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Department of Management Science and Information Systems

Rutgers University
Piscataway, NJ, USA
mg1366@rutgers.edu

May 19, 2023

ABSTRACT

We consider strongly-convex-strongly-concave saddle point problems assuming we have access
to unbiased stochastic estimates of the gradients. We propose a stochastic accelerated primal-
dual (SAPD) algorithm and show that SAPD sequence, generated using constant primal-dual step
sizes, linearly converges to a neighborhood of the unique saddle point. Interpreting the size of the
neighborhood as a measure of robustness to gradient noise, we obtain explicit characterizations of
robustness in terms of SAPD parameters and problem constants. Based on these characterizations,
we develop computationally tractable techniques for optimizing the SAPD parameters, i.e., the pri-
mal and dual step sizes, and the momentum parameter, to achieve a desired trade-off between the
convergence rate and robustness on the Pareto curve. This allows SAPD to enjoy fast convergence
properties while being robust to noise as an accelerated method. SAPD admits convergence guar-
antees for the distance metric with a variance term optimal up to a logarithmic factor –which can
be removed by employing a restarting strategy. We also discuss how convergence and robustness
results extend to the convex-concave setting. Finally, we illustrate our framework on distributionally
robust logistic regression problem.

1 Introduction

We consider the following saddle point (SP) problem:
min
x∈X

max
y∈Y
L(x, y) , f(x) + Φ(x, y)− g(y), (1)

where X and Y are, n and m dimensional inner product spaces endowed with inner product norms ‖x‖X=
√
〈x, x〉X

and ‖y‖Y=
√
〈y, y〉Y , respectively; Φ : X × Y → R is convex in x, concave in y with a Lipschitz gradient;

f : X → R∪{+∞} and g : Y → R∪{+∞} are closed, convex functions. We assume that L(x, y) is (strongly)
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convex in x and (strongly) concave in y with moduli µx, µy ≥ 0, respectively. The SP problem in (1) has a wide range
of applications; in fact, many convex optimization problems arising in machine learning (ML) can be recast as (1)
through Lagrangian duality. Prominent applications with SP formulations include empirical risk minimization (ERM)
[53, 42], supervised learning with non-separable losses, or regularizers [46, 38], distributionally robust ERM [29], and
robust optimization [4]. In many of these applications, one does not have access to exact values of the gradients ∇xΦ
and ∇yΦ; but, rather has access to their unbiased stochastic estimates ∇̃xΦ and ∇̃yΦ. This would typically be the
case when the gradients are estimated from a subset of data points in the big-data regime (as in stochastic gradient,
and stochastic approximation methods) or if noise is injected to the gradients on purpose to protect the privacy of the
user data [45].

We propose a first-order method, the Stochastic Accelerated Primal-Dual (SAPD) algorithm, to solve (1) under the
assumption that we have access to unbiased stochastic oracles ∇̃xΦ and ∇̃yΦ with a bounded variance, see Assump-
tion 2 for the details. This setting is commonly considered in the literature and is relevant to a number of applications,
e.g., training GANs [55] and robust learning [44]. First, assuming that L is strongly convex strongly concave (SCSC),
we show that SAPD sequence, generated using constant primal-dual step sizes, linearly converges to a neighborhood
of the unique saddle point. Interpreting the size of the neighborhood as a measure of robustness1 to gradient noise,
we propose computationally tractable techniques for optimizing the SAPD parameters to achieve a desired trade-off
between the convergence rate and robustness. We also discuss how convergence and robustness results extend to the
convex-concave setting with µx = µy = 0.

1.1 Related Work

When the coupling term Φ(x, y) is bilinear, i.e., Φ(x, y) = 〈Kx, y〉 for some linear operator K : X → Y∗, (1) is
well-studied for both strongly-convex-strongly-concave (SCSC) problems (µx, µy > 0) as well as for merely-convex-
merely-concave (MCMC) problems (µx = µy = 0). The convergence results cover both the stochastic case (when
only stochastic estimates of the gradients are available) and the deterministic case (when the gradient information
is exact). In our work, we do not assume bilinear Φ. When the coupling term Φ is non-bilinear, there exist some
convergence results in the deterministic case; however, the stochastic setting remains relatively understudied. Two
standard metrics to measure the quality of a random (x̄, ȳ) ∈ X × Y returned by a stochastic algorithm are the gap
function G : X × Y → R+ for the MCMC case and distance metric D : X × Y → R+ for the SCSC case, for which
there is a unique saddle point (x∗, y∗), i.e.,

G(x̄, ȳ) , E[ sup
(x,y)∈X×Y

{L(x̄, y)− L(x, ȳ)}], D(x̄, ȳ) , E[µx‖x̄− x∗‖2+µy‖ȳ − y∗‖2], (2)

where the expectation is taken with respect to the randomness encountered in the generation of the point
(x̄, ȳ) ∈ X × Y . In the following discussion, we summarize existing results closely related to our setting, and discuss
our contributions.

1.1.1 The Deterministic Case

The bilinear structure has been thoroughly studied; some well-known algorithms include excessive gap technique [34,
33], primal-dual hybrid gradient (PDHG) [7, 8] –also see [41] achieving the best bound. On the other extreme,
when L owns a general form and the smoothness cannot be guaranteed, primal-dual subgradient algorithms have
been proposed in several works, e.g., [30, 35, 21]. The iteration complexity of these subgradient-based methods
can be significantly improved when L has further structure. Indeed, there are methods exploiting the structure when
Φ is smooth, and f, g have efficient prox maps, which include Mirror-Prox(MP) [31], Optimistic Gradient Descent
Ascent (OGDA) and Extra-gradient (EG) [28] methods. Additionally, the effect of Lipschitz constants along different
blocks of variables also has been explored recently; some new works account for the individual effects of Lxx, Lyx and
Lyy , i.e., the Lipschitz constants of∇xΦ(·, y),∇yΦ(x, ·) and∇yΦ(·, y), respectively, instead of using the worst-case
parameters L , max{Lxx, Lxy, Lyx, Lyy}, µ , min{µx, µy}. For bilinear SP problems, a lower complexity bound

of Ω
(√

1 +
L2
yx

µxµy
· ln(1/ε)

)
is shown in [49] for a class of first-order primal-dual algorithms employing proximal-

gradient steps; on the other hand, the lower bound for gradient-based methods is Ω
(√

Lxx
µx

+
L2
yx

µxµy
+

Lyy
µy
· ln(1/ε)

)
when f(·) = g(·) = 0 and Φ is SCSC [49]. In the rest, we focus on the deterministic SCSC setup, for which the
results inD metric can be converted into gap metric G by only increasing the logarithmic term by problem parameters,
see [10, Appendix C].

Mokhtari et al. [28] show that both OGDA and EG have an iteration complexity of O
(
L
µ ln(1/ε)

)
for D metric

defined in (2). Gidel et al. [15] also show the same rate for OGDA from a variational inequality (VI) perspective.
1This definition of robustness for an algorithm is inspired by the robust control literature, and that it should not be mixed with

robustness in [32].
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In the analysis of these algorithms, primal and dual step sizes are set equal, which may lead to conservative steps
whenever Lxx � Lyy , or vice versa. For instance, in the primal-dual formulation of empirical risk minimization
problems in machine learning, choosing primal and dual step sizes to be different can lead to an improved convergence
rate [53]. There are also some multi-loop algorithms. In particular, Lin et al. [26] proposed an inexact proximal point
algorithm, which consists of 3-nested loops. Indeed, each proximal step computation requires calling Nesterov’s
accelerated gradient descent (AGD) iteratively to solve strongly convex smooth (SCS) optimization subproblems with
a high precision that can be impractical.2 The computational complexity to compute (x̄, ȳ) such that G(x̄, ȳ) ≤ ε is
O
(

L√
µxµy

· ln3(1/ε)
)

. Although [26] claims to achieve the lower complexity bound provided in [49], this is not the
case for problems with Lyx � L. The algorithm in [43] consists of 4-nested loops and has similar shortcomings

in practice. The computational complexity to compute (x̄, ȳ) such that D(x̄, ȳ) ≤ ε is O(
√

Lxx
µx

+
LLxy
µxµy

+
Lyy
µy
·

ln3(1/ε)). More recently, after our preprint [51] has appeared, Jin el al. [20] independently obtain the iteration
complexity of O

(
(Lxxµx +

Lyx√
µxµy

+
Lyy
µy

) · ln(1/ε)
)

for satisfying G(x̄, ȳ) ≤ ε.

1.1.2 The Stochastic Case

While the deterministic SP problem has attracted much attention, the study on the first-order stochastic methods
for (1) is still relatively limited. For MCMC SP problems, proximal methods have been developed, e.g., Stochastic
Mirror-Descent(SMD) [32], the Stochastic Mirror-Prox (SMP) [22] and its accelerated version (SAMP) [9]. In [54],
MCMC and strongly-convex-merely-concave (SCMC) scenarios are considered under additive unbiased noise with
a bounded variance. When µx > 0, a multi-stage scheme achieving the best known complexity for the stochastic SP
problems is proposed in [54]; however, this is a two-loop method and each outer iteration requires solving a non-trivial
sub-problem with an increasing accuracy, which is a function of some problems parameters that may not be known in
practice, e.g., Bregman diameters of X ,Y and noise variance. There are also some VI-based methods [12, 15] for the
MCMC scenario.

Our focus in this paper will be on the stochastic SCSC case. Yan et al. [47] consider minx∈X maxy∈Y Φ(x, y) for
possibly non-smooth, SCSC Φ, and propose Epoch-GDA with an oracle complexity of O

(
1
ε ln(1/p)

)
for computing

(x̄, ȳ) such that G(x̄, ȳ) ≤ ε with probability 1− p. When Φ is smooth, stochastic EG method [19] for SCSC SP prob-
lems and Stochastic Operator Extrapolation method [24] for strongly monotone VIs, both using constant step sizes,

can guarantee D(xk, yk) ≤ ε within O
(

1
ε

)
and O(κ ln(1/ε) +

δ2

µε
ln(1/ε)) iterations, respectively, where κ = L/µ.

Fallah et al. [13] propose multi-stage variants (employing restarts) of Stochastic Gradient Descent Ascent (S-GDA)

and Stochastic OGDA (S-OGDA) that can guaranteeD(xk, yk) ≤ εwithinO(κ2 ln(1/ε)+
δ2

µε
) andO(κ ln(1/ε)+

δ2

µε
)

iterations, respectively. Unlike our paper, in both [19, 13], Lipschitz constant of ∇Φ, i.e., L, is used to determine the
step size, rather than exploiting the block Lipschitz structure.

1.2 Comparison

In table 1, among the papers we discuss in section 1.1 we compare the deterministic and stochastic methods for solving
the SCSC saddle point problem in (1) with a non-bilinear Φ –to focus on more relevant papers, we did not include
methods for Φ that is bilinear and/or in the finite-sum form. For deterministic methods, having access to ∇xΦ and
∇yΦ, we only provide the bias term of the oracle complexity –this term represents the work required against the bias
introduced due to initialization of the algorithm while computing an ε-solution. For methods employing stochastic first-
order oracles (SFO) to get noisy estimates ∇̃xΦ and ∇̃yΦ, we provide both the bias and variance terms in the oracle
complexity result, where variance term denotes the additional oracle calls required due to persistent noise in gradient
estimates compared to the (noiseless) deterministic case. For all the methods compared, we list how many nested
loops they employ. Finally, in the last column “BV-tradeoff” of Table 1 we indicate whether a systematic analysis is
provided for the bias-variance trade-off for the stochastic methods discussed in the table. While our paper is achieving
near optimal state-of-the art complexities for both bias and variance as a single loop method, it also provides conditions
on algorithm parameters describing the dependency between the parameter choice and corresponding certifiable rate
–see (5); hence, our admissibility rule allows us to characterize the bias-variance trade-off for the SAPD algorithm.

2In each AGD call, an SCS function h with condition number κx = L/µx is minimized to compute x̄ ≈ argminx∈X h(x) such
that ‖x̄−ΠX(x̄−∇h(x̄)/L)‖2≤ ε

2(10κy)11κ13
x

.
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Method Bias Variance Loop Metric BV-tradeoff

[26] L√
µxµy

ln3 ( 1
ε ) % 3 G N/A

[43] Õ
(

(Lxx
µx

+
L·Lxy
µxµy

+
Lyy
µy

)1/2
)

ln
(

1
ε

)
% 4 D N/A

[48] L
µ ln( 1

ε ) % 2 D N/A

[28] L
µ ln( 1

ε ) % 1 D N/A

[10, 20] (Lxxµx +
Lyx√
µxµy

+
Lyy
µy

)ln( 1
ε ) % 1 G N/A

[47] Õ( 1
ε ln(1/p)) Õ( δ

2

µε ln(1/p)) 2 Pp %

[13] L
µ ln( 1

ε ) δ2

µε 2 D %

[19] 1
ε

δ2

µε 1 D %

ours (Lxxµx +
Lyx√
µxµy

+
Lyy
µy

)ln( 1
ε ) (

δ2x
µx

+
δ2y
µy

) 1
ε ln( 1

ε ) 1 D "

Table 1: Related work: Comparison of methods for solving SCSC saddle point problem in (1) with a non-bilinear Φ.
[10] requires Φ to be twice differentiable. Results in D metric can be converted into guarantees in the gap metric G
while still preserving ln(1/ε) + 1/ε complexity, see [10, Appendix C]. The metric Pp denotes the number of oracle
calls for G ≤ ε with probability at least 1− p. Among single-loop methods, [28] employs τ = σ = 1

4L , [10] employs
τ = 1

µxλ
and σ = 1

µyλ
, where λ = Lxx

µx
+

Lxy√
µxµy

+
Lyy
µy

, [19] employs τk = σk = 1
αk+4L for α ∈ (0, µ). In the

column “BV-tradeoff” we indicated whether a systematic analysis is provided for the bias-variance trade-off.

1.3 Contributions

We propose the Stochastic Accelerated Primal-Dual (SAPD) algorithm which extends APD method proposed in [18]
to the stochastic gradient setting. We assume that the first-order oracles ∇̃Φx and ∇̃Φy return noisy partial gradients
that are unbiased and have finite variance bounded by δ2

x and δ2
y , respectively. Let z∗ = (x∗, y∗) denote the unique

saddle point of the SCSC minimax problem in (1). For any ε > 0, SAPD guarantees D(xN , yN ) ≤ ε within

N ≤ O
((Lxx

µx
+

Lyx√
µxµy

+
Lyy
µy

+
( δ2

x

µx
+
δ2
y

µy

)1

ε

)
· ln
(D(x0, y0)

ε

))
iterations. The oracle complexity bound on the bias term O(κ ln(1/ε)) is optimal, where κ = L/µ, and the bound
on the variance term Õ((δ2

x/µx + δ2
y/µy)/ε) is optimal up to a log factor, which can be removed by employing a

restarting strategy as in [13] –see appendix D for details. Since the noise is persistent, linear convergence cannot
be achieved – unlike the finite sum problems where variance reduction-based methods are applicable to obtain linear
convergence [38]. However, for SCSC problems, SAPD with constant step size converges to a neighborhood of the
saddle-point at a linear rate ρ ∈ (0, 1), and the size of the neighborhood, defined as lim supN→∞ E[‖zN−z∗‖2], scales
linearly with the gradient noise level; hence, we interpret the ratio lim supN→∞ E[‖zN − z∗‖2]/δ2 as a measure of
robustness, which we denote with J , where δ2 = max{δ2

x, δ
2
y}. We evaluate the overall algorithmic performance

with two metrics: SAPD parameters should be tuned to achieve a faster rate ρ with a smaller noise amplification J .
Our analysis leads to explicit characterizations of J for a particular problem class, and of an upper boundR on J for
more general problems; both J and R are given as functions of SAPD parameters. Based on these characterizations,
we develop computationally tractable techniques for optimizing the SAPD parameters to achieve a desired systematic
trade-off between ρ and J without assuming the knowledge of noise variance bounds, δ2

x and δ2
y . This allows SAPD to

enjoy fast convergence with a robust performance in the presence of stochastic gradient noise. Achieving systematic
trade-offs between the rate and robustness has been previously studied in [2] in the context of accelerated methods for
smooth strongly convex minimization problems. To our knowledge, our work is the first one that can trade-off ρ with
J in a systematic fashion in the context of primal-dual algorithms for (1).

For the stochastic MCMC case, SAPD can generate (x̄, ȳ) such that G(x̄, ȳ) ≤ ε within O(L/ε + δ2/ε2) oracle
calls, which is optimal for this setting in both bias and variance terms. For both SCSC and MCMC scenarios, the
deterministic results3 can be derived from our stochastic results immediately by setting the noise variances δ2

x =
δ2
y = 0. In the deterministic setting, our algorithm, when applied to (1) with a bilinear Φ, generates the same iterate

sequence with [8] for a specific choice of step size parameters; therefore, SAPD, being able to handle noisy gradients
and non-bilinear couplings, can be viewed as a general form of the optimal method (CP) proposed by Chambolle and
Pock [8] for MCMC and SCSC problems with a bilinear coupling. Indeed, in the deterministic case when Φ is bilinear,
both CP and SAPD hit the lower complexity bounds, Ω(L/ε) for the MCMC and Ω(

Lyx√
µxµy

ln(1/ε)) for the SCSC
problems, given in [37] and [49], respectively. Moreover, when Φ is not assumed to be bilinear, SAPD guarantees

3In the deterministic scenario, SAPD reduces to APD algorithm [18], which has the optimal rate guarantees for MCMC and
SCMC (with Lyy=0) settings; that said, deterministic SCSC setting was not studied in [18].
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O(L/ε) complexity in the MCMC setting and O((Lxxµx +
Lyy
µy

+
Lyx√
µxµy

) · ln(1/ε)) complexity in the SCSC setting
for the bias term, which are the best bounds shown for (1). For the SCSC setup, the papers [10, 20] provide bias
guarantees similar to our method; but, they are not applicable to the (noisy) stochastic setting like ours. Furthermore,
our framework exploiting block Lipschitz constants Lxx, Lyx and Lyy , provides larger step sizes compared to the
traditional step size O(1/L).

Finally, the single-loop design of our algorithm make it suitable for solving large-scale problems efficiently –usually in
methods with nested loops, inner iterations are terminated when a sufficient optimality condition holds and these con-
ditions are usually very conservative, leading to excessive number of inner iterations. Furthermore, solving nonconvex-
convex minimax problems using an inexact proximal point method requires solving SCSC subproblems to an increas-
ing accuracy; hence, adopting single-loop algorithms as solvers for SCSC subproblems leads to simple implemen-
tations compared to using multi-loop methods as solvers –see [52]. Indeed, single loop algorithms are preferable
compared to multi-loop algorithms in many settings, e.g., see [50] for a discussion.

1.4 Notation

Throughout the paper, R++ denotes the set of positive real numbers, and R+ = R++ ∪ {0}. We adopted arithmetic
using the extended reals with the convention that 1

0 , ∞, 02

0 , 0, 0
02 , ∞. We use ‖·‖ to denote the Euclidean

norm. The proximal operator associated with a proper, closed convex f : X → R ∪ {∞} is given by proxf (x) ,
argminv∈X f(v) + 1

2‖x − v‖
2, and proxg(·) is defined similarly. We let Sd denote the set of symmetric d × d real

matrices.

1.5 Assumptions and Statement of SAPD Algorithm

In the following, we introduce the assumptions needed throughout this paper.
Assumption 1. f : X → R∪{+∞} and g : Y → R∪{+∞} are proper, closed, convex functions with moduli
µx, µy ≥ 0. Moreover, Φ : X × Y → R is such that

(i) for any y ∈ dom g ⊂ Y , Φ(·, y) is convex and differentiable; and ∃Lxx ≥ 0, ∃Lxy > 0 such that ∀x, x̄ ∈
dom f ⊂ X and ∀y, ȳ ∈ dom g ⊂ Y ,

‖∇xΦ(x, y)−∇xΦ(x̄, ȳ)‖≤ Lxx‖x− x̄‖+Lxy‖y − ȳ‖; (3)

(ii) for any x ∈ dom f ⊂ X , Φ(x, ·) is concave and differentiable; and ∃ Lyx>0 and ∃Lyy ≥ 0 such that ∀x, x̄ ∈
dom f ⊂ X and ∀y, ȳ ∈ dom g ⊂ Y ,

‖∇yΦ(x, y)−∇yΦ(x̄, ȳ)‖≤ Lyx‖x− x̄‖+Lyy‖y − ȳ‖. (4)
Remark 1. In fact, in terms of strong convexity, we only need to assume that L defined in (1) is µx-convex in x and
µy-concave in y (f, g may be merely convex, e.g., indicator functions). We argue that Assumption 1 holds without loss
of generality even for this more general setting. Suppose Φ is (Lxx, Lxy, Lyx, Lyy)-smooth, i.e., (3) and (4) hold, and
Φ is µx-strongly convex in x and µy-strongly concave in y, and f, g are proper, closed, merely convex functions. After
properly redefining f, g and Φ, Assumption 1 holds for a different representation of the same problem. Indeed, define
f0, g0 and Φ0 such that

f0(x) , f(x) +
µx
2
‖x‖2, g0(y) , g(y)− µy

2
‖y‖2, Φ0(x, y) , Φ(x, y)− µx

2
‖x‖2+

µy
2
‖y‖2

The definition of Φ0 implies that it is (L0
xx, L

0
xy, L

0
yx, L

0
yy)-smooth, where L0

xx , Lxx − µx, L0
yy , Lyy + µy ,

L0
xy , Lxy and L0

yx = Lyx. Note that f0, g0 and Φ0 satisfy Assumption 1. Furthermore, if f and g are prox-
friendly functions, i.e., one can compute proxtf and proxtg efficiently for all t > 0, then f0 and g0 are also

prox-friendly. Indeed, given arbitrary x̄ ∈ X , ȳ ∈ Y and t > 0, one has proxtf0(x̄) = prox t
tµx+1 f

(
1

tµx+1 x̄
)

and proxtg0(ȳ) = prox t
tµy+1 g

(
1

tµy+1 ȳ
)

.

Remark 2. We first analyze the error bounds and oracle complexity of SAPD (section 2) and its robustness properties
(section 3) under the assumption that µxµy > 0, i.e., for SCSC minimax problems. Later, in section 4, we extend these
results to MCMC setting, i.e., µx = µy = 0.

In many ML applications, as passing over the whole dataset to compute a full gradient may be computationally
impractical, the full gradients are estimated through sampling from data. Within the context of SP problems, this
setting arises in supervised learning tasks, e.g., [5, 38]. In the rest of the paper, we use ∇̃xΦ and ∇̃yΦ to denote such
stochastic estimates of the true gradients ∇xΦ and ∇yΦ. Given stochastic oracles ∇̃xΦ and ∇̃yΦ, we propose SAPD

5
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algorithm to tackle with (1), which is described in Algorithm 1. We note that when θ is zero, SAPD reduces to the
well-known stochastic (proximal) gradient descent ascent (SGDA) method.

We make the following assumption on the statistical nature of the gradient noise.

Assumption 2. There exist δx, δy ≥ 0 such that for all k ≥ 0, given the SAPD iterates (xk, yk, yk+1),
the stochastic gradients ∇̃xΦ(xk, yk+1;ωxk), ∇̃yΦ(xk, yk;ωyk) and random sequences {ωxk}, {ω

y
k} satisfy (i)

E[∇̃xΦ(xk, yk+1;ωxk)|xk, yk+1] = ∇xΦ(xk, yk+1); (ii) E[∇̃yΦ(xk, yk;ωyk)|xk, yk] = ∇yΦ(xk, yk); (iii)
E[‖∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1)‖2|xk, yk+1] ≤ δ2

x; (iv) E[‖∇̃yΦ(xk, yk;ωyk)−∇yΦ(xk, yk)‖2|xk, yk] ≤ δ2
y .

We should point out that we do not make any independence assumption on the random sequences {ωxk}k and {ωyk}k.
Assumption 2 applies to most unbiased estimation situations. For example, when dom f × dom g is compact, for
{ωxk} ⊂ X ∗ and {ωyk} ⊂ Y∗ having zero-mean and finite-variance, the following additive noise model is a special
case of Assumption 2: ∇̃xΦ(xk, yk+1;ωxk) = ∇xΦ(xk, yk+1) + ωxk , ∇̃yΦ(xk, yk;ωyk) = ∇yΦ(xk, yk) + ωyk . This
type of noise arises in the context of privacy-preserving algorithms. Indeed, when∇Φ is associated with the user data,
the user would inject additive noise to the gradients for protecting data privacy, see e.g., [27, Alg. 1], [25]. Unbiased
noise with a finite variance assumption also holds for SP formulation of ERM problems if the gradients are estimated
from mini-batches on bounded domains, e.g., [40, 53].

Algorithm 1 Stochastic Accelerated Primal-Dual (SAPD) Algorithm
1: Input: {τ, σ, θ}, (x0, y0) ∈ X × Y
2: (x−1, y−1)← (x0, y0)
3: for k ≥ 0 do
4: q̃k ← ∇̃yΦ(xk, yk;ωyk)− ∇̃yΦ(xk−1, yk−1;ωyk−1)

5: s̃k ← ∇̃yΦ(xk, yk;ωyk) + θq̃k
6: yk+1 ← proxσg(yk + σs̃k)

7: xk+1 ← proxτf (xk − τ∇̃xΦ(xk, yk+1;ωxk))
8: end for

2 Performance Guarantees for SAPD

Under our noise model (Assumption 2), we next provide performance guarantees for the SAPD algorithm.
Theorem 1. Suppose µx, µy > 0 and Assumptions 1 and 2 hold, and {xk, yk}k≥0 are generated by SAPD, stated in
algorithm 1, using τ, σ > 0 and θ ≥ 0 that satisfy

G ,



1
τ

+ µx − 1
ρτ

0 0 0 0

0 1
σ

+ µy − 1
ρσ

( θ
ρ
− 1)Lyx ( θ

ρ
− 1)Lyy 0

0 ( θ
ρ
− 1)Lyx

1

τ
− Lxx 0 − θ

ρ
Lyx

0 ( θ
ρ
− 1)Lyy 0 1

σ
− α − θ

ρ
Lyy

0 0 − θ
ρ
Lyx − θ

ρ
Lyy

α
ρ


� 0 (5)

for some α ∈ [0,
1

σ
) and ρ ∈ (0, 1). Then for any (x0, y0) ∈ dom f × dom g and N ≥ 1,

E[d∗N ] ≤ ρN
( 1

2τ
‖x0 − x∗‖2+

1

2σ
‖y0 − y∗‖2

)
︸ ︷︷ ︸

Dτ,σ

+
ρ

1− ρ

( τ

1 + τµx
Ξxτ,σ,θδ

2
x +

σ

1 + σµy
Ξyτ,σ,θδ

2
y

)
︸ ︷︷ ︸

Ξτ,σ,θ

, (6)

where (x∗, y∗) is the unique saddle point, d∗N ,
1

2τ
‖xN − x∗‖2+

1

2σ
(1− ασ) ‖yN − y∗‖2, Ξxτ,σ,θ , 1 +

σθ(1 + θ)Lyx
2(1 + σµy)

and Ξyτ,σ,θ ,
τθ(1 + θ)Lyx
2(1 + τµx)

+
(

1 + 2θ +
θ + σθ(1 + θ)Lyy

1 + σµy
+

τσθ(1 + θ)LyxLxy
(1 + τµx)(1 + σµy)

)
(1 + 2θ).

Moreover, whenever δx = δy = 0, G(x̄N , ȳN ) ≤ Dτ,σ/KN (ρ) for all N ≥ 1, where (x̄N , ȳN ) =
1

KN (ρ)

∑N
k=1 ρ

−k+1(xk, yk), and KN (ρ) ,
∑N−1
k=0 ρ−k = 1−ρN

1−ρ ρ
−N+1.

Proof. See section 2.1.
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Remark 3. Consider the stochastic case, i.e., δx, δy > 0. The weighted squared distance in expectation, E[d∗N ],
is bounded by a sum of two terms: bias term ρNDτ,σ that goes to zero as N → ∞ and a constant variance term
ρ

1−ρΞτ,σ,θ, which can be controlled by properly selecting τ , σ and θ. Indeed, the term Ξτ,σ,θ depends on algorithm pa-
rameters {τ, σ, θ} in such a way that as τ → 0 and σ → 0, we have Ξτ,σ,θ → 0. Furthermore, there exists θ̄ ∈ (0, 1)
depending only on problem parameters such that for all θ ≥ θ̄, there is a solution to (5) satisfying τ = O(1 − θ),
σ = O(1−θ) and ρ = θ, see section 2.2; hence, the variance term ρ

1−ρΞτ,σ,θ can be made arbitrarily small as θ → 1.

Remark 4. If we set θ = ρ in eq. (5), we obtain a simpler matrix inequality:

min{τµx, σµy} ≥
1− θ
θ

,


1

τ
− Lxx 0 −Lyx

0
1

σ
− α −Lyy

−Lyx −Lyy α
θ

 � 0. (7)

The SAPD complexity analysis is mainly based on the simpler system in eq. (7). On the other hand, when θ = 0, SAPD
reduces to SGDA, of which step size conditions can be obtained immediately from eq. (5) by setting θ = α = 0 –see
appendix B.2.

2.1 Proof of Theorem 1

We first provide key lemmas which derive some key inequalities for SAPD iterates {xk, yk}k≥0 generated by Algo-
rithm 1, the omitted proofs are provided in the appendix. Let

qk , ∇yΦ(xk, yk)−∇yΦ(xk−1, yk−1), sk , ∇yΦ(xk, yk) + θqk, ∀ k ≥ 0. (8)
Recall x−1 = x0, y−1 = y0, thus q0 = 0; and for k ≥ 0, Assumption 1 implies that

‖qk+1‖≤ Lyx‖xk+1 − xk‖+Lyy‖yk+1 − yk‖. (9)
Lemma 1. Let {xk, yk}k≥0 be SAPD iterates generated according to Algorithm 1. Then for all x ∈ dom f ⊂ X ,
y ∈ dom g ⊂ Y , and k ≥ 0,

L(xk+1, y)− L(x, yk+1)

≤− 〈qk+1, yk+1 − y〉+ θ〈qk, yk − y〉+ Λk(x, y)− Σk+1(x, y) + Γk+1 + εxk + εyk,
(10)

where εxk , 〈∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1), x− xk+1〉 and εyk , 〈s̃k − sk, yk+1 − y〉, qk and sk are defined
as in (8), and

Λk(x, y) ,
1

2τ
‖x− xk‖2+

1

2σ
‖y − yk‖2, Σk+1(x, y) , (

1

2τ
+
µx
2

)‖x− xk+1‖2+(
1

2σ
+
µy
2

)‖y − yk+1‖2,

Γk+1 ,(
Lxx

2
− 1

2τ
)‖xk+1 − xk‖2−

1

2σ
‖yk+1 − yk‖2+θ(Lyx‖xk − xk−1‖+Lyy‖yk − yk−1‖)‖yk+1 − yk‖.

Next, we give two intermediate results to bound the variance of the SAPD iterate sequence.
Lemma 2. Let {xk, yk}k≥0 be SAPD iterates generated according to Algorithm 1. For k ≥ 0, let qk and sk be defined
as in (8), and let

x̂k+1 , proxτf (xk − τ∇xΦ(xk, yk+1)) , ŷk+1 , proxσg (yk + σsk) ,

ˆ̂xk+1 , proxτf (xk − τ∇xΦ(xk, ŷk+1)), ˆ̂yk+1 , proxσg

(
ŷk + σ(1 + θ)∇yΦ(ˆ̂xk, ŷk)− σθ∇yΦ(xk−1, yk−1)

)
,

then the following inequalities hold for k ≥ 0:
‖xk+1 − x̂k+1‖ ≤

τ

1 + τµx
‖∆x

k‖, ‖yk+1 − ŷk+1‖≤
σ

1 + σµy

(
(1 + θ)‖∆y

k‖+θ‖∆
y
k−1‖

)
, (11a)

‖yk+1 − ˆ̂yk+1‖ ≤
σ

1 + σµy

(
(1 + θ)‖∆y

k‖+θ‖∆
y
k−1‖+

τ(1 + θ)Lyx
1 + τµx

‖∆x
k−1‖ (11b)

+

(
1 + σ(1 + θ)Lyy

1 + σµy
+

τσ(1 + θ)LyxLxy
(1 + τµx)(1 + σµy)

)(
(1 + θ)‖∆y

k−1‖+θ‖∆
y
k−2‖

))
,

where ∆x
k,∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1) and ∆y

k,∇̃yΦ(xk, yk;ωyk)−∇yΦ(xk, yk).

The next result, which will be used in the variance analysis for SAPD, follows from Lemma 2.
Lemma 3. Let {xk, yk}k≥0 be SAPD iterates generated according to Algorithm 1. The following inequality holds for
all k ≥ 0:

E [|〈∆x
k, x̂k+1 − xk+1〉|] ≤

τ

1 + τµx
δ2
x, E [|〈∆y

k, yk+1 − ŷk+1〉|] ≤
σ(1 + 2θ)

1 + σµy
δ2
y,

E
[
|〈∆y

k−1,
ˆ̂yk+1 − yk+1〉|

]
≤ σ

1 + σµy

[((
1 +

1 + σ(1 + θ)Lyy
1 + σµy

+
τσ(1 + θ)LyxLxy

(1 + τµx)(1 + σµy)

)
· (1 + 2θ) +

τ(1 + θ)Lyx
2(1 + τµx)

)
δ2
y +

τ(1 + θ)Lyx
2(1 + τµx)

δ2
x

]
.

7
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Before we move on to prove our main result in Theorem 1, we give two technical lemmas that help us simplify the
SAPD parameter selection rule to the matrix inequality in (5).

Lemma 4. Let G ∈ R5×5 be the matrix on the left-hand-side of (5), and

G
′ ,



1
τ + µx − 1

ρτ 0 0 0 0

0 1
σ + µy − 1

ρσ −|1− θ
ρ | Lyx −|1− θ

ρ | Lyy 0

0 −|1− θ
ρ | Lyx

1

τ
− Lxx 0 − θρLyx

0 −|1− θ
ρ | Lyy 0 1

σ − α − θρLyy
0 0 − θρLyx − θρLyy

α
ρ


,

then G � 0 if and only if G′ � 0.

Proof. ∀ y = (y1, y2, y3, y4, y5)> ∈ R5, letting ỹ = (y1,−y2, y3, y4, y5)>, we have

y>G′y =

{
y>Gy if θ ≤ ρ,
ỹ>Gỹ else;

y>Gy =

{
y>G′y if θ ≤ ρ,
ỹ>G′ỹ else.

Thus, G1 � 0 is equivalent to G2 � 0.

Lemma 5. Suppose the parameters τ, σ > 0 and θ ≥ 0 satisfy eq. (5) for some α ∈ [0,
1

σ
) and ρ ∈ (0, 1], then it

follows that

G′′ ,


1
σ

(1− 1
ρ
) + µy + α

ρ
(−|1− θ

ρ
|−θ
ρ

)Lyx (−|1− θ

ρ
|−θ
ρ

)Lyy

(−|1− θ

ρ
|−θ
ρ

)Lyx
1

τ
− Lxx 0

(−|1− θ

ρ
|−θ
ρ

)Lyy 0 1
σ
− α

� 0. (12)

Proof. Since eq. (5) holds, ∀x = [x1 x2 x3]> ∈ R3, by Lemma 4 we have that x>G′′x = x′
>
G′x′ ≥ 0, where G′ is

defined in Lemma 4 and x′ = [0 x1 x2 x3 x1]>.

Finally, with the following observation, we will be ready to proceed to the proof of Theorem 1. Let {Fxk } and {Fyk } be
the filtrations such that Fxk , F({xi}ki=0, {yi}

k+1
i=0 ) and Fyk , F({xi}ki=0, {yi}ki=0) denote the σ-algebras generated

by the random variables in their arguments. A consequence of Assumption 2 is that for Fxk -measurable random

variable v, i.e., v ∈ Fxk , we have that E
[
〈∇̃Φx(xk, yk+1;ωxk)−∇Φx(xk, yk+1), v〉

]
= 0; similarly, for v ∈ Fyk , it

holds that E
[
〈∇̃Φy(xk, yk;ωyk)−∇Φy(xk, yk), v〉

]
= 0. We are now ready to give the proof of Theorem 1.

Proof of Theorem 1 Fix arbitrary (x, y) ∈ dom f × dom g. Since (xk+1, yk+1) ∈ dom f × dom g, using the
concavity of L(xk+1, ·) and the convexity of L(·, yk+1), we get

KN (ρ) (L(x̄N , y)− L(x, ȳN )) ≤
N−1∑
k=0

ρ−k (L(xk+1, y)− L(x, yk+1)) , ∀ρ ∈ (0, 1). (13)

Thus, if we multiply ρ−k for both sides of (10) and sum the resulting inequality from k = 0 to N − 1, then using (13)
we get

KN (ρ) (L(x̄N , y)− L(x, ȳN )) ≤
N−1∑
k=0

ρ−k
(
−〈qk+1, yk+1 − y〉+ θ〈qk, yk − y〉︸ ︷︷ ︸

part 1

+Λk(x, y)− Σk+1(x, y) + Γk+1

−〈∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1), xk+1 − x〉︸ ︷︷ ︸
part 2

+ 〈s̃k − sk, yk+1 − y〉︸ ︷︷ ︸
part 3

)
.

(14)

Using Cauchy–Schwarz inequality and (9) leads to

|〈qk+1, yk+1 − y〉|≤ Sk+1 , Lyx‖xk+1 − xk‖‖yk+1 − y‖+Lyy‖yk+1 − yk‖‖yk+1 − y‖ (15)

for k ≥ −1. Recall x−1 = x0, y−1 = y0, thus q0 = 0; therefore, for part 1,
N−1∑
k=0

ρ−k(θ〈qk, yk − y〉 − 〈qk+1, yk+1 − y〉) =

N−2∑
k=0

ρ−k
(θ
ρ
− 1
)
〈qk+1, yk+1 − y〉 − ρ−N+1〈qN , yN − y〉 (16)

8
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≤
N−2∑
k=0

ρ−k|1− θ

ρ
| Sk+1 + ρ−N+1SN≤

N−1∑
k=0

ρ−k|1− θ

ρ
| Sk+1 + ρ−NθSN ,

where the first inequality follows from eq. (15). Next, for ∆x
k and x̂k+1 defined as in Lemma 2, we write part 2 as

follows:
N−1∑
k=0

−ρ−k〈∆x
k, xk+1 − x〉 =

N−1∑
k=0

ρ−k
(
〈∆x

k, x̂k+1 − xk+1〉 − 〈∆x
k, x̂k+1 − x〉

)
. (17)

Finally, for ∆y
k, ŷk+1 and ˆ̂yk+1 defined as in Lemma 2, we also write part 3 as follows:
N−1∑
k=0

ρ−k〈s̃k − sk, yk+1 − y〉

=

N−1∑
k=0

ρ−k
[
(1 + θ)〈∆y

k, yk+1 − ŷk+1 + ŷk+1 − y〉 − θ〈∆y
k−1, yk+1 − ˆ̂yk+1 + ˆ̂yk+1 − y〉

]
.

(18)

Let dN (x, y) ,
1

2τ
‖x−xN‖2+

1

2σ
(1− ασ) ‖y− yN‖2. Adding ρ−NdN (x, y) to both sides of (14), then using (16),

(17) and (18), we get

KN (ρ) (L(x̄N , y)− L(x, ȳN )) + ρ−NdN (x, y) ≤ UN (x, y) +

N−1∑
k=0

ρ−k(Pk(x, y) +Qk), (19)

where UN (x, y), Pk(x, y) and Qk for k = 0, . . . , N − 1 are defined as

UN (x, y) ,
N−1∑
k=0

ρ−k
(

Γk+1 + Λk(x, y)− Σk+1(x, y) + |1− θ

ρ
| Sk+1

)
+ρ−N

(
dN (x, y) + θSN

)
,

Pk(x, y) ,− 〈∆x
k, x̂k+1 − x〉+ (1 + θ)〈∆y

k, ŷk+1 − y〉 − θ〈∆y
k−1,

ˆ̂yk+1 − y〉,

Qk ,〈∆x
k, x̂k+1 − xk+1〉+ (1 + θ)〈∆y

k, yk+1 − ŷk+1〉 − θ〈∆y
k−1, yk+1 − ˆ̂yk+1〉.

We first uniformly upper bound E [Qk] for all k ≥ 0 using Lemma 3, i.e.,

E[

N−1∑
k=0

ρ−kQk] ≤
[ τ

1 + τµx
Ξxτ,σ,θδ

2
x +

σ

1 + σµy
Ξyτ,σ,θδ

2
y

]N−1∑
k=0

ρ−k. (20)

Next, for arbitrarily fixed (x, y) ∈ dom f × dom g, we analyze UN (x, y). After adding and subtracting
α

2
‖yk+1 −

yk‖2, and rearranging the terms, we get

UN (x, y) =
1

2

N−1∑
k=0

ρ−k
(
ξ>k Aξk − ξ>k+1Bξk+1

)
+ρ−N (dN (x, y) + θSN )

=
1

2
ξ>0 Aξ0 −

1

2

N−1∑
k=1

ρ−k+1[ξ>k (B − 1

ρ
A)ξk]−ρ−N+1

(1

2
ξ>NBξN −

1

ρ
dN (x, y)− θ

ρ
SN
)
,

(21)

where A,B ∈ R5×5 and ξk ∈ R5 are defined for k ≥ 0 as follows: A ,



1
τ 0 0 0 0

0 1
σ 0 0 0

0 0 0 0 θLyx

0 0 0 0 θLyy

0 0 θLyx θLyy −α


,

ξk ,



‖xk − x‖

‖yk − y‖

‖xk − xk−1‖

‖yk − yk−1‖

‖yk+1 − yk‖


, and B ,



1
τ + µx 0 0 0 0

0 1
σ + µy −|1− θ

ρ | Lyx −|1− θ
ρ | Lyy 0

0 −|1− θ
ρ | Lyx

1

τ
− Lxx 0 0

0 −|1− θ
ρ | Lyy 0 1

σ − α 0

0 0 0 0 0


such that x−1 = x0 and

y−1 = y0. In Lemma 4 we show that eq. (5) is equivalent to B − 1

ρ
A � 0; therefore, it follows from (21) that

for any given (x, y), the following inequality holds w.p. 1,

UN (x, y) ≤ 1

2
ξ>0 Aξ0 − ρ−N+1(

1

2
ξ>NBξN −

1

ρ
dN (x, y)− θ

ρ
SN ).

9
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Note that 1
2ξ
>
0 Aξ0 = 1

2τ ‖x− x0‖2+ 1
2σ‖y − y0‖2. Furthermore,

1
2
ξ>NBξN − θ

ρ
SN =

1

2ρτ
‖xN − x‖2+

1

2

(
1

ρσ
− α

ρ

)
‖yN − y‖2

+
1

2
ξ>N


1
τ

(1− 1
ρ
) + µx 01×3 0

03×1 G′′ 03×1

0 01×3 0

 ξN ≥
1

ρ
dN (x, y),

which follows from eq. (5) and Lemma 5, where G′′ is defined in eq. (12). Since (x, y) ∈ dom f × dom g is fixed
arbitrarily, all the results we have derived so far hold for any (x, y); thus,

UN (x, y) ≤ 1

2τ
‖x− x0‖2+

1

2σ
‖y − y0‖2, ∀(x, y) ∈ dom f × dom g w.p. 1. (22)

Finally, from Assumption 2, for k ≥ −1, we have E [〈∆x
k, x̂k+1 − x∗〉] = E [〈∆y

k, ŷk+1 − y∗〉] =

E
[
〈∆y

k−1,
ˆ̂yk+1 − y∗〉

]
= 0. Thus, E[Pk(x∗, y∗)] = 0 for any k ≥ 0. Therefore, from (20), we get

E[

N−1∑
k=0

ρ−k(Pk(x∗, y∗) +Qk)] ≤ KN (ρ) Ξτ,σ,θ. (23)

Note d∗N = dN (x∗, y∗); hence, it follows from (19), (22) and (23) that
E[KN (ρ) (L(x̄N , y

∗)− L(x∗, ȳN )) + ρ−NdN (x∗, y∗)] ≤ KN (ρ) Ξτ,σ,θ +Dτ,σ.

Since L(x̄N , y
∗)− L(x∗, ȳN ) ≥ 0, (6) immediately follows from above inequality.

2.2 Parameter Choices for SAPD

We employ the matrix inequality (MI) in (7) to describe the admissible set of algorithm parameters that guarantee
convergence. Our aim is to enjoy a wide range of parameters to improve the robustness of SAPD, i.e., to control
the noise amplification of the algorithm, in the presence of noisy gradients. Although, it seems difficult to find an
explicit solution to the MI in Theorem 1, we can compute a particular solution to it by exploiting its structure. Next,
in Lemma 6, we give an intermediate condition to help us construct the particular solution provided in corollary 1 for
the SCSC setting.
Lemma 6. Let τ, σ > 0, θ ∈ (0, 1) be a solution to the following system:

min{τµx, σµy} ≥
1− θ
θ

,
1

τ
≥ Lxx + π1Lyx,

c

σ
≥ θLyx

π1
+ (

θ

π2
+ π2)Lyy, (24)

for some π1, π2 > 0 and c ∈ (0, 1]. Then {τ, σ, θ, α} is a solution to (7) for α =
θLyx
π1

+
θLyy
π2

.

Proof. Since the first inequalities in both (24) and (7) are the same, we only need to show the MI in (7) holds.

Substituting α =
θLyx
π1

+
θLyy
π2

into (7), we get
1

τ
− Lxx 0 −Lyx

0
1

σ
− α −Lyy

−Lyx −Lyy
α

θ

 =


1

τ
− Lxx 0 −Lyx

0 0 0

−Lyx 0
Lyx
π1


︸ ︷︷ ︸

M1

+


0 0 0

0 1
σ
− θLyx

π1
− θLyy

π2
−Lyy

0 −Lyy Lyy
π2


︸ ︷︷ ︸

M2

.

Therefore, since π1, π2 > 0, the second and the third inequalities in (24) imply M1 � 0 and M2 � 0, respectively.
Thus, M1 +M2 � 0.

Lemma 6 shows that every solution to (24) can be converted to a solution to (7). Next, based on this lemma, we will
give an explicit parameter choice for Algorithm 1.
Corollary 1. Suppose µx, µy > 0. If Lyy > 0, for any given β ∈ (0, 1), c ∈ (0, 1], let τ, σ > 0 and θ ∈ (0, 1) be
chosen satisfying

τ =
1− θ
µxθ

, σ =
1− θ
µyθ

, θ ≥ θ , max{θ1, θ2}, (25)

where θ1, θ2 ∈ (0, 1), depending on the choice of β and c, are defined as

θ1 , 1− cβ(Lxx + µx)µy
2L2

yx

(√
1 +

4µxL
2
yx

cβµy(Lxx + µx)2
− 1
)
, θ2 , 1− c2(1− β)2

8

µ2
y

L2
yy

(√
1 +

16L2
yy

c2(1− β)2µ2
y

− 1
)
. (26)

10
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On the other hand, if Lyy = 0, let τ, σ > 0 and θ ∈ (0, 1) be chosen as in (25) for θ1 in (26) with β = 1 and θ2 = 0.4

Then α = c
σ −
√
θLyy > 0, and {τ, σ, θ, α} is a solution to (7). Moreover, when Lyy > 0, the minimum θ is attained

at unique β∗ ∈ (0, 1) such that θ1 = θ2.

For this particular solution, we set ρ = θ; hence, θ is not only the momentum parameter, but it also determines the
linear rate for the bias term in (6) which gives an error bound on E[d∗N ].

2.3 Iteration Complexity Bound for SAPD

In this part, we study the iteration complexity bound for SAPD, to compute (xN , yN ) such thatD(xN , yN ) ≤ ε where
ε > 0 is a given tolerance and D(·, ·) denotes the distance function defined in (2).
Theorem 2. Suppose µx, µy > 0, and Assumptions 1 and 2 hold. For any ε > 0, suppose the SAPD parameters
{τ, σ, θ} are chosen such that

τ =
1− θ
µxθ

, σ =
1− θ
µyθ

, θ = max{θ, θ}, (27)

where θ is set as in (25) for some arbitrary β ∈ (0, 1] and c =
1

2
, and

θ , max
{
θ1, θ2

}
, θ1 = max{0, 1− 1

12Ξx(β)

µx
δ2
x

ε}, θ2 = max{0, 1− 1

12Ξy(β)

µy
δ2
y

ε}, (28)

such that Ξx(β) , 1 + Ψ(β) and Ξy(β) , 27−3β
2 +

3βLxy
Lyx

+
µy
µx

Ψ(β) with Ψ(β) , min
{√

βµx
2µy

, 1−β
4

Lyx
Lyy

}
. Then,

the iteration complexity of SAPD, as stated in algorithm 1, to generate (xε, yε) ∈ X × Y such that D(xε, yε) =
E[µx‖xε − x∗‖2+µy‖yε − y∗‖2] ≤ ε is

O
([Lxx

µx
+

Lyx√
µxµy

+
Lyy
µy

+
((

1 +

√
µx
µy

) δ2
x

µx
+
(

1+
Lxy
Lyx

+

√
µy
µx

) δ2
y

µy

)1

ε

]
· ln
(D(x0, y0)

ε

)
. (29)

Furthermore, choosing β = min{1

2
,
µy
µx
, µxµy } leads to the following iteration complexity:

O
([Lxx

µx
+

Lyx
min{µx, µy}

+
Lyy
µy

+
( δ2

x

µx
+
(

1 +
Lxy
Lyx

) δ2
y

µy

)1

ε

]
· ln
(D(x0, y0)

ε

)
. (30)

Proof. Given β ∈ (0, 1), let {τ, σ, θ, α} be a particular solution to (7) constructed according to corollary 1. Therefore,
using these particular parameter values together with ρ = θ within Theorem 1, we know that (6) holds, i.e., for any
N ≥ 0, it follows that

E[
1

2τ
‖xN − x∗‖2+

1− ασ
2σ

‖yN − y∗‖2] ≤ ρN
( 1

2τ
‖x0 − x∗‖2+

1

2σ
‖y0 − y∗‖2

)
+

ρ

1− ρΞτ,σ,θ.

Using the parameter choice τ = 1−θ
θµx

, σ = 1−θ
θµy

, α = c
σ −
√
θLyy, ρ = θ, and letting c = 1

2 , we first obtain that
1−ασ
σ ≥ 1

2σ ; then this inequality together with our parameter choice leads to

E[µx‖xN − x∗‖2+µy‖yN − y∗‖2] ≤ 2θN
(
µx‖x0 − x∗‖2+µy‖y0 − y∗‖2

)
+ 4Ξτ,σ,θ. (31)

Note (27) implies Ξτ,σ,θ = (1 − θ)(Ξxτ,σ,θ
δ2
x

µx
+ Ξyτ,σ,θ

δ2
y

µy
), where Ξxτ,σ,θ and Ξyτ,σ,θ are defined in the statement of

Theorem 1. Thus, for any ε > 0, the right side of (31) can be bounded by ε when

θN
(
µx‖x0 − x∗‖2+µy‖y0 − y∗‖2

)
≤ ε

6
, (1− θ)Ξxτ,σ,θ

δ2
x

µx
≤ ε

12
, (1− θ)Ξyτ,σ,θ

δ2
y

µy
≤ ε

12
. (32)

Therefore, to get a sufficient condition on θ for the last two inequalities in (32) to hold, we first upper bound Ξxτ,σ,θ
and Ξyτ,σ,θ . The parameter choice of τ and σ in (27) implies that

Ξxτ,σ,θ = 1 + θ(1− θ2)
Lyx
2µy

, Ξyτ,σ,θ =
(

(1 + θ)2 + θ(1− θ2)
Lyy
µy

+ θ(1 + θ)(1− θ)2LyxLxy
µxµy

)
(1 + 2θ) + θ(1− θ2)

Lyx
2µx

.

Since 0 < θ ≤ 1, we have 1− θ2 ≤ 2(1− θ); thus, Ξxτ,σ,θ ≤ 1 + (1− θ)Lyxµy and

Ξyτ,σ,θ ≤ 6
(

2 + (1− θ)Lyy
µy

+ (1− θ)2LyxLxy
µxµy

)
+ (1− θ)Lyx

µx
. (33)

4Our parameter selection when Lyy = Lxx = 0 recovers (τ, σ, θ) choice in [8, Eq.(49)].
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On the other hand, since θ ≥ θ = max{θ1, θ2} and c = 1
2 , the inequality

√
a+ b ≤

√
a +
√
b for all a, b ≥ 0, and

(26) together imply that 1− θ ≤ min{
√
βµxµy/2

Lyx
, (1− β)

µy
4Lyy
}. Thus,

Ξxτ,σ,θ ≤ 1 + (1− θ)Lyx
µy
≤ Ξx(β), (34)

and within (33) bounding (1− θ)Lyxµx similarly and using (1− θ)2 ≤ β
2
µxµy
L2
yx

, we get

Ξyτ,σ,θ ≤ 6
(

2 + (1− θ)Lyy
µy

+
βLxy
2Lyx

)
+
µy
µx

min
{√βµx

2µy
,

1− β
4

Lyx
Lyy

}
.

Next, it follows from 1 − θ ≤ (1 − β)
µy

4Lyy
that Ξyτ,σ,θ ≤ Ξx(β). Therefore, this inequality together with eq. (34)

and the definition of θ imply that (27) provides us with a particular parameter choice for SAPD such that the last two
inequalities in (32) hold. Indeed, our choice in (27) satisfies (7) which is a simpler LMI obtained by setting θ = ρ
in eq. (5); therefore, ρ = θ ∈ (0, 1) provides us with an upper bound on the actual convergence rate –see (6). To
compute the upper complexity bound for SAPD, we next analyze how N should grow depending on ε such that the

first inequality in (32) holds. The first inequality in (32) holds for N ≥ 1 + ln(6D(x0, y0)/ε)/ln(
1

θ
). Thus, SAPD

can generate a point (xε, yε) ∈ X × Y such that D(xε, yε) ≤ ε within

Nε = O
(

ln
(D(x0, y0)

ε

)
/ln(

1

θ
)
)

(35)

iterations. In the remaining part of the proof, we will bound the term ln(
1

θ
)−1 in terms of given ε > 0. According to

(27), θ = max{θ, θ}; hence, it follows from (25) and (28) that θ ∈ {θ1, θ2, θ1, θ2} ⊂ (0, 1). Since ln(1/θ) is convex
for θ ∈ R++, we immediately get 1

ln( 1
θ )
≤ 1

1−θ for θ ∈ (0, 1). Therefore, we trivially get the bound

1

ln( 1
θ )
≤ max{(1− θ1)−1, (1− θ2)−1, (1− θ1)−1, (1− θ2)−1}. (36)

First, we equivalently rewrite (1− θ1)−1 and (1− θ2)−1 as follows:

(1− θ1)−1 =
1

2

(
Lxx
µx

+ 1

)
+

√
1

4

(
Lxx
µx

+ 1

)2

+
2L2

yx

βµxµy
, (1− θ2)−1 =

1

2
+

√
1

4
+

16L2
yy

(1− β)2 µ2
y

;

finally, (1 − θ1)−1 =
1

12
Ξx(β)

δ2
x

µx
1
ε and (1 − θ2)−1 =

1

12
Ξx(β)

δ2
y

µy
1
ε . Thus, using four identities we derived above

within (36) and combining it with (35), we achieve the desired bound for SAPD.

Remark 5. Whenever µx � µy or µx � µy , the variance bound in (30) is better than (29). There is a bias-variance
trade-off for this improvement, i.e., Lyx√

µxµy
term in bias degrades to Lyx

min{µx,µy} . However, in certain scenarios, the
improvement in variance justifies this degradation in bias. For instance, suppose L is µx-strongly convex in x for
µx = O(1), there exists Dy such that ‖y‖≤ Dy for y ∈ dom g, and Φ affine in y; hence, Lyy = 0 –see DRO problem
in section 5.2. Let h(x) , maxy L(x, y) denote the primal function. Using Nesterov’s smoothing technique in [34],

one can smooth h, which leads to an SCSC problem: minx{hµy (x) , maxy L(x, y)− µy
2
‖y‖2}, for which choosing

the smoothing parameter µy = ε
2D2

y
implies |h(·)− hµy (·)|≤ ε. To compute an ε-solution for the regularized problem

with µy = Θ(ε), (29) implies Õ(
δ2
x

ε3/2 +
δ2
y

ε2 ) while (30) gives us Õ(
δ2
x

ε +
δ2
y

ε2 ).

Remark 6. Given ε > 0, for sufficiently small δ2
x > 0, (28) implies that θ1 = 0; similarly, θ2 = 0 for sufficiently

small δ2
y > 0. Therefore, δ2

x = δ2
y = 0 implies θ1 = θ2 = 0.

Our bound’s variance term (the term that depends on the noise levels δ2
x and δ2

y) in Theorem 2 is optimal with respect
to its dependency to ε up to a log factor, which can further be eliminated through employing a restarting strategy in the
lines of our previous work [1] –see appendix D for details.

3 Robustness and Convergence Rate Trade-off

In this section, assuming µx, µy > 0, we study the trade-offs between robustness-to-gradient noise and the convergence
rate depending on the choice of SAPD parameters, i.e., bias-variance trade-off for SAPD. Given the saddle point

12
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z∗ , (x∗, y∗) ∈ X × Y of (1), we first define the robustness as follows:

J , lim sup
N→∞

JN , where JN , E
[ 1

δ2
x

‖xN − x∗‖2+
1

δ2
y

‖yN − y∗‖2
]
. (37)

The quantity JN is the expected squared distance of zN , (xN , yN ) to z∗, normalized by the level of gradient noise:
δ2
x and δ2

y . Thus, using J we measure how much SAPD amplifies the gradient noise asymptotically. Due to the
persistent stochastic noise, {zN} does not typically converge to z∗ but oscillate around it with a positive variance. The
limit J provides a bound on the expected size of neighborhood {zN} accumulates in, i.e., from Jensen’s lemma, we
get

lim sup
N→∞

E[‖zN − z∗‖] ≤ lim sup
N→∞

√
E [‖xN − x∗‖2+‖yN − y∗‖2] ≤ max{δx, δy}

√
J .

Therefore, smaller values of J will lead to better robustness to noise and will give a better asymptotic performance.
Below we derive an explicit characterization of J for a particular class of SCSC problems; and we will obtain an
upper bound on J for more general SCSC problems in section 3.2.

3.1 Explicit Estimates for Robustness to Noise

We consider the special case of (1) when Φ is bilinear and f, g have simple quadratic forms, i.e.,
Φ(x, y) = 〈Kx, y〉, f(x) =

µx
2
‖x‖2, g(y) =

µy
2
‖y‖2, (38)

where K ∈ Rd×d is a symmetric matrix, and the noise is additive, i.e.,

∇̃xΦ(xk, yk+1;ωxk) = ∇xΦ(xk, yk+1) + ωxk , ∇̃yΦ(xk, yk;ωyk) = ∇yΦ(xk, yk) + ωyk , (39)

satisfying Assumption 2. We also assume that there exists δ > 0 such that {wxk} and {wyk} are i.i.d Gaussian with zero
mean and an isotopic covariance, i.e.,

E [wxk ] = 0d, E [wyk ] = 0d, E
[
wxk(wxk)>

]
=
δ2

d
Id, E

[
wyk(wyk)>

]
=
δ2

d
Id. (40)

Clearly, the unique saddle point to (38) is the origin, i.e., (x∗, y∗) = (0d, 0d). We will show that the robustness measure
J defined in (37) is finite, and that it admits a closed form solution. We first note that according to algorithm 1, for
k ≥ 0,

xk =
1

1 + τµx
(xk−1 − τK>yk − τωxk−1),

yk+1 =
1

1 + σµy

(
yk + σ(1 + θ)Kxk − σθKxk−1 + σ(1 + θ)ωyk − σθω

y
k−1

)
.

(41)

Next, for k ≥ 0, we define z̃k , [x>k−1 y
>
k ]> ∈ R2d and wk , [(wxk−1)>(wyk−1)>(wyk)>]> ∈ R3d, which is the

vertical concatenation of the noise realization at step k − 1 and k. The vector z̃k satisfies
z̃k+1 = Az̃k +Bwk, (42)

A ,

 1
1+τµx

Id
−τ

(1+τµx)
K>

1
1+σµy

(
σ(1+θ)
1+τµx

− σθ
)
K 1

1+σµy

(
Id − τσ(1+θ)

1+τµx
KK>

) , B ,

 −τ
1+τµx

Id 0d 0d
−τσ(1+θ)

(1+τµx)(1+σµy)
K −σθ

1+σµy
Id

σ(1+θ)
1+σµy

Id

 .
From (42), using the noise model, it is easy to see that Σk , E[z̃kz̃

>
k ] satisfies

Σk+1 = AΣkA
> +

δ2

d
BB> + E[Bωkz̃

>
k A
> +Az̃kω

>
k B
>]

= AΣkA
> +

δ2

d
BB> + E[Bωk(Az̃k−1 +Bwk−1)>A> +A(Az̃k−1 +Bwk−1)ω>k B

>] = AΣkA
> +

δ2

d
R

for k ≥ 0, where R ,

c1Id c2K
>

c2K c3KK
> + c4Id

 and {ci}4i=1 are some constants.5 Linear dynamical systems subject

to Gaussian noise such as (42) have been well studied in the robust control literature. In fact, it is known that the limit
Σ∞ , limk→∞ Σk exists if the spectral radius of A, denoted by ρ(A), is less than one, and it satisfies the Lyapunov
equation: Σ∞ , AΣ∞A

> + δ2

d
R, whose solution is given in the form of an infinite series Σ∞ = δ2

d

∑∞
k=0 A

kR(Ak)>

5 These constants can be computed explicitly as follows: c1 , τ2

(1+τµx)2
, c2 , c1

σ(1+θ)
1+σµy

+
√
c1θ(1 + θ) σ2

(1+σµy)2
, c3 ,

(1 + θ)2 σ2

(1+σµy)2
(c1 +

√
c1

2σθ
1+σµy

), and c4 , σ2

(1+σµy)2
(1 + 2θ(1 + θ)

σµy
1+σµy

).

13
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(see [56]). It is also easy to see that J = 1
δ2 Tr(Σ∞) = 1

d

∑∞
k=0 Tr(AkR(Ak)>). We also observe that J is invariant

under orthogonal transformations, i.e., for any orthogonal matrix Z, Ã , Z>AZ and R̃ , Z>RZ satisfy

J =
1

δ2
Tr(Σ̃∞), where Σ̃∞ ,

δ2

d

∞∑
k=0

ÃkR̃(Ak)> = Z>Σ∞Z, (43)

solves the transformed Lyapunov equation Σ̃∞ = ÃΣ̃∞Ã
>+ δ2

d R̃. In order to compute J explicitly, we will choose a
particular orthogonal matrixZ so that solving the transformed Lyapunov equation explicitly will be simple. First, given
K ∈ Sd, we consider its eigenvalue decompositionK = UΛU>, where Λ is a diagonal matrix such that Λii = λi, and

{λi}di=1 are the eigenvalues in increasing order, i.e., λ1 ≤ λ2 ≤ . . . ≤ λd. Then,A = V AΛV
>, where V ,

U 0d

0d U


and AΛ ,

a1Id a2Λ

a3Λ a4Λ2 + a5Id

for constants a1 = 1
1+τµx

, a2 = −τ
1+τµx

, a3 = σ
1+σµy

(
1+θ

1+τµx
− θ
)

, a4 = −τσ(1+θ)
(1+τµx)(1+σµy)

,

a5 = 1
1+σµy

. Furthermore, we can permute the entries of AΛ so that it becomes a block diagonal matrix, i.e., there

exists a permutation matrix P such that PAΛP
> = diag({Ãi}di=1) , Ã, where for each i ∈ {1, . . . , d}, Ãi ∈ R2×2

is defined by Ãi ,

 a1 a2λi

a3λi a4λ
2
i + a5

 . Thus, for Z = V P>, we have Ã = Z>AZ, and R̃ = Z>RZ = diag{R̃i}di=1

such that R̃i ,

 c1 c2λi

c2λi c3λ
2
i + c4

 where c1, c2, c3 and c4 are explicitly given in footnote 5. Both Ã and R̃ have a

block diagonal structure; therefore, Σ̃∞ = diag({S̃i}di=1), where for each i ∈ {1, . . . , d}, S̃i is the unique solution to

S̃i = ÃiS̃iÃ
>
i +

δ2

d
R̃i. (44)

This Lyapunov equation is a 2 × 2 system, which can be solved for S̃i explicitly by inverting a 3 × 3 symbolic
matrix –since S̃i is symmetric, one needs to solve for 1 off-diagonal and 2 diagonal elements. Using (43) and Σ̃∞ =
diag({S̃i}di=1) will yield us an explicit formula for J .

Next, for A in eq. (42), we define ρtrue , (ρ(A))2, which determines the exact (asymptotic) convergence rate
of E[‖z̃N − z∗‖2]; hence, E[d∗N ] in Theorem 1 also converges with this asymptotic rate. Furthermore, it can also
be shown for this quadratic model that E[sup(x,y)∈X×Y{L(xk, y) − L(x, yk)}] converges with the same rate (see
appendix C.2 for more details). Robustness measure J and convergence rate ρtrue computed in this section is
independent of our theoretical analysis of the SAPD algorithm. It reflects the exact asymptotic behavior of the
algorithm for a quadratic function in (38), which helps us understand some fundamental relations.

0.65 0.7 0.75 0.8 0.85 0.9 0.95

The convergence rate: 

10-3

10-2

10-1

100

101

0.99

(a) (b)

Figure 1: The rate-robustness trade-off for (38) when µx = µy = 1, ‖K‖2= 10, d = 30 and δx = δy = δ = 10. The
best achievable rate is 0.67. The point indicated with a red “ ∗ ” in fig. 1(a) is the particular choice of CP parameters
given in [8, Eq.(49)]. fig. 1(b) illustrates that employing the SAPD parameters obtained through minimizing R̄, an
upper bound on J defined in section 3.2, one can closely track the efficient frontier J ∗. The best certifiable rate is
0.9049.
We numerically illustrate the fundamental rate-robustness trade-off in section 3.1 for (38) through plotting 3 curves:
J1, J2 and J ∗. For J1, we uniformly grid the parameter space (τ, σ, θ) ∈ [0, 0.5] × [0, 0.5] × [0, 2] using
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500× 500× 200 points; then, for each grid point, we compute the corresponding (ρtrue,J ) values and plot it. For J2,
we employ the step sizes suggested in [8, Algorithm 5] for the CP method6 and plot (ρtrue,J ) (see appendix C.1) . For
J ∗, defining J ∗(ρ) , minτ,σ,θ≥0{J : ρtrue = ρ}, we plot (ρ,J ∗(ρ)) which illustrates the best robustness that can be
achieved for a given rate. In the J1 plot, there are vertical lines as there exist many points in the grid sharing the same
rate while they have very different robustness values. As seen in fig. 1(a), for great majority of parameter choice from
the uniform grid, the corresponding robustness is very poor, i.e., very high J value. As a consequence, we infer that
it is necessary to control the robustness through properly tuning the algorithm parameters. The J2 plot demonstrates
that for a fixed rate CP parameter choice ensures relatively lower J values compared to the majority of points in the
uniform grid; but, J2 is still far away from the efficient frontier J ∗. As indicated in J2 plot, the best convergence
rate CP parameters can achieve is only around 0.83, while the best rate achieved among the uniform grid is 0.67.

While the parameter optimization problem to compute J ∗(ρ) for a given convergence rate ρ ∈ (0, 1) can be done for
(1) corresponding to (38), this is not a trivial task for a more general coupling function Φ; therefore, we provide an
alternative model to achieve a similar trade-off result between an upper bound on J and a bound on the convergence
rate in Theorem 3.

(a) (b)

Figure 2: The effect of the step sizes on rate and robustness of SAPD running on (38) when µx = µy = 1, ‖K‖2= 10,
d = 30 and δx = δy = δ = 10. The best achievable rate is 0.67.

Next, we analyze how primal-dual step sizes, τ and σ, affect the convergence rate and the robustness level. For any
given ε ∈ (0, 1), we define

ρ∗ε (τ, σ) , min
θ≥0
{ρtrue : ρtrue≤1− ε}, J ∗ε (τ, σ) , min

θ≥0
{J : ρtrue≤1− ε}.

We consider the same experiment described in the caption of Figure 3.1, setting x-axis as τ , and y-axis as σ, we plot
ρ∗ε (τ, σ) in fig. 2(a) and J ∗ε in fig. 2(b), for ε = 0.01. We observe that except for the boundary points, simultane-
ously increasing τ and σ leads to a faster convergence rate at the expense of a decrease in robustness level – as one
approaches the boundary, there is a significant increase in both convergence rate and J values. These results illustrate
the fundamental trade-offs between the convergence rate and robustness for SAPD.

3.2 An Upper Bound for the Robustness Measure J

J is hard to compute in general; to alleviate this issue, we can alternatively minimize an upper bound on J to control
the robustness level. We start with a proposition that provides an upper bound on the robustness measure J .

Theorem 3. Suppose Assumptions 1, and 2 hold, and {xk, yk}k≥0 are generated by SAPD stated in Algorithm 1, the

parameters {τ, σ, θ} satisfy the conditions in Theorem 1 for some α ∈ [0,
1

σ
) and ρ ∈ (0, 1).

Then, for δ , min{δx, δy} and Ξτ,σ,θ as in Theorem 1, we have

J = lim sup
N→∞

JN ≤
2ρ

(1− ρ)δ2
·max

{
τ,

σ

1− ασ

}
· Ξτ,σ,θ. (45)

6Although our method SAPD generalizes the CP method beyond the bilinear problem, SAPD coincides with CP on this partic-
ular problem as it has a bilinear coupling function Φ.
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Proof. Let Cτ,σ , min{ 1
2τ ,

1
2σ (1− ασ)}. Then, from Theorem 1, we have that

Cτ,σδ
2JN ≤ E

[
Cτ,σ(‖xN − x∗‖2+‖yN − y∗‖2)

]
≤ ρNDτ,σ +

ρ

1− ρ Ξτ,σ,θ,

which implies (45) since ρNDτ,σ → 0 as N →∞.

This upper bound is theoretically correct only for parameters satisfying our step size conditions in eq. (5), which are
only sufficient for ensuring a linear rate; but, they may not be necessary.

Next we investigate the trade-off between the convergence rate bound implied by the matrix inequality in eq. (5) and
the robustness upper bound provided in Theorem 3.
Lemma 7. Given ρ ∈ (0, 1), let (tρ, sρ, θρ, αρ) be an element of Pρ, where

Pρ , {(t, s, θ, α) : t, s, θ, α ≥ 0, α ≤ s, Gρ(t, s, θ, α) � 0} and

Gρ(t, s, θ, α) ,



(1− 1
ρ
)t+ µx 0 0 0 0

0 (1− 1
ρ
)s+ µy ( θ

ρ
− 1)Lyx ( θ

ρ
− 1)Lyy 0

0 ( θ
ρ
− 1)Lyx t− Lxx 0 − θ

ρ
Lyx

0 ( θ
ρ
− 1)Lyy 0 s− α − θ

ρ
Lyy

0 0 − θ
ρ
Lyx − θ

ρ
Lyy

α
ρ


.

Then the bias term, i.e., ρNDτ,σ defined in (6), converges to 0 with rate ρ for SAPD employing τ = 1/tρ, σ = 1/sρ
and θ = θρ . If Pρ = ∅, then (5) does not have a solution for the given ρ value.

Proof. This result immediately follows from Theorem 1.

With the help of Lemma 7, one can do a binary search on (0, 1) interval to compute the best rate ρ∗ we can justify
using the matrix inequality in (5), i.e., ρ∗ , minρ≥0{ρ : Pρ 6= ∅}. For any ρ ∈ (0, 1), checking whether Pρ is
nonempty or not requires solving a 4-dimensional SDP.

Next, we numerically illustrate that the explicit upper bound we derived in Theorem 3 provides a reasonable approxi-
mation to the actual robustness measure J . For this purpose, we consider the same example from Section 3.1 where J
can be explicitly computed, and compare J to its upper bound given in (45). In (38), we take µx = µy = 1, where we
generate the symmetric matrix K ∈ Rd×d randomly with ‖K‖2= 10 and d = 30. We assume the noise model given
in (39) and (40) with δx = δy = 10. Consequently, we have Lxx = Lyy = 0, Lyx = 10. Employing the particular
parameter choice in corollary 1, i.e., setting β = 1, θ2 = 0 and c = 1, we can certify that SAPD converges with rate
ρ ≈ 0.9049 using τ and σ as in (25) and θ = ρ. We have found out that ρ∗ obtained using the binary search for this
example was also equal to 0.9049, i.e., our special solution in Corollary 1 leads to the optimal rate bound ρ∗.

For any ρ ∈ [ρ∗, 1), we can optimize SAPD parameters minimizing the bound for robustness in (45) while ensuring
that the bias term converges linearly with rate not worse than ρ, i.e.,

R(ρ) , min
τ,σ,θ,α≥0

{
2ρ

1− ρ ·max
{
τ,

σ

(1− ασ)

}
· Ξτ,σ,θ/δ2 : (5) holds for (τ, σ, θ, ρ, α)

}
. (46)

To be able to solve (46), we do not need to know δx or δy . (46) is non-convex; however, it has some structure. In the
next lemma, we provide a simpler optimization problem exploiting this structure.
Lemma 8. Given ρ ∈ (0, 1) and τ > 0, let Sρ(τ) , {(σ, θ, α) : eq. (5) holds for (τ, σ, θ, ρ, α)}. Suppose
∪τ>0Sρ(τ) 6= ∅. Then, 1−ρ

µxρ
= min{τ : Sρ(τ) 6= ∅}. Moreover, for any τ1 ≥ τ2 ≥ 1−ρ

µxρ
, we have Sρ(τ1) ⊂ Sρ(τ2).

Finally,R(ρ) defined in eq. (46) can also be computed as
R(ρ) = min

σ,θ,α≥0

{ 2ρ

1− ρ ·max
{
τ,

σ

(1− ασ)

}
· Ξτ,σ,θ/δ2 : τ =

1− ρ
µxρ

, eq. (5) holds
}
. (47)

Proof. Since∪τ>0Sρ(τ) 6= ∅, there exists (τ, σ, θ, ρ, α) satisfying eq. (5); thus,
1

τ
(1− 1

ρ
)+µx ≥ 0, i.e., τ ≥ τ̄ , 1−ρ

µxρ
.

Say τ ≥ τ̄ , then we have
1

τ̄
−Lxx ≥

1

τ
−Lxx, which implies that (σ, θ, α) ∈ Sρ(τ̄). Therefore, we can conclude that

1−ρ
µxρ

= min{τ : Sρ(τ) 6= ∅} because eq. (5) requires that τ ≥ τ̄ .

Suppose (σ, θ, α) ∈ Sρ(τ1) for some τ1 > 0. The same arguments also show that for any τ2 ∈ [ 1−ρ
µxρ

, τ1], we have
(σ, θ, α) ∈ Sρ(τ2); hence, Sρ(τ1) ⊂ Sρ(τ2). Furthermore, the objective in eq. (46) is strictly increasing in τ ; thus, the
optimal values of eq. (46) and eq. (47) are equal.
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For any ρ ∈ (0, 1], we consider two necessary conditions for eq. (5): i) τ ≥ 1−ρ
µxρ

, ii)

 µy (
θ

ρ
−1)Lyx

(
θ

ρ
−1)Lyx

1

τ
−Lxx

 � 0,

which further implies (
θ

ρ
− 1)2L2

yx ≤ µy( 1
τ
−Lxx). Thus, for fixed ρ, any solution to eq. (5) satisfies θ ≤ θ̄ρ, which is

defined in (48). Indeed, either θ ∈ [0, ρ], or when θ ≥ ρ, the necessary conditions imply that

θ ≤ ρ

(
1 +

√
µy( 1

τ
− Lxx)

Lyx

)
≤ ρ

(
1 +

√
µy( µxρ

1−ρ − Lxx)

Lyx

)
, θρ. (48)

Next, we discuss how an upper bound on J can be computed efficiently through bisection over the rate parameter ρ
and a grid search on θ.

Definition 1. For ρ ∈ (0, 1), let Cρ , {c ∈ (0, 1) : Pρ∩Lc 6= ∅}, where Pρ is as in Lemma 7 and Lc , {(t, s, θ, α) ∈
R4

+ : α = cs}. The definition implies that Cρ 6= ∅ for all ρ ∈ [ρ∗, 1).

Remark 7. For any ρ ∈ [ρ∗, 1), Cρ 6= ∅ is a convex set;7 hence, Cρ ⊂ [0, 1] is an interval. Thus, c̄ρ , sup Cρ and
cρ , inf Cρ can be computed via bisection. Each bisection iteration is a 3-dimensional SDP checking the feasibility
of {(t, s, θ) ∈ R3

+ : Gρ(t, s, θ, cs) � 0} for a given c ∈ (0, 1).

Lemma 9. Given ρ ∈ [ρ∗, 1) and c ∈ Cρ, let θc,ρ , inf Θc,ρ and θc,ρ , sup Θc,ρ, where Θc,ρ , {θ : ∃(s, θ) ∈ Sc,ρ}
and Sc,ρ , {(s, θ) : ∃(t, s, θ, α) ∈ Pρ s.t. t = µxρ

1−ρ , α = cs}. For fixedKθ ∈ Z+, let {θk}Kθk=1 ⊂ [θc,ρ, θc,ρ] ⊂ [0, θ̄ρ]

be an arbitrary set of grid points such that θ1 = θc,ρ and θKθ = θc,ρ. Define R̄c(ρ) , mink=1,...Kθ R̄c(ρ, θk), where

R̄c(ρ, θ) , min
σ≥0

{
max

{ 2

µx
,

2ρσ

(1− c)(1− ρ)

}
· Ξτ,σ,θ/δ2 : τ =

1− ρ
µxρ

, α =
c

σ
, eq. (5) holds

}
. (49)

Then, R̄c(ρ) ≥ R(ρ). Furthermore, for any fixed ρ ∈ [ρ∗, 1), c ∈ Cρ and θ ∈ [θc,ρ, θc,ρ], σc(ρ, θ) , 1/max{s :
(s, θ) ∈ Sc,ρ} is the unique optimal solution to (49).

Proof. Given ρ ∈ [ρ∗, 1) and c ∈ Cρ, since we fix θ and α = c/σ while deriving eq. (49), we immediately get R̄c(ρ) ≥
R(ρ) due to Lemma 8. Lastly, after fixing ρ ∈ [ρ∗, 1), c ∈ Cρ and θ ∈ [θc,ρ, θc,ρ], the objective in eq. (49) is increasing
in σ > 0, and σ 7→ 1/σ = s is a bijection between the feasible region of (49) and {s : (s, θ) ∈ Sc,ρ}. Therefore, the
unique solution σc(ρ, θ) can be computed by solving a one-dimensional SDP, i.e., max{s : (s, θ) ∈ Sc,ρ} for fixed ρ,
c and θ.

Given Kc,Kρ ∈ Z+, let P , {ρk}
Kρ
k=1 ⊂ [ρ∗, 1] and Cρ , {ck}Kck=1 ⊂ Cρ be the grid points. Finally, for ρ ∈ P ,

we define R̄(ρ) , minc∈Cρ R̄c(ρ), where R̄c(ρ) can be computed based on Lemma 9 for any c ∈ Cρ. Therefore,
for any ρ ∈ P , computing R̄(ρ) using Lemma 9 will yield (τρ, σρ, θρ) achieving R̄c(ρ) for some c ∈ Cρ such that
R̄(ρ) = R̄c(ρ). Thus, for the quadratic model assumed in section 3.1, we can compute the robustness measure,
defined in (37), corresponding to (τρ, σρ, θρ), which we call J (ρ). Recall that in Section 3.1, we defined J ∗(ρ) ,
minτ,σ,θ≥0{J : ρtrue = ρ}. To numerically illustrate the rate vs robustness trade-off and also to demonstrate that
we can control robustness through optimizing R̄, in fig. 1(b), we plot robustness measure J (ρ), corresponding to
(τρ, σρ, θρ) computed by minimizing its upper bound R̄(ρ), against the convergence rate values ρ ∈ P in the x-axis,
and compare J (ρ) with J ∗(ρ) and R̄(ρ), where we set Kρ = Kθ = 100 and Kc = 50. In fig. 1(b), we observe that
J (ρ) computed for SAPD parameters optimizing R̄(ρ) closely tracks J ∗(ρ). Therefore, we infer that minimizing the
upper bound helps us optimize the robustness for the problem class used in these experiments.

4 Extensions

We now show that SAPD admits the optimal oracle complexity bound for the stochastic MCMC case, i.e., when
µx = µy = 0. This result can be viewed as a nontrivial extension of the deterministic complexity result in [18] to the
stochastic gradient setting.
Remark 8. Suppose µx = µy = 0, and the parameters τ, σ > 0 and θ ∈ (0, 1] satisfy (7). The first condition (7)
implies that θ = 1.

7We skip the proof due to limited space; for details, see appendix C.3.
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Theorem 4. Suppose µx = µy = 0, Assumptions 1 and 2 hold. Assume that Ωx , supx1,x2∈dom f‖x1 − x2‖< ∞
and Ωy , supy1,y2∈dom g‖y1 − y2‖<∞. For any ε > 0, suppose {τ, σ, θ} are chosen such that

τ = min
{ 1

Lyx + Lxx
,

2

15
· ε
δ2
x

}
, σ = min

{ 1

Lyx + 2Lyy
,

1

Lxy
,

1

72
· ε
δ2
y

}
, θ = 1. (50)

Then for the gap metric G(·, ·), defined in (2), G(x̄N , ȳN ) ≤ ε for all N ≥ Nε such that

Nε = O
( (Lyx + Lxx)Ω2

x + max{Lyx + Lyy, Lxy}Ω2
y

ε
+
δ2
xΩ2

x + δ2
yΩ2

y

ε2

)
.

Proof. Since µx = µy = 0, the first condition in (7) trivially holds for (τ, σ, θ) as in (50). Furthermore, (50) implies
that 1

τ ≥ Lyx + Lxx and 1
σ ≥ Lyx + 2Lyy; therefore, (τ, σ, θ) in (50) with π1 = π2 = 1 satisfy the conditions in

Lemma 6. Thus, (τ, σ, θ) with α = Lyx + Lyy solves (7).

The analysis in the proof of Theorem 1 until the end of (22) is valid for our choice of parameters in (50). To get
a bound for the expected gap, we next analyze P̄ , sup{

∑N−1
k=0 Pk(x, y) : (x, y) ∈ dom f × dom g}. For some

arbitrary ηx > 0, define {x̃k} sequence as follows: x̃0 , x0, and x̃k+1 , argminx′∈dom f −〈∆x
k, x
′〉+ ηx

2 ‖x
′− x̃k‖2,

for k ≥ 0, where ∆x
k is defined as in Lemma 2. Then, from [32, Lemma 2.1], for all x ∈ dom f we get

N−1∑
k=0

〈∆x
k, x− x̃k〉 ≤

N−1∑
k=0

ηx
2
‖x− x̃k‖2−

ηx
2
‖x− x̃k+1‖2+

1

2ηx
‖∆x

k‖2≤
ηx
2
‖x− x0‖2 +

1

2ηx

N−1∑
k=0

‖∆x
k‖2; (51)

hence, using x̂k+1 defined in Lemma 2, we get

E
[

sup
x∈dom f

{N−1∑
k=0

−〈∆x
k, x̂k+1 − x〉

}]
≤
N−1∑
k=0

E
[
〈∆x

k, x̃k − x̂k+1〉+
1

2ηx
‖∆x

k‖2
]

+
ηx
2

Ω2
x. (52)

Similarly, for arbitrary ηy > 0, we construct two auxiliary sequences: let ỹ+
0 = ỹ−0 = y0, and we define ỹ+

k+1 ,

argminy′∈dom g〈∆
y
k, y
′〉 +

ηy
2
‖y′ − ỹ+

k ‖
2, and ỹ−k+1 , argminy′∈dom g −〈∆

y
k, y
′〉 +

ηy
2
‖y′ − ỹ−k ‖

2, for k ≥ 0. Thus, as in
as in (51), it follows from [32, Lemma 2.1] that for all y ∈ dom g, we get8

N−1∑
k=0

2〈∆y
k, ỹ

+
k − y〉 − 〈∆

y
k−1, ỹ

−
k−1 − y〉 ≤

3ηy
2
‖y − y0‖2 +

1

2ηy

N−1∑
k=0

2‖∆y
k‖

2+‖∆y
k−1‖

2;

hence, using ŷk+1 and ˆ̂yk+1 defined in Lemma 2, we get

E
[

sup
y∈dom g

{N−1∑
k=0

2〈∆y
k, ŷk+1 − y〉 − 〈∆y

k−1,
ˆ̂yk+1 − y〉

}]

≤
N−1∑
k=0

E
[
2〈∆y

k, ŷk+1 − ỹ+
k 〉 − 〈∆

y
k−1,

ˆ̂yk+1 − ỹ−k−1〉+
1

2ηy

(
2‖∆y

k‖
2+‖∆y

k−1‖
2
)]

+
3ηy
2

Ω2
y.

Thus, combining this bound with (52) we get E[P̄ ] ≤ N( 1
2
δ2
x

ηx
+ 3

2

δ2
y

ηy
) + ηx

2 Ω2
x +

3ηy
2 Ω2

y , where we used E[〈∆x
k, x̃k −

x̂k+1〉] = E[〈∆y
k, ŷk+1 − ỹ+

k 〉] = E[〈∆y
k−1,

ˆ̂yk+1 − ỹ−k−1〉] = 0 for k ≥ 0. Therefore, setting ηx = 1/τ and ηy = 1/σ
and using the fact that θ = 1 implies KN (θ) = N , it follows from (19), (20) and (22) that

E[ sup
(x,y)∈X×Y

{L(x̄N , y)− L(x, ȳN )}]

≤ 1

N

( 1

τ
Ω2
x +

2

σ
Ω2
y

)
+ τ(1 + 2Ξxτ,σ,θ)

δ2
x

2
+ σ(3 + 2Ξyτ,σ,θ)

δ2
y

2
≤ 1

N

( 1

τ
Ω2
x +

2

σ
Ω2
y

)
+

5τδ2
x

2
+ 24σδ2

y,

(53)

where for the last inequality we first substitute Ξxτ,σ,θ and Ξyτ,σ,θ defined in Theorem 1, and then use τLyx ≤ 1,
σmax{Lyx, Lxy} ≤ 1 and σLyy ≤ 1

2 due to eq. (50). For any ε > 0, requiring

1

N

( 1

τ
Ω2
x +

2

σ
Ω2
y

)
≤ ε

3
,

5τδ2
x

2
≤ ε

3
, 24σδ2

y ≤
ε

3
, (54)

implies that (53) can be bounded by ε. Our parameter choice in (50) implies that the second and the third inequalities
in (54) trivially hold. It suffices to choose N large enough depending on given ε so that (54) holds, i.e., N ≥
3
ε ( 1
τΩ2

x + 2
σΩ2

y). From (50) we have 1
τ ≤ Lyx + Lxx + 15

2
δ2
x

ε and 1
σ ≤ max{Lyx + 2Lyy, Lxy} + 72

δ2
y

ε ; thus,
G(x̄N , ȳN ) ≤ ε holds for all N ≥ Nε.

8δx = 0 implies ∆x
k = 0; hence, for ηx = 0, (52) becomes 0 ≤ 0. Similarly, when δy = 0, we can set ηy = 0.
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4.1 Robustness measure for MCMC setting

In MCMC setting, based on the gap result in Theorem 4, one can adopt J̃ , lim supN→∞ E[sup{L(x̄N , y) −
L(x, ȳN ) : (x, y) ∈ X × Y}] as the corresponding robustness metric –this definition would be parallel to the def-
inition in [2], where the authors consider first-order stochastic algorithms for smooth strongly convex minimization
f∗ = minx f(x) and defined the robustness as lim supN→∞ E[f(xN )− f∗].
Alternatively, one can extend the ideas of SCSC setting to MCMC setting in the following way based on Tikhonov
regularization. Assume µx = µy = 0 and consider the MCMC saddle point problem minx maxy L(x, y). Given
a regularization parameter µ > 0, let Jµ be the robustness of the SAPD iterate sequence generated when SAPD is
implemented on the following regularized problem:

min
x∈X

max
y∈Y
Lµ(x, y) , L(x, y) +

µ

2
‖x‖2−µ

2
‖y‖2, (55)

where Lµ is µ-convex in x and µ-concave in y. Using the results in [14], under some technical conditions on L,
e.g., Φ is smooth convex-concave and f, g are indicator functions of some polyhedra, one can show that there exists
µ̄ > 0 and (x∗, y∗) ∈ X × Y such that (x∗, y∗) is the unique saddle point of Lµ(·, ·) for all µ ∈ (0, µ̄]; moreover,
(x∗, y∗) = argmin{‖x‖2+‖y‖2: (x, y) ∈ Z∗} where Z∗ ⊂ X × Y denotes the set of saddle points of the original
MCMC problem minx maxy L(x, y). Therefore, rather than directly solving the MCMC problem with SAPD using
the parameters as stated in Theorem 4 and use the alternative robustness measure J̃ based on the expected gap de-
fined above, one can instead solve the regularized SCSC problem in (55) for µ > 0 sufficiently small, which would
generate a least-norm solution of the original MCMC problem, and directly use the originally defined robustness met-
ric Jµ = lim supN→∞ E[‖xN − x∗‖2/δ2

x + ‖yN − y∗‖/δ2
y] corresponding to the SAPD iterate sequence generated

while solving the SCSC problem in (55).

5 Numerical experiments

In this section, we compared SAPD against S-OGDA [13], SMD [32] and SMP [22] for solving (1) with synthetic and
real-data.

5.1 Regularized Bilinear SP Problem with Synthetic Data

We first tested SAPD, S-OGDA and SMP on the regularized bilinear SP problem defined in (38). In this experiment,
we set µx = µy = 1, ‖K‖2= 10, d = 30 and δx = δy = δ = 5. Since SMD step size condition requires a
bound on the stochastic gradients, SMD is implemented on (38) with additional (x, y) ∈ X × Y constraint where
X = {x ∈ X : ‖x‖≤

√
d} and Y = {y ∈ Y : ‖y‖≤

√
d}. Letting x-axis as the iteration counter, we plot the 50

sample paths for each algorithm in section 5.1. The step sizes for S-OGDA, SMD and SMP are selected as in [13], [32]
and [22], respectively. Specifically, except for SAPD, all algorithms use primal and dual step sizes that are set equal,
and their value is a function ofL = max{µx, µy, Lxy, Lyx}; indeed, S-OGDA uses 1

8L , SMP uses 1√
3L

, and SMD uses
2√

5GN
, where N denotes the total iteration budget for SMD, and G > 0 is such that E[2‖∇̃L(x, y;ωx, ωy)‖2] ≤ G

uniformly for all (x, y) ∈ X × Y . The step sizes for SAPD are determined by minimizing R̄(ρ) for ρ ∈ {ρ1, ρ2},
where ρ1 = 0.99 and ρ2 = 0.995. This process leads to (τ, σ, θ) = (0.010, 0.012, 0.645) for SAPD(ρ1), and to
(τ, σ, θ) = (0.005, 0.008, 0.174) for SAPD(ρ2). In Figure 5.1, SAPD outperforms the others in both metrics, i.e., D
and G. Since ρ1 < ρ2, SAPD with ρ = ρ1 leads to a faster decay of the bias term than that with ρ = ρ2. However, due
to rate and robustness trade-off, the choice of ρ = ρ2 is more robust to noise, leading to a smaller asymptotic variance
of {zk} as expected.

5.2 Distributionally Robust Optimization with Real Data

Next, we consider `2-regularized variant of the distributionally robust optimization problem from [29], i.e., (DRO):
minx∈S maxy∈Pr

µx
2
‖x‖2+

∑n
i=1 yiφi(x) where φi : Rd → R is a strongly convex smooth loss function corre-

sponding to the i-th data point, µx > 0 is a regularization parameter, S , {x ∈ Rd : ‖x‖2≤ Dx} for some given
model diameter Dx > 0 and Pr , {y ∈ Rn+ : 1>y = 1, ‖y − 1/n‖2≤ r

n2 } – here, 1 denotes the vector with all
entries equal to one, and Pr is the uncertainty set around the uniform distribution 1/n whose radius is determined
by the parameter r. In the special case when r = 0, the problem recovers the ERM problems arising in supervised
learning from labeled data which assigns uniform weights yi = 1/n to all data points. When r > 0, the problem is to
minimize a worst-case objective to be robust against uncertainty in the underlying data distribution. (DRO) has several
advantages to construct confidence intervals for the parameters of predictive models in supervised learning, see [29].
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Figure 3: Comparison of SAPD against SOGDA, SMP and SMD on a synthetic toy problem using the distance (left)
and gap (right) metrics. The rates of SAPD are ρ1 = 0.99 and ρ2 = 0.995.
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(a) Dry Bean: ρ1 = 0.9986, ρ2 = 0.9997.
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(b) Arcene: ρ1 = 0.989, ρ2 = 0.992.
Figure 4: Comparison of SAPD against S-OGDA [13] and SMP [22] on real-data sets.

This SP problem is affine in the dual variable y; therefore, it is not strongly convex with respect to y. However, we can
approximate it, in a similar spirit to Nesterov’s smoothing technique in [34], with the following SCSC problem:

min
x∈S

max
y∈Pr

Lµy (x, y) ,
µx
2
‖x‖2+Φ(x, y)− µy

2
‖y‖2, (56)

where Φ(x, p) =
∑n
i=1 yiφi(x) for some properly chosen smoothing parameter µy > 0 –see remark 5. In our tests,

we consider the binary logistic loss with an l2 regularizer, i.e., φi(x) = ln(1 + exp(−biai>x)) and set r = 2
√
n.

We can then apply SAPD to the SCSC problem in (56) which admits the Lipschitz constants Lxy = Lyx = ‖A‖2,

Lxx = maxi=1,...,n{
1

4
‖ai‖22}, and Lyy = 0, where A ∈ Rn×d is the data matrix with rows {ai}ni=1 and columns

{Aj}dj=1. Since Dy , supy∈Pr‖y‖= 1, for any given ε > 0, we set µy = ε
2D2

y
according to remark 5.

We perform experiments on two data sets: 1) Dry Bean data set [23] with d = 16, n = 9528 with a test data set of
4083 points; 2) Arcene data set [17] with d = 10, 000, n = 97 and test size of 96 points. In these experiments we set
the regularization parameter µx through cross-validation. The source of noise in gradient computations is mini-batch
sampling of data. For the Dry Bean data set, we set µx = 0.01, µy = 10 and use batch size 1, and normalize each
feature column Aj ∈ Rn using Aj ← Aj−min(Aj)

max(Aj)−min(Aj)
, where both min and max are taken over the elements of Aj .
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For the Arcene data set, we set µx = 0.02 and µy = 10, and use batch size 10, and normalize the data matrix such
that A← A/min{

√
d,
√
n}. As described in Section 3.2, given a desired rate ρ ≥ ρ∗, we compute (τ, σ, θ) for SAPD

that achieves R̄(ρ). We plot SAPD statistics for two different rates to illustrate that our framework can trade-off rate
and robustness in an effective manner. The other methods we tested set the primal and dual step sizes equal. Indeed,
for S-OGDA [19, 13] the step size is 1

8L , and for SMP [22], it is 1√
3L

, where L = max{Lxx + µx, µy, Lxy, Lyx}.
In section 5.2, we plotted the optimization error using the distance metric D, training and the test errors. We reported
the results for 50 sample paths. Our results show that for both test and training errors, reported in terms of distances
to the solution, SAPD achieves a good performance for both rate and robustness.

6 Future Work

In a follow-up paper [52], we have considered SARAH variance reduction [36] on weakly convex-strongly con-
cave (WCSC) problems, and proposed an inexact proximal point method based on SAPD, which serves as a subrou-
tine for inexactly solving SCSC sub-problems. We have implemented a variance reduction framework within SAPD,
which not only improved the oracle complexity fromO(ε−4) toO(ε−3); but, we have also improved the best condition
number dependency from O(Lκ3/ε3) to O(Lκ2/ε3), where κ , L/µy with L being the Lipschitz constant of ∇Φ
and µy being the strong concavity constant of L(x, ·) uniformly for all x ∈ dom f . While incorporating SARAH
within SAPD helps for WCSC problems, using the same variance reduction analysis for SAPD on SCSC problems
does not help in improving the complexity results we established in Theorem 2. That being said, for the SCSC case, in
a recent relevant paper, we have applied a bias reduction strategy called Richardson-Romberg extrapolation to SAPD
[6] and in our experiments we have observed that this technique has not only created an improved bias performance
but also exhibits an improved dependency to gradient noise variance. As a future work on the SCSC setting with noisy
gradients, it would be interesting to design efficient variance/bias reduction techniques for SAPD. The method in [52]
has two nested loops, another important future research direction involves establishing convergence guarantees for
SAPD as a single-loop method when implemented for solving WCSC and weakly convex-merely-concave problems.
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A Proofs of Lemmas

A.1 Auxiliary Results

Lemma 10. Let f be proper, closed and strongly convex with modulus µ > 0. Then for any x, x′ ∈ dom f , and
c > 0, ‖proxcf (x)− proxcf (x′)‖≤ 1

1+cµ
‖x− x′‖.

Because Lemma 10 is a simple extension of [3, Theorem 6.42] to the strongly convex scenario, we omit its proof.

A.2 Proof of Lemma 1

Fix x ∈ dom f and y ∈ dom g. Invoking [18, Lemma 7.1] for the y− and x−subproblems in Algorithm 1, and using
the definitions of εxk and εyk, we get

f(xk+1) + 〈∇xΦ(xk, yk+1), xk+1 − x〉

≤f(x) +
1

2τ
(‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2)−µx

2
‖x− xk+1‖2 + εxk,

(57a)

−g(y) + g(yk+1)

≤〈sk, yk+1 − y〉+
1

2σ

[
‖y − yk‖2−‖y − yk+1‖2−‖yk+1 − yk‖2

]
− µy

2
‖y − yk+1‖2+εyk.

(57b)

Since yk+1 ∈ dom g, the inner product in (57a) can be lower bounded using convexity of Φ(·, yk+1) in Assumption 1
as follows:

〈∇xΦ(xk, yk+1), xk+1 − x〉 =〈∇xΦ(xk, yk+1), xk − x〉+ 〈∇xΦ(xk, yk+1), xk+1 − xk〉
≥Φ(xk, yk+1)− Φ(x, yk+1) + 〈∇xΦ(xk, yk+1), xk+1 − xk〉.

Using this inequality after adding Φ(xk+1, yk+1) to both sides of (57a), we get
Φ(xk+1,yk+1) + f(xk+1)

≤Φ(x, yk+1) + f(x) + Φ(xk+1, yk+1)− Φ(xk, yk+1)− 〈∇xΦ(xk, yk+1), xk+1 − xk〉

+
1

2τ

[
‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2

]
− µx

2
‖x− xk+1‖2+εxk

≤Φ(x, yk+1) + f(x) +
Lxx

2
‖xk+1 − xk‖2

+
1

2τ

[
‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2

]
− µx

2
‖x− xk+1‖2+εxk,

(58)

where the last step follows from Assumption 1, i.e., ∇xΦ(·, yk+1) is Lipschitz with constant Lxx. Rearranging the
terms gives us

f(xk+1)− f(x)− Φ(x, yk+1) ≤ −Φ(xk+1, yk+1) +
Lxx

2
‖xk+1 − xk‖2

+
1

2τ

[
‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2

]
− µx

2
‖x− xk+1‖2+εxk.

(59)

Then, for k ≥ 0, by summing (57b) and (59), we obtain
L(xk+1, y)− L(x, yk+1) = f(xk+1) + Φ(xk+1, y)− g(y)− f(x)− Φ(x, yk+1) + g(yk+1)

≤ Φ(xk+1, y)− Φ(xk+1, yk+1) + 〈sk, yk+1 − y〉+
Lxx

2
‖xk+1 − xk‖2

+
1

2σ

[
‖y − yk‖2−‖y − yk+1‖2−‖yk+1 − yk‖2

]
− µy

2
‖y − yk+1‖2+εyk

+
1

2τ

[
‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2

]
− µx

2
‖x− xk+1‖2+εxk.

(60)

From Assumption 1, the concavity of Φ(x, ·) for fixed x ∈ dom f ⊂ X implies
Φ(xk+1, y)−Φ(xk+1, yk+1) + 〈sk, yk+1 − y〉

≤〈∇yΦ(xk+1, yk+1), y − yk+1〉+ 〈∇yΦ(xk, yk) + θqk, yk+1 − y〉
=−〈qk+1, yk+1 − y〉+ θ〈qk, yk − y〉+ θ〈qk, yk+1 − yk〉.

Thus, using the above inequality within (60), we get

L(xk+1, y)− L(x, yk+1) ≤ −〈qk+1, yk+1 − y〉+ θ〈qk, yk − y + yk+1 − yk〉+
Lxx

2
‖xk+1 − xk‖2

+
1

2σ

[
‖y − yk‖2−‖y − yk+1‖2−‖yk+1 − yk‖2

]
− µy

2
‖y − yk+1‖2

+
1

2τ

[
‖x− xk‖2−‖x− xk+1‖2−‖xk+1 − xk‖2

]
− µx

2
‖x− xk+1‖2+εxk + εxy .

Finally, (10) follows from using Cauchy-Schwarz for 〈qk, yk+1 − yk〉 and (9).
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A.3 Proof of Lemma 2

The first inequality in eq. (11a) is from Lemma 10; for the second, we have
‖yk+1 − ŷk+1‖≤

σ

1 + σµy
‖s̃k − sk‖≤

σ

1 + σµy

(
(1 + θ)‖∆y

k‖+θ‖∆
y
k−1‖

)
,

which follows from Lemma 10 and the triangle inequality. To show eq. (11b), we bound ‖yk+1 − ŷk+1‖ and ‖ŷk+1 −
ˆ̂yk+1‖ separately. It follows from Lemma 10 that

‖xk+1 − ˆ̂xk+1‖≤
τ

1 + τµx
‖∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, ŷk+1)‖.

After adding and subtracting∇xΦ(xk, yk+1), Assumption 1 implies that

‖xk+1 − ˆ̂xk+1‖≤
τ

1 + τµx
(‖∆x

k‖+Lxy‖yk+1 − ŷk+1‖) . (61)

We will use this relation to bound ‖ŷk+1 − ˆ̂yk+1‖. Indeed, using Lemma 10, we have

‖ŷk+1 − ˆ̂yk+1‖≤
1

1 + σµy

∥∥∥yk − ŷk + σ(1 + θ)
(
∇yΦ(xk, yk)−∇yΦ(ˆ̂xk, ŷk)

)∥∥∥
≤ 1

1 + σµy

(
(1 + σ(1 + θ)Lyy)‖yk − ŷk‖+σ(1 + θ)Lyx‖xk − ˆ̂xk‖

)
≤ 1

1 + σµy

((
1 + σ(1 + θ)Lyy +

τσ(1 + θ)LyxLxy
1 + τµx

)
‖yk − ŷk‖+

τσ(1 + θ)Lyx
1 + τµx

‖∆x
k−1‖

)
≤ σ

1 + σµy

((
1 + σ(1 + θ)Lyy +

τσ(1 + θ)LyxLxy
1 + τµx

)
·

(1 + θ)‖∆y
k−1‖+θ‖∆

y
k−2‖

1 + σµy
+
τ(1 + θ)Lyx

1 + τµx
‖∆x

k−1‖
)
,

where the second, third and fourth inequalities follow from Assumption 1, eq. (61) and the second inequality
in eq. (11a), respectively. Combining this with ‖yk+1− ˆ̂yk+1‖≤ ‖yk+1− ŷk+1‖+‖ŷk+1− ˆ̂yk+1‖, and the second one
in eq. (11a) give us the desired bound.

A.4 Proof of Lemma 3

With the convention that y−2 = y−1 = y0, and x−2 = x−1 = x0, Lemma 2 and Cauchy-Schwarz inequality imply
for all k ≥ 0 that

〈∆x
k, xk+1 − x̂k+1〉 ≤

τ

1 + τµx
‖∆x

k‖2,

〈∆y
k, yk+1 − ŷk+1〉 ≤

σ

1 + σµy

(
(1 + θ)‖∆y

k‖
2+θ‖∆y

k−1‖‖∆
y
k‖
)
,

〈∆y
k−1, yk+1 − ˆ̂yk+1〉 ≤

σ

1 + σµy

(
(1 + θ)‖∆y

k‖‖∆
y
k−1‖+θ‖∆

y
k−1‖

2+
τ(1 + θ)Lyx

1 + τµx
‖∆x

k−1‖‖∆y
k−1‖

+
(1 + σ(1 + θ)Lyy

1 + σµy
+

τσ(1 + θ)LyxLxy
(1 + τµx)(1 + σµy)

)
·
(

(1 + θ)‖∆y
k−1‖

2+θ‖∆y
k−2‖‖∆

y
k−1‖

))
.

Next, using Assumption 2 and ‖a‖‖b‖≤ 1
2‖b‖

2+ 1
2‖b‖

2, which holds for a, b ∈ Rn, and taking the expectation leads
to the desired result.

A.5 Proof of corollary 1

Consider arbitrary τ, σ, π1, π2 > 0 and θ ∈ (0, 1). By a straightforward calculation, {τ, σ, θ, π1, π2} is a solution to
(24) if and only if

τ ≥ 1− θ
θµx

, σ ≥ 1− θ
θµy

, π1 ≥
σθLyx/c

1− σ(π2 + θ
π2

)Lyy/c
, (62a)

σ(π2 +
θ

π2
)Lyy/c < 1,

1

τ
− Lxx ≥ π1Lyx. (62b)

In the remainder of the proof, we fix (π1, π2) as follows:

π1 =
σθLyx/c

1− σ
(
π2 + θ

π2

)
Lyy/c

=
σθLyx/c

1− 2σ
√
θLyy/c

, π2 =
√
θ. (63)

25



Robust Accelerated Primal-Dual Methods for Computing Saddle Points A PREPRINT

Note the definition of θ implies that θ ∈ (0, 1). Next, we show that θ ∈ [θ, 1) implies π1, π2 > 0; furthermore, we
also show that τ, σ > 0 defined as in (25) for θ ∈ [θ, 1) together with (π1, π2) as in (63) is a solution to (62).

First, setting τ, σ as in (25) and π1, π2 as in eq. (63) imply that (62a) is trivially satisfied. Next, by substituting
{τ, σ, π1, π2}, chosen as in (25) and eq. (63), into (62b), we conclude that {τ, σ, θ, π1, π2} satisfies (62) for any
θ ∈ (0, 1) satisfying

2Lyy
cµy

· 1− θ√
θ
≤ 1− β, (64)

θµx
1− θ − Lxx ≥ (1− θ)

L2
yx

cµy
·
(

1− 2Lyy
cµy

· 1− θ√
θ

)−1

, (65)

for some β ∈ (0, 1). Clearly, a sufficient condition for (65) is

θµx
1− θ − Lxx ≥ (1− θ)

L2
yx

µy
· 1

cβ
. (66)

Note that (64) implies that π1 > 0. We also have π2 =
√
θ > 0 trivially.

When Lyy > 0, given any β ∈ (0, 1), solving eqs. (64) and (66) for θ ∈ (0, 1), we get the third condition in (25).
Indeed, it can be checked that θ ∈ [θ2, 1) satisfies (64) and θ ∈ [θ1, 1) satisfies (66); thus, θ ∈ [θ, 1) satisfies (64) and
(66) simultaneously. Moreover, when Lyy = 0, one does not need to solve eq. (64) as the first inequality in (62b) holds
trivially; thus, the only condition on θ comes from (65) which is equivalent to (66) with β = 1. The rest follows from
Lemma 6 by setting α =

θLyx
π1

+
θLyy
π2

. Indeed, the particular choice of (π1, π2) in (63) gives us α = c
σ −
√
θLyy.

Finally, it can be verified that θ1 : [0, 1] → R and θ2 : [0, 1] → R are monotonically decreasing and monotonically
increasing functions of β, respectively. Since θ1(0) = 1 > θ2(0) and θ2(1) = 1 > θ1(1), θ obtains its minimum at
the unique β∗ ∈ (0, 1) such that θ1(β∗) = θ2(β∗).

B Extensions and Special Cases

In this section, we discuss the deterministic case, i.e., δx = δy = 0, and we also go over a special case of SAPD when
θ = 0, i.e., SGDA.

B.1 A Deterministic Primal-Dual Method (APD)

When δx = δy = 0, i.e., ∇̃xΦ = ∇xΦ and ∇̃yΦ = ∇yΦ, we call this deterministic variant of SAPD as APD. APD,
when applied to (1) with a bilinear Φ, generates the same iterate sequence with [8] for a specific choice of step sizes;
therefore, APD can be viewed as a general form of the method proposed by Chambolle and Pock [8] for bilinear SP
problems. For bilinear problems as in [8], APD hits the lower complexity bound when L is strongly convex in x
and strongly concave in y. Moreover, when Φ is not assumed to be bilinear, APD has the best iteration complexity
bound shown for single-loop primal-dual first-order algorithm applied to (1). The convergence guarantees for the
deterministic scenario follows directly from the proof in section 2.1 by setting δx = δy = 0.
Corollary 2. Suppose Assumption 1 hold, δx = δy = 0, and {xk, yk}k≥0 be the iterates generated by APD, which is

the deterministic version of algorithm 1. The parameter τ, σ > 0 and θ ≥ 0 satisfy eq. (5) for some α ∈ [0,
1

σ
] and

ρ ∈ (0, 1]. Then, for any (x, y) and (x0, y0) ∈ X × Y ,

L(x̄N , y)− L(x, ȳN ) +
ρ−N

KN (ρ)
dN (x, y) ≤ 1

KN (ρ)
(

1

2τ
‖x− x0‖2+

1

2σ
‖y − y0‖2),

for all N ≥ 1, where dN (x, y) =
1

2τ
‖xN − x‖2+

1

2σ
(1− ασ) ‖yN − y‖2, (x̄N , ȳN ) and KN (ρ) are defined in

Theorem 1.
Remark 9. This result extends the Accelerated Primal-Dual (APD) method proposed in [18] for MCMC and SCMC
SP problems to cover the SCSC scenario as well. Indeed, the result for the MCMC case in [18] can be recovered
from corollary 2 immediately by setting θ = ρ = 1 and µx = µy = 0. Furthermore, the step sizes suggested in [18,
Remark 2.3] satisfy eq. (5) for a particular choice of α > 0. Finally, since KN (1) = N , APD achieves the sublinear
rate of O(1/N) for the MCMC scenario.

In the rest, we consider SP problem in eq. (1) under SCSC scenario. Let (x∗, y∗) denote the unique saddle point of
eq. (1). Next, we account for the individual effects of Lxx, Lyx, Lyy as well as µx, µy on the iteration complexity of
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APD. When Φ is bilinear, APD requiresO
(√

1 +
L2
yx

µxµy
· ln(1/ε)

)
iteration to compute (x̄, ȳ) such that G(x̄, ȳ) ≤ ε;

this complexity is shown to be optimal in [49]. Moreover, for the general case, i.e., Φ may not be bilinear, the iteration
complexity of APD is O

(
(Lxxµx +

Lyx√
µxµy

+
Lyy
µy

)
· ln(1/ε)).

Proposition 1. Suppose µx, µy > 0, and Assumption 1 hold. Let (x∗, y∗) ∈ X × Y denote the unique SP of (1). For
any ε > 0, and for any given β ∈ (0, 1), suppose the APD parameters {τ, σ, θ} are chosen such that

τ =
1− θ
µxθ

, σ =
1− θ
µyθ

, θ = θ̄ (67)

where θ̄ is defined in (25). Then, the iteration complexity of APD to generate a point (x̄, ȳ) ∈ X × Y such that
D(x̄, ȳ) ≤ ε is

O
((

1 +
Lxx
µx

+
Lyx√
µxµy

+
Lyy
µy

)
· ln(1/ε)

)
. (68)

Moreover, when Φ(x, y) is a bilinear function, the iteration complexity of APD reduces to

O
((

1 +
Lyx√
µxµy

)
· ln(1/ε)

)
. Furthermore, assuming dom f×dom g is compact, APD can compute (x̄, ȳ) ∈ X ×Y

such that G(x̄, ȳ) ≤ ε with the same iteration complexity stated above for both bilinear and general cases of Φ.

Proof. Using the particular parameters given in corollary 1 within corollary 2, and following the similar arguments as
in the proof of Theorem 2, we immediately get the result. When Φ(x, y) is bilinear, we only need to setLxx = Lyy = 0
in the general result to get the complexity for the bilinear case.

According to [49], the complexity of APD for the bilinear case is optimal in terms of µx, µy, Lyx and ε. Furthermore,
the complexity in (68) for the general case obtains the best we know for a single-loop first-order primal-dual algorithm.

B.2 Stochastic Gradient Descent Ascent Method (SGDA)

The SGDA algorithm can be analyzed as a special case of SAPD with θ = 0. Our analysis leads to a wider range
of admissible step sizes and establishes the iteration complexity bound for SGDA and shows its dependence on
Lxx, Lyx, Lyy and µx, µy explicitly.

Corollary 3. Suppose Assumptions 1, 2 hold, and {xk, yk}k≥0 are generated by SAPD, stated in algorithm 1, using
parameters θ = 0 and τ, σ > 0 satisfying

1
σ

+ µy − 1
ρσ

−Lyx −Lyy
−Lyx 1

τ
− Lxx 0

−Lyy 0 1
σ

 � 0, τµx ≥
1− ρ
ρ

, (69)

for some ρ ∈ (0, 1). Then, for any compact set X × Y ⊂ dom f × dom g such that x0 ∈ X and y0 ∈ Y , and for
any ηx, ηy ≥ 0, the following bound holds for N ≥ 1:

E
[ 1

2τ
‖xN − x∗‖2+

1

2σ
‖yN − y∗‖2

]
≤ ρN (

1

2τ
‖x0 − x∗‖2+

1

2σ
‖y0 − y∗‖2) +

ρ

1− ρΞ′τ,σ,

where Ξ′τ,σ ,
τ

1 + τµx
δ2
x +

σ

1 + σµy
δ2
y .

Proof. Setting θ and α to 0 in eq. (5) immediately leads to the above result.

Remark 10. When µx = µy = 0, unlike SAPD, SGDA does not have an admissible (τ, σ) pair with convergence
guarantees. Indeed, from eq. (69), µx = 0 implies that ρ = 1 so that the second inequality is satisfied; furthermore,
ρ = 1 and µy = 0 imply that first diogonal element in the matrix inequality (MI) becomes 0; thus, there is no (τ, σ)
such that the MI holds. It is worth emphasizing that eq. (69) not having a solution when µx = µy = 0 is not because
our analysis is not tight enough; indeed, there are examples for which SGDA iterate sequence does not converge to a
saddle point when µx = µy = 0.
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B.2.1 Parameter Choices for SGDA

We provide a particular solution to the matrix inequality eq. (69) following a similar technique we used for deriving a
particular parameter choice for SAPD. Next, in Lemma 11, we provide an auxiliary system, simpler than eq. (69), to
construct the particular solution given in corollary 4.
Lemma 11. Let τ, σ > 0, ρ ∈ (0, 1), and π1, π2 > 0 satisfy

1

τ
− Lxx − π1Lyx ≥ 0, (70a)

1

σ
− π2Lyy ≥ 0, (70b)

1

σ
(1− 1

ρ
) + µy ≥

Lyx
π1

+
Lyy
π2

, (70c)

τµx ≥
1− ρ
ρ

. (70d)

Then {τ, σ, ρ} is a solution to (69).

Proof. We only need to verify that the matrix inequality in eq. (69) holds. Permuting the rows and columns in (70c),
it follows that 

1
σ

(1− 1
ρ
) + µy −Lyx −Lyy

−Lyx 1
τ
− Lxx 0

−Lyy 0 1
σ

 �

Lyx
π1

+
Lyy
π2

−Lyx −Lyy
−Lyx 1

τ
− Lxx 0

−Lyy 0 1
σ

, M̃.

Note M̃ = M̃1 + M̃2 for

M̃1 ,


Lyx
π1

−Lyx 0

−Lyx 1
τ
− Lxx 0

0 0 0

 , M̃2 ,


Lyy
π2

0 −Lyy
0 0 0

−Lyy 0 1
σ

 .

The condition in (70a) and (70b) imply that

M̃1 �


Lyx
π1

−Lyx 0

−Lyx π1Lyx 0

0 0 0

 � 0, M̃2 �


Lyy
π2

0 −Lyy
0 0 0

−Lyy 0 π2Lyy

 � 0,

respectively. Thus M̃1 + M̃2 � 0, which completes the proof.

Lemma 11 helps us describe a subset of solutions to the matrix inequality system in eq. (69) using the solutions of an
inequality system in eq. (70) that is easier to deal with. Next, based on based on Lemma 11, we will construct a family
of admissible parameters for SGDA, i.e., SAPD with θ = 0, such that the iterate sequence will exhibit the desired
convergence behavior.
Corollary 4. Suppose µx, µy > 0. For any β1, β2 ∈ (0, 1) such that β1 + β2 < 1, {τ, σ, ρ} chosen satisfying

τ =
1− ρ
ρµx

, σ =
1

1− β1 − β2
· 1− ρ
ρµy

, ρ ≥ ρ̄ ,
(

1 +
1

L(β1, β2)

)−1

(71)

is a solution to (69), where L(β1, β2) , max
{Lxx
µx

+
1

β1
·
L2
yx

µxµy
,

1

β2(1− β1 − β2)
·
L2
yy

µ2
y

}
.

Proof. The proof is based on the result in Lemma 11. Let β1, β2, β3 ∈ (0, 1) such that β1 + β2 < 1. Given any
ρ ∈ (0, 1), let τ = 1−ρ

ρµx
, σ = 1

β3
· 1−ρ
ρµy

and let π1 =
Lyx
β1µy

, π2 =
Lyy
β2µy

. If we substitute (τ, σ, ρ, π1, π2) into
(70a)-(70c), we get

µx
ρ

1− ρ − Lxx −
L2
yx

β1µy
≥ 0, β3µy

ρ

1− ρ −
L2
yy

β2µy
≥ 0, (72a)

β3µy
ρ

1− ρ (1− 1

ρ
) + µy ≥ (β1 + β2)µy. (72b)
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Next, we solve this inequality system in terms of ρ ∈ (0, 1). Note (72a) holds for

ρ ≥ max


1 +

1

Lxx
µx

+
L2
yx

β1µxµy


−1

,

(
1 +

β2β3

L2
yy/µ2

y

)−1

 ,

and (72b) holds whenever β1 + β2 + β3 ≤ 1. To minimize the lower bound on ρ, the optimal choice for β3 is
β3 = 1− β1 − β2 > 0. Thus, {τ, σ, ρ, π1, π2} satisfying (71) is a solution to eq. (70), which implies that {τ, σ, ρ} is
a solution to eq. (69).

To determine the best certifiable convergence rate, i.e., the smallest ρ, one can optimize β1 and β2. Finally, using the
above parameter choice, we establish the iteration complexity bound for SGDA in the next subsection.

B.2.2 Iteration Complexity Bound for SGDA

In this part, we study the iteration complexity bound for SGDA to generate a point (x̄, ȳ) ∈ X × Y such that
D(xε, yε) ≤ ε. The proof technique is very similar to that for SAPD.
Proposition 2. Suppose µx, µy > 0, and Assumptions 1 and 2 hold. For any ε > 0, and for any given β1, β2 ∈ (0, 1)
satisfying β1 + β2 < 1, suppose the parameters {τ, σ} are chosen such that

τ =
1− ρ
µxρ

, σ =
1

1− β1 − β2
· 1− ρ
µyρ

, ρ = max{ρ, ρ}, (73)

where ρ is defined in eq. (71) and ρ , max{ρ1, ρ2} such that

ρ1 = max
{

0, 1− (1− β1 − β2)µx
6δ2
x

ε
}
, ρ2 = max

{
0,

(1− β1 − β2)2µy
6δ2
y

ε
}

(74)

with the convention that ρ1 = 0 if δ2
x = 0 and ρ2 = 0 if δ2

y = 0. Then the iteration complexity of SGDA method, i.e.,
SAPD with θ = 0, as stated in algorithm 1, to generate a point (xε, yε) ∈ X × Y such that D(xε, yε) ≤ ε is

O
((

Lxx
µx

+
L2
yx

µxµy
+
L2
yy

µ2
y

+

(
δ2
x

µx
+
δ2
y

µy

)
1

ε

)
· ln
(
D(x0, y0)

ε

))
. (75)

Proof. Given β1, β2 ∈ (0, 1) such that β1 + β2 < 1, letting {τ, σ, ρ} be chosen according to eq. (73), we know that
eq. (69) is satisfied by corollary 4. Therefore, using these particular parameter values, it follows from corollary 3 that

E
[
µx‖xN − x∗‖2+(1− β1 − β2)µy‖yN − y∗‖2

]
≤ρN

(
µx‖x0 − x∗‖2+(1− β1 − β2)µy‖y0 − y∗‖2

)
+

2(1− ρ)

µx
δ2
x +

2(1− ρ)

(1− β1 − β2)µy
δ2
y.

Because 1− β1 − β2 ∈ (0, 1), we further know that

E
[
D(xN , yN )

]
≤ 1

(1− β1 − β2)
ρND(x0, y0) +

2(1− ρ)

(1− β1 − β2)µx
δ2
x +

2(1− ρ)

(1− β1 − β2)2µy
δ2
y. (76)

For any ε > 0, the right side of (76) can be bounded by ε > 0 when
1

(1− β1 − β2)
ρND(x0, y0) ≤ ε

3
,

2(1− ρ)

(1− β1 − β2)µx
δ2
x ≤

ε

3
,

2(1− ρ)

(1− β1 − β2)2µy
δ2
y ≤

ε

3
. (77)

Substituting ρ values given in eq. (71) into the second and the third conditions in (77), we have that these two conditions

will hold when ρ ≥ ρ. Moreover, the first inequality in (77) holds forN ≥ 1+ln( 3
1−β1−β2

D(x0, y0)/ε)/ln(
1

ρ
). Thus,

SGDA can generate a point (xε, yε) ∈ X × Y such that D(xε, yε) ≤ ε within

Nε = O
(

ln
(D(x0, y0)

ε

)
/ln(

1

ρ
)
)

iterations. Then the rest of the proof is repeating the proof of Theorem 2.

Since we adopt Gauss-Seidel type update rather than a Jacobi-type, the effect of Lipschitz constants in the complexity

bound are different, i.e., compare Lxx
µx

with
L2
yy

µ2
y

. Furthermore, we also observe that adopting a momentum term as in

SAPD, i.e., θ > 0, the O(1) constant improves from Lxx
µx

+
L2
yx

µxµy
+

L2
yy

µ2
y

for SGDA to Lxx
µx

+
Lyx√
µxµy

+
Lyy
µy

for SAPD.
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C Supporting Results for the Robustness Analysis

In this section, we provide some details about our robustness analysis.

C.1 CP parameters

Consider (1) with Φ, f and g defined as in (38). Using the notations in our paper, the step size condition in [8,
Algorithm 5] can be summarized as

1 + µxτ = 1 + µyσ =
1

θ
,

1

τ
≥ θL2

yxσ. (78)

In fact, the above condition is a quadratic inequality of θ, which is
L2
yx

µyµy
(1 − θ)2 − θ ≤ 0; thus, θ ∈ [1 +

µxµy
2L2

yx
−√

(1 +
µxµy
2L2

yx
)2 − 1, 1]. In fig. 1(a), we compute and plot the (ρtrue,J ) for all possible (τ, σ, θ) satisfying eq. (78).

Moreover, condition eq. (78) holds with equality at the point indicated with “ ∗ ” in red color.

C.2 Convergence of the Gap Function Bias Term for (38)

Consider (1) for Φ, f and g as defined in (38). We will show G(xk, yk) and E[‖zN − z∗‖2] converge with the same
rate, thus G(xk, yk) has the same rate with d∗N , where G is defined in (2) and d∗N is defined in Theorem 1. First, we
can compute G(xk, yk) explicitly, i.e.,

G(xk, yk) = E
[
µx
2
‖xk‖2+

1

2µy
‖Kxk‖2+

µy
2
‖yk‖2+

1

2µx
‖K>yk‖2

]
. (79)

Recall the augmented vector z̃k = [xk−1; yk] obtained by vertical concatenation for all k ≥ 0 such that x−1 = x0 and
y−1 = y0, and (x0, y0) ∈ X ×Y is a given initial point. Let Px and Py be matrices with appropriate dimensions such
that xk = Pxz̃k+1 and yk = Py z̃k. Note (42) implies z̃k = Akz̃0 +

∑k
i=1A

i−1Bωk−i; thus, ‖xk‖2= ‖Pxz̃k+1‖2=

‖PxAk+1z̃0 +
∑k+1
i=1 PxA

i−1Bωk+1−i‖2. The noise model assumed in eq. (39) and (40) implies that

E
[
‖xk‖2

]
=‖PxAk+1z̃0‖2+δ2

k+1∑
i=1

Tr((PxA
i−1B)>PxA

i−1B) = ‖PxAk+1z̃0‖2+δ2
k+1∑
i=1

‖PxAi−1B‖2F .

We can also write the other terms in (79) using the same argument as above:

E
[
‖Kxk‖2

]
= ‖KPxAk+1z̃0‖2+δ2

k+1∑
i=1

‖KPxAi−1B‖2F ,

E
[
‖yk‖2

]
= ‖PyAkz̃0‖2+δ2

k∑
i=1

‖PyAi−1B‖2F ,

E
[
‖K>yk‖2

]
= ‖K>PyAkz̃0‖2+δ2

k∑
i=1

‖K>PyAi−1B‖2F .

Therefore,
G(xk, yk)

=
µx
2
‖PxAk+1z̃0‖2+

µy
2
‖PyAk+1z̃0‖2+

1

2µy
‖KPxAkz̃0‖2+

1

2µx
‖K>PyAkz̃0‖2+δ2

(µx
2
‖PxAkB‖2F+

µy
2
‖PyAkB‖2F

+

k∑
i=1

(
µx
2
‖PxAi−1B‖2F+

µy
2
‖PyAi−1B‖2F+

1

2µy
‖KPxAi−1B‖2F+

1

2µx
‖K>PyAi−1B‖2F )

)
.

The matrix A is non-symmetric in general. By considering the Jordan decomposition of the 2d × 2d matrix A, it is
known that there exists a positive constant c1 and a non-negative integer 0 ≤ m1 < 2d such that ‖Ak‖≤ c1km1ρ(A)k,
for all k ≥ 1 (see e.g. [16, 39]). Therefore, the bias term of G(xk, yk) is bounded by c2(k + 1)2m1ρ(A)2k for some
positive constant c2. Thus, we conclude that the bias diminishes exponentially with rate ρ(A)2.

C.3 Cρ is a connected set

Given ρ, we next show that the set Cρ is connected. This result allows us to use Lemma 9 for optimizing the robustness.
Lemma 12. For any ρ ∈ [ρ∗, 1), Cρ ⊂ (0, 1) is a non-empty convex set where Cρ is defined by (1). Hence, it is
connected.
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Proof. Since Cρ 6= ∅, let c1, c2 ∈ Cρ. Without loss of generality, suppose c2 ≥ c1. We aim to show that for
any β ∈ [0, 1], we have c∗ , βc1 + (1 − β)c2 ∈ Cρ. Since c1, c2 ∈ Cρ, there exist ti, si, θi > 0 such that
Gρ(ti, si, θi, cisi) � 0 for i = 1, 2. For a given λ ∈ [0, 1], let (t∗, s∗, θ∗) , λ(t1, s1, θ1) + (1 − λ)(t2, s2, θ2). It
suffices to construct λ ∈ [0, 1] such that Gρ(t∗, s∗, θ∗, c∗s∗) � 0. This will show that c∗ ∈ Cρ.

It follows from the definition of Gρ that
Gρ(t

∗, s∗, θ∗, c∗s∗) =

λ



(1− 1
ρ
)t1 + µx 0 0 0 0

0 (1− 1
ρ
)s1 + µy ( θ1

ρ
− 1)Lyx ( θ1

ρ
− 1)Lyy 0

0 ( θ1
ρ
− 1)Lyx t1 − Lxx 0 − θ1

ρ
Lyx

0 ( θ1
ρ
− 1)Lyy 0 (1− c1)s1 − θ1

ρ
Lyy

0 0 − θ1
ρ
Lyx − θ1

ρ
Lyy

c1s1
ρ



+ λ



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (c1 − c∗)s1 0

0 0 0 0 (c∗−c1)s1
ρ



+ (1− λ)



(1− 1
ρ
)t2 + µx 0 0 0 0

0 (1− 1
ρ
)s2 + µy ( θ2

ρ
− 1)Lyx ( θ2

ρ
− 1)Lyy 0

0 ( θ2
ρ
− 1)Lyx t2 − Lxx 0 − θ2

ρ
Lyx

0 ( θ2
ρ
− 1)Lyy 0 (1− c2)s2 − θ2

ρ
Lyy

0 0 − θ2
ρ
Lyx − θ2

ρ
Lyy

c2s2
ρ



+ (1− λ)



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (c2 − c∗)s2 0

0 0 0 0 (c∗−c2)s2
ρ


=λGρ(t1, s1, θ1, c1s1) + (1− λ)Gρ(t2, s2, θ2, c2s2)

+



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 λ(c1 − c∗)s1 + (1− λ)(c2 − c∗)s2 0

0 0 0 0 λ(c∗−c1)s1+(1−λ)(c∗−c2)s2
ρ


Since ci ∈ Cρ implies Gρ(ti, si, θi, cisi) � 0 for i = 1, 2, we have Gρ(t∗, s∗, θ∗, c∗s∗) � 0 if

λ(c1 − βc1 − (1− β)c2)s1 + (1− λ)(c2 − βc1 − (1− β)c2)s2 ≥ 0

λ(βc1 + (1− β)c2 − c1)s1 + (1− λ)(βc1 + (1− β)c2 − c2)s2 ≥ 0.

Therefore, to show the desired result, it is sufficient to find λ ∈ [0, 1] such that

λ(1− β)(c1 − c2)s1 + (1− λ)β(c2 − c1)s2 ≥ 0

λ(1− β)(c2 − c1)s1 + (1− λ)β(c1 − c2)s2 ≥ 0.

This system is equivalent to λ(1 − β)s1 − (1 − λ)βs2 = 0, which yields λ = βs2
(1−β)s1+βs2

and this completes the
proof.
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D Multi-stage SAPD (M-SAPD)

Consider running SAPD in stages as shown in algorithm 2. The main idea is to run each stage t for nt iterations, where
within each stage constant primal and dual stepsize τt, σt and momentum parameter θt that depends on the stage is
used. By choosing these constants nt, τt, σt and θt in a particular fashion, we will show that we can improve the
complexity of SAPD by a logarithmic factor.

Algorithm 2 Multi-stage Stochastic Accelerated Primal-Dual (M-SAPD) Algorithm
1: Initial point (x0

0, y
0
0), parameter sequence {τt, σt, θt}, the stage-length sequence {nt}. Set n0 = 0.

2: for t ≥ 0 do
3: (xt+1

0 , yt+1
0 )← SAPD(xt0, y

t
0, τt, σt, θt, nt)

4: end for

The following result is a simple consequence of our corollary 1, which builds on a particular choice of stepsize and
momentum in our framework.
Corollary 5. Suppose µx, µy > 0. If Lyy > 0, for any given β ∈ (0, 1), let τ, σ > 0 and θ ∈ (0, 1) be chosen
satisfying

τ =
1− θ
µxθ

, σ =
1− θ
µyθ

, θ ≥ θ̄ , max{θ̄1, θ̄2}, (80)

where θ̄1, θ̄2 ∈ (0, 1), depending on the choice of β, are defined as

θ̄1 , 1− β(Lxx + µx)µy
4L2

yx

(√
1 +

8µxL
2
yx

βµy(Lxx + µx)2
− 1
)
, θ̄2 , 1− (1− β)2

32

µ2
y

L2
yy

(√
1 +

64L2
yy

(1− β)2µ2
y

− 1
)
. (81)

If Lyy = 0, let τ, σ > 0 and θ ∈ (0, 1) be chosen as in (80) for θ̄1 in (81) with β = 1 and θ̄2 = 0. Then
α = 1

2σ −
√
θLyy > 0, and {τ, σ, θ, α} is a solution to MI eq. (5).Moreover, when Lyy > 0, the minimum θ̄ is attained

at unique β∗ ∈ (0, 1) such that θ̄1 = θ̄2.

Proof. It directly follows from corollary 1 by letting c = 1
2 .

We recall that in Theorem 1, we obtained the performance bound

E[d∗N ] ≤ ρN
( 1

2τ
‖x0 − x∗‖2+

1

2σ
‖y0 − y∗‖2

)
︸ ︷︷ ︸

Dτ,σ

+
ρ

1− ρ

( τ

1 + τµx
Ξxτ,σ,θδ

2
x +

σ

1 + σµy
Ξyτ,σ,θδ

2
y

)
︸ ︷︷ ︸

Ξτ,σ,θ

, (82)

where E[d∗N ] denotes the weighted expected distance squared to the saddle point at the N -th step,

Ξxτ,σ,θ , 1+
σθ(1 + θ)Lyx
2(1 + σµy)

, Ξyτ,σ,θ ,
τθ(1 + θ)Lyx
2(1 + τµx)

+
(

1+2θ+
θ + σθ(1 + θ)Lyy

1 + σµy
+
τσθ(1 + θ)LyxLxy
(1 + τµx)(1 + σµy)

)
(1+2θ).

With the choice of parameters given in corollary 5, we can also provide the following explicit bound for the “variance
term” Ξτ,σ,θ on the right hand-side of (82).
Lemma 13. Suppose {τ, σ, θ} are choose according to eq. (80). In addition, let

θ ≥ 1−min
{ µy
Lyx

,
µy
Lyy

,

√
µxµy
LyxLxy

,
µx
Lyx

}
.

Then we have Ξτ,σ,θ ≤ 25(1− θ)
(
δ2
x

µx
+

δ2
y

µy

)
.

Proof. Substituting τ = 1−θ
θµx

and σ = 1−θ
θµy

into Ξτ,σ,θ, after straightforward computations,

Ξτ,σ,θ = (1− θ)
(

Ξxτ,σ,θ
δ2
x

µx
+ Ξyτ,σ,θ

δ2
y

µy

)
, (83)

with Ξxτ,σ,θ = 1 + θ(1+θ)(1−θ)
2

Lyx
µy

, and

Ξyτ,σ,θ =

(
1 + 2θ + θ2 + θ(1 + θ)(1− θ)Lyy

µy
+ θ(1 + θ)(1− θ)2Lyx

µx

Lxy
µy

)
(1 + 2θ) +

θ(1 + θ)(1− θ)
2

Lyx
µx

.

Moreover, using the fact that θ ≤ 1, we obtain that

Ξxτ,σ,θ ≤ 1 + (1− θ)Lyx
µy

, Ξyτ,σ,θ ≤ 12 + 6(1− θ)Lyy
µy

+ 6(1− θ)2Lyx
µx

Lxy
µy

+ (1− θ)Lyx
µx

. (84)
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On the other hand, since 1 − θ ≤ min{ µyLyx ,
µy
Lyy

,
√

µxµy
LyxLxy

, µxLyx }, using eq. (84) within eq. (83) completes the
proof.

The following corollary states the convergence result of SAPD by using our particular parameter choice. It will help
us to establish convergence bounds for M-SAPD in each stage.

Corollary 6. Suppose Assumptions 1, 2 hold, and {zk}k≥0 = {(xk, yk)}k≥0 are generated by SAPD stated in algo-
rithm 1. Let z∗ = (x∗, y∗) be the unique saddle point of L(x, y). Suppose that the parameters {τ, σ, θ} are chosen
according to eq. (80). In addition, let

θ ≥ 1−min{ µy
Lyx

,
µy
Lyy

,

√
µxµy
LyxLxy

,
µx
Lyx
}.

Then, for any N ≥ 0, it follows that
D(xN , yN ) ≤ 2θND(x0, y0) + (1− θ)δµ, (85)

where δµ , 100(
δ2
x

µx
+

δ2
y

µy
), and D(x, y) = E

[
µx‖x− x∗‖2+µy‖y − y∗‖2

]
.

Proof. For any N ≥ 0, it follows from Theorem 1 that

E[
1

2τ
‖xN − x∗‖2+

1− ασ
2σ

‖yN − y∗‖2] ≤ ρN
( 1

2τ
‖x0 − x∗‖2+

1

2σ
‖y0 − y∗‖2

)
+

ρ

1− ρ
Ξτ,σ,θ.

Using the parameter choice

τ =
1− θ
θµx

, σ =
1− θ
θµy

, α =
1

2σ
−
√
θLyy, ρ = θ,

we first obtain that 1−ασ
σ ≥ 1

2σ ; then this inequality together with our parameter choice leads to

D(xN , yN ) ≤ 2θND(x0, y0) + 4Ξτ,σ,θ.

Then the desired result follows directly from Lemma 13.

Next, in the following result, we choose the number of steps nt and parameters τt, σt for each stage t of M-SAPD in
a particular fashion, and obtain performance bounds for each stage.

Theorem 5. Suppose Assumptions 1, 2 hold. Let {{ztk = (xtk, y
t
k)}ntk=0}t≥0 be the iterates generated by M-SAPD

stated in algorithm 2 with the following parameters

θt = 1− 1− θ
2t

, θ = max
{

1−min{ µy
Lyx

,
µy
Lyy

,

√
µxµy
LyxLxy

,
µx
Lyx
}, θ̄
}

τt =
1− θt
µxθt

, σt =
1− θt
µyθt

, nt =

{
n0, t = 0

dp2
tlog(2)
1−θ e, t ≥ 1

,

where p ≥ 3 is an arbitrary real number and θ̄ is defined in eq. (80). Then for each t ≥ 0,

D(xt+1
0 , yt+1

0 ) ≤ exp(−n0(1− θ))
2t(p−1)−1

D(x0
0, y

0
0) +

1

2t−1
(1− θ)δµ. (86)

Proof. For each t ≥ 0, it is easy to see that θt ≥ θ. Then it follows from corollary 5 that {θt, τt, σt} is a solution to
MI eq. (5).Recall that z1

0 = z0
n0

; therefore, it follows from corollary 6 that

D(x1
0, y

1
0) ≤2θn0

0 D(x0
0, y

0
0) + (1− θ)δµ

=2(1− 1− θ
20

)n0D(x0
0, y

0
0) + (1− θ)δµ

≤2 exp(−n0(1− θ))D(x0
0, y

0
0) + (1− θ)δµ

=
exp(−n0(1− θ))D(x0

0, y
0
0)

20∗(p−1)−1
+

1

20
(1− θ)δµ

≤exp(−n0(1− θ))D(x0
0, y

0
0)

20∗(p−1)−1
+

1

2−1
(1− θ)δµ,

(87)

where the first inequality is from corollary 6; the second inequality is from the fact that (1 − x)n ≤ exp(−nx); the
last inequality uses the fact ν ≥ 2. Thus, (86) is true for t = 0. Then, we suppose that (86) is true for t = i. When
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t = i+ 1, it also follows from corollary 6 that
D(xi+2

0 , yi+2
0 ) ≤2θ

ni+1

i+1 D(xi+1
0 , yi+1

0 ) + (1− θi+1)δµ

=2(1− 1− θ
2i+1

)ni+1D(xi+1
0 , yi+1

0 ) +
1

2i+1
(1− θ)δµ

≤2 exp(−ni+1(1− θ)
2i+1

)D(xi+1
0 , yi+1

0 ) +
1

2i+1
(1− θ)δµ

≤ 1

2p−1
D(xi+1

0 , yi+1
0 ) +

1

2i+1
(1− θ)δµ,

(88)

where the last inequality additionally uses the fact that ni+1 = dp2
i+1log(2)

1−θ e. If we substitute (86) for t = i into (88),
it follows that

D(xi+2
0 , yi+2

0 ) ≤ 1

2p−1

[
exp(−n0(1− θ))

2i(p−1)−1
D(x0

0, y
0
0) +

1

2i−1
(1− θ)δµ

]
+

1

2i+1
(1− θ)δµ

=
exp(−n0(1− θ))

2(i+1)(p−1)−1
D(x0

0, y
0
0) + (

1

2i+p−2
+

1

2i+1
)(1− θ)δµ

≤exp(−n0(1− θ))
2(i+1)(p−1)−1

D(x0
0, y

0
0) +

1

2i
(1− θ)δµ,

where the last inequality is due to the fact that p ≥ 3. Then, by an induction argument, we conclude.

Finally, in the following corollary, we combine our previous results to obtain an iteration complexity result for M-
SAPD given in algorithm 2. This corollary shows that it is possible to remove the logarithmic factor in the iteration
complexity bounds we provided for SAPD, by using the multi-stage variant M-SAPD with parameters given in Theo-
rem 5.
Corollary 7. Suppose µx, µy > 0, and Assumptions 1, 2 hold. For any ε > 0, suppose the parameters

{τt, σt, θt, nt}t≥0 and p are chosen according to Theorem 5 and let n0 = O
(

1
1−θ ln( 2

ε )
)
, Then, the complexity

of M-SAPD, as stated in Algorithm algorithm 2, to generate zε = (xε, yε) ∈ X × Y such that D(xε, yε) ≤ ε is

O
(

(
max{Lxx, Lyx}

µx
+

√
LyxLxy
µxµy

+
max{Lyy, Lyx}

µy
) ln(

1

ε
) + p(

δ2
x

µx
+
δ2
y

µy
)
1

ε

)
.

Proof. First, we define N(t) ,
∑t
i=0 ni. Note that, for t ≥ 1, it follows from the fact dxe < 2x that

N(t)− n0 =

t∑
i=1

ni =

t∑
i=1

dp2
i ln(2)

1− θ
e ≤ 2p ln(2)

1− θ

t∑
i=1

2i =
4p(2t − 1) ln(2)

1− θ
.

Furthermore, given an arbitrary positive integer n, there exists an unique T such that N(T ) < n ≤ N(T + 1). For
such pair of (n, T ), it follow that

n− n0 ≤ N(T + 1)− n0 ≤
4p(2T+1 − 1) ln(2)

1− θ
.

Then, we can obtain that

2T ≥ (1− θ)(n− n0)

8p ln(2)
+

1

2
≥ (1− θ)(n− n0)

8p ln(2)
. (89)

Moreover, letting ẑn = zT+1
n−N(T ), according to stage T + 1 of M-SAPD, it follows from corollary 6 that

D(x̂n, ŷn) ≤ νθn−N(T )
T+1 D(xT+1

0 , yT+1
0 ) +

1

νT+1
(1− θ)δµ.

If we use (86) within the above equation, it follows that

D(x̂n, ŷn) ≤ 2θ
n−N(T )
T+1

[
exp(−n0(1− θ))

2T (p−1)−1
D(x0

0, y
0
0) +

1

2T−1
(1− θ)δµ

]
+

1

2T+1
(1− θ)δµ.

≤ exp(−n0(1− θ))
2T (p−1)−2

D(x0
0, y

0
0) +

1

2T−2
(1− θ)δµ +

1

2T+1
(1− θ)δµ

≤ exp(−n0(1− θ))D(x0
0, y

0
0) +

1

2T−3
(1− θ)δµ,
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where we used the fact that θ ≤ 1 in the second inequality and p ≥ 3 in the third inequality. Furthermore, if we use
(89) within above inequality, it follows that

D(x̂n, ŷn) ≤ exp(−n0(1− θ))D(x0
0, y

0
0) +

64p ln(2)

n− n0
δµ

For ε > 0, a sufficient condition for D(x̂n, ŷn) ≤ ε is

exp(−n0(1− θ))D(x0
0, y

0
0) ≤ ε

2
,

64p ln(2)

n− n0
δµ ≤

ε

2
.

Since we let n0 = O
(

1
1−θ ln( 1

ε )
)

, the first inequality on the left hand-side is trivially satified. This means that after
at most nε iterations of M-SAPD, it will generate ẑnε s.t. D(x̂nε , ŷnε) ≤ ε, where

n0 = O
( 1

1− θ
ln(

1

ε
)
)
, nε = O

(
n0 + p(

δ2
x

µx
+
δ2
y

µy
)
1

ε

)
.

Then, using the choice of θ, we conclude that

nε = O
(

(
max{Lxx, Lyx}

µx
+

√
LyxLxy
µxµy

+
max{Lyy, Lyx}

µy
) ln(

1

ε
) + p(

δ2
x

µx
+
δ2
y

µy
)
1

ε

)
.

E Euclidean projection onto the Intersection of the Simplex and the f -divergence Ball

In this section, we show an efficient method to solve the proximal problems miny∈Pr
µy
2 ‖y‖

2+
1

2σ
‖y− (yk + σs̃k)‖2

arising when SAPD is applied to (56). In the rest, we consider a generic form of this problem. Indeed, given some
p̄ ∈ Rn and R > 0, we aim to solve

p∗ , argmin
p∈P

‖p− p̄‖2, where P , {p ∈ Rn+ : 1>p = 1, ‖p− 1/n‖2≤ R2}. (90)

Next, we construct an equivalent problem to (90), mainly because computing a dual optimal solution for the new
formulation would be easier. Let S , {p ∈ Rn+ : 1>p = 1}. For p ∈ P ⊂ S , we have ‖p − 1/n‖2= ‖p‖2−1/n

since 1>p = 1. Therefore, (90) is equivalent to

p∗ = argmin
p∈S

{1

2
‖p− p̄‖2: ‖p‖2≤ R2 +

1

n
, R̄2} (91)

In the literature, many efficient methods are provided to compute the Euclidean projection of a given point onto a unit
simplex, e.g., see [11]. Therefore, we assume that ‖ps‖> R̄, where ps , argmin{‖p − p̄‖2: p ∈ S}; otherwise,
i.e., ‖ps‖≤ R̄, we trivially have p∗ = ps; thus, p∗ can be efficiently computed with one of these simplex projection
methods from the literature. Since we assume that ‖ps‖> R̄, p∗ must satisfy ‖p∗‖= R̄. The Lagrangian function for
the problem in eq. (91) can be written as

L(p, λ) , 1S(p) +
1

2
‖p− p̄‖2+

λ

2

(
‖p‖2−R̄2

)
, (92)

where 1S(·) denotes the indicator function of S.9

p∗(λ) , argmin
p∈Rn

L(p, λ) = argmin
p∈S

‖p− p̄

1 + λ
‖2. (93)

The aim is to compute λ∗ ≥ 0 such that ‖p∗(λ∗)‖= R̄, considering that (p∗(λ∗), λ∗) is a KKT point; thus, p∗ =
p∗(λ∗). It is essential to observe three critical points: i) p∗(0) = ps, which implies ‖p∗(0)‖> R̄; ii) ‖p∗(λ1)‖≤
‖p∗(λ2)‖ for all λ2 ≥ λ1 ≥ 0; iii) p∗(λ) → 1/n as λ ↗ ∞, which also implies that ‖p∗(λ)‖< R̄ for sufficiently
large λ > 0 since 1/n ∈ P . These observations show that we can start from λ = 0 and keep gradually increasing it
until the first time ‖p∗(λ)‖= R̄.

For numerical stability, i.e., for avoiding λ → ∞, instead of (93), we will consider an equivalent problem: for
γ ∈ (0, 1],

p∗γ , argmin
p∈S

1

2
‖p− γp̄‖2. (94)

9The indicator function 1S(·) is defined as 1S(x) = 0 if x ∈ S, 1S(x) = +∞ otherwise.
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Our aim is to compute γ̄ ∈ (0, 1) such that ‖p∗γ̄‖= R̄.Let u ∈ Rn consist of elements of p̄ in the descending order, i.e.,
u1 ≥ u2 ≥ ... ≥ un. Define Kγ , maxk∈[n]{k : (

∑k
i=1 γui − 1)/k < γuk} and qγ , (

∑Kγ
i=1 γui − 1)/Kγ , where

[n] , {1, . . . , n}. Note that Kγ ≥ 1 is well-defined since γu1 − 1 < γu1. From [11, Algorithm 1], we know that

p∗γ =

{
γui − qγ i = 1, 2, ...,Kγ ,

0 otherwise.
(95)

It follows from eq. (95) that the equation ‖p∗γ̄‖= R̄ has a unique positive solution,

γ̄ =

√
R̄2 − 1/Kγ̄∑Kγ̄

i=1 u
2
i + (

∑Kγ̄
i=1 ui)

2/Kγ̄

. (96)

Since Kγ̄ depends on γ̄ ∈ (0, 1), we cannot solve (96) for γ̄ immediately.

At this point, it is essential to observe that for any γ ∈ (0, 1), the definitions of Kγ and qγ imply that Kγ = k ∈ [n] if
and only if

γuk+1 ≤ qγ < γuk, (97)

where we define un+1 , 0. Since Kγ̄ ∈ [n], we can set Kγ̄ = k for k = 1, 2, ..., n and check whether Kγ̄ satisfies
the condition in eq. (97) for γ̄ computed by eq. (96). Then substituting such Kγ̄ into eq. (95) yields the solution p∗.
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