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ABSTRACT. We analyze the Benney model for interaction of short and long waves in resonant
water wave interactions. Our particular interest is in the periodic traveling waves, which we con-
struct and study in detail. The main results are that, for all natural values of the parameters, the
periodic dnoidal waves are spectrally stable with respect to perturbations of the same period. For
another natural set of parameters, we construct the snoidal waves, which exhibit instabilities, in
the same setup.

Our results are the first instability results in this context. On the other hand, the spectral sta-
bility established herein improves significantly upon the work [3], which established stability of
the dnoidal waves, on a subset of parameter space, by relying on the Grillakis-Shatah theory. Our
approach, which turns out to give definite answer for the entire domain of parameters, relies
on the instability index theory, as developed by [24, 25, 28, 33]. Interestingly, end even though
the linearized operators are explicit, our spectral analysis requires subtle and detailed analysis of
matrix Schrödinger operators in the periodic context, which support some interesting features.

1. INTRODUCTION

We consider the following system of PDE

(1.1)

{
i ut +uxx = uv +β|u|2u, −T ≤ x ≤ T, t ∈R+
vt = (|u|2)x ,

where β is a real parameter, u is complex valued function, and v is real-valued function. This
system is introduced by Benney, [9, 10] which models the interaction of short and long waves in
resonant water waves interaction in a nonlinear medium.

The Cauchy problem on the whole line case for the system (1.1) was considered in [7, 14].
The existence and nonlinear stability of solitary waves was studied in [20, 27].

We consider such model on a periodic background, that is, we impose a periodic bound-
ary conditions. The Cauchy problem for (1.1) has been previously considered in this context,
[3]. Let us pause for the moment and review the said paper, as it serves as a starting point for
our investigation. More precisely, in [3], the authors have established, via the Fourier restric-
tion method, that the problem is locally well-posed for data (u0, v0) ∈ H r [−T,T ]× H s[−T,T ],
whenever max(0,r − 1) ≤ s ≤ min(r,2r − 1). In particular, Hadamard well-posedness holds in

the spaces H
1
2 ([−T,T ])×L2[−T,T ] and also in the smaller space H 1([−T,T ])×L2[−T,T ]. Inter-

estingly, ill-posedness results (in the sense of non-uniformly continuous dependence on initial
conditions) were also obtained in H r ×H s , whenever r < 0.
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Here we consider the spectral stability of periodic traveling waves of dnoidal and snoidal
type. We are interested in the stability of periodic traveling wave solutions of (1.1) with respect
to perturbations that are periodic of the same period as the corresponding wave solutions.

We provide the relevant definitions of the various notion of stability below, but we would like
to discuss the advances made in the last forty years in the area of stability of periodic traveling
waves. Benjamin, in the seminal work, [8], first considered the stability of the cnoidal solution
as a periodic traveling wave of KdV. His results were later clarified and streamlined in [2], where
the authors have made use of the Grillakis-Shatah-Strauss formalism. It is worth mentioning
the work [1], where the author has addressed, in a similar manner, periodic waves for mKdV
and NLS. In the important works [15, 16], the authors have considered the stability of more
general families of solutions arising in the generalized KdV models.

More recently, in the works [4, 5], Angulo and Natali have developed a novel approach for
studying periodic traveling waves for a general class of dispersive models, which extracts the
necessary spectral information, based on the so-called positivity theory for the multipliers. For
other models such as Klein-Gordon-Schrodinger system, Schrödinger-Boussinesq system and
Schrodinger system stability of periodic waves is obtained in [29, 30, 31, 6, 17]. In the context
of standing waves, interesting contributions were made by Gallay and Haragus, [18] and [19].
While the results in [18] concern periodic waves in the context of NLS on the line, the results
in [19] are more relevant to our discussion herein. Namely, rigorous stability analysis was de-
veloped to deal with quasi-periodic waves in the cubic NLS context, both in the focussing and
defocussing scenarios. All of these works, rely, in one degree or another on the Grillakis-Shatah-
Strauss approach, which establishes orbital stability based on conservation laws. This almost
universally requires a C 1 dependence on the wave speed parameters, which is not always easy
to establish, so an ad hoc assumption in that regard is usually made.

As it turns out, one may study an almost equivalent stability property, namely the spec-
tral/linear stability, see Definition 1 below1. This is a fast developing theory, which has seen
some spectacular advances in recent years, [24, 25, 28, 33]. This approach, has several advan-
tages over the classical GSS approach. For example, one can study the spectral stability as a
purely linear problem, without paying particular attention to the actual conservation laws, see
(1.14) below. A second major advantage is that, when it comes to systems of coupled PDE’s, it
is just technically hard to deal with the conservation laws directly, as the linearized operators
become non-diagonal matrix operators, which are harder to analyze.

The stability of waves, especially in the context of systems of coupled PDE, especially in the
spatially periodic context, is a challenging topic and an active area of research. We should point
out that great progress was made in the last fifteen years regarding dispersive equations for
scalar quantities - in that regard, we would like to mention the works [11], [12] for KdV type
models, while [13] established an index counting formula for abstract second order in time
models. Concerning systems of dispersive PDE, there are just a few results available in the lit-
erature about periodic waves. In fact, we are aware of just a few rigorous works on the subject -
[22] deals with stability of periodic waves in systems by the index counting method, while [21]
and [17] apply the more standard GSS formalism to the corresponding problem at hand. One
explanation for the relative scarcity of rigorous analytical results in this context are the difficul-
ties associated with the spectral analysis of the linearized operators in cases of systems.

1In fact, under some generic conditions on the waves, one may convert such spectral stability statements into
orbital stability results, see Theorem 5.2.11, [26]
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Regarding the Benney system, which is the system of interest in this article, it was already
considered in [3]. More specifically, the authors were able to construct a family of smooth peri-
odic traveling waves of dnoidal type and show their orbital stability. This was done under cer-
tain conditions onβ and by relying on the Grillakis-Shatah-Strauss approach. More specifically,
they rely on the following conservation laws for the Benney system,

M(u) = ∫ T
−T |u(t , x)|2d x

E(u, v) = ∫ T
−T

[
v(t , x)|u(t , x)|2 +|ux(t , x)|2 + β

2 |u(t , x)|4
]

d x

P (u, v) = ∫ T
−T

[|v(t , x)|2 +2ℑ(u(t , x)ux(t , x))
]
d x.

In order to explain our spectral stability results in detail, we need to linearize the system (1.1)
about the periodic traveling wave solutions. Then we need to obtain the required spectral in-
formation about the operator of linearization and investigate the index of stability kH am , as
introduced in [28].

The paper is organized as follows. First, we construct the periodic traveling waves of dnoidal
and snoidal type and set-up the linearized problem for system (1.1). In Section 2, we overview
the index stability theory and investigate spectral properties of the operator of the lineariza-
tion. In Section 3, using the index counting theory we analyze the stability of periodic traveling
waves.

1.1. Periodic traveling waves. In this section, we construct periodic waves of the form

u(t , x) = e iωt e i c
2 (x−ct )ϕ(x − ct ), v(t , x) =ψ(x − ct ),

for the Benney system (1.1). Plugging in (1.1), we get the following system

(1.2)

{
ϕ′′−

(
ω− c2

4

)
ϕ=ϕψ+βϕ3

−cψ′ = 2ϕϕ′

The case c = 0 leads to semi-trivial constant solutionsϕ, so we do not consider it herein. Hence-
forth, we assume c 6= 0. Integrating second equation in (1.2), we get ψ=−1

cϕ
2 +γ, where γ is a

constant of integration. Substituting ψ in the first equation of (1.2), we get the following equa-
tion for ϕ

(1.3) ϕ′′−σϕ=
(
β− 1

c

)
ϕ3,

where we have introduced the important parameter σ=ω− c2

4 +γ. Integrating, we get

(1.4) ϕ′2 = 1

2

(
β− 1

c

)
ϕ4 +σϕ2 +a =: U (ϕ),

where a is a constant of integration. It is well known, thatϕ is a periodic function provided that
the energy level set H(x; y) = a of the Hamiltonian system d H = 0,

H(x; y) = y2 −σx2 + 1

2

(
1

c
−β

)
x4

contains an oval (a simple closed real curve free of critical points). Depending on the proper-
ties of the bi-quadratic polynomial U (ϕ), we distinguish two cases, which give rise to different
explicit solutions, both in term of the Jacobi elliptic functions.
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1.1.1. Dnoidal solutions. Consider the case 1
c −β> 0, σ> 0, and a < 0. Denote by ϕ0 >ϕ1 > 0,

the positive roots of −ϕ4 + 2cσ
1−cβϕ

2 + 2ca
1−cβ . Then, the profile equation (1.4) takes the form

ϕ′2 = 1− cβ

2c
(ϕ2

0 −ϕ2)(ϕ2 −ϕ2
1)

Then ϕ1 <ϕ<ϕ0 and up to translation the solution ϕ is given by

(1.5) ϕ(x) =ϕ0dn(αx,κ),

where

(1.6) ϕ2
0 +ϕ2

1 =
2cσ

1− cβ
, κ2 = ϕ2

0 −ϕ2
1

ϕ2
0

, α2 = 1− cβ

2c
ϕ2

0 =
σ

2−κ2
.

Since the period of dn is 2K (κ), then the fundamental period of ϕ is 2T = 2K (κ)
α .

The next case of consideration are the snoidal solutions.

1.1.2. Snoidal solutions. Let 1
c −β< 0, σ< 0 and a < 0. Then

ϕ′2 = cβ−1

2c
(ϕ2

0 −ϕ2)(
2cσ

1− cβ
−ϕ2

0 −ϕ2).

Up to translations the solution is given by

(1.7) ϕ(x) =ϕ0sn(αx,κ),

where

(1.8) κ2 = (1− cβ)ϕ2
0

2cσ− (1− cβ)ϕ2
0

, α2 =−2cσ− (1− cβ)ϕ2
0

2c
=− σ

1+κ2
.

Since the period of sn is 4K (κ), then the fundamental period of ϕ is 2T = 4K (κ)
α

.
We formulate our findings in the following proposition.

Proposition 1. Let (c,β,σ) are three real parameters and κ ∈ (0,1). Then, we can identify the
following families of solutions of (1.4).

If c 6= 0 and β < 1
c ,σ > 0, then ϕ is a family of dnoidal solutions given by (1.5). Its parameters

are given by

(1.9) ϕ2
0 =

2σ

(2−κ2)( 1
c −β)

, α2 = σ

2−κ2
.

whereas its fundamental period is 2T = 2K (κ)
α

= 2K (κ)
p

2−κ2p
σ

. Note that this is a three free parameter

family, depending and uniquely determined by ( 1
c −β,σ,κ) ∈R+×R+× (0,1).

If c 6= 0 and β> 1
c ,σ< 0, we obtain the snoidal family described in (1.7), where

(1.10) ϕ2
0 =

2σκ2

( 1
c −β)(1+κ2)

, α2 =− σ

1+κ2
,

and fundamental period given by 2T = 4K (κ)
p

1+κ2p−σ . This is also uniquely determined by three

independent parameters as follows ( 1
c −β,σ,κ) ∈R−×R−× (0,1).

Now that we have identified the relevant nonlinear waves for the Benney model (1.1), we
focus our attention to the corresponding linearized problem.



PERIODIC WAVES OF THE BENNEY SYSTEM 5

1.2. Linearized equations. We take the perturbation in the form

(1.11) u(t , x) = e iωt e i c
2 (x−ct )(ϕ(x − ct )+U (t , x − ct )), v(t , x) =ψ(x − ct )+V (t , x − ct )

where U (t , x) is complex valued function, V (t , x) is real valued function. Plugging in the system
(1.1), using (1.2), and ignoring all quadratic and higher order terms yields a linear equation for
(U ,V ). Furthermore, we split the real and imaginary parts of complex valued function U as
U = P + iQ, which allows us to rewrite the linearized problem as the following system

(1.12)


−Qt =−Pxx +

(
w − c2

4

)
P +3βϕ2P +ϕV +ψP

Pt =−Qxx +
(
w − c2

4

)
Q +ψQ +βϕ2Q

Vt − cVx = 2∂x(ϕP ).

Let us denote

J :=
 0 0 1

0 2∂x 0
−1 0 0

 , H :=
L1 ϕ 0
ϕ c

2 0
0 0 L2

 ,

where2

L1 =−∂2
x +σ+ (

3β− 1
c

)
ϕ2

L2 =−∂2
x +σ+ (

β− 1
c

)
ϕ2.

Then the system (1.12) can be written of the form

(1.13) ~Zt =JH ~Z , ~Z =
 P

V
Q

 .

The standard mapping into a time independent problem ~Z → eλt~z transforms the linear differ-
ential equation (1.13) into the eigenvalue problem

(1.14) JH~z =λ~z.

By general properties of Hamiltonian systems, and the operators J ,H in particular, if λ is an
eigenvalue of (1.14), then so are, λ̄,−λ,−λ̄. We give now the following standard definition of
spectral stability.

Definition 1. We say that the wave ϕ is spectrally unstable, if the eigenvalue problem (1.14) has
a non-trivial solution (~u,λ), so that~z 6= 0,~z ∈ H 2[−T,T ]×H 1[−T,T ]×H 2[−T,T ] and λ : ℜλ> 0.

In the opposite case, that is (1.14) has no non-trivial solutions, with ℜλ > 0, we say that the
wave is spectrally stable.

Remark: The definition of linear stability is closely related to the one given in Definition 1
for spectral stability. More precisely, ϕ is a linearly stable wave, if the flow of the differential
equation (or equivalently the semigroup generated by JH ) has Lyapunov exponent less or
equal to zero. Equivalently,

(1.15) limsup
t→∞

ln‖~U (t )‖
t

≤ 0,

2Note that the operator L2 is the standard operator L−, if we were to consider the waves ϕ as solutions to the
cubic NLS, see (1.3).
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for each initial data ~U (0) ∈ H 2[−T,T ]×H 1[−T,T ]×H 2[−T,T ]. It is a standard fact that these two
notions coincide in the case of periodic domains, due to the fact that the spectrum of JH con-
sists of eigenvalues only. A general justification of (1.15), which applies to our case, is provided
in Theorem 2.2, [28].

We are now ready to present our main results, which concern the spectral stability of the
traveling periodic waves - of dnoidal and snoidal type.

1.3. Main results. The following is our main result, which concerns the stability of the dnoidal
waves identified in Proposition 1.

Theorem 1. (Stability of the dnoidal waves)
Letω ∈R and c 6= 0,β< 1

c ,σ> 0. Then, the Benney sytsem (1.1) has a family of dnoidal solutions
in the form

(e iωt e i c
2 (x−ct )ϕ(x − ct ),ψ(x − ct ) = (e iωt e i c

2 (x−ct )ϕ(x − ct ),−1

c
ϕ2(x − ct )+σ+ c2

4
−ω)

where the dnoidal solutions ϕ are identified by (1.5), whose parameters are given by (1.9). These
solutions are spatially periodic, provided

(1.16) c
K (κ)

p
2−κ2

p
σ

∈ 2πZ.

Under these assumptions, the periodic waves are spectrally stable, in the sense of Definition 1, for
all values of the parameters, ω ∈R,σ> 0,β< 1

c ,κ ∈ (0,1), subject to (1.16).

Remark: In [3], the authors proved that dnoidal solutions are orbitally stable for β ≤ 0 and
for β > 0 and 8βσ− 3c(1 −βc)2 ≤ 0. This is achieved by evaluating the number of negative
eigenvalues of the operator of linearization around the periodic waves and number of positive
eigenvalues of the Hessian of d(ω,c) = E(u, v)− c

4 P (u, v)−ω
2 M(u, v). We extend this result herein

to the whole domain of the parameters.
Our next result concerns the instability of the snoidal waves, also identified in Proposition 1.

Theorem 2. (Instability of the snoidal solutions)
Let ω ∈R and c 6= 0,β> 1

c ,σ< 0. Then, the Benney system has a family of snoidal solutions

(e iωt e i c
2 (x−ct )ϕ(x − ct ),−1

c
ϕ2(x − ct )+σ+ c2

4
−ω)

where ϕ is described in (1.7), together with (1.10). These waves are periodic exactly when

(1.17) cK (κ)

p
1+κ2

p−σ ∈πZ.

The snoidal periodic waves are spectrally unstable (with at least one real and positive eigenvalue)
for all values of the parameters ω ∈R,σ< 0,β> 1

c ,κ ∈ (0,1), subject to (1.17).

The plan for the paper, as well as some major points are explained below. In Section 2, we
introduce the basics of the instability index theory. We also outline well-known results about the
scalar linearized Schrödinger operators L1,L2 identified earlier, as well as a related operator L,
which plays significant role in our spectral analysis. This allows us to compute the Morse index
of the operator H as well as the kernel and the generalized kernel of JH , see Proposition 3.
In Section 3, we deploy the instability index theory to reduce matters to the Morse index of a
scalar two-by-two matrix D . For the dnoidal case, the computations here are involved, since
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only one of the entries of D is (barely) explicitly computable, and it involves the construction
of the Green’s function for the Schrödinger operator L−1. This is however enough to conclude
stability. In the snoidal case, one argues by computing selected (easier) quantities in the limit
0 <β− 1

c << 1, which allows one to concludes that real instability exists close to this limit. Then,
a continuation argument, coupled with an earlier rigidity argument about3 K er (JH ) confirms
that the real instability persists across the whole domain of parameters.

2. PRELIMINARIES

We first review the basics of the instability index theory, as developed in [24, 25, 28, 33].

2.1. Instability index count. We follow the notations and presentation in [24, 25], but the same
results appears in [33], while the most general version can be found in [28]. Consider the Hamil-
tonian eigenvalue problem

(2.1) IL u =λu,

where I ∗ = −I ,L ∗ = L and I ,H : I f = I f̄ , H f = H f̄ , i.e. I ,H map real-valued ele-
ments into real-valued elements.

Introduce the Morse index of a self-adjoint, bounded from below operator S, by setting n(S) =
#{λ ∈ σ(S) : λ< 0}, counted with multiplicities. Let kr := #{λ ∈ σpt .(IL ) : λ> 0} represents the
number of positive real eigenvalues of IL , counted with multiplicities, kc := #{λ ∈σpt .(IL ) :
ℜλ> 0,ℑλ> 0} - the number of quadruplets of complex eigenvalues of IL with non-zero real
and imaginary parts, whereas

k−
i = #{iλ,λ> 0 : IL f = iλ f ,〈L f , f 〉 < 0}

is the number of pairs of purely imaginary eigenvalues of negative Krein signature. Consider
the generalized kernel of JH ,

g ker (IL ) = span ∪∞
l=1 ker(IL )l .

Under general conditions, described in [24], one has that g ker (IL ) is finite dimensional, so
one can take a basis4, say η1, . . . ,ηN . Then, we introduce a symmetric matrix D by

D := {{Di j }N
i , j=1 : Di j = 〈L ηi ,η j 〉}.

We are now ready to state the main result of this section, namely the following formula for the
Hamiltonian index,

(2.2) kH am := kr +2kc +2k−
i = n(L )−n(D).

Clearly, spectral stability for (2.1) follows from kH am = 0, but such a condition is not necessary
for spectral stability. For example, one might encounter a situation where kH am = 2, but with
k−

i = 1, which is an example of spectrally stable configuration with a non-zero KH am.. On the
other hand, it is clear that if kH am is an odd integer, then kr ≥ 1, guaranteeing instability.

3establishing that the generalized kernel of JH remains five dimensional and importantly, does not change
across the parameter domain

4In the applications, one needs to have an explicit form of such a basis anyway, before any determination of the
stability can be made. In a way, we shall need to check the finite dimensionality of g ker (IL )
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2.2. Spectral information about JH . Due to the results in Section 2.1, it becomes clear that
we need a determination of a basis of g ker (JH ). It turns out that it is helpful to introduce
another Schrödinger operator, namely

L =−∂2
x +σ+3

(
β− 1

c

)
ϕ2.

For context, this is the well-known operator L+, if we were to consider the waves as solutions to
the standard cubic NLS, see (1.3).

2.2.1. The spectra of L,L2. For self-adjoint operator H acting on L2
per [0;T ] with domain D(H) =

H 2([0;T ]), we have that its spectrum is purely discrete,

λ0 <µ0 ≤µ1 <λ1 ≤λ2 <µ2 ≤µ3 <λ3 ≤λ4 < ...

Eigenvalues λi , i = 0,1,2... corresponds to the periodic eigenvalues, while µi , i = 0,1,2... corre-
sponds to the semi-periodic eigenvalues. Then, we have that H f = λ f has a solution of period
T if and only if λ = λi , i = 0,1,2, ... and a solution of period 2T if and only if λ = λi , λ = µi ,
i = 0,1,2, ....

We start with the observation that Lϕ′ = 0, which is obtained by differentiating equation (1.3)
respect to x. Also, L2ϕ= 0, which is just a restatement of (1.3). It is actually helpful, for the rest
of the argument, to list the lowest few eigenvalues for both operators L,L2, whereϕ is either the
dnoidal solution (1.5) or the snoidal solution (1.7). In fact, matters reduce to the explicit Hill
operators

Λ1 = −∂2
y +6k2sn2(y,k)

Λ2 = −∂2
y +2k2sn2(y,k)

It is well-known that the first four eigenvalues of Λ1 with periodic boundary conditions on
[0,4K (k)] are simple. These eigenvalues and corresponding eigenfunctions are given by

ν0 = 2+2κ2 −2
p

1−κ2 +κ4, φ0(y) = 1− (1+κ2 −
p

1−κ2 +κ4)sn2(y,κ),

ν1 = 1+κ2, φ1(y) = cn(y,κ)dn(y,κ) = sn′(y,κ),

ν2 = 1+4κ2, φ2(y) = sn(y,κ)dn(y,κ) =−cn′(y,κ),

ν3 = 4+κ2, φ3(y) = sn(y,κ)cn(y,κ) =−κ−2dn′(y,κ).

Regarding Λ2, the first three eigenvalues and the corresponding eigenfunctions with periodic
boundary conditions on [0,4K (k)] are simple and

ε0 = k2, θ0(y) = dn(y,k),

ε1 = 1, θ1(y) = cn(y,k),

ε2 = 1+k2, θ2(y) = sn(y,k).

In the dnoidal case, using that κ2sn2x +dn2x = 1 and (1.5), (1.6), we get

(2.3) L =α2[Λ1 − (4+κ2)].

Note that in this case ν0 and ν3 corresponds to the periodic eigenvalues, while ν1 and ν2 corre-
sponds to the semi-periodic eigenvalues. It follows that the first two eigenvalues of the operator
L, equipped with periodic boundary condition on [−T,T ] are simple, zero is the second eigen-
value, and n(L) = 1. In the snoidal case, using (1.7) and (1.8), we have

(2.4) L =α2[Λ1 − (1+κ2)].
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It follows again that zero is the second eigenvalue, and n(L) = 1.
Regarding the operator L2, in the dnoidal case, using again (1.5), (1.6), we have that

L2 =α2[Λ2 −k2],

whence using the spectral information available forΛ2, we conclude L2 ≥ 0, n(L2) = 0.
In the snoidal case, we have

L2 =α2[Λ2 − (1+k2)],

whence the spectral description ofΛ2 allows us to conclude that n(L2) = 2, with a simple eigen-
value at zero. We collect our results about L,L2 in the following proposition.

Proposition 2. Let ϕ be either the dnoidal wave (1.5) or the snoidal wave (1.7). Then,

• In both the dnoidal and snoidal cases, the Hill operator L, equipped with periodic bound-
ary conditions on [−T,T ], has Morse index n(L) = 1 and K er [L] = span[ϕ′].

• In the dnoidal case, the operator L2 has Morse index n(L2) = 0, K er [L2] = span[ϕ].
• In the snoidal case, the operator L2 has Morse index n(L2) = 2, K er [L2] = span[ϕ].

We are now ready to describe the kernel and the generalized kernel of JH .

2.2.2. Generalized Kernel of JH .

Proposition 3. Let ϕ be either the dnoidal wave (1.5) or the snoidal wave (1.7). Then, the kernel
of H is two dimensional, namely

(2.5) K er [H ] = span[

 ϕ′

−2
cϕϕ

′
0

 ,

 0
0
ϕ

].

In addition, under the assumption

(2.6) 〈L−1ϕ,ϕ〉 6= 0,

we can identify all the generalized eigenvectors as follows

(2.7) g K er (JH )ªK er (H ) = span




1
2c(cβ−1)ϕ

− β
c(cβ−1)ϕ

2

L−1
2 ϕ′.

 ,

 −L−1ϕ
2
cϕL−1ϕ

0

 ,

0
1
0


 .

Proof. We start with K er [H ]. We have that

 f
g
h

 ∈ kerH if

(2.8)

∣∣∣∣∣∣
L1 f +ϕg = 0
ϕ f + c

2 g = 0
L2h = 0

From the second equation of (2.8), we have g =−2
cϕ f and plugging in the first equation, we get

0 = L1 f +ϕg =−∂2
x f +σ f +

(
3β− 1

c

)
ϕ2 − 2

c
ϕ2 f = L f

From Proposition 2, we get that all solutions are multiples of f = ϕ′ and g = −2
cϕϕ

′. From
Proposition 2, we know that K er (L2) = span[ϕ] and so, from third equation of (2.8), we have
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that another vector in K er (H ) is h = ϕ. This identifies K er (H ) for us as the one presented in
(2.5).

We now turn to a representation for K er (JH ). Consider K er (JH )ªK er (H ). We set the

equations for

 f
g
h

 ∈ K er (JH )ªK er (H ). We need to solve H

 f
g
h

 ∈ K er (J ) = span

0
1
0

. This

is equivalent to h = 0 and

(2.9)

∣∣∣∣ L1 f +ϕg = 0
ϕ f + c

2 g = 1

Solving it, implies in a similar manner

f =−2

c
L−1ϕ, g = 2

c

(
1+ 2

c
ϕL−1ϕ

)
.

This yields an additional, third vector in the representation of K er (JH ). More specifically, we
obtain

(2.10) K er (JH ) = span


 ϕ′

−2
cϕϕ

′
0

 ,

0
0
ϕ

 ,

 −L−1ϕ

1+ 2
cϕL−1ϕ

0

 .

We now work on identifying the adjoint/generalized eigenvectors. We start with the next level
adjoints e-vectors, namely K er ((JH )2). First, we consider the equation

JH

 f
g
h

=
 ϕ′

−2
cϕϕ

′
0

 .

This has solutions, which are all multiples of

f = 1

c2
L−1[ϕ3] = 1

2c(cβ−1)
ϕ;

g = − 2

c2

(
ϕ2

2
+ ϕL−1[ϕ3]

c

)
=− β

c(cβ−1)
ϕ2

h = L−1
2 ϕ′,

where we have used the identity Lϕ= 2(β− 1
c )ϕ3. This gives a new element~ξ ∈ K er ((JH )2)ª

K er (JH ), namely

~ξ :=


1

2c(cβ−1)ϕ

− β
c(cβ−1)ϕ

2

L−1
2 ϕ′

 .

Next, we solve

JH

 f
g
h

=
0

0
ϕ

 .

We obtain that all solutions are multiples of the vector

(2.11) f =−L−1ϕ, g = 2

c
ϕL−1ϕ, h = 0.
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We compare this with a similar element, already present in K er (JH ). We conclude, that we
can consider instead the following new element~η ∈ K er ((JH )2)ªK er (JH ),

~η=
 −L−1ϕ

1+ 2
cϕL−1ϕ

0

−
 −L−1ϕ

2
cϕL−1ϕ

0

=
 0

1
0

 .

Finally, we solve the equation for the third eigenvector, with unknownΨ=
 Ψ1

Ψ2

Ψ3



(2.12) JHΨ=
 −L−1ϕ

1+ 2
cϕL−1ϕ

0

 .

Taking into account that JHΨ=
 L2Ψ3

∗
∗

. This necessitates the solvability condition L−1ϕ⊥

K er [L2] = span[ϕ]. This means that as long as 〈L−1ϕ,ϕ〉 6= 0, there are no further elements of
K er ((JH )2)ªK er (JH ). All in all, we have established that

(2.13) K er ((JH )2)ªK er (JH ) = span[~ξ,~η].

Next, we show that

(2.14) K er ((JH )3)ªK er ((JH )2) = {0}.

Note that combining (2.14) and (2.13) with (2.10), yields the formula (2.7). So, it remains to show
(2.14). To this end, we need to show that the equation

(2.15) ζ1
~ξ+ζ2~η=JHΨ=

 L2Ψ3

2∂x(ϕΨ1 + c
2Ψ2)

∗


has no solutions if (ζ1,ζ2) 6= (0,0). Note that the first equation in (2.15) reads L2Ψ3 = ζ1

2c(cβ−1)ϕ.

As K er (L2) = span[ϕ], this forces a solvability condition, 〈ϕ, ζ1
2c(cβ−1)ϕ〉 = 0, which is impossible,

unless ζ1 = 0. Now that we know that ζ1 = 0, the second equation in (2.15) reads

2∂x(ϕΨ1 + c

2
Ψ2) = ζ2.

This implies ϕΨ1 + c
2Ψ2 = ζ2

2 x + const . The left hand side of this identity is 2T periodic, while
the right-hand side is never 2T periodic, unless ζ2 = 0. Thus, we conclude that ζ2 = 0 as well,
which establishes (2.14).

This completes the proof of Proposition 3. �

Next, we compute the Morse index of H .

2.3. Morse index of H . In the next Proposition we compute the Morse index of H .

Proposition 4. We have the following formula for the Morse index n(H ),

• If ϕ is the dnoidal wave given by (1.5), then n(H ) = 1.
• For the snoidal case, i.e. ϕ is given by (1.7), we have n(H ) = 3.
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Proof. Denote H0 :=
(

L1 ϕ

ϕ c
2

)
. Clearly, n(H ) = n(H0)+n(L2). Taking into account the com-

putation of n(L2) in Proposition 2 (which yields n(L2) = 0 in the dnoidal case and n(L2) = 2 in
the snoidal case), it remains to show that n(H0) = 1, in both cases under consideration.

To this end, observe that we have the following expression for the quadratic form associated
to H0,

(2.16)
〈H0

(
f
g

)
,

(
f
g

)
〉 = 〈L1 f , f 〉+2〈ϕ f , g 〉+ c

2〈g , g 〉

= 〈L f , f 〉+∫ T
−T

[√
2
c f +

√
c
2 g

]2
d x.

First, we confirm that H0 has at least one negative eigenvalue. Recall from Proposition 2, that
n(L) = 1. Let us denote by h the eigenfunction of L corresponding to the negative eigenvalue.
For f = h and g :=−2

c h in (2.16), we get

〈H0

(
f
g

)
,

(
f
g

)
〉 = 〈Lh,h〉 < 0.

Hence H0 has a negative eigenvalue. Thus, selecting f ⊥ h and using the max-min characteri-
zation of eigenvalues, we have that the second smallest eigenvalue λ1 satisfies the estimate

λ1(H0) ≥ inf
( f ,g )⊥(h,0):‖ f ‖2+‖g‖2=1

〈H0

(
f
g

)
,

(
f
g

)
〉 ≥ inf

f ⊥h,‖ f ‖≤1
〈L f , f 〉 ≥ 0,

since L has n(L) = 1 and so, inf f ⊥h〈L f , f 〉 ≥ 0. That is, n(H0) = 1. �

3. STABILITY ANALYSIS OF THE WAVES

We start by analyzing the stability of the dnoidal waves. Our starting point is the the insta-
bility Krein index count (2.2). Thus, it remains to determine the Morse index of the matrix D
associated with it. Recall that, under the assumption (2.6), we have identified

~ψ1 =


1

2c(cβ−1)ϕ

− β
c(cβ−1)ϕ

2

L−1
2 ϕ′.

 ; ~ψ2 =
 −L−1ϕ

2
cϕL−1ϕ

0

 ; ~ψ3 =
0

1
0

 .

so that g K er (JH )ªK er (H ) = span[~ψ1,~ψ2,~ψ3]. By direct computations, we have

H ~ψ1 =
 0

− 1
2cϕ

2

ϕ′

 ; H ~ψ2 =
 −ϕ

0
0

 ; H ~ψ3 =
ϕc

2
0


and

D11 = 〈Hψ1,ψ1〉 = 〈L−1
2 ϕ′,ϕ′〉+ β

2c2(cβ−1)
〈ϕ2,ϕ2〉(3.1)

D12 = D21 = 〈H ~ψ1,~ψ2〉 =− 1

2c(cβ−1)
〈ϕ,ϕ〉(3.2)

D22 = 〈H ~ψ2,~ψ2〉 = 〈L−1ϕ,ϕ〉,D33 = 〈H ~ψ3, ~ψ3〉 = cT(3.3)

D13 = D31 = 〈H ~ψ1,~ψ3〉 =− 1

2c
〈ϕ,ϕ〉(3.4)

D23 = D32 = 〈H ~ψ2,~ψ3〉 = 0.(3.5)
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3.1. Dnoidal waves. According to instability index count formula (2.2) and Proposition 4, which
implies that n(H ) = 1, the stability analysis reduces to establishing that n(D) = 1. Indeed, in
such a case, the right-hand side of (2.2) is zero, thus would rule out all potential instabilities on
the left-hand side.

We proceed to evaluating the elements of the matrix D . In fact, we shall need to only compute
D22 = 〈L−1ϕ,ϕ〉, which we will now show is negative. To this end, start with the identity Lϕ′ = 0.
In order to construct the Green’s function for the operator L, we need a solution ψ : Lψ = 0. In
principle, the following function provides such a solution

(3.6) ψ(x) =ϕ′(x)
∫ x 1

ϕ′2(s)
d s,

∣∣∣∣ ϕ′ ψ

ϕ′′ ψ′
∣∣∣∣= 1

Unfortunately, as ϕ′ has zeros in the interval of integration, this integral is not well-defined.
Instead, we use the standard roundabout way of making the definition of such integral well-
defined, which involves integration by parts. Specifically, we proceed by using the identities

1

cn2(y,κ)
= 1

dn(y,κ)

∂

∂y

sn(x,κ)

cn(y,κ)
,

1

sn2(y,κ)
=− 1

dn(y,κ)

∂

∂y

cn(x,κ)

sn(y,κ)

Integrating by parts yields the alternative, well-defined expression for ψ, which is formally
equivalent to (3.6),

(3.7) ψ(x) = 1

α2κ2ϕ0

[
1−2sn2(αx,κ)

dn(αx,κ)
−ακ2sn(αx,κ)cn(αx,κ)

∫ x

0

1−2sn2(αs,κ)

dn2(αs,κ)
d s

]
.

Thus, we may construct the Green’s function as follows

L−1 f =ϕ′
∫ x

0
ψ(s) f (s)d s −ψ(s)

∫ x

0
ϕ′(s) f (s)s +C f ψ(x),

where C f is chosen, so that L−1 f has the same period as ϕ. After integrating by parts, we get

(3.8) 〈L−1ϕ,ϕ〉 =−〈ϕ3,ψ〉+ ϕ2(T )+ϕ(0)2

2
〈ϕ,ψ〉+Cϕ〈ϕ,ψ〉.

Integrating by parts yields
〈ψ′′,ϕ〉 = 2ψ′(T )ϕ(T )+〈ψ,ϕ′′〉.

Using that Lϕ= 2(β− 1
c )ϕ3, we get

〈ψ,ϕ3〉 = c

cβ−1
ψ′(T )ϕ(T ).

Using that
∫ K (κ)

0
1−2sn2(x)

dn2(x)
d x = 1

κ2(1−κ2)
[2(1−κ2)K (κ)− (2−κ2)E(κ)], we get

(3.9)

〈ϕ,ψ〉 = 1
α3κ2 [E(κ)−K (κ)]

〈ϕ3,ψ〉 = 1
α

c
cβ−1 [2(1−κ2)K (κ)− (2−κ2)E(κ)]

Cϕ =− ϕ′′(T )
2ψ′(T )〈ϕ,ψ〉+ ϕ2(T )−ϕ2(0)

2 .

Taking into account
ϕ2

0
α2 = 2c

1−cβ , we get

(3.10) D22 = 〈L−1ϕ,ϕ〉 = 1

α

1
1
c −β

E 2(κ)− (1−κ2)K 2(κ)

2(1−κ2)K (κ)− (2−κ2)E(κ)
< 0,
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FIGURE 1. Graph of κ→ E 2(κ)−(1−κ2)K 2(κ)
2(1−κ2)K (κ)−(2−κ2)E(κ)

see Figure 1, so in particular, the condition (2.6) is satisfied. Also, since D22 < 0 for all values
of the parameters, it is clear that D22 = 〈De2,e2〉 ≤ infξ∈R3:‖ξ‖=1〈Dξ,ξ〉, whence5 n(D) ≥ 1. As
discussed, this implies that the dnoidal waves are spectrally stable.

3.2. Snoidal waves. According to the formula (3.1), (3.2), (3.3) and (3.4), we shall need to com-
pute 〈L−1

2 ϕ′,ϕ′〉, 〈L−1ϕ,ϕ〉 and
∫
ϕ2,

∫
ϕ4.

To this end, we start with the computation of 〈L−1ϕ,ϕ〉. We have Lϕ′ = 0 and Lψ = 0, where
ψ(x) =ϕ′(x)

∫ x 1
ϕ′2(s)

d s. Using that

1

cn2(αx)
= 1

αdn(αx)

∂

∂x

sn(αx)

cn(αx)
,

we get the odd function ψ

ψ(x) = 1

ϕ0α2(1−κ2)

[
sn(αx)−ακ2cn(αx)dn(αx)

∫ x

0

1+ sn2(αs)

dn2(αs)
d s

]
.

Integration by parts yields the formulas

〈L−1ϕ,ϕ〉 =−〈ϕ3,ψ〉+Cϕ〈ϕ,ψ〉,
〈ψ′′,ϕ〉 =−2ϕ′(T )ψ(T )+〈ψ,ϕ′′〉.

A direct calculation shows that Lϕ= 2
(
β− 1

c

)
ϕ3, whence

〈ϕ3,ψ〉 =− c

cβ−1
ϕ′(T )ψ(T ).

5By the way, by (2.2) this actually implies that n(D) = 1.
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Now, we have the relations 

ψ(T ) = κ2

ϕ0α2(1−κ2)

∫ 2K (κ)
0

1+sn2(x)
dn2(x)

d x

ϕ′(T ) =−ϕ0α, Cϕ =− ϕ′(T )
2ψ(T )〈ϕ,ψ〉.

α2 =− σ
1+κ2 , ϕ2

0 = 2cσκ2

(1−cβ)(1+κ2)

Integration by parts allows us to compute

〈ϕ,ψ〉 = 1

α3(1−κ2)

[∫ 2K (κ)

0
sn2(x)d x +

∫ 2K (κ)

0

1+ sn2(x)

dn2(x)
d x −2K (κ)

]
.

Putting all this together, we have
〈ϕ3,ψ〉 = 1

α
c

cβ−1
κ2

1−κ2

∫ 2K (κ)
0

1+sn2(x)
dn2(x)

d x

Cϕ〈ϕ,ψ〉 = 1
α

c
cβ−1

1

(1−κ2)
∫ 2K (κ)

0
1+sn2(x)

dn2(x)
d x

[∫ 2K (κ)
0 sn2(x)d x +∫ 2K (κ)

0
1+sn2(x)

dn2(x)
d x −2K (κ)

]2

whence finally

(3.11) 〈L−1ϕ,ϕ〉 = 1

α

1

(β− 1
c )

F (κ),

where

F (κ) =


(∫ 2K (κ)

0 sn2(x)d x +∫ 2K (κ)
0

1+sn2(x)
dn2(x)

d x −2K (κ)
)2

(1−k2)
∫ 2K (κ)

0
1+sn2(x)

dn2(x)
d x

− κ2

1−κ2)

∫ 2K (κ)

0

1+ sn2(x)

dn2(x)
d x


= 2K (κ)+2E(κ)

(
−1+ κ2E(κ)

(κ2 +1)E(κ)− (1−κ2)K (κ)

)
.

We have plotted it, using MATHEMATICA, see Figure 2. From this, it becomes clear that
〈L−1ϕ,ϕ〉 > 0. In particular, the condition (2.6) holds, whence the conclusions of Proposition 3
hold.

We will now compute 〈L−1
2 ϕ′,ϕ′〉. We have L2ϕ = 0 and ψ = ϕ

∫ x 1
ϕ2 d s is also solution of

L2ψ= 0. Using the identity

1

sn2(y,κ)
=− 1

αdn(y,κ)

∂

∂y

cn(x,κ)

sn(y,κ)

and integration by parts, we can alternatively express ψ as follows

ψ(x) =− 1

αϕ0

[
cn(αx)

dn(αx)
−ακ2sn(αx,κ)

∫ x

0

cn2(αs,κ)

dn2(αs,κ)
d s

]
.

Using that ϕ is odd function and ψ is even function, we get

〈L−1
2 ϕ′,ϕ′〉 = −

∫ T

−T
ϕ2ϕ′ψd x +Cϕ′

∫ T

−T
ϕ′ψd x,

Cϕ′ = − ϕ′(T )

2ψ′(T )

∫ T

−T
ϕ′ψd x.
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Hence

〈L−1
2 ϕ′,ϕ′〉 =−

∫ T

−T
ϕ2ϕ′ψd x − ϕ′(T )

2ψ′(T )

(∫ T

−T
ϕ′ψd x

)2

.

In addition, we have

ϕ′(T ) =−αϕ0, ψ′(T ) =− κ2

ϕ0

∫ 2K (κ)
0

cn2x
dn2x

d x

∫ T
−T ϕ

′(x)ψ(x)d x =− 1
α

[∫ 2K (κ)
0 cn2(x)d x +∫ 2K (κ)

0
cn2(x)
dn2(x)

d x
]

∫ T
−T ϕ

2ϕ′(x)ψ(x)d x =−ϕ2
0
α

[
2
∫ 2K (κ)

0 sn2(x)cn2(x)d x + κ2

2

∫ 2K (κ)
0

sn4(x)cn2(x)
dn2(x)

d x
]

α2 =− σ
1+κ2 , ϕ2

0 = 2(−σ)κ2

(β− 1
c )(1+κ2)

Putting all this together, we get

〈L−1
2 ϕ′,ϕ′〉 = ϕ2

0

α

[
2
∫ 2K (κ)

0
sn2(x)cn2(x)d x + κ2

2

∫ 2K (κ)

0

sn4(x)cn2(x)

dn2(x)
d x

]
−

− ϕ2
0

α

(∫ 2K (κ)
0 cn2(x)d x +∫ 2K (κ)

0
cn2(x)
dn2(x)

d x
)2

2κ2
∫ 2K (κ)

0
cn2x
dn2x

d x

Finally, we have

〈ϕ,ϕ〉 = 2ϕ2
0

α

∫ 2K (κ)

0
sn2(x)d x,

〈ϕ2,ϕ2〉 = 2ϕ4
0

α

∫ 2K (κ)

0
sn4(x)d x.

We now compute det(D), in the regime β = 1
c + ε,0 < ε << 1. We will establish the following

proposition, regarding the matrix D , introduced in (3.1), (3.2), (3.3), (3.4), (3.5).
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Proposition 5. Fix c 6= 0,σ < 0. Then, there exists ε0 = ε0(c,σ) > 0, so that for all 0 < ε < ε0 and
β= 1

c +ε, we have that det (D) > 0.

Before we proceed with the proof of Proposition 5, let us finish the proof of Theorem 2. That
is, we show that the snoidal waves are spectrally unstable.

We argue as follows - for very small ε, we have from Proposition 5 that det(D) > 0, whence
the symmetric matrix D has either two negative eigenvalues and a positive one (in which case
n(D) = 2), or three positive eigenvalues or n(D) = 0.

By (2.2), we conclude that either kH am = 3−2 = 1 or kH am. = n(L )−n(D) = 3−0 = 3. This
implies that there is at least one real instability. In fact, for systems with kH am = 1, this is ob-
vious. If kH am. = 3, the possibilities are as follows - three real instabilities, one real instability
and two complex/oscillatory instabilities and one real instability and a pair of purely imaginary
eigenvalues of negative Krein signature. Unfortunately, the instability index theory outlined in
Section 2.1 does not allow us to specify precisely which situation we finds ourselves in, even for
ε<< 1. We claim that we can nevertheless confirm that the waves are unstable, in the sense that
the eigenvalue problem (1.14) has at least one positive eigenvalue.

To this end, consider the parameters c,σ fixed, and β as a bifurcation parameter. We start
with the observation made above, that for small 0 < ε << 1 (that is β slightly bigger than 1

c ),
we have at least one real unstable eigenvalue. Allowing the parameter β > 1

c to increase, the
Krein index may of course change, since our analysis showed that n(D) = 0 or n(D) = 2 only for
0 < ε << 1. But regardless of that, there will always be at least one real instability. This is due
to Proposition 3 which asserts that the eigenvalue at zero is of algebraic multiplicity five for all
values of the parameters, with three eigenvectors and two generalized eigenvectors described
there. The only scenario for the real instability present at ε<< 1 to become stable is by passing
through the zero generalized eigenspace for some intermediate value of β, which would have
been detected by our analysis in Proposition 3. As we have shown, this does not happen. Thus,
the real and positive eigenvalue is present for all β > 1

c , and the snoidal waves ϕ are unstable.
This completes the proof of Theorem 2 and it remains to establish Proposition 5.

3.3. Proof of Proposition 5. We first calculate det(D). By the specifics of it, see (3.1), (3.2), (3.3),
(3.4), (3.5), we have

det(D) = D33 det(D̃)−
(

1

2c

∫
ϕ2

)2

D22,

where D̃ =
(

D11 D12

D12 D22

)
. Taking into account the form of ϕ2

0 = const .ε−1, we have

〈L−1
2 ϕ′,ϕ′〉 = const .ε−1 +O(ε−2),

while 〈ϕ2,ϕ2〉 = const .ε−2 +O(ε−1). So, we can conclude that

D11 = β

2c2(cβ−1)
〈ϕ2,ϕ2〉+〈L−1

2 ϕ′,ϕ′〉 = β

2c2(cβ−1)
〈ϕ2,ϕ2〉+O(ε−1),
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whence

det(D̃) = D11D22 −D2
12 =

= βϕ4
0

αc(cβ−1)

(∫ 2K (kκ)

0
sn4(x)d x

)
F (κ)

α(cβ−1)
− ϕ4

0

α2c2(cβ−1)2

(∫ 2K (kκ)

0
sn2(x)d x

)2

+O(ε−2)

= ϕ4
0

α2(cβ−1)2

[
β

c

(∫ 2K (kκ)

0
sn4(x)d x

)
F (κ)− 1

c2

(∫ 2K (kκ)

0
sn2(x)d x

)2]
+O(ε−2).

Clearly, the first expression is of the form const .ε−4 and hence, it is dominant in the regime
β= 1

c +ε,0 < ε<< 1. Furthermore, the assignment β= 1
c +ε allows us to further extract a leading

order term as follows

det(D̃) = ϕ4
0

α2c2(cβ−1)2

[(∫ 2K (kκ)

0
sn4(x)d x

)
F (κ)−

(∫ 2K (kκ)

0
sn2(x)d x

)2]
+O(ε−3).

We have computed this last function of κ in MATHEMATICA, and we have obtained the following
explicit expression for it

H(κ) =
(∫ 2K (kκ)

0
sn4(x)d x

)
F (κ)−

(∫ 2K (kκ)

0
sn2(x)d x

)2

=

=
(2(κ2 +2)K (k)−4(κ2 +1)E(k))

(
2K (k)+2E(k)

(
κ2E(k)

(κ2−1)K (k)+(κ2+1)E(k)
−1

))
−12(E(k)−K (k))2

3κ4

Plotting this leads to the conclusion H [κ] > 0 that, see Figure 3. Thus, to a leading order

det(D̃) =C (k,σ,c)ε−4 +O(ε−3),

as ε : 0 < ε<< 1. In addition, observe that by (3.11), we have that(
1

2c

∫
ϕ2

)2

D22 =O(ε−3).
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Accordingly, we have that

det(D) = D33 det(D̃)−
(

1

2c

∫
ϕ2

)2

D22 =C (k,σ,c)ε−4 +O(ε−3),

whence det(D) > 0, for all small enough ε> 0. This completes the proof of Proposition 5.
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