fire events into this model in analogy to the
basic no-herbivore model. Now we have a 4-dimensional vector ξ = (w, g, hG, hB)
and the dynamics is given by equations (2.3) with the values for bi(ξ) taken from
system (3.1). Fire-related probabilities, (2.4) and (2.5), remain unchanged, while
the transformation Siθ takes the form

(3.2) Siθ(ξ) =
(
(1− θw)w, (1− θg)g, hG, hB

)
, ξ = (w, g, hG, hB), θ = (θw, θg).
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Figure 2. Deterministic trajectories for system (3.1) with alternat-
ing seasons and initial condition w = g = 0.1, hG = 0.5, hB = 0.2.
We used the same color references and parameters as in Figure 1 and
additionally cw = ew = 0.1, cg = eg = 0.2. The red line represents
the graph of the population of grazers over time t 7→ hG(t) while the
blue line refers to the population of browsers t 7→ hB(t)

A sample trajectory of the main model containing all the stochastic effects is pre-
sented in Figure 3.
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Figure 3. Sample trajectories for the stochastic model of savanna
vegetation dynamics with herbivores, random fires and seasonality.
The parameters and colors are the same as in Figure 2
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4. PDMPs and seasonality

In this section we recognize introduced savanna models as PDMPs with the aim to
show that such processes can be used to study seasonality in ecological/population
models. After brief introduction of the theory basics we formulate one of the main
results of this paper concerning the long term behavior of savanna models. For
general background on PDMPs we refer the reader to [15, 42].

We consider two flows that arise as solutions of ordinary differential equations

(4.1) ξ′(t) = bi
(
ξ(t)

)
,

where bi : Rd → Rd is a (locally) Lipschitz continuous mapping. We assume that Xi

is a Borel subset of Rd such that for each ξ0 ∈ Xi the solution ξ(t) of (4.1) with
initial condition ξ(0) = ξ0 exists and ξ(t) ∈ Xi for all t ≥ 0. We denote this solution
by ϕit(ξ0), i = 0, 1. We also introduce the clock variable ζ and the season variable i.
Thus, the variable x = (ξ, ζ, i) changes in time according to the flow

(4.2) φt(x) = φt(ξ, ζ, i) =
(
ϕit(ξ), ζ + t, i

)
.

If we consider the 2-dimensional model from Section 2 (no herbivores) then equa-
tions (4.1) and (4.2) introducing the flow φt correspond to equation (2.3) with
ξ = (w, g) ∈ Xi, where Xi = (0, 1)× (0, 1] and i = 0, 1, while for the 4-dimensional
model from Section 3 (with grazers and browsers) we have ξ = (w, g, hG, hB) ∈ Xi

with Xi = (0, 1)× (0, 1]× (0,∞)2.
Our state space is

X =
⋃
i

Xi × [0, ζim)× {i},

where ζim is the length of the ith season. The flow {φt} can exit the set X in a finite
positive time through a boundary Γ of X. Under our assumptions we have

Γ =
⋃
i

Xi × {ζim} × {i}

and the hitting time of the boundary Γ is given by

(4.3) t∗(x) = inf{t > 0 : φt(x) ∈ Γ} = ζim − ζ for x = (ξ, ζ, i) ∈ X.

If the state of the process at the end of a given season is represented by the point
(ξ, ζim, i) from the boundary Γ, then the process moves to the point (ξ, 0, 1 − i) at
the beginning of the next season. Thus, jumps are described by a stochastic kernel
P defined by

P (x,B) =

∫
Θ
1B
(
S(x, θ)

)
ν(x, dθ), x ∈ X ∪ Γ, B ∈ B,

where S : (X∪Γ)×Θ→ X is a measurable transformation and ν(x, ·) is a stochastic
kernel. In reference to (2.6), we consider

(4.4) S(x, θ) = S(ξ, ζ, i, θ) =

{(
Siθ(ξ), ζ, i

)
, if ζ < ζim,

(ξ, 0, 1− i), if ζ = ζim,

and

(4.5) ν(x, dθ) =

{
piθ(ξ, ζ)νi(dθ), if ζ < ζim,

νi(dθ), if ζ = ζim.
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Finally, let the jump rate function be defined by q(ξ, ζ, i) = λi(ξ, ζ) for (ξ, ζ, i) ∈ X.
For each x ∈ X we define

(4.6) Fx(t) = 1[0,t∗(x))(t) exp

{
−
∫ t

0
q
(
φr(x)

)
dr

}
, t ≥ 0,

where φ is as in (4.2). If we start at the point Ψ0 = (ξ0, ζ0, i0) at time τ0, then we
follow the path t 7→ φt−τ0(Ψ0) up to the occurrence of either the fire or the next
season, whichever comes first. Thus the next jump time τ1 is chosen according to
the distribution

P(τ1 − τ0 > t |Ψ0 = x) = Fx(t).

Then we define

Φ(t) = φt−τ0(Ψ0), Φ1 = φτ1−τ0(Ψ0), Ψ1 = S(Φ1, ϑ1),

where ϑ1 is a random variable with distribution ν(Φ1, ·), and we restart the process
from the point Ψ1. In this way we define a sequence Ψn ofX-valued random variables
and jump times τn such that the process Φ = {Φ(t) : t ≥ 0} is defined by

(4.7) Φ(t) = φt−τn(Ψn) for τn ≤ t < τn+1,

where

(4.8) Ψn = S
(
φσn(Ψn), ϑn

)
, σn = τn − τn−1,

and ϑn is a Θ-valued random variable with distribution ν(φσn(Ψn), ·), n ∈ N.
We conclude the section with the main theorem of this paper concerning each of

the Markov processes Φ = {Φ(t) : t ≥ 0} representing the models from Sections
2 and 3. Let Px denote the law of the process Φ with initial condition Φ(0) = x,
x ∈ X.

We assume that the functions λi and piθ satisfy the following:

(i) their values depend only on w, g, and ζ in each case (there is no direct influence
of herbivores on fire ignition nor severity),

(ii) λi is strictly positive in each season (fires should be always possible but of
course much more probable during the dry season),

(iii) there are aw, ag ∈ (0, 1] and εw, εg > 0 such that

(4.9) λi(w, g, ζ)

∫
Θ

[
1

(1− θw)aw
− 1

]
piθ(w, g, ζ)νi(dθ)− awriw ≤ −εw

for all ζ ∈ [0, ζim), g ∈ (0, 1] and w from a neighbourhood of 0, and

(4.10) λi(w, g, ζ)

∫
Θ

[
1

(1− θg)ag
− 1 + gag ln

1− w
1− (1− θw)w

]
piθ(w, g, ζ)νi(dθ)

− agrig(1− w) ≤ −εg
for all ζ ∈ [0, ζim), w ∈ (0, 1) and g from a neighbourhood of 0,

(iv) for a = (aw, ag) as in (iii) we have∫ 1

0

[
1

(1− θw)aw
+

1

(1− θg)ag
− ln(1− (1− θw)w)

]
piθ(w, g, ζ)νi(dθ) <∞

for all (w, g) ∈ (0, 1)× (0, 1], ζ ∈ [0, ζim).

Conditions (iii)–(iv) are technical assumptions allowing a construction of a Lyapunov
function controlling survival of woods and grasses (the behaviour of the process when
w or g are close to zero). In particular, conditions (4.9) and (4.10) prevent the total
loss of wood and grass biomasses, respectively.
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Theorem 4.1. Suppose that (i)–(iv) hold. Then for each x = (ξ, ζ, i) ∈ X there
exists a probability measure Π(x, ·) on X such that

lim
t→∞

1

t

∫ t

0
Px(Φ(s) ∈ B)ds = Π(x,B), for all B ∈ B,

and for any bounded Borel measurable f we have

Px
(

lim
t→∞

1

t

∫ t

0
f(Φ(s))ds =

∫
fdΠ̃

)
= 1

for a random measure Π̃ satisfying Π(x,B) = ExΠ̃(B), B ∈ B, x ∈ X.

The proof of Theorem 4.1 will be given in the next section. In fact we will show
that the convergence in Theorem 4.1 is uniform with respect to all sets B and that
our savanna models are T -processes satisfying a Foster–Lyapunov type condition
(see Theorem 5.3).

We finish the section with the conclusion regarding the model from [31] extended
by inclusion of seasonality and (possibly) herbivore activity.

Corollary 4.2. Suppose that the losses are constant fractions (M i
w,M

i
g) of the

tree/grass biomass and that λi(w, g, ζ) = λi0g with λi0 > 0, i = 0, 1. If

(4.11) riw + λi0 ln(1−M i
w) > 0, i = 0, 1,

then Theorem 4.1 Condition holds.

Proof. From condition (4.11) it follows that there exists aw ∈ (0, 1] such that

λi0

[
1

(1−M i
w)aw

− 1

]
− awriw < 0, i = 0, 1,

implying condition (4.9). Now observe that the left-hand side of (4.10) is of the
form

λi0g

[
1

(1−M i
g)
ag
− 1 + gag ln

1− w
1− (1−M i

w)w

]
− agrig(1− w)

and, for w ∈ (0, 1) and g from a neighbourhood of 0, it is always negative. Conse-
quently, assumptions (i)–(iv) are satisfied. �

Remark 4.3. In the simplest model as in Corollary 4.2 note that condition (4.11)
implies that riw + λi0g ln(1 −M i

w) > 0 for all g ∈ (0, 1], i = 0, 1. Thus the mean
growth rate of wood biomass is positive in the limit w → 0 in both seasons allowing
wood-grass coexistence (in the presence of random fires).

5. Mean ergodic Markov processes

Following [35, 36, 37], we summarize briefly necessary concepts to study the long
time behavior of Markov processes. Let X be a locally compact separable metric
space and let B denote the Borel subsets of X. A function T : X × B → [0, 1] is
called a (substochastic) kernel on X if for B ∈ B the function T (·, B) is measurable
and T (x, ·) is a measure on B (satisfying T (x,X) ≤ 1 for each x ∈ X). The kernel is
called non-trivial if T (x,X) > 0 for all x ∈ X and stochastic if T (x,X) = 1 for all
x. A substochastic kernel T defines a linear operator on the space of finite signed
measures M(X) on B. For µ ∈M(X) we define a new signed measure µT by

µT (B) =

∫
X
T (x,B)µ(dx).
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If K and T are two kernels their product KT is defined as

KT (x,B) =

∫
X
T (y,B)K(x, dy), x ∈ X,B ∈ B.

A kernel T is called a continuous component of a kernel K on X if it satisfies
K(x,B) ≥ T (x,B) for all x ∈ X, B ∈ B and the function T (·, B) is lower semicon-
tinuous, i.e.

lim inf
y→x

T (y,B) ≥ T (x,B), x ∈ X.

Let Φ = {Φ(t) : t ≥ 0} be a continuous-time Markov process with state space X
and let Px denote the law of the process Φ with initial condition Φ(0) = x, x ∈ X.
We assume that Φ is strong Markov and has right-continuous sample paths with left
limits. For each t ≥ 0 the transition probability of the process is

P t(x,B) = Px
(
Φ(t) ∈ B

)
, x ∈ X,B ∈ B,

and if the process is non-explosive then P t is a stochastic kernel. Recall that the
process Φ is non-explosive if there is an increasing sequence of open precompact sets
On such that X =

⋃
nOn and for each x ∈ X we have

Px
(

lim
n→∞

inf{t ≥ 0 : Φ(t) 6∈ On} =∞
)

= 1.

An operator L is called the extended generator of the Markov process Φ (see [15]),
if its domain D(L) consists of those measurable V : X → R for which there exists
a measurable W : X → R such that the function t 7→ W

(
Φ(t)

)
is integrable Px-a.s.

for each x ∈ X with the process

t 7→ V
(
Φ(t)

)
− V (x)−

∫ t

0
W
(
Φ(s)

)
ds

being a Px-local martingale and we define LV = W . A function V : X → [0,∞] is
said to be norm-like if the sets {x ∈ X : V (x) ≤ r} are precompact for all sufficiently
large r > 0. It follows from [37, Theorem 2.1] that if there exists a norm-like function
V ∈ D(L) and constants c, d ≥ 0 such that

(5.1) LV (x) ≤ cV (x) + d, x ∈ X

then the process Φ is non-explosive.
For any µ ∈M(X) we define the norm

‖µ‖ = sup
B∈B
|µ(B)|, µ ∈M(X).

It is equivalent to the total variation norm since we have ‖µ‖ ≤ ‖µ‖TV ≤ 2‖µ‖. The
process Φ is called Cesáro-ergodic (or mean ergodic) if for each probability measure
µ there exists a measure µΠ ∈M(X) such that

(5.2) lim
t→∞

∥∥∥∥1

t

∫ t

0
µP s(·)ds− µΠ

∥∥∥∥ = 0.

In that case we define

Π(x,B) = δxΠ(B), B ∈ B, x ∈ X,

where δx is the Dirac delta. Recall that a probability measure π is called invariant
for the process Φ if π = πP t for all t. In particular, each limiting measure µΠ in
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(5.2) is invariant for the process Φ. Finally, the process Φ is called a T -process if for
some probability measure a on R+ the kernel Ka defined by

(5.3) Ka(x,B) =

∫ ∞
0

P t(x,B)a(dt).

has a non-trivial continuous component.
We now impose a Foster–Lyapunov type condition corresponding to condition

(CD2) in [37]:

(V) There exist a non-negative norm-like V ∈ D(L), a measurable f : X → [1,∞),
a compact set C and positive constants c, d such that

(5.4) LV (x) ≤ −cf(x) + d1C(x), x ∈ X.

Theorem 5.1. Suppose that condition (V) holds and that the process Φ is a T -
process. Then Φ is mean ergodic and we have

Px
(

lim
t→∞

1

t

∫ t

0
f(Φ(s))ds =

∫
fdΠ̃

)
= 1

for any bounded Borel measurable f and for a random measure Π̃ satisfying Π(x,B) =

ExΠ̃(B), B ∈ B, x ∈ X.

The proof of Theorem 5.1 is given in Section 6. We have the following direct
consequence of Theorem 5.1.

Corollary 5.2. Suppose that condition (V) holds and that the process Φ is a T -
process with a unique invariant probability measure π. Then

lim
t→∞

sup
B∈B

∣∣∣∣1t
∫ t

0
P s(x,B)ds− π(B)

∣∣∣∣ = 0

and

Px
(

lim
t→∞

1

t

∫ t

0
f(Φ(s))ds =

∫
fdπ

)
= 1

for all x ∈ X and all bounded Borel measurable f .

Our next result, along with Theorem 5.1, implies Theorem 4.1 and shows that
savanna models from Sections 2 and 3 are mean ergodic.

Theorem 5.3. Under assumptions (i)–(iv) the Markov processes from Sections 2
and 3 satisfy condition (V) and are T -processes.

Proof. We start by showing how condition (V) can be checked for our PDMP models.
Let M(X) be the set of all measurable real-valued functions on X. We define as in
[15]

MΓ(X) = {V ∈M(X) : V (x) = lim
t↓0

V
(
φ−t(x)

)
for x ∈ Γ}.

It can be shown as in the proof of [15, Theorem 26.14] and [28, Theorem 18] that
the domain D(L) of the extended generator L contains those functions V ∈MΓ(X)
that satisfy the following:

(1) the function t 7→ V
(
φt(x)

)
is absolutely continuous on [0, t∗(x)) for x ∈ X,

(2) V satisfies the boundary condition

V (x) =

∫
X
V (y)P (x, dy), x ∈ Γ,
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(3) for each x ∈ X and t < t∗(x)∫ t

0

∫
X

∣∣V (y)− V
(
φs(x)

)∣∣P (φs(x), dy
)
q
(
φs(x)

)
ds <∞.

The formula for the extended generator L is

LV (x) = L0V (x) + q(x)

∫
X

(
V (y)− V (x)

)
P (x, dy),

where

L0V (x) = lim
t↓0

V
(
φt(x)

)
− V (x)

t
.

For V ∈ D(L) that is a smooth function of variables ξ and ζ we have

LV (ξ, ζ, i) = L0V (ξ, ζ, i) + λi(ξ, ζ)

∫
Θ

(
V
(
Siθ(ξ), ζ, i

)
− V (ξ, ζ, i)

)
piθ(ξ, ζ)νi(dθ),

where

L0V (ξ, ζ, i) =

d∑
j=1

bij(ξ)
∂V

∂ξj
(ξ, ζ, i) +

∂V

∂ζ
(ξ, ζ, i), ξ ∈ Xi, ζ ∈ [0, ζim), i = 0, 1,

and the boundary condition is of the form

V (ξ, ζim, i) = V (ξ, 0, 1− i), ξ ∈ Xi, i = 0, 1.

For d = 2 and ξ = (w, g) we take

V1(w, g, ζ, i) =
1

waw
+

1

gag
− ln(1− w) + ζ

√
ζim − ζ,

while for d = 4 and ξ = (w, g, hG, hB) we consider

V2(w, g, hG, hB, ζ, i) = V1(w, g, ζ, i) +
1

hG
+ ln(1 + hG) +

1

hB
+ ln(1 + hB).

It is easily seen that both functions are in the domain of the corresponding extended
generator. Note that for V = V1 and V = V2 we have

V (Siθ(ξ), ζ, i)− V (ξ, ζ, i) =
1

waw

[
1

(1− θw)aw
− 1

]
+

1

gag

[
1

(1− θg)ag
− 1

]
+ ln(1− w)− ln(1− (1− θw)w).

Thus condition (V) holds, since LV (ξ, ζ, i)→ −∞ when ξ tends to the boundary of
Xi or ζ → ζim, by assumptions (i) and (iii).

Now we prove that the process Φ = {Φ(t) : t ≥ 0} as in (4.7) is a T -process. Since
its probability transition function is given by

P t(x,B) = Px
(
Φ(t) ∈ B

)
=
∞∑
n=0

Px
(
Φ(t) ∈ B, τn ≤ t < τn+1

)
=

∞∑
n=0

P(φt−τn(Ψn) ∈ B, τn ≤ t < τn+1

)
for x ∈ X, B ∈ B, it is enough to show that for each x0 ∈ X there exist a constant
cx0 > 0, an open set Ux0 containing x0 and an open set Vx0 such that

(5.5)

∫ ∞
0

P t(x,B)e−tdt ≥ cx01Ux0
(x)m(B ∩ Vx0), B ∈ B, x ∈ X,
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where m is the product of the (d+1)-dimensional Lebesgue measure and the counting
measure on {0, 1}. The kernel Tx0(x,B) = cx01Ux0

(x)m(B ∩ Vx0) is a continuous
component non-trivial at x0 for Ka with a being the exponential distribution on
R+. By taking a sequence of points (xk) such that X =

⋃
k Uxk we can define the

kernel T =
∑∞

k=1 2−kTxk and conclude that T is a continuous component non-trivial
at every x ∈ X. It implies that Φ is a T -process.

We have for any n

(5.6)

∫ ∞
0

P t(x,B)e−tdt ≥
∫ ∞

0
Px
(
φt−τn(Ψn) ∈ B, τn ≤ t < τn+1

)
e−tdt.

We will show that we can pick an n such that the measure in the right-hand side
of (5.6) has a lower bound as in (5.5). To this end we apply [6, Lemma 6.3] to the
(d+ 1)-dimensional component of X.

Assume first that d = 2 and take n = 2 in (5.6). It follows from (4.7) and (4.8)
that

φt−τ2(Ψ2) = φt−(σ2+σ1)(Ψ2), Ψ2 = S
(
φσ2(Ψ1), ϑ2

)
, Ψ1 = S

(
φσ1(x), ϑ1

)
,

where ϑk are random variables with distribution ν(φσk(Ψk−1), ·), k = 1, 2, while
S and ν are as in (4.4) and (4.5). Let σ be an exponentially distributed random
variable independent of all other random variables. Then the right-hand side of
(5.6) is equal to

(5.7) Px
(
φσ−(σ1+σ2)(Ψ2) ∈ B, σ1 + σ2 ≤ σ < σ1 + σ2 + σ3

)
.

Let x0 = (ξ0, ζ0, i0) with ξ0 ∈ (0, 1) × (0, 1], ζ0 ∈ [0, ζi0m) and i0 ∈ {0, 1}. We
take two fire occurrences in a single season and the third jump to be the exit time
form the given season. We define i = i0, ξ1 = Siθ1(ξ0) and ξ2 = Siθ2(ξ1), where

θ1 ∈ (0, 1)2 and θ2 ∈ (0, 1)2 are such that piθ1(ξ0, ζ0) > 0 and piθ2(ξ1, ζ0) > 0. We can

always choose such θ1 and θ2 by (2.7). Recall that the functions pi are continuous
and the jump rate function q, given by q(x) = λi(ξ, ζ), is also continuous. This,
together with (4.6) and (4.5), implies that there is a neighbourhood of x0 such that
the distribution of the random variable (σ1, σ2, σ) has an absolutely continuous part
with respect to the 3-dimensional Lebesgue measure and with density being bounded
below by a positive constant in a neighbourhood of (0, 0, 0). Let us introduce on
∆t = {(t1, t2) : t1, t2 > 0, t1 + t2 < t} the following mapping

ψi(t,ξ,θ)(t) = ϕit−(t1+t2) ◦ S
i
θ2 ◦ ϕ

i
t2 ◦ S

i
θ1 ◦ ϕ

i
t1(ξ) for t = (t1, t2) ∈ ∆t,

where t > 0, θ = (θ1, θ2) ∈ (0, 1)2 × (0, 1)2, ξ = (w, g) ∈ (0, 1)× (0, 1]. To estimate
(5.7) from below it is enough by [6, Lemma 6.3] to show that the mapping

(t, t) 7→
(
ψi(t,ξ,θ)(t), ζ + t

)
has the derivative of full rank 3 for small t in a neighbourhood of (ξ0, ζ0).

Observe that

(5.8) lim
ξ→ξ0, t→0

dψi(t,ξ,θ)(t)

dt
= A,

where A is the matrix with columns v1, v2 given by

v1 = DSiθ2(ξ1)DSiθ1(ξ0)bi(ξ0)− bi(ξ2), v2 = DSiθ2(ξ1)bi(ξ1)− bi(ξ2),

D denotes the derivative with respect to ξ and bi is as in (2.3). Now we show that
the vectors v1 and v2 are linearly independent. The transformation Siθ is linear, thus
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DSiθ = Siθ. Let S1 = Siθ1 , S2 = Siθ2 , and, to simplify calculations, let Sj(w, g) =
(αjw, βjg), where (1− αj , 1− βj) = θj by (2.8). Then we have

A =

(
α2α1(α2α1 − 1)riww

2 α2(α2 − 1)α2
1r
i
ww

2

β2β1r
i
gg
[
(α2α1 − 1)w + (β2β1 − 1)g

]
β2β1r

i
gg
[
(α2 − 1)α1w + (β2 − 1)β1g

]) .
We see that detA = 0 if and only if

(5.9)
α1

β1

1− α2

1− β2
=

1− α1α2

1− β1β2
.

We conclude that

det

[
dψi(t,ξ,θ)(t)

dt

]
6= 0

for ξ close to ξ0, sufficiently small t and suitably chosen θ.
Now for the case of d = 4 we take n = 5 (two fire occurrences in each season and

a switch between the seasons) in (5.6). Let ∆t = {(t1, t2, t3, t4) : t1, t2, t3, t4 > 0,
t1 + t2 + t3 + t4 < t} and

ψi(t,ξ,ζ,θ)(t) = ϕ1−i
t−(t3+t4+ζim−ζ)

◦ S1−i
θ4
◦ ϕ1−i

t4
◦ S1−i

θ3
◦ ϕ1−i

t3

◦ ϕiζim−ζ−(t1+t2) ◦ S
i
θ2 ◦ ϕ

i
t2 ◦ S

i
θ1 ◦ ϕ

i
t1(ξ)

for t = (t1, t2, t3, t4) ∈ ∆t, t > 0, θ = (θ1, θ2, θ3, θ4) with each θj ∈ (0, 1)2, and
ξ = (w, g, hG, hB) ∈ (0, 1)× (0, 1]× (0,∞)2. We take arbitrary x0 = (ξ0, ζ0, i0) with
ξ0 ∈ (0, 1)× (0, 1]× (0,∞)2, ζ0 ∈ [0, ζi0m) and i0 ∈ {0, 1}. We define i = i0,

ξ1 = ϕiζim−ζ0
(ξ0), ξ2 = Siθ1(ξ1), ξ3 = Siθ2(ξ2), ξ4 = S1−i

θ3
(ξ3), ξ5 = S1−i

θ4
(ξ4),

where θ1, θ2, θ3, θ4 ∈ (0, 1)2 are such that piθj (ξj , ζ
i
m − ζ0) > 0 for j = 1, 2 and

p1−i
θj

(ξj , 0) > 0 for j = 3, 4. Similarly as for d = 2 by [6, Lemma 6.3] it is enough to

show that the mapping

(t, t) 7→
(
ψi(t,ξ,ζ,θ)(t), t− (ζim − ζ)

)
has the derivative of full rank 5 for a short time of staying in the season 1 − i, i.e.
as t ↓ ζim − ζ0, and in a neighbourhood of (ξ0, ζ0). It is easily seen that

(5.10) lim
ξ→ξ0, ζ→ζ0,

t,t1→ζim−ζ0, t2→0

dψi(t,ξ,ζ,θ)(t)

dt
= A,

where now A is the matrix with columns v1, v2, v3, v4 given by

v1 = DS1−i
θ4

(ξ4)DS1−i
θ3

(ξ3)(DSiθ2(ξ2)DSiθ1(ξ1)bi(ξ1)− bi(ξ3)),

v2 = DS1−i
θ4

(ξ4)DS1−i
θ3

(ξ3)(DSiθ2(ξ2)bi(ξ2)− bi(ξ3)),

v3 = DS1−i
θ4

(ξ4)DS1−i
θ3

(ξ3)b1−i(ξ3)− b1−i(ξ5),

v4 = DS1−i
θ4

(ξ4)b1−i(ξ4)− b1−i(ξ5).

By using the formula for b(ξ) given by the right-hand side of equation (3.1) with
ξ = (w, g, hG, hB) and by taking S(ξ) = (αw, βg, hG, hB) for the corresponding Siθ
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as in (2.8), we obtain

(5.11) S
(
b(ξ)

)
−b
(
S(ξ)

)
=


α(α− 1)rww

2

βrgg
[
(α− 1)w + (β − 1)g

]
(1− β)eghGg
(1− α)ewhBw

 for ξ = (w, g, hG, hB).

Let us take Sj = Siθj for j = 1, 2 and Sj = S1−i
θj

for j = 3, 4 so that Sj(w, g, hG, hB) =

(αjw, βjg, hG, hB) with (1 − αj , 1 − βj) = θj . Applying (5.11) with rw = riw and
rg = rig and appropriate α, β, the vector v1 with ξ1 = (w, g, hG, hB) is of the form

v1 =


α4α3α2α1(α2α1 − 1)riww

2

β4β3β2β1r
i
gg
[
(α2α1 − 1)w + (β2β1 − 1)g

]
(1− β2β1)eghGg

(1− α2α1)ewhBw

 .

Similarly, we obtain

v2 =


α4α3α2α

2
1(α2 − 1)riww

2

β4β3β2β1r
i
gg
[
(α2 − 1)α1w + (β2 − 1)β1g

]
(1− β2)β1eghGg

(1− α2)α1ewhBw

 .

Next observe that

v3 =


α4α3(α4α3 − 1)α2

2α
2
1r

1−i
w w2

β4β3β2β1r
1−i
g g

[
(α4α3 − 1)α2α1w + (β4β3 − 1)β2β1g

]
(1− β4β3)β2β1eghGg

(1− α4α3)α2α1ewhBw


and

v4 =


α4(α4 − 1)α2

3α
2
2α

2
1r

1−i
w w2

β4β3β2β1r
1−i
g g

[
(α4 − 1)α3α2α1w + (β4 − 1)β3β2β1g

]
(1− β4)β3β2β1eghGg

(1− α4)α3α2α1ewhBw

 .

Using Gaussian elimination it is easily seen that the first two coordinates of v1 and
v2 can be made zero and hence detA = 0 if and only if (5.9) holds or

(5.12)
α3

β3

1− α4

1− β4
=

1− α3α4

1− β3β4
.

Consequently, we can find θj = (1 − αj , 1 − βj), j = 1, 2, 3, 4, such that both (5.9)
and (5.12) do not hold implying that

det
dψi(t,ξ,ζ,θ)(t)

dt
6= 0

for t close to ζi0m − ζ0 and (ξ, ζ) in a neighbourhood of (ξ0, ζ0). �

6. Proof of Theorem 5.1

The resolvent kernel R : X × B → [0, 1] is defined as

R(x,B) =

∫ ∞
0

e−tP t(x,B)dt.

The kernel R is the transition probability for the discrete-time Markov chain Φ̆
that is defined by observing the process Φ at jump-times of a Poisson process with
intensity 1 that is independent of the process Φ. We call this chain the R-chain. We
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say that the R-chain is a T -chain if there is a probability distribution b = (bk) on
Z+ and a non-trivial continuous component for the kernel

Rb(x,B) =

∞∑
n=0

bnR
n(x,B).

Following [35] and [36] we say that a trajectory converges to infinity if it visits

each compact set only finitely many times and we write {Φ̆ → ∞} for the R-chain
and {Φ→∞} for the process Φ.

Lemma 6.1. If the R-chain Φ̆ is a T -chain then Φ is a T -process and

(6.1) Px{Φ̆→∞} = Px{Φ→∞}, x ∈ X.
If Px{Φ→∞} < 1 for all x ∈ X and Φ is a T -process then the R-chain is a T -chain.

Proof. Since the nth jump of the Poisson process has the Erlang distribution, we
have

Rn(x,B) =

∫ ∞
0

e−t
tn−1

(n− 1)!
P t(x,B)dt.

If we consider the probability measure

a(dt) =

∞∑
n=0

bne
−t t

n

n!
dt

on R+, where b = (bn) is a probability measure on Z+, then the kernel Ka has
the same continuous component as Rb. The equality in (6.1) follows from [36,
Proposition 3.2]. The converse statement is [36, Theorem 4.1 (iii)]. �

The R-chain is called a mean ergodic chain on X if for each probability measure
µ ∈M(X) there exists a measure µΠ ∈M(X) such that

(6.2) lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

µRk − µΠ

∥∥∥∥∥ = 0.

Observe that the measure π = µΠ in condition (6.2) is invariant for the R-chain, i.e.
πR = π. It is known (see [2]) that a measure π is invariant for the process Φ if and
only if it is invariant for the R-chain. We now show that the convergence in (6.2) is
equivalent to the one in (5.2).

Lemma 6.2. The process Φ is mean ergodic if and only if the R-chain is mean
ergodic on X. Moreover, for any bounded Borel measurable f we have

lim
t→∞

1

t

∫ t

0
f
(
Φ(s)

)
ds = lim

n→∞

1

n

n∑
k=1

f(Φ̆k),

if any of the pointwise limits exist.

Proof. For any probability measure µ on B we define the resolvent operator of P t

by

µUα(B) =

∫ ∞
0

e−αtµP t(B)dt, α > 0, B ∈ B.

We have µU1 = µR and

(6.3) µUα(B) =
∞∑
k=1

(1− α)k−1µRk(B), B ∈ B.
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First observe that the Cesáro convergence in (6.2) implies the Abel convergence

lim
α→0+

α

∞∑
k=1

(1− α)k−1µRk = µΠ,

see e.g. [33, Theorem 2.1], and leads to

(6.4) lim
α→0+

‖αµUα − µΠ‖ = 0.

Condition (6.4) implies (6.2) by [17, Theorem 3.1] and (5.2) by [17, Theorem 3.3].
Finally, the implication leading from (5.2) to (6.4) follows by using standard argu-
ments. The second part follows from [9, Theorem 5.1.1]. �

We need to introduce more notation. The following notions will be presented
only for the continuous time process Φ, but analogous definitions are valid for the
discrete time R-chain Φ̌ = {Φ̌k}. We refer to [38] for the general theory of discrete
time Markov chains.

Given a measurable set B we define the first hitting time of the set B and the
number of visits to B respectively by

τB = inf{t > 0 : Φ(t) ∈ B} and ηB =

∫ ∞
0

1{Φ(t) ∈ B}dt.

A set B is called (stochastically) closed for the process if B 6= ∅ and Px{Φ(t) ∈
B for all t ≥ 0} = 1 for x ∈ B. A closed set B is said to be maximal if x ∈ B ⇐⇒
Px{ηB =∞} = 1. A set H is called a Harris set for the process Φ if it is closed and
if there exists some σ-finite measure ψ such that Px{ηB =∞} = 1 for all x ∈ H and
all B ∈ B with ψ(B) > 0. A set H is called a maximal Harris set if it is a Harris
set and a maximal closed set. The process restricted to a maximal Harris set H has
an essentially unique invariant measure on H. If the measure is finite then it can
be normalized and the process has a unique invariant probability measure on H. In
that case the set H is called a positive Harris set.

Lemma 6.3. Suppose that condition (V) holds. Then Px{Φ → ∞} = 0 for all
x ∈ X. If the process Φ is a T -process then the space X has the decomposition into
disjoint sets

X =
N⋃
i=1

Hi ∪ E = H ∪ E,

where each Hi is a positive Harris set and Px{ηH =∞} = 1 for all x ∈ X. Moreover,
the R-chain is mean ergodic on X.

Proof. The function V in condition (V) is norm-like and satisfies LV (x) ≤ d1C(x)
for all x ∈ X. Thus condition (CD1) of [36] holds and [36, Theorem 3.1] implies
that Px{Φ→∞} = 0 for all x ∈ X. The Doeblin decomposition [36, Theorem 4.1]
and [37, Theorem 4.6] show that the space X has the required decomposition. It
follows from [36, Theorem 2.1] that

Px{τ̌H <∞} = Ex
(
1− exp(−ηH)

)
, x ∈ X,

where τ̌H = inf{k ≥ 1 : Φ̌k ∈ H} is the first hitting time of H by the R-chain.
Consequently, Px{τ̌H <∞} = 1 for all x ∈ X.

From [47, Theorem 2.1] extended in [11] to the case of Borel right process it
follows that a set is a maximal Harris set for the process Φ if and only if its is a
maximal Harris set for the R-chain. Hence, the R-chain restricted to the set Hi is
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a positive Harris recurrent chain with the unique invariant probability measure πi.
By [25, Theorem 1.2] for each x ∈ Hi we have

lim
n→∞

1

n

n−1∑
k=0

Rk(x, ·) = πi,

where the convergence is in the total variation norm on M(Hi). Thus the R-chain
is mean ergodic on each set Hi. The rest of the proof is similar to the proof of part
(i) of [35, Theorem 7.1]. �

Remark 6.4. It should be noted that the limiting measure µΠ in (6.2) is of the form

µΠ(B) =

∫
X

Π(x,B)µ(dx),

where the kernel Π is given by [35, Theorem 7.1]

(6.5) Π(x,B) =
N∑
i=1

πi(B ∩Hi)Px{τ̌Hi <∞}, x ∈ X,B ∈ B,

and πi, i = 1, . . . N , are invariant probability measures. Moreover, as in the proof
of [35, Theorem 7.1] we obtain that for any bounded Borel measurable f

Px

(
lim
n→∞

1

n

n∑
k=1

f(Φ̆k) =

∫
fdΠ̃

)
= 1, x ∈ X,

where the random measure Π̃ is defined as

Π̃(B) =

N∑
i=1

1(τ̆Hi <∞)πi(B ∩Hi).

Theorem 5.1 is a direct consequence of Lemmas 6.2 and 6.3 together with Re-
mark 6.4.

7. Discussion

In the present paper we propose a novel approach to the study of seasonal dy-
namics. It can be applied to stochastic models in population dynamics that underlie
periodic changes to its parameters. Especially we provide sufficient conditions for
coexistence of competing species. As a model we introduce two PDMPs describing
behavior in each season as the system switching between them in given constant
periods of time (season lengths). This may be generalized to more seasons than two.
Such description needs additional time variable to keep track of the duration of stay
in the present season, leading to time-homogeneous Markov processes. Therefore one
cannot use the usual approach to study convergence of distributions. We explore
the time averages instead and provide sufficient conditions for their convergence.

The common way to study the effects of seasonality on the dynamics of popula-
tions modeled with differential equations is to consider periodically forced parame-
ters [12, 13]. Such models are very difficult to treat analytically although there exist
general tools for a study of non-autonomous differential equations with continuous
and periodic functions of time [18, 32]. A frequently used numerical approach is
bifurcation analysis, first used in this context in [34, 41], where for simplicity, the
forcing is of the form

c(t) = c0(1 + ε sin(2πt)),
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with c0 being any model parameter and ε denoting the forcing amplitude (see [46]
and the references therein).

Another attempt to model seasonal effects is related to the so-called (seasonal)
succession dynamics [30] or, formally similar, behavior shift [48], in which the model
equations change between seasons. A detailed analysis is possible in simple models
[27]. By changing growth parameters in our equations (2.1) and (3.1) to piecewise-
constant periodic functions of time we get examples of this dynamics, with a partic-
ular behavior illustrated as in Figure 2. This approach, in contrary to the situation
in the previous paragraph, gives a discontinuous periodic forcing and can simplify
the analysis. Including seasonality might still not support coexistence of species, as
in the case of model (2.1), since positive solutions of both systems converge to the
same equilibrium (1, 0) representing woodland. Modeling fire impact on vegetation
introduces stochasticity into our systems and can have a positive effect on survival
of all species. Especially, adding fire alone or together with herbivores prevents an
overgrowth of trees and allows existence of mixed woodland-grassland ecosystem
reflecting savanna.

In general, savanna models incorporate fire disturbances into model equations in
a deterministic way [44, 55, 26]. To our knowledge there exists only a discrete-time
matrix model [1] that contains both, seasonality and fire-vegetation feedback, but it
does not provide any analytical insight focusing mainly on simulations. We propose
the analytically tractable continuous-time models, although they are less convenient
to simulate and limited to discrete losses of the biomass while it would be more
realistic to model impact of fire in a spatially explicit way.

We were not studying sufficient conditions for the uniqueness of invariant distri-
butions in our models and leave it to a future work. Once uniqueness is obtained
then the law of large numbers from Theorem 4.1 implies automatically stochastic
persistence [5, 7, 22, 19] of considered populations. It would be also interesting to
study extinction [7, 22, 39]. Our approach can be used to extend other stochastic
models like [22] by adding seasonal effects.
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[55] I. V. Yatat Djeumen, A. Tchuinté Tamen, Y. Dumont, and P. Couteron, A tribute
to the use of minimalistic spatially-implicit models of savanna vegetation dynamics to address
broad spatial scales in spite of scarce data, BIOMATH, 7 (2018), pp. 1812167, 29, https:

//doi.org/10.11145/j.biomath.2018.12.167.

Pawe l Klimasara, Chair of Cognitive Science and Mathematical Modelling, Univer-
sity of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225
Rzeszów, Poland

Email address: pklimasara@wsiz.edu.pl
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