
Noname manuscript No.
(will be inserted by the editor)

On the Generalised Langevin Equation for Simulated Annealing

Martin Chak · Nikolas Kantas · Grigorios A. Pavliotis

Received: date / Accepted: date

Abstract In this paper, we consider the generalised (higher order) Langevin equation for the purpose of simulated
annealing and optimisation of nonconvex functions. Our approach modifies the underdamped Langevin equation
by replacing the Brownian noise with an appropriate Ornstein-Uhlenbeck process to account for memory in the
system. Under reasonable conditions on the loss function and the annealing schedule, we establish convergence of
the continuous time dynamics to a global minimum. In addition, we investigate the performance numerically and
show better performance and higher exploration of the state space compared to the underdamped and overdamped
Langevin dynamics with the same annealing schedule.
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1 Introduction

Algorithms for optimisation have received significant interest in recent years due to applications in machine learning,
data science and molecular dynamics. Models in machine learning are formulated to have some loss function and
parameters with respect to which it is to be minimised, where use of optimisation techniques is heavily relied upon.
We refer to [8,71] for related discussions. Many models, for instance neural networks, use parameters that vary over
a continuous space, where gradient-based optimisation methods can be used to find good parameters that generate
effective predictive ability. As such, the design and analysis of such algorithms for global optimisation has been the
subject of considerable research [69] and it has proved useful to study algorithms for global optimisation using tools
from the theory of stochastic processes and dynamical systems. A paradigm of the use of stochastic dynamics for the
design of algorithms for global optimisation is one of simulated annealing, where overdamped Langevin dynamics
with a time dependent temperature (1.1) that decreases with an appropriate cooling schedule is used to guarantee
the global minimum of a nonconvex loss function U : Rn → R:

dXt = −∇U(Xt) dt+
√

2Tt dWt. (1.1)

Here Wt is a standard n-dimensional Wiener process and Tt : R+ → R is an appropriate determinstic function of
time often referred to as the annealing or cooling schedule. For fixed Tt = T > 0, this is the dynamics used for the
related problem of sampling from a possibly high dimensional probability measure, for example in the unadjusted
Langevin algorithm [21]. Gradually decreasing Tt to zero balances the exploration-exploitation trade-off by allowing
at early times larger noise to drive Xt and hence sufficient mixing to escape local minima. Designing an appropriate
annealing schedule is well-understood. We briefly mention classical references [17,30,31,33,34,38,39,43], as well as
the more recent [42,50,65], where one can find details and convergence results. In this paper we aim to consider
generalised versions of (1.1) for the same purpose.
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Using dynamics such as (1.1) has clear connections with sampling. When Tt = T is a constant function, the

invariant distribution ofX is proportional to exp(−U(x)
T )dx. In addition, when Tt decreases with time, the probability

measure νt(dx) ∝ exp(−U(x)
Tt

)dx converges weakly to the set of global minima based on the Laplace principle
[41]. One can expect that if one replaces (1.1) with a stochastic process that mixes faster and maintains the same
invariant distribution for constant temperatures, then the superior speed of convergence should improve performance
in optimisation due to the increased exploration of the state space. Indeed, it is well known that many different
dynamics can be used in order to sample from a given probability distribution, or for finding the minima of a
function when the dynamics is combined with an appropriate cooling schedule for the temperature. Different kinds
of dynamics have already been considered for sampling, e.g. nonreversible dynamics, preconditioned unadjusted
Langevin dynamics [2,4,48,62], as well as for optimisation, e.g. interacting Langevin dynamics [74], consensus
based optimisation [10,11,66], to name a few.

A natural candidate in this direction is to use the underdamped or kinetic Langevin dynamics:

dXt = Yt dt (1.2a)

dYt = −∇U(Xt) dt− T−1
t µYt dt+

√
2µdWt (1.2b)

Here the reversibility property of (1.1) has been lost; the improvement from breaking reversibility in both the
context of sampling and that of optimisationis investigated in [19,47] and [27] respectively. When Tt = T , (1.2) can
converge faster than (1.1) to its invariant distribution

ρ(dx, dy) ∝ exp

(
− 1

T

(
U(x) +

|y|2

2

))
dx dy,

see [22] or Section 6.3 of [63] for particular comparisons and also [5,6] for more applications using variants of (1.2).
In the context of simulated annealing, using this set of dynamics has recently been studied rigorously in [55], where
the author established convergence to global minima using the generalised Γ -calculus [56] framework that is based
on Bakry-Emery theory. Note that (1.2b) uses the temperature in the drift rather than the diffusion constant in
the noise as in (1.1). Both formulations admit the same invariant measure when Tt = T . In the remainder of the
paper, we adopt this formulation to be closer to [55].

In this paper we will consider an extension of the kinetic Langevin equation by adding an additional auxiliary
variable that accounts for the memory in the system. To the best of the authors’ knowledge, this has not been
attempted before in the context of simulated annealing and global optimisation. In particular we consider the
Markovian approximation to the generalised Langevin equation:

dXt = Yt dt (1.3a)

dYt = −∇U(Xt) dt+ λ>Zt dt (1.3b)

dZt = −λYt dt− T−1
t AZt dt+Σ dWt, (1.3c)

where A ∈ Rm×m is symmetric positive definite matrix, meaning that there exists a constant Ac > 0 such that

z>Az ≥ Ac|z|2

for all z ∈ Rm, Σ ∈ Rm×m satisfies

ΣΣ> = 2A

and Wt is now m-dimensional. Here Xt, Yt ∈ Rn and Zt ∈ Rm (with m ≥ n), M> denotes the transpose of a matrix
M , λ ∈ Rm×n is a rank n matrix with a left inverse λ−1 ∈ Rn×m.

Our aim is to establish convergence using similar techniques as [55] and investigate the improvements in perfor-
mance. Equation (1.3) is related to the generalised Langevin equation, where memory is added to (1.2) by integrating
over past velocities with a kernel Γ : R+ → Rn×n:

ẍ = −∇U(x)−
∫ t

0

Γ (t− s)ẋ(s) ds+ Ft (1.4)
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with Ft being a zero mean stationary Gaussian process with an autocorrelation matrix given by the fluctuation-
dissipation theorem

E(FtF
>
s ) = TtΓ (t− s).

When Tt = T , (1.4) is equivalent to (1.3) when setting

Γ (t) = λ>e−Atλ, (1.5)

and the invariant distribution becomes

ρ(dx, dy, dz) ∝ exp

(
− 1

T

(
U(x) +

|y|2

2
+
|z|2

2

))
dx dy dz,

see Section 8.2 of [63] for details1. In the spirit of adding a momentum variable in (1.1) to get (1.2), (1.3) adds an
additional auxiliary variable to the Langevin system whilst preserving the invariant distribution in the x marginal.
In the constant temperature context, (1.4) is natural from the point of statistical mechanics and has already been
considered as a sampling tool in [12,13,14,58] with considerable success. We will demonstrate numerically that the
additional tuning parameters can improve performance; see also [57] for recent work demonstrating advantages of
using (1.4) compared to using (1.2) when sampling from a log concave density. A detailed study of the Markovian
approximation (1.3) of the generalised Langevin dynamics in (1.4) can be found in [60].

To motivate the use of (1.3), consider the quadratic case where U = αx2 and 0 < α < 1. This case allows for
explicit or numerical calculation of the spectral gaps of the generators in (1.1)-(1.3) in order to compare the rate
of convergence to equilibrium; see [53,61] for details. For a given T , it is possible to choose λ and A, such that the
spectral gap of the generator of (1.3) is much larger than that of (1.2) with the best possible choice of µ being used.
The latter is already larger than that of the overdamped dynamics in (1.1). We will later demonstrate numerically
that this will translate to better exploration in simulated annealing (when Tt is decreasing in time).

Use of (1.4) is also motivated by parallels with accelerated gradient descent algorithms. When the noise is
removed from (1.2), the second order differential equation can be loosely considered as a continuous time version of
Nesterov’s algorithm [73]. The latter is commonly preferred to discretising the first order differential equation given
by the noiseless version of (1.1), because in the high dimensional and low iterations setting it achieves the optimal
rate of convergence for convex optimisation; see Chapter 2 in [59] and also [32] for a nonconvex setting. Here we
would like to investigate the effect of adding another auxiliary variable, which would correspond to a third order
differential equation when noise is removed. When noise is added for the fixed temperature case, [26] has studied
the long time behaviour and stability for different choices of a memory kernel as in (1.4). Finally, we note that
generalised Langevin dynamics in (1.4) have additionally been studied in related areas such as sampling problems
in molecular dynamics from chemical modelling [1,12,13,14,58,77], see also [44] for work determining the kernel Γ
in the generalised system (1.4) from data.

Our theoretical results will focus only on the continuous time dynamics and follow the approach in [55]. The main
requirement in terms of assumptions are quadratic upper and lower bounds on U and bounded second derivatives.
This is different to classical references such as [31], [33] or [39]. These works also rely on the Poincaré inequality,
an approach which will be mirrored here (and in [55] for the underdamped case) using a log-Sobolev inequality; see
also [38] for the relationship between such functional inequalities and the annealing schedule in the finite state space
case. We will also present detailed numerical results for different choices of U . There are many possibilities for the
method of discretisation of (1.3), we will use a time discretisation scheme that appeared in [3], but will not present
theoretical results on the time discretised dynamics; this is beyond the scope of this article. We refer instead the
interested reader to [70] for a study on discretisation schemes for the system (1.3), [16] for a recent consideration on
(1.2) and its time-discretisation and [28,29] for linking discrete time Markov chains with the overdamped Langevin
system in (1.1).

1 To the best of the authors’ knowledge, there is no known direct translation between (1.4) and (1.3) for a non-constant Tt; such a
translation quite possibly exists and at the very least the intuition here is useful.
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1.1 Contributions and organisation of the paper

Here we summarise the main contributions of the paper.

– We provide a complete theoretical analysis of the simulated annealing algorithm for the generalised Langevin
equation (1.3). The main theoretical contribution consists of Theorem 5 that establishes convergence in proba-
bility of Xt in the higher order Markovian dynamics (1.3) to a global minimiser of U . For the optimal cooling
schedule Tt, the rate of convergence is as the known rate for the Langevin system (1.2) presented in [55].

– The initially non-Markovian property and pronounced degeneracy in the sense of requiring a second commutator
bracket for hypoellipticity by way of Hörmander introduces additional difficulties that are overcome using tech-
niques from [55]. As such, we use a different form of the distorted entropy, stated formally in (4.39). Additional
technical improvements include a different truncation argument and a limiting sequence of nondegenerate SDEs
for establishing dissipation of this distorted entropy. These extensions also address certain technical issues in
[55]; see Remarks 1, 3 and 6 for more details. Also we make an effort to emphasise the role of the critical factor
of the cooling schedule in the rate of convergence in Theorem 5. This can be seen in our assumptions for Tt and
U below.

– As a byproduct, we prove exponential convergence to equilibrium for the constant temperature Tt = T > 0 case
in Proposition 6, which is relevant for sampling problems. See [60] and [64] for similar results.

– Detailed numerical experiments are provided to illustrate the performance of our approach. We also discuss
thoroughly tuning issues. In particular, we investigate numerically the role of matrix A and how it can be chosen
to increase exploration of the state space. As regards to time discretisation of (1.3) we use the leapfrog scheme
of [3]. We compare this with a similar time discretisation of (1.2) and observe that exploration of the state space
is increased considerably.

The paper is organised as follows. Section 2 will present the assumptions and main theoretical results. Detailed
proofs can be found in Section 4. Section 3 presents numerical results demonstrating the effectiveness of our approach
both in terms of reaching the global minimum and the exploration of the state space. In Section 5, we provide some
concluding remarks.

2 Main Result

Let Lt denote the infinitesimal generator of the associated semigroup to (1.3) at t > 0 and temperature Tt. This is
formally given by

Lt = (y · ∇x −∇xU(x) · ∇y) + (z>λ∇y − y>λ>∇z)− T−1
t z>A∇z +A : D2

z , (2.1)

where we denote the gradient vector as ∇x = (∂x1
, . . . , ∂xn)>, the Hessian with D2

x and similarly for the y and z
variables. For matrices M,N ∈ Rr×r we denote M : N =

∑
i,jMijNij for all 1 ≤ i, j ≤ r and the operator norm

as |M | = sup
{
|Mv|
|v| : v ∈ Rr with x 6= 0

}
. We will also use |v| to denote Euclidean distance for a vector v. Let mt

be the law of (Xt, Yt, Zt) in (1.3) and, with slight abuse of notation, we will also denote as mt the corresponding
Lebesgue density. Similarly we define µTt be the instantaneous invariant law of the process

µTt(dx, dy, dz) =
1

ZTt
exp

(
− 1

Tt

(
U(x) +

|y|2

2
+
|z|2

2

))
dx dy dz (2.2)

with ZTt =
∫

exp
(
− 1

Tt

(
U(x) + |y|2

2 + |z|2
2

))
dx dy dz. Finally, denote the density between the two laws:

ht =
dmt

dµTt
. (2.3)

We proceed by stating our assumptions on the potential U .
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Assumption 1 a

There exists 0 < θ < 1 such that U is smooth (belongs in C∞(Rn)) with bounded second derivatives

|D2
xU |∞ := sup

x∈Rn
max

(
sup
ij
|∂i∂jU(x)|, |D2

xU(x)|
)
<∞, (2.4)

satisfies

∇xU(x) · x ≥ r1|x|2 − Ug (2.5)

|∇xU(x)|2 ≤ r2|x|2 + Ug (2.6)

for some constants r1, r2 ∈ R, Ug > 0 and either

(a)

|ā ◦ x|2 + Um ≤ U(x) ≤ |ā ◦ x|2 + UM (2.7)

for some Um, UM ∈ R, ā ∈ Rn+, where ◦ denotes the Hadamard product, or
(b) – U is a nonnegative Morse function, in the sense that there exists 1 ≤ CH <∞ such that if x ∈ Rn satisfies

∇xU(x) = 0, then

|ξ|2

CH
≤ 〈ξ,D2

xU(x)ξ〉 ≤ CH |ξ|2 ∀ξ ∈ Rn,

– U is nondegenerate in the sense that:
– For any two local minima mi,mj ∈ Rn, there exists a unique (communicating saddle) point si,j ∈ Rn

such that
• ∇xU(si,j) = 0,
• U(si,j) = inf{maxs∈[0,1] U(γ(s)) : γ ∈ C([0, 1],Rn), γ(0) = mi, γ(1) = mj},
• the dimension of the unstable subspace of D2

xU(si,j) is equal to 1.
– Setting m1 to be the global minimum of U , there exists δ > 0 and an ordering of the local minima
{m2,m3, . . . } such that U(s1,2)− U(m2) ≥ U(s1,i)− U(mi) + δ for all i ≥ 3.

Note that (2.5) and (2.6) imply

am|x|2 + Um ≤ U(x) ≤ aM |x|2 + UM (2.8)

for some am, aM > 0, Um, UM ∈ R. In the rest of the paper, if (2.7) holds then the smallest and largest element of
ā is denoted with

am = min
i
āi, aM = max

i
āi,

where ā = (ā1, . . . , ān).

Assumption 2 The temperature Tt satisfies
lim
t→∞

Tt = 0.

Before we proceed with further assumptions on the annealing schedule Tt and on the initial distribution, note that
under Assumption 1 and 2, a log-Sobolev inequaity holds.

Proposition 1 Under Assumption 1 and Assumption 2, there exists constants t
(0)
ls , Ê, A

(0)
∗ > 0 and a finite order

polynomial r(0) : R+ → R+ with coefficients depending on U such that for all 0 < h ∈ C∞(R2n+m),∫
h lnhdµTt ≤ C

(0)
t

∫
|∇h|2

h
dµTt , (2.9)

where for t > t
(0)
ls ,

C
(0)
t = r(0)

(
T
− 1

2
t

)
eÊT

−1
t . (2.10)
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The proof is deferred and the constant Ê from the above proposition will be used in stating the following assumption
about Tt, as well as what follows. In the case of (2.7), Ê can be taken as UM −Um, otherwise it is the critical depth
[52] of U .

Assumption 3 a

The temperature T· : [0,∞) → (0,∞) is continuously differentiable, bounded above and there exists some constant
t0 > 1 such that Tt satisfies for all t > t0:

(i) Tt ≥ E(ln t)−1 for some constant E > Ê ≥ 0, where Ê is the constant in Proposition 1,

(ii) |T ′t | ≤ T̃ t−1 for some constant T̃ > 0.

Assumption 4 a

The initial law m0 admits a bounded density with respect to the Lebesgue measure on R2n+m, also denoted m0,
satisfying:

(i) m0 ∈ C∞(R2n+m),

(ii)
∫ |∇m0|2

m0
dxdydz <∞,

(iii)
∫

(|x|2 + |y|2 + |z|2)m0 dxdydz <∞,

Remark 1 Note that (2.6) and (2.7) deviate from [55]. (2.7) is useful for a more self-contained exposition for the
log-Sobolev constant in (4.52), but the alternative that U is a nonnegative nondegenerate Morse function is optimal
in the sense that Ê is in this case given as the critical depth of U . Condition (2.7) is satisfied for instance by a
multivariate Gaussian after a rotation of the x coordinates.

We present two key propositions.

Proposition 2 Under Assumptions 1 and 3, for all t > 0, denote by
(
XTt , Y Tt , ZTt

)
a r.v. with distribution µTt .

For any δ, α > 0, there exists a constant Â > 0 such that

P
(
U
(
XTt

)
> minU + δ

)
≤ Âe−

δ−α
Tt

holds for all t > 0.

Proof The result follows exactly as in Lemma 3 in [55].

Proposition 3 Under Assumptions 1, 3 and 4, for all t > 0, (Xt, Yt, Zt) are well defined as the unique strong

solution to (1.3), E
[
|Xt|2 + |Yt|2 + |Zt|2

]
<∞ and the law mt admits an everywhere positive density with respect to

the Lebesgue measure on R2n+m.

For the proof of Proposition 3, see Proposition 7 in Section 4.
Proposition 2 can be thought of as a Laplace principle; Proposition 3 asserts that the process (1.3) does not

blow up in finite time and the noise in the dynamics (1.3c) for Zt spreads throughout the system, that is to Xt and
Yt.

Proposition 4 Under Assumption 1, 3 and 4, for any α > 0, there exists some constant B > 0 and th > 0, such
that for all t > th, ∫

ht lnhtdµTt ≤ B
(

1

t

)1− ÊE−2α

. (2.11)

The full proof is the contained in Section 4 and follows from Proposition 10. Therein a similar statement is proved
for the distorted entropy that has the following form:

H(t) :=

∫ (
〈S∇ht,∇ht〉

ht
+ β(T−1

t )ht ln(ht)

)
dµTt ,

6



where S being a well chosen matrix (so that (4.46) holds) and β(·) is a polynomial (see (4.39) for the precise form of
H(t) and (4.44) for β(·)). This construction of H compared to a standard definition of entropy compensates for the
fact that the diffusion is degenerate (see [76] for a general discussion). The proof uses an approximating sequence of
SDE’s, in which all of the elements have nondegenerate noise. The problem is split into the partial time and partial
temperature derivatives where, amongst other tools, (4.46) and a log-Sobolev inequality are used as in [55] to arrive
at a bound that allows a Grönwall-type argument.

Remark 2 Proposition 10 is a statement about the distorted entropy H(t), which bounds the entropy
∫
ht lnhtdµTt .

In fact this is achieved in such a way that the bound becomes less sharp as t becomes large but without consequences
for our main Theorem 5 below.

We proceed with the statement of our main result, using th from Proposition 4.

Theorem 5 Under Assumptions 1, 2, 3 and 4, for any δ > 0, as t→∞,

P(U(Xt) ≤ minU + δ)→ 1.

If in addition Tt = E(ln t)−1, then for any α > 0, there exists a constant C > 0 such that for all t > th,

P(U(Xt) ≤ minU + δ) ≤ C
(

1

t

)r(E)

,

where the exponential rate re : (Ê,∞)→ R is defined by

re(E) := min

(
1− Ê

E − 2α

2
,
δ − α
E

)
=

{
1
2

(
1− Ê

E − 2α
)

if E < Ê+2(δ−2α)
1−2α

δ−2α
E otherwise.

Proof For all t > 0, denote by
(
XTt , Y Tt , ZTt

)
a random variable with distribution µTt . For all δ > 0, with the

definition (2.3) of ht and triangle inequality,

P(U(Xt) > minU + δ) ≤ P
(
U
(
XTt

)
> minU + δ

)
+

∫
|ht − 1|dµTt .

Pinsker’s inequality gives ∫
|ht − 1|dµTt ≤

(
2

∫
ht lnhtdµTt

) 1
2

, (2.12)

which, by Proposition 4, together with Proposition 2 gives the result.

The cooling schedule Tt = E(ln t)−1 is optimal with respect to the method of proof for Proposition 10; see
Proposition 11. This is a consistent with works in simulated annealing, e.g. [17,30,31,33,34,38,39,43].

The ’mountain-like’ shape of re indicates the bottleneck for the rate of convergence at low and high values of
E: a small E means convergence to the instantaneous equilibrium µTt is slow and a large E means the convergence
of µTt to the global minima of U is slow.

Although the focus in Theorem 5 is for decaying Tt, it is only for convergence to the global minimum where
Assumption 2 is used. In particular, the convergence result in Proposition 4 is valid for temperature schedules that
are not converging to zero. This includes the instance of using a variable temperature in order to tackle the problem
of metastability in the sampling problem.

We proceed below to show exponential convergence to equilibrium for the generalised Langevin equation (1.3)
with constant temperature. Part of the analysis used in the proof of Proposition 10 can be used for the sampling
case and Tt = T , i.e. working only with the partial time derivatives mentioned above for the invariant distribution.

7



Proposition 6 Let Assumption 1 and 4 hold and let Tt = T for all t for some constant T > 0. There exist constants
Cc, C∗ > 0 such that ∫

|ht − 1|dµT ≤ Cce−
C
−1
∗
2 t,

for all t > 0.

Proof See Appendix A.

3 Numerical results

Here we investigate the numerical performance of (1.3) in terms of convergence to a global optimum and exploration
capabilities and compare with (1.2). In Section 3.1, we will present the discretisation we use for both sets of dynamics
and some details related to the annealing schedule and parameters. In Section 3.2 and 3.3, for different parameters
and cost functions, we present results for the probability of convergence to the global minimum and rates of
transition between different regions of the state space. We will investigate thoroughly the effect of E appearing in
the annealing schedule as well as the parameters in the dynamics (1.2) and (1.3).

3.1 Time discretisation

In order to simulate from (1.3), we will use the following time discretisation. For k ∈ N,

Yk+ 1
2

= Yk −
∆t

2
γ∇U(Xk) +

∆t

2
λ>Zk, (3.1a)

Xk+1 = Xk +∆tγYk+ 1
2
, (3.1b)

Zk+1 = Zk − θλYk+ 1
2
− θAZk + α

√
Tk Σξk, (3.1c)

Yk+1 = Yk+ 1
2
− ∆t

2
γ∇U(Xk+1) +

∆t

2
λ>Zk+1, (3.1d)

where ∆t denotes the time incremements in the discretisation, ξk are i.i.d. standard m-dimensional normal random
variables with unit variance and θ = 1− exp(−∆t), and α =

√
1− θ2. Specifically this is method 2 of [3] applied on

a slight modification of (1.3), where γYtdt and γ∇Udt is used instead in the r.h.s. of (1.3a) and (1.3b). Tuning γ
can improve numerical perfomance especially in high dimensional problems, but we note that this has no effect in
terms of the instantaneous invariant density in (2.2); similar to λ and A, γ will not appear in (2.2). Unless stated
otherwise, in the remainder we will use γ = 1.

As we will see below the choices for A make a difference in terms of performance. To illustrate this we will use
different choices of the form

A = µAi;

i here is an index for different forms of A. The first choice will be to set m = n and set A1 = In where In is n× n
identity matrix. For the rest, we will use m = 2n and set

A2 =

(
1.9In 0.4In
0.1In 0.1In

)
, A3 =

(
In 0.5In

0.5In In

)
, (A4)ij =

{
1 if i = j

1
mn otherwise

.

Doubling the state space of Zt relative to Xt, Yt allows investigating the effect of injecting more noise in the
dynamics has to the overall performance and the state space exploration. As per [36] (following [25]), the constraint
that the trace of A is uniformly bounded has been used in selecting the above matrices. Note that A2 does not
satisfy the symmetry assumption for the results, but figures for A2 are displayed in spite of this because there is an
interesting improvement in performance for one of the cases below (see Figure 3.2 and also others for the sake of
comparison). Similarly we will use in each case λ = λ̄λi with λ̄ > 0, λ1 = In and

λi =

(
In
0

)

8



for i = 2, 3, 4. As a result λ̄, µ > 0 are the main tuning constants for (3.1) that do not involve the annealing schedule.
The Langevin system (1.2) will be approximated with a similar leapfrog scheme,

Yk+ 1
2

= Yk − θ̂γ∇U(Xk)− θ̂µYk + α̂
√
µTkξk, (3.2a)

Xk+1 = Xk +∆tγYk, (3.2b)

Yk+1 = Yk+ 1
2
− θ̂γ∇U(Xk+1)− θ̂µYk+ 1

2
+ α̂

√
µTk+1ξk+ 1

2
, (3.2c)

for θ̂ = 1− exp(−∆t2 ), and α̂ =
√

1− θ̂2, where in the implementation, (3.2a) and (3.2c) are combined (aside from
the first iteration) and only integer-indexed ξ are used. To make valid comparisons, both (3.1) and (3.2) will use
γ = 1 and the same noise realisation ξk (or the first common n elements) and the same step size ∆t.

Finally for both cases we will use following annealing schedule:

Tk =

(
1

5
+

ln(1 + k∆t)

E

)−1

,

where E is an additional tuning parameter (since Ê is unknown in general).

3.2 Sample path properties

Our first set of simulations focus on illustrating some properties of the sample paths generated by (3.1) and (3.2).
We will use the following bivariate potential function

U(x1, x2) =
x2

1

5
+
x2

2

10
+ 5e−x

2
1 − 7e−(x1+5)2−(x2−3)2 − 6e−(x1−5)2−(x2+2)2

+
2
3x

2
1e
− x

2
1
9 cos(x1 + 2x2) cos(2x1 − x2)

1 +
x2
2

9

. (3.3)

The global minimum is located at (−5, 3), but there are plenty of local minima where the process can get
trapped. In addition, there is a barrier along the vertical line {x1 = 0} that makes crossing from each half plane
less likely. Here we set ∆t = 0.1, E = 5 and each sample is initialised at (4, 2). As a result, it is harder to cross
{x1 = 0} to reach the global minimum and it is quite common to get stuck in other local minima such as near
(5,−2). We use the number of crossings on {x1 = 0} as a scale for how stuck the process is in Table 3.1. Note that
the asymmetric A = A2 case displays the smallest number of crossings.

To illustrate this, in Figure 3.1 we present contour plots of U together with a typical realisation of sample paths
(in the left panels) for (3.2) and (3.1) for the different choices of Ai. As expected, (3.1) generates smoother paths
than those of (3.2). We also employ independent runs of each stochastic process for the same initialisation. The
results are presented in the right panels of Figure 3.1, where we show heat maps for two dimensional histograms
representing the frequency of visiting each (x1, x2) location over 20 independent realisations of each process. The
heat maps in Figure 3.1 do not directly depict time dependence in the paths and only illustrate which areas are
visited more frequently. Of course converging at the global minumum or the local one at (5,−2) will result in more
visits at these areas. The aim here is to investigate the exploration of the state space.

Method equation Number of transitions across x = 0
(3.2) 11295

(3.1) with A = A1 11893
(3.1) with A = A2 10915
(3.1) with A = A3 11728
(3.1) with A = A4 11771

Table 3.1: Number of crossings across the vertical line {x1 = 0} for U defined in (3.3). The results are summed
from k = 105 iterations of 104 independent runs.
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3.3 Performance and tuning

As expected, the tuning parameters, E, λ̄ and µ play significant roles in the performance of (3.1) and (3.2). As E
is common to both, we wish to demontrate that the additional tuning variable for (3.1) will improve performance.

We first comment on relative scaling of λ̄ and µ based on earlier work for quadratic U and Tt = T being constant.
A quadratic U satisfies the bounds in Assumption 1 and is of particular interest because analytical calculations
are possible for the spectral gap of Lt, which in turn gives the (exponential) rate of convergence to the equilibrium
distribution. It is observed numerically in [61] that in this case, (1.3) has a spectral gap that is approximately a

function of λ̄2

µ . On the other hand, the spectral gap of (1.2) with quadratic U is a function of µ thanks to Theorem

3.1 in [53]. For the rest of the comparison, we will use λ̄2

µ and µ as variables for (3.1) and (3.2) respectively as these
quantities appear to have a distinct effect on the mixing in each case.

We will consider three different cost functions U and set ∆t = 0.02. As before we will initialise at a point well
separated from the global minimum and consider each method to be successful if it convergences at a particular
tolerance region near the global minumum. The details are presented in Table 3.2. We choose the popular Alpine
function in 12 dimensions (∇U1 here is a subgradient) and two variants of (3.3). U2 is modified to have the same
quadratic confinement in x1 and x2 direction and there are several additional local minima due to the last term in
the sum. More importantly, compared to (3.3) (and U3) it has a narrow region near the origin that allows easier
passage through {x1 = 0}. On the other hand U3 similar to (3.3) except that the well near the global minimum
(and the dominant local minimum at (5,−2)) are elongated in the direction of x2 (and x1 respectively).

Cost function Initial condition Tolerance sets

U1(x) = 1
2

∑12
i=1 |xi sin(xi) + 0.1xi| xj = 6 ∀j xj ∈ [−2, 2] ∀j

U2(x1, x2) =
x2
1
7

+
x2
2
7

+ 5
(

1− e−9x2
2

)
e−x2

1 − 7e−(x1+5)2−(x2−3)2

−6e−(x1−5)2−(x2+2)2 +
2
3
x2
1e
−
x21
9 cos(x1+2x2) cos(2x1−x2)

1+
x22
9

x1 = 4,
x2 = 2

x1 ∈ [−6.5,−4.5],
x2 ∈ [1.5, 4.5]

U3(x1, x2) =
x2
1
5

+
x2
2

10
+ 5e−x2

1 − 7e−2(x1+5)2− (x2−3)2

5 − 6e−
(x1−5)2

5
−2(x2+2)2

x1 = 4,
x2 = 2

x1 ∈ [−6.5,−4.5],
x2 ∈ [1.5, 4.5]

Table 3.2: Details of three different cost functions, initialisation and tolerance regions corresponding to regions of
attraction of the global minimum.

In Figure 3.2 we present proportions of simulations converging at the region near the global minimum for U = U1

depending on E and µ for (3.2) and on E and λ̄2

µ for (3.1) based on discussion above. To produce the figures related

to (3.1) after setting E, λ̄
2

µ we pick a random value of µ from a grid. The aim of this procedure is to ease visualisation,

reduce computational cost and to emphasise that it is λ̄2

µ that is crucial for mixing and the performance here is not a
product of a tedious tuning for µ. The left panels of Figure 3.2 are based on final state and the right on an average of
the positions (of X) over the last 5000 iterations. In this example it is clear empirically that the generalised Langevin
dynamics (3.1) result in a higher probability of reaching the global minumum. Another interesting observation is
that for the generalised Langevin dynamics good performance is more robust to the chosen value of E. In this
example, this means that adding an additional tuning variable and scaling µ proportional to λ̄2, makes it easier to
find a configuration of the parameters E,µ, λ̄ that leads to good perfomance, compared to using (3.2) and tuning
E,µ. It’s also worth noting the cases of small E where the generalised Langevin dynamics performs significantly
better than the Langevin dynamics in the top plot and even than the case of the same dynamics and larger E. This is
an improvement that is not completely encapsulated by the analytic results here; it indicates that the deterministic
dynamics (E = 0) can be inherently much more successful at climbing out of local minima, which translates to
better convergence rates in the E > 0 cases.

In Figures 3.3 and 3.4 we present results for U2 and U3. A notable difference to Figure 3.2 here is that the
panels on the left show proportions of the position average of the last 5000 iterations being near the correct global
minimum and the panels on the right present the number of jumps across {x1 = 0} demonstrated by a position

10



average at each iteration of the previous 5000 iterations. More precisely, the panels on the right show the number
of jumps shown by the trajectory

X̃k =
1

5000

5000∑
k′=1

Xk−k′+1

for all k > 5000. All results are averaged over 20 independent runs. The aim here is to measure the extent of
exploration of each process similar to Table 3.1. We observe that in both cases using (3.1) leads to a similar number
of jumps. We believe the benefit of the higher order dynamics here are the robustness of performance for different

values of E and λ̄2

µ . This is especially for using A3 and A4. Finally we note that despite similarities between U2

and U3 there are significant features that are different: the sharpness in the confinement, the shape and number of
attracting wells and the shape of barriers that obstruct crossing regions in the state space. This will have a direct
effect in performance, which can explain the difference in performance when comparing Figures 3.3 and 3.4; U3 is
a harder cost function to minimise.

The selection A = A2, shown as the middle row in each of Figures 3.2, 3.3 and 3.4, does not satisfy the probably
superfluous symmetry assumption as stated in the introduction, but it is noteworthy that the performance varies
to such a large extent for different U and that any optimality of A, left as future work, could change depending on
whether the symmetry assumption is in place.

4 Proofs

4.1 Notation and preliminaries

Unless stated otherwise, ∂t is used to denote the partial derivative with respect to t with Tt fixed (whenever its
operand depends on Tt), whereas d

dt denotes the full derivative in t. In addition, ∇ denotes the gradient in R2n+m

space and dζ will be used for the Lebesgue measure on R2n+m. The notation 1S will be used for the indicator
function on the set S.
Recall the standard mollifier ϕ : R→ R to be:

ϕ(x) :=

e
1

x2−1

(∫ 1

−1
e

1
y2−1 dy

)−1

if − 1 < x ≤ 1

0 otherwise,

ϕk(x) :=
1

k
ϕ

(
x

k

)
∀k > 0. (4.1)

Let (Ω,F ,P) be a complete probability space and Ft, t ∈ [0,∞) be a normal filtration2 with (Wt)t≥0 a standard
Wiener process on Rm with respect to Ft, t ∈ [0,∞) and ζ0 = (X0, Y0, Z0) : Ω → R2n+m an F0-measurable map
admitting Lebesgue density m0 satisfying Assumption 4.

The formal3 L2(µTt)-adjoint L∗t of Lt is given by

L∗t = − (y · ∇x −∇xU(x) · ∇y)− (z>λ∇y − y>λ>∇z)− T−1
t z>A∇z +A : D2

z . (4.2)

Let C∞+ = {f ∈ C∞ : f > 0}. For Φ : C∞+ → C∞ differentiable in the sense that for any f ∈ C∞+ , g ∈ C∞,

(dΦ(f).g)(ζ) := lim
s→0

(Φ(f + sg))(ζ)− (Φ(f))(ζ)

s

exists for all ζ ∈ R2n+m, the ΓΦ operator for Lε∗t is defined by

ΓLε∗t ,Φ(h) :=
1

2
(Lε∗t Φ(h)− dΦ(h).(Lε∗t h)). (4.3)

2 In other words, satisfying the usual conditions.
3 See for instance Appendix B in [23]. In the present paper the infinitesimal generators and their adjoints are considered as honest

differential operators acting on smooth functions.
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It will be helpful to keep in mind that Lε∗t does not satisfy the standard chain and product rules, due to the
additional term from the second derivatives in Lε∗t ; straightforward calculations give:

Lε∗t (ψ(f)) = ψ′(f)Lε∗t f + ψ′′(f)∇f · (Aε∇f) (4.4)

Lε∗t (fg) = fLε∗t (g) + gLε∗t (f) +∇f · (2Aε∇g) (4.5)

for all f, g ∈ C∞ and ψ ∈ C∞. Note ∇f · (Aε∇f) and ∇f · (2Aε∇g) are respectively the carré du champ and its
symmetric bilinear operator via polarisation for Lε∗t .
In addition, for a scalar-valued D1 and a vector-valued operator D2 both acting on scalar-valued functions, denote
the commutator bracket as follows:

[D1, D2]h = (D1(D2h)1 − (D2D1h)1, . . . , D1(D2h)dD2
− (D2D1h)dD2

) (4.6)

for h ∈ C∞, where dD2
∈ N is the number of elements in the output of D2.

Let ε ≥ 0 and consider the perturbed system

dXε
t = Y εt dt+ ε(−T−1

t ∇xU(Xε
t ) dt+ dW 1

t ), (4.7a)

dY εt = −∇xU(Xε
t ) dt+ λ>Zεt dt+ ε(−T−1

t Y εt dt+ dW 2
t ), (4.7b)

dZεt = −λY εt dt− T−1
t AZεt dt+Σ dW 3

t , (4.7c)

with (Xε
0, Y

ε
0 , Z

ε
0) = (X0, Y0, Z0) restricted as in Assumption 4, where W 1

t ,W
2
t ,W

3
t are independent n-dimensional

and m-dimensional Wiener processes. As before, the law and density of (4.7) will be denoted by mε
t along with

hεt =
dmε

t

dµTt
.

Let the linear differential operators Sxt , Syt and their respective formal L2-adjoints Sx>t and Sy>t be given by

Sxt = −T−1
t ∇xU · ∇x +∆x, Syt = −T−1

t y · ∇y +∆y,

Sx>t = T−1
t ∇xU · ∇x + T−1

t ∆xU +∆x, Sy>t = T−1
t y · ∇y + T−1

t n+∆y,

so that the generator, denoted Lεt, associated to (4.7) is given by the formal operator

Lεt = Lt + ε(Sxt + Syt ).

Note that the formal L2(µTt)-adjoints of Sxt and Syt coincide with Sxt and Syt , so that the formal L2(µTt)-adjoint of
Lεt, denoted Lε∗t , is

Lε∗t = L∗t + ε(Sxt + Syt ).

For any φ ∈ C∞ and f : R2n+m → R smooth enough,

Lεt(φ(f)) = φ′(f)Lεt(f) + φ′′(f)Γ εt (f), (4.8)

where Γ εt is the carré du champ operator for Lεt given by

Γ εt (f) =
1

2
Lεt(f

2)− fLεt(f) = ∇f · (Aε∇f), (4.9)

Aε ∈ R(2n+m)×(2n+m) denotes the matrix with entries

Aεij :=


ε if 1 ≤ i = j ≤ 2n,

Ai−2n,j−2n if 2n+ 1 ≤ i, j ≤ 2n+m,

0 otherwise

and Ai,j denotes the (i, j)th entry of A.
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4.2 Auxiliary results

For the next result, the space of smooth functions that will be used is from [15]: let C∞b,c = C∞b,c(R+×R2n+m) be the

space of real-valued functions f : R+ × R2n+m → R such that

1. f is measurable with respect to B(R+)⊗ B(R2n+m),
2. for all t > 0, f(t, ·) is smooth and f is bounded on compact subsets of R>0 × R2n+m.

Proposition 7 Under Assumption 1, 3 and 4, for all t > 0 and ε ≥ 0, the unique strong solution (Xε
t , Y

ε
t , Z

ε
t ) to

(4.7) is well-defined and there exists some constant κ > 0 such that

E
[
|Xε

t |
2

+ |Y εt |
2

+ |Zεt |
2] ≤ eκtE[|X0|2 + |Y0|2 + |Z0|2

]
<∞. (4.10)

Furthermore, for all time t > 0, the law of the (Xε
t , Y

ε
t , Z

ε
t )

– admits an almost-everywhere finite strictly positive density, also denoted mε
t, w.r.t. the Lebesgue measure on

R2n+m,
– is the unique integrable distributional solution to{

∂tm
ε
t = (L>t + ε(Sx>t + Sy>t ))mε

t

mε
0 = m0,

(4.11)

where L>t is the formal L2-adjoint of Lt.

Finally when ε > 0, m• and its partial derivative in time belongs in C∞b,c.

For the notion of integrable distributional solutions, see p.338 in [7].

Proof Existence and uniqueness of an almost surely continuous Ft-adapted processes follows by conditions (2.4)
and (2.6) using Theorem 3.1.1 in [67]; in addition, (4.10) holds by the same theorem. For the claim that the law
admits a density, we will apply Theorem 1 in [40] for the case of an arbitrary deterministic starting point. First,
condition (H1) in the same article is verified. Take the sets ‘Kn’ to be

Kp =

2n+m∏
i=1

[−p, p]

for all p ∈ N. The unique solution to (4.7) with a deterministic starting point (X0, Y0, Z0) = (x0, y0, z0) ∈ R2n+m

satisfies the same bound (4.10) as before when initialising from m0. Moreover, for the random sets

Ξp = {s > 0 : (Xε
u, X

ε
u, X

ε
u) ∈ Kp, 0 ≤ u ≤ s},

for p ∈ N, the solution (X̂ε
t , Ŷ

ε
t , Ẑ

ε
t ) to the stopped stochastic differential equation

dX̂ε,p
t = 1Ξp(t)(Ŷ ε,pt dt+ ε(−T−1

t ∇xU(X̂ε,p
t ) dt+ dW 1

t )), (4.12a)

dŶ ε,pt = 1Ξp(t)(−∇xU(X̂ε,p
t ) dt+ λ>Ẑε,pt dt+ ε(−T−1

t Ŷ ε,pt dt+ dW 2
t )), (4.12b)

dẐε,pt = 1Ξp(t)(−λŶ ε,pt dt− T−1
t AẐε,pt dt+Σ dW 3

t ), (4.12c)

is well-defined by the same Theorem 3.1.1 in [67] and the corresponding bound

E
[
|X̂ε,p

t |2 + |Ŷ ε,pt |2 + |Ẑε,pt |2
]
≤ eκt

(
|x0|2 + |y0|2 + |z0|2

)
<∞

holds. Identifying (X̂ε,p
t , Ŷ ε,pt , Ẑε,pt ) = (Xε

t∧supΞp
, Y εt∧supΞp

, Zεt∧supΞp
) a.s. yields that4 for any τ > 0

P(inf{t ≥ 0 : (Xε
t , Y

ε
t , Z

ε
t ) /∈ Kp} ≤ τ) ≤ 1

p2
E
[
|Xε

τ∧supΞp |
2 + |Y ετ∧supΞp |

2 + |Zετ∧supΞp |
2
]

≤ eκτ

p2

(
|x0|2 + |y0|2 + |z0|2

)
4 Alternatively Corollary 1.2 of Section 5 in [24] can be used.
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and in particular that for any τ > 0,

P(inf{t ≥ 0 : (Xε
t , Y

ε
t , Z

ε
t ) /∈ Kp} ≤ τ)→ 0 as p→∞. (4.13)

Suppose for contradiction that with nonzero probability, the increasing-in-p random variable inf{t ≥ 0 : (Xε
t , Y

ε
t , Z

ε
t ) /∈

Kp} converges to a real value as p→∞. Then there exists a time τ̂ > 0 such that with nonzero probability,

inf{t ≥ 0 : (Xε
t , Y

ε
t , Z

ε
t ) /∈ Kp} ≤ τ̂ ∀p ∈ N,

which contradicts (4.13). Therefore condition (H1) in [40] holds for (4.7). Condition (H2) in the same article holds
due the Kp being compact and the smoothness assumption on U . It can be readily checked that the local weak
Hörmander condition (LWH) in [40] also holds at any (t, y0) for any r ∈ (0, t) and R > 0. Therefore by Theorem
1 in [40], due to our Assumptions 1 and 3, the solution to (4.7) with a deterministic starting point ζ0 ∈ R2n+m

admits a smooth density pζ0t ∈ C∞(R2n+m) for all t > 0. Moreover by Theorem 2 in [40], for any fixed ζ ∈ R2n+m,

R2n+m 3 ζ0 7→ pζ0t (ζ) is lower semi continuous and hence measurable, so that the R ∪ {±∞}-valued function on
R2n+m, ∫

R2n+m

pζ0t m0(dζ0), (4.14)

is integrable by Fubini’s theorem and so is almost everywhere R-valued on R2n+m. By Itô’s rule, (4.14) solves (4.11)
in the distributional sense. In addition, (4.11) is the unique integrable solution by Theorem 9.6.3 in [7], which
requires for any T > 0 that there exists V ∈ C2(R2n+m) such that

1. V (x)→∞ as |x| → ∞ and
2. for some constant CV > 0 and all (x, t) ∈ R2n+m × (0, T ), it holds that LεtV ≥ −CV V and |∇V | ≤ CV V .

Setting V (x, y, z) = 1 + U(x)− Um + |y|2
2 + |z|2

2 and calculating

Lεt

(
U(x) +

|y|2

2
+
|z|2

2

)
= ε

(
− 1

Tt
|∇xU |2 +∆xU −

1

Tt
|y|2 + n

)
− 1

Tt
z>Az + TrA (4.15)

it is clear from assumptions (2.4), (2.6) and either (2.7) or (2.8) on U that these conditions are satisfied since T is
finite; therefore there is a unique integrable solution to (4.11) in the sense of p.338 in [7]. The expression in (4.14)
is thus the density for the law of the solution to (4.7) with initial law m0 at time t.

For ε > 0, the time-depending law of (Xε
t , Y

ε
t , Z

ε
t ) and its partial derivative with respect to time belongs in C∞b,c

by Theorem 1.1 in [15] because (4.14) satisfies (4.11).
For positivity of the density where ε = 0, the steps in Lemma 3.4 of [51] can be followed; the associated control
problem has the expression

d

dt

QtPt
Vt

 =

 Pt
−∇U(Qt) + λ>Vt

−λPt − TtAVt +Σ dŨ
dt

 . (4.16)

It suffices to show that given any S > 0 and any pair (Q0, P0, V0) ∈ R2n+m and (Q∗, P ∗, V ∗) ∈ R2n+m, there
exists a control Ũ : [0,∞) → Rm such that the solution (Qt, Pt, Vt) to (4.16) starting at (Q0, P0, V0) satisfies
(QS , PS , VS) = (Q∗, P ∗, V ∗). Fix S > 0, ε > 0, (Q0, P0, V0) ∈ R2n+m, (Q∗, P ∗, V ∗) ∈ R2n+m. Using the mollifier
(4.1), let

ν := ϕ 1
2
∗ 1(−∞, 12 ],

where ∗ denotes convolution. Define a smooth function Q̂· : [0, S]→ Rn by

Q̂t =

(
(−∇U(Q0) + λ>V0)

t2

2
+ P0t+Q0

)
ν

(
t

S

)
+

(
(−∇U(Q∗) + λ>V ∗)

t2

2
+ P ∗t+Q∗

)
ν

(
1− t

S

)
(4.17)
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which satisfies

Q̂0 = Q0, Q̂S = Q∗,

dQ̂t
dt

(0) = P0,
dQ̂t
dt

(S) = P ∗.

Define P̂· : [0, S]→ Rn through

P̂t =
dQ̂t
dt

. (4.18)

For V̂· : [0, S]→ Rm, V̂· : [0, S]→ Rm is defined with

V̂t = λ(λ>λ)−1

(
∇U(Q̂t) + ∂2

t

[(
−∇U(Q0)

t2

2
+ P0t+Q0

)
ν

(
t

S

)
+

(
−∇U(Q∗)

t2

2
+ P ∗t+Q∗

)
ν

(
1− t

S

)])
+ ∂2

t

[
V0
t2

2
ν

(
t

S

)
+ V ∗

t2

2
ν

(
1− t

S

)]
(4.19)

where (λ>λ)−1 exists by λ having rank n. Note that V̂t satisfies V̂0 = V0 and V̂S = V ∗. Let the smooth function
Ũ : [0,∞)→ Rm be given by

dŨ

dt
= Σ−1

(
dV̂t
dt

+ λP̂t + TtAV̂t

)
, Ũ(0) = 0. (4.20)

For this Ũ , the solution to (4.16) with initial condition (Q0, P0, V0) is (Q̂t, P̂t, V̂t) by construction; its uniqueness
is guaranteed by considering the system satisfied by the difference between two supposedly different solutions
(Q1

t , P
1
t , V

1
t ) and (Q2

t , P
2
t , V

2
t )

d

dt

Q1
t −Q2

t

P 1
t − P 2

t

V 1
t − V 2

t

 =

 P 1
t − P 2

t

−∇U(Q1
t )−∇U(Q2

t ) + λ>(V 1
t − V 2

t )
−λ(P 1

t − P 2
t )− TtA(V 1

t − V 2
t )


and the time derivative of |Q1

t − Q2
t |2 + |P 1

t − P 2
t |2 + |V 1

t − V 2
t |2, using (2.4) and the mean value theorem on

|∇U(Q1
t )−∇U(Q2

t )|2.
With non-zero probability, the path of Brownian motion stays within an ε-neighbourhood of any continuously
differentiable path, in particular of Ũ . Positivity of mt follows by the support theorem of Stroock and Varadhan
(Theorem 5.2 in [72]). The above construction for the ε > 0 case follows with a simple modification; equation (4.16)
becomes

d

dt

QtPt
Vt

 =

 Pt − ε∇U(Qt) + εdŨ1

dt

−∇U(Qt) + λ>Vt − εPt + εdŨ2

dt

−λPt − TtAVt +Σ dŨ
dt

 , (4.21)

so setting dŨ1

dt = ∇U(Q̂t) and dŨ2

dt = P̂t together with (4.20) gives the solution (4.17), (4.18) and (4.19) to equation
(4.21) and concludes the proof.

Remark 3 For smoothness of the density, the results in [75] can also be considered, but there the assumptions are
slightly mismatched. Firstly, the statement assumes boundedness of ∂αV for any multiindex α where V would in the
case here be any of the coefficients appearing in (1.3), which fails for |α| = 0. Secondly, in case of (A.1), condition
(i) fails and in case of (A.2), condition (i) fails due to V0. Both of these pedantries seem possibly unneeded in the
proofs but we avoid this in favour of the more recent work [40].

The results below up to Proposition 10 are directed towards showing dissipation of a distorted entropy as required
in the proof of Theorem 5.
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4.3 Lyapunov function

Lemma 1 Under Assumption 1, 3 and 4, there exist constants a, b, c, d, δ > 0 independent of ε such that R :
R2n+m+1 → R defined as

R(x, y, z, Tt) := U(x) +
|y|2

2
+
|z|2

2
+ δTt

(
y>λ−1z +

1

2
x · y

)
(4.22)

satisfies
a(|x|2 + |y|2 + |z|2)− d ≤ R(x, y, z, Tt) ≤ b(|x|2 + |y|2 + |z|2) + d, (4.23)

and there exists 0 < ε′ ≤ 1 for which ε ≤ ε′ implies

LεtR ≤ −cTtR+
d

Tt
. (4.24)

Proof By the quadratic assumption (2.8) on U and boundedness Assumption 3 on Tt, it is clear that there exists

δ̂ > 0 such that the first statement (4.23) holds with d = max(|Um|, |UM |) for all δ ∈ (0, δ̂]. For the second statement
in (4.24), fix δ > 0 to be

δ ≤ min

(
δ̂, 1,

4r2
1

(r2 + 1) sups≥0 Ts
, 2
(

sup
s≥0

Ts

)−1

,
Ac
2

[(
|λ|2

2r1
+ 1 +

r2

r1

∣∣λ−1
∣∣2)( sup

s≥0
Ts

)2

+ 2(|A|2 + 1)
∣∣λ−1

∣∣2]−1)
,

(4.25)
where |·| is the operator norm here and Ac > 0 is the coercivity constant of the positive definite matrix A. Consider
each of the terms of Lεt(R) seperately.

Lεt

(
U(x) +

|y|2

2
+
|z|2

2

)
= ε

(
− 1

Tt
|∇xU |2 +∆xU −

1

Tt
|y|2 + n

)
− 1

Tt
z>Az + TrA. (4.26)

≤ ε
(
− 1

Tt
(r2

1|x|
2 − 2r1Ug) + n|D2

xU |∞ −
1

Tt
|y|2 + n

)
− 1

Tt
z>Az + TrA, (4.27)

where the last inequality follows from (2.5) and ∇xU · x ≤ 1
2r1
|∇xU |2 + r1

2 |x|
2
. Using the quadratic bound (2.6) on

∇xU , we get

Lεt(y
>λ−1z) = −εT−1

t y>λ−1z −∇xUλ−1z + |z|2 − |y|2 − T−1
t z>A(λ−1)>y (4.28)

≤ |y|
2

4
+ 2T−2

t (|A|2 + ε2)
∣∣λ−1

∣∣2|z|2 +
r1

4r2
|∇xU |2 +

r2

r1

∣∣λ−1
∣∣2|z|2 + |z|2 − |y|2

≤ r1

4
|x|2 +

r1

4r2
Ug −

3

4
|y|2 +

(
1 +

r2

r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)|z|2. (4.29)

Then using also (2.5) for ∇xU · x, we get

Lεt(x · y) = −εT−1
t y · ∇xU − εT−1

t x · y + |y|2 −∇xU · x+ z>λx (4.30)

≤ εT−1
t

((
r2

2
+

1

2

)
|x|2 + |y|2 +

Ug
2

)
+ |y|2 − r1|x|2 + Ug +

∣∣λ>∣∣2
r1
|z|2 +

r1

4
|x|2. (4.31)

Combining (4.22), (4.27), (4.29), (4.31) and taking ε ≤ 1,

Lεt(R(x, y, z, Tt)) = Lεt

(
U(x) +

|y|2

2
+
|z|2

2

)
+ δTtLt(y

>λ−1z) +
δTt
2
Lt(x · y) (4.32)

≤ −δTt
r1

8
|x|2 − δTt

1

4
|y|2 − 1

Tt
z>Az + C +

2εr1Ug
Tt

+ δTt

[ ∣∣λ>∣∣2
2r1

+

(
1 +

r2

r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)]|z|2.
+ εT−1

t

[(
δTt
4

(r2 + 1)− r2
1

)
|x|2 +

(
δTt
2
− 1

)
|y|2
]
, (4.33)
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where 0 < C = n(|D2
xU |∞ + 1) + TrA+ δ

r1Ug
4r2

sups≥0 Ts + δUg(
1
4 +

sups≥0 Ts
2 ). Therefore for δ satisfying the bound

(4.25), the first square bracket term satisfies

δTt

[ ∣∣λ>∣∣2
2r1

+

(
1 +

r2

r1

∣∣λ−1
∣∣2 + 2T−2

t (|A|2 + 1)
∣∣λ−1

∣∣2)] ≤ 1

2

(
sup
s≥0

Ts

)−1

Ac|z|2

and the second square bracket term is negative, where the assumption that Tt is bounded above for all time has
been used. Rearranging,

Lεt(R(x, y, z, Tt)) ≤ −δTt
r1

8
|x|2 − δTt

1

4
|y|2 − Ac

2 sups Ts
|z|2 + C +

2εr1Ug
Tt

≤ −cTtR+ C ′T−1
t ,

where c > 0 is small enough, C ′ > 0 is large enough and the right inequality of (4.23) has been used. The result
follows using d = max(C ′, |Um|, |UM |).

Lemma 2 Under Assumption 1, 3, 4 and for 0 ≤ ε ≤ ε′, the solution (Xε
t , Y

ε
t , Z

ε
t ) to (4.7) is such that

E[R(Xεt ,Y
ε
t ,Z

ε
t ,Tt)]

(ln(e+t))2

is bounded uniformly in time t and in ε.

Proof It is equivalent to prove the result for R + d > 0 in place of R. Let Rt := R(Xε
t , Y

ε
t , Z

ε
t , Tt). Consider the

following terms separately for t > t0,

d

dt
E[(Rt + d)] = ∂tE[(Rt + d)] + T ′t∂TtE[(Rt + d)]. (4.34)

Firstly, by (4.22), the left hand bound in (4.23) and the Assumption 3,

T ′t∂TtE[Rt + d] = T ′tE
[
δ

(
(Y εt )>λ−1Zt +

1

2
Xε
t · Y εt

)]
≤ |T ′t |E

[
δ

∣∣∣∣(Y εt )>λ−1Zεt +
1

2
Xε
t · Y εt

∣∣∣∣]
≤ B

t
E[Rt + d] (4.35)

for a constant B ≥ 0 independent of ε. The exchange in the order of differentiation and integration is justified by
the right hand bound of (4.23) together with the mean value theorem and the fact that for any T > 0 the inequality

E
[

sup
0≤t≤T

|Xε
t |

2

]
= E

[(
sup

0≤t≤T
|Xε

t |
)2 ]

= E
[(

sup
0≤t≤T

∣∣∣∣X0 +

∫ t

0

(Y εs + ε(−T−1
s ∇xU(Xε

s))) ds+ ε

∫ t

0

dW 1
s

∣∣∣∣)2 ]
≤ K1

TE
∫ T

0

(1 + |Xε
s |

2
+ |Y εs |

2
)ds <∞ (4.36)

holds for some constant K1
T > 0 depending on T but independent of ε (using ε ≤ ε′), where (2.6), (4.10),

Jensen’s inequality and Doob’s maximal inequality have been used. Similar expressions for E[sup0≤t≤T |Y εt |
2
] and

E[sup0≤t≤T |Zεt |
2
] hold.

Considering together with the other term in (4.34), by Itô’s rule and for t0 < s < t,

ERt − ERs = E
∫ t

s

(T ′u∂TtR+ LεuR)(Xε
u, Y

ε
u , Z

ε
u, Tu)du =

∫ t

s

E(T ′u∂TtR+ LεuR)(Xε
u, Y

ε
u , Z

ε
u, Tu)du,
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where the last equality follows by Fubini, (4.35) and (4.32) together with (4.26), (4.28), (4.30), (2.4), (2.6), (4.36).
Property (4.24) from Lemma 1 and (4.35) give

E[Rt + d]− E[Rs + d] ≤
∫ t

s

(
B

u
E[Ru + d] + E[−cTuRu + dT−1

u ]

)
du

≤
∫ t

s

((
B

u
− cTu

)
E[Ru + d] +B′T−1

u

)
du (4.37)

for a constant B′ ≥ 0 independent of ε. In order to obtain a differential inequality for all t as opposed to almost all
t from Lebesgue differentiation theorem, the above expression can be divided by t− s, mollified in time with (4.1)
for 0 < k < 1 and have s→ t taken as follows. For t > t0 + 1,

lim
ε̂→0

1

2ε̂

∫ t+1

t−1

ϕk(t− u)(E[Ru+ε̂ + d]− E[Ru−ε̂ + d])du

≤ lim
ε̂→0

1

2ε̂

∫ t+1

t−1

ϕk(t− u)

∫ u+ε̂

u−ε̂

((
B

u′
− cTu′

)
E[Ru′ + d] +B′T−1

u′

)
du′du

≤
∫ t+1

t−1

ϕk(t− u) lim
ε̂→0

1

2ε̂

∫ u+ε̂

u−ε̂

((
B

u′
− cTu′

)
E[Ru′ + d] +B′T−1

u′

)
du′du

=

∫ t+1

t−1

ϕk(t− u)(

((
B

u
− cTu

)
E[Ru + d] +B′T−1

u

)
du,

where the second-to-last inequality follows by Fatou’s lemma and dominated convergence; the last line follows from
the Lebesgue differentiation theorem. In other words, for ĝ : R+ → R given by ĝ(t) := Bt−1 − cTt, it holds that

d

dt
(ϕk ∗ E[R• + d])(t) ≤ (ϕk ∗ (ĝE[R• + d] +B′T−1

• ))(t)

≤
(

B

t− 1
− c inf

t−1≤s≤t+1
Ts

)
(ϕk ∗ E[R• + d])(t) +B′

(
inf

t−1≤s≤t+1
Ts

)−1

.

Using Assumption 3, we get

d

dt
(ϕk ∗ E[R• + d])(t) ≤ −cE

2
(ln(t+ 1))−1(ϕk ∗ E[R• + d])(t) +

B′

E
ln(t+ 1)

for t > t∗0, where t∗0 > t0 is such that B
t−1 ≤

cE
2 ln(t+1) for t > t∗0. Then, for t > t∗0,

d

dt

(
e
cE
2

∫ t
t∗0

(ln(s+1))−1ds
(ϕk ∗ E[R• + d])(t)

)
≤ B′

E
ln(t+ 1)e

cE
2

∫ t
t∗0

(ln(s+1))−1ds
,

(ϕk ∗ E[R• + d])(t) ≤ (ϕk ∗ E[R• + d])(t∗0)e
− cE2

∫ t
t∗0

(ln(s+1))−1ds

+

∫ t

t∗0

B′

E
ln(s+ 1)e−

cE
2

∫ t
s
(ln(u+1))−1duds

≤ (ϕk ∗ E[R• + d])(t∗0) +
B′

E

∫ t

t∗0

ln(s+ 1) e−
cE
2

∫ t
s
(ln(u+1))−1duds

≤ (ϕk ∗ E[R• + d])(t∗0) +
B′

E
ln(t+ 1)

∫ t

t∗0

e−
cE

2 ln(t+1)
(t−s)ds

≤ (ϕk ∗ E[R• + d])(t∗0) +B′
2(ln(t+ 1))2

cE2

(
1− e− cE2 (ln(t+1))−1(t−t∗0)

)
≤ (ϕk ∗ E[R• + d])(t∗0) +B′

2(ln(t+ 1))2

cE2
.
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Using (4.37),

E[Rt + d] = E[Rt + d]

∫ t

t−2k

ϕk(t− k − s)ds ≤
∫ t

t−2k

ϕk(t− k − s)E[Rs + d]ds+ ḡ(2k) (4.38)

for some ḡ : R→ R satisfying ḡ′(k′)→ 0 as k′ → 0, so that for t > t∗0 + 2,

E[Rt + d] ≤ (ϕk ∗ E[R• + d])(t∗0) +B′
2(ln(t− k + 1))2

cE2
+ ḡ(2k),

where the first term on the right can be bounded independently of k via Proposition 7 and (4.23) in a similar spirit
to (4.38). The result follows by taking k → 0.

Corollary 1 Under Assumption 1, 3, 4 and for 0 ≤ ε ≤ ε′, the solution (Xε
t , Y

ε
t , Z

ε
t ) to (4.7) is such that

E[|Xεt |
2+|Y εt |

2+|Zεt |
2]

(ln(e+t))2 is bounded uniformly in time and in ε.

Proof By the lower bound on R in (4.23),

E
[
|Xε

t |
2

+ |Y εt |
2

+ |Zεt |
2] ≤ E

[
R(Xε

t , Y
ε
t , Z

ε
t , Tt) + d

a

]
,

which concludes by Lemma 2.

4.4 Form of Distorted Entropy

For ε ≥ 0, let Hε(t) be the distorted entropy

Hε(t) =

∫ (∣∣2∇xhεt + 8S0(∇yhεt + λ−1∇zhεt)
∣∣2

hεt
+

∣∣∇yhεt + S1λ
−1∇zhεt

∣∣2
hεt

+ β(T−1
t )hεt ln(hεt)

)
dµTt , (4.39)

where S0, S1 > 0 are the constants

S0 := (1 + |D2
xU |2∞)

1
2 , (4.40)

S1 := 2 + 28S2
0 + 1024S4

0 (4.41)

and β is a second order polynomial (see (4.44) and (4.50)) to be determined by Proposition 8 and independent of
ε.

Remark 4 This particular expression for H is not necessarily the best possible choice. However the above is a
working expression and optimality is left as future work; see also [64].

We now present an auxiliary result which can be found as Lemma 12 of [55]. We state this along with its proofs
from [55].

Lemma 3 For

Φ∗(h) =
|M∇h|2

h
,

where M is matrix-valued,

ΓLε∗t ,Φ∗(h) >
(M∇h) · [Lε∗t ,M∇]h

h

holds for all h ∈ C∞+ .

Notice the Φ∗ appears in the first two terms of Hε(t).
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Proof The second term in definition (4.3) of ΓLε∗t ,Φ∗(h) can be calculated to be

−dΦ∗(h).Lε∗t h = − 2

h
(M∇h) · (M∇Lε∗t h) +

Lε∗t h

h2
|M∇h|2. (4.42)

Using (4.5) and (4.4) for Lε∗t , the first term in the definition of ΓLε∗t ,Φ in (4.3) can be calculated to be

Lε∗t (Φ∗(h)) =
1

h
Lε∗t (|M∇h|2) + |M∇h|2Lε∗t

(
1

h

)
−
∑
i

4

h2
(M∇h)i∇h · (Aε∇(M∇h)i)

=
2

h

(
(M∇h)·Lε∗t M∇h+

∑
i

∇(M∇h)i · (Aε∇(M∇h)i)

)
+ |M∇h|2Lε∗t

(
1

h

)
−
∑
i

4

h2
(M∇h)i∇h · (Aε∇(M∇h)i),

where the last summands can be bounded below because A and Aε are positive definite, that is, for v, w ∈ R2n+m

and c ∈ R, we have

(cv − c−1w)>Aε(cv − c−1w) = c2v>Aεv + c−2w>Aεw − 2v>Aεw > 0.

Therefore, for all i,

− 4

h2
(M∇h)i∇h · (Aε∇(M∇h)i) > −

2

h3
(M∇h)2

i (∇h) ·Aε∇h− 2

h
(∇(M∇h)i) ·Aε∇(M∇h)i,

which produces the bound

Lε∗t (Φ∗(h)) >
2

h
(M∇h)·Lε∗t M∇h+ |M∇h|2Lε∗t

(
1

h

)
− 2

h3
|M∇h|2∇h · (Aε∇h).

Combining this with (4.42) then using (4.4) and noting

[Lε∗t ,M∇]h = (Lε∗t (M∇h)1 − (M∇Lε∗t h)1, . . . , L
ε∗
t (M∇h)2n+m − (M∇Lε∗t h)2n+m), (4.43)

we get

ΓLε∗t ,Φ∗(h) >
1

h
(M∇h) · [Lε∗t ,M∇]h+

1

2
|M∇h|2

(
Lε∗t

(
1

h

)
+
Lε∗t h

h2

)
− 1

h3
|M∇h|2∇h · (Aε∇h)

=
1

h
(M∇h) · [Lε∗t ,M∇]h.

Using Lemma 3, the following proposition shows the distorted entropy (4.39) is a useful one.

Proposition 8 There exist β0, β1, β2 > 0 independent of ε such that for β : R→ R given by

β(x) := 1 + β0 + β1x+ β2x
2, (4.44)

the operator ΨTt ,

ΨTt(h) :=

∣∣2∇xh+ 8S0(∇yh+ λ−1∇zh)
∣∣2

h
+

∣∣∇yh+ S1λ
−1∇zh

∣∣2
h

+ β(T−1
t )h ln(h) (4.45)

for h ∈ C∞+ , satisfies

ΓLε∗t ,ΨTt (h) ≥ |∇h|
2

h
(4.46)

for all 0 ≤ ε ≤ 1.
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Remark 5 β0, β1, β2 depend on |D2
xU |∞, |A| and

λ̂2 := max
(
|λ|2,

∣∣λ>∣∣2, ∣∣λ−1
∣∣2, ∣∣λ−1

∣∣∣∣λ>∣∣). (4.47)

H satisfying property (4.46) is crucial for proving dissipation in Proposition 10.

Proof Let Φ1,Φ2,Φ3 be the terms in ΨTt ,

Φ1(h) :=

∣∣2∇xh+ 8S0(∇yh+ λ−1∇zh)
∣∣2

h
, (4.48a)

Φ2(h) :=

∣∣∇yh+ S1λ
−1∇zh

∣∣2
h

, (4.48b)

Φ2(h) := h ln(h). (4.48c)

Note that the ΓΦ operator is linear in the Φ argument by linearity of Lε∗t , so that (4.46) can be written as

ΓLε∗t ,Φ1(h) + ΓLε∗t ,Φ2(h) + β(T−1
t )ΓLε∗t ,Φ3(h) ≥ |∇h|

2

h
.

Consider ΓLε∗t ,Φ3
first. Using the definition (4.3) of ΓLε∗t ,Φ, the product and chain rule (4.5) and (4.4) for Lε∗t , and

the coercivity property of A, we get

ΓLε∗t ,Φ3
(h) =

1

2

(
(lnh+ 1)Lε∗t h+

1

h
∇h · (Aε∇h)− (1 + lnh)Lε∗t h

)
=

1

2h
∇h · (Aε∇h)

≥ 1

2h
(ε|∇xh|2 + ε|∇yh|2 +Ac|∇zh|2). (4.49)

Since the goal is to show (4.46), the availability of (4.49) counteracts any negative contributions in the z-
derivative term, and any order ε contributions in the x- and y-derivatives, from ΓLε∗t ,Φ1

and ΓLε∗t ,Φ2
; this counter-

weight materialises as β.
For ΓLε∗t ,Φ1

and ΓLε∗t ,Φ2
, S0 > 0 and S1 > 0 as in (4.40)-(4.41) are used. Lemma 3 gives

hΓL∗t ,Φ2(h) > (∇y + S1λ
−1∇z)h · [Lε∗t ,∇y + S1λ

−1∇z]h
= (∇y + S1λ

−1∇z)h · (∇x − λ>∇z + εT−1
t ∇y + S1∇y + S1T

−1
t λ−1A∇z)h

= ∇xh ·∇yh−∇yh · (λ>∇zh) + εT−1
t |∇yh|

2
+ S1|∇yh|2+ S1T

−1
t ∇yh · (λ−1A∇zh)

+ S1∇xh · (λ−1∇zh)− S1(λ−1∇zh) · (λ>∇zh) + εT−1
t S1∇yh · (λ−1∇zh)

+ S2
1∇yh · (λ−1∇zh) + S2

1T
−1
t (λ−1∇zh) · (λ−1A∇zh)

In order to get a bound in terms of (∂ih)2 terms rather than ∂ih∂jh terms, we bound the ∂ih∂jh terms in the
following ways,

∇xh ·∇yh ≥ −
1

2
|∇xh|2 −

1

2
|∇yh|2,

−∇yh · (λ>∇zh) ≥ −1

6
|∇yh|2 −

3

2

∣∣λ>∣∣2|∇zh|2,
S1T

−1
t ∇yh · (λ−1A∇zh) ≥ −1

6
|∇yh|2 −

3

2
S2

1T
−2
t

∣∣λ−1
∣∣2|A|2|∇zh|2,

S1∇xh · (λ−1∇zh) ≥ −1

2
|∇xh|2 −

1

2
S2

1

∣∣λ−1
∣∣2|∇zh|2,

εT−1
t S1∇yh · (λ−1∇zh) ≥ −εT−1

t |∇yh|
2 − ε

4
S2

1T
−1
t

∣∣λ−1
∣∣2|∇zh|2,

S2
1∇yh · (λ−1∇zh) ≥ −1

6
|∇yh|2 −

3

2
S4

1

∣∣λ−1
∣∣2|∇zh|2
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and using (4.47) gives

hΓL∗t ,Φ2(h) > −|∇xh|2 + (1 + 28S2
0 + 1024S4

0)|∇yh|2

− 1

2
λ̂2

(
3 + 2S1 + S2

1 + 3S4
1 + S2

1T
−1
t

(
|A|+ ε

2

)
+ 3S2

1T
−2
t |A|

2

)
|∇zh|2.

Lastly, ΓLε∗t ,Φ1
compensates for the negative x-derivative:

hΓLε∗t ,Φ1(h) > (2∇x + 8S0(∇y + λ−1∇z))h · [Lε∗t , 2∇x + 8S0(∇y + λ−1∇z)]h
= (2∇x + 8S0(∇y + λ−1∇z))h · (−2(D2

xU)(∇y − εT−1
t ∇x)

+ 8S0(∇x + εT−1
t ∇y − λ>∇z +∇y + T−1

t λ−1A∇z))h
= ((16S0In + 4εT−1

t D2
xU)∇xh) · ∇xh+ 2∇xh · ((−2D2

xU + 8S0(1 + εT−1
t )In)∇yh)

+ 2∇xh · (8S0(−λ> + T−1
t λ−1A)∇zh) + ((64S2

0In + 16S0εT
−1
t D2

xU)∇xh) · ∇yh
+ 8S0∇yh · ((−2D2

xU + 8S0)∇yh) + 8S0∇yh · (8S0(−λ> + T−1
t λ−1A)∇zh)

+ ((64S2
0In + 16S0εT

−1
t D2

xU)∇xh) · (λ−1∇zh)

+ ((−16S0D
2
xU + 64S2

0(1 + εT−1
t )In)∇yh) · (λ−1∇zh)

+ 64S2
0(λ−1∇zh) · ((−λ> + T−1

t λ−1A)∇zh).

Bounding the ∂ih∂jh terms as for Φ2, using (4.47) and (2.4) yields

hΓL∗t ,Φ1(h) > (16S0 − 4εT−1
t |D2

xU |∞)|∇xh|2

−
(

2|∇xh|2 + 2|D2
xU |2∞|∇yh|

2
+ 8(1 + εT−1

t )|∇xh|2 + 8S2
0(1 + εT−1

t )|∇yh|2
)

−
(

2|∇xh|2 + 32S2
0 λ̂

2
(

1 + T−2
t |A|

2
)
|∇zh|2

)
−
(

(1 + 8S0εT
−1
t |D2

xU |2∞)|∇xh|2 + (1024S4
0 + 8S0εT

−1
t )|∇yh|2

)
−
(

16S0|D2
xU |∞|∇yh|

2−64S2
0 |∇yh|

2
)
−
(

32S2
0 |∇yh|

2
+ 32S2

0 λ̂
2
(
1 + T−2

t |A|
2
)
|∇zh|2

)
−
(

(1 + 8S0εT
−1
t |D2

xU |2∞)|∇xh|2 + (1024S4
0 + 8S0εT

−1
t )λ̂2|∇zh|2

)
−
((

2|D2
xU |2∞ + 32S2

0(1 + εT−1
t )

)
|∇yh|2 + (32S2

0 + 32εT−1
t S2

0)λ̂2|∇zh|2
)

− 64S2
0 λ̂

2
(

1 + T−2
t |A|

2
)
|∇zh|2

≥
(

2− 4(2 + (1 + 4S2
0)S0)εT−1

t

)
|∇xh|2 +

(
S2

0(−28− 1024S2
0)− 8S0(1 + 5S0)εT−1

t

)
|∇yh|2

−
(
S2

0 λ̂
2(160 + 128T−2

t |A|
2

+ 1024S2
0) + 8S0λ̂

2(1 + 4S0)εT−1
t

)
|∇zh|2.

Matching powers in T−1
t to take

β0 =
1

Ac
(S2

0 λ̂
2(160 + 1024S2

0) +
1

2
λ̂2(3 + 2S1 + S2

1 + 3S4
1)) (4.50a)

β1 =
1

Ac

(
4(2 + (1 + 4S2

0)S0) + 8S0(1 + 5S0) + 8S0λ̂
2(1 + 4S0) +

1

2
λ̂2

(
S2

1

(
|A|+ 1

2

)))
(4.50b)

β2 =
1

Ac

(
128S2

0 λ̂
2|A|2 +

3

2
λ̂2S2

1 |A|
2

)
, (4.50c)

using ε ≤ 1 and putting together the bounds for ΓLε∗t ,Φ3 , ΓLε∗t ,Φ2 , ΓLε∗t ,Φ1 gives (4.46).
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4.5 Log-Sobolev Inequality

Proof of Proposition 1 Firstly, the case that U satisfies (2.7) is dealt with. The standard log-Sobolev inequality
for a Gaussian measure [35] alongside the properties that log-Sobolev inequalities tensorises and are stable under
perturbations, which can be found as Theorem 4.4 and Property 4.6 in [37] respectively, yields the result. In
particular, ∫

h lnhdµTt =

∫
(h lnh− h+ 1)dµTt

≤
∫

(h lnh− h+ 1)Z−1
Tt
e−

Um
Tt e−

1
Tt

(
|ā◦x|2+

|y|2
2 +

|z|2
2

)
dxdydz

= e−
Um
Tt Z−1

Tt

∫
h lnhe−

1
Tt

(
|ā◦x|2+

|y|2
2 +

|z|2
2

)
dxdydz

≤ e−
Um
Tt max

(
Tt
2
,max

i

Tt
4ā2
i

)
Z−1
Tt

∫
|∇h|2

ht
e−

1
Tt

(
|ā◦x|2+

|y|2
2 +

|z|2
2

)
dxdydz

≤ e
UM−Um

Tt max

(
Tt
2
,
Tt

4a2
m

)∫
|∇h|2

h
dµTt ,

where the first inequality follows by (2.7) since x lnx− x+ 1 ≥ 0 for all x ≥ 0, so that

C
(0)
t = max

(
2, a−2

m

)Tt
4
e(UM−Um)T−1

t

For the case where U is a nonnegative nondegenerate Morse function satisfying (2.8), the inequality in the x-

marginals is taken as a consequence of Corollary 2.17 in [52]; for the announced form (2.10) of C
(0)
t , equation (2.18)

in [52] can be used by taking t
(0)
ls large enough such that for t > t

(0)
ls , Tt is small enough. As before, tensorisation

with the inequality for Gaussian measures concludes.

Proposition 9 Under Assumption 1, 2 and for ε ≥ 0, there exists constants tls, A∗ > 0 and a finite order polynomial
r : R+ → R+ with coefficients depending on U and λ but independent of ε such that the distorted entropy (4.39)
satisfies

Hε(t) ≤ Ct
∫
|∇hεt|

2

hεt
dµTt , (4.51)

where for t > tls,

Ct = A∗ + r
(
T
− 1

2
t

)
eÊT

−1
t . (4.52)

Proof Given Proposition 1, only the first two terms in the integrand of Hε(t) are left, which lead directly to the
inequality corresponding to A∗.

4.6 Proof of Dissipation

Lemma 4 below constructs a sequence of compactly supported functions that are multiplied with the integrand in
H(t). It gives sufficient properties for retrieving a bound on ∂tH(t) after passing the derviative under the integral
sign and passing the limit in the sequence of approximating initial densities. The key sufficient property turns out
to be (4.53) below.
Let ϕk be given as in (4.1),

νk := ϕk ∗ 1(−∞,k2] ≤ 1

for k > 0.

Lemma 4 For k > 0, define the smooth functions ηk : R2n+m+1 → R

ηk = νk(− ln(R+ 2d)),

where d > 0 is the same as in (4.23). The following properties hold:
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1. ηk is compactly supported;
2. ηk converges to 1 pointwise as k →∞;
3. for some constant C > 0 independent of k, t and 0 ≤ ε ≤ min(1, ε′)

Lεtηk ≤
CT−1

t

k
. (4.53)

Proof By the quadratic assumption (2.8) on U and the bound (4.23) on R, R grows quadratically and in particular
for an arbitrarily large constant R(0) > 0, a compact set K can be chosen such that R > R(0) in R2n+m \K; along
with the support of νm being bounded below, the first statement is clear. The second statement is also trivial to
check.
For the third statement, using the chain rule (4.8) and (4.9) for Lt,

Lεtηm = −ν′m(− ln(R+ 2d))Lεt ln(R+ 2d) + ν′′m(− ln(R+ 2d))(∇ ln(R+ 2d))>Aε∇ ln(R+ 2d).

It can be seen that ν′m and ν′′m are estimated by terms at most of order m−1; to see this, for all x ∈ R,

νm(x) =

∫ m2

−∞
ϕm(x− y)dy =

∫ ∞
x−m2

ϕm(z)dz,

so that

0 ≥ ν′m(x) = −ϕm(x−m2) ≥ −m−1 maxϕ

and

|ν′′m(x)| =
∣∣ϕ′m(x−m2)

∣∣ ≤ m−2 maxϕ′.

Therefore there exists a constant C̄ > 0 such that

Lεtηm ≤ −ν′m(− ln(R+ 2d)) max(0, Lεt ln(R+ 2d)) +m−2 maxϕ′
∣∣(∇ ln(R+ 2d))>Aε∇ ln(R+ 2d)

∣∣.
≤ C̄

(
m−1 max(0, Lεt ln(R+ 2d)) +m−2

∣∣(∇ ln(R+ 2d))>Aε∇ ln(R+ 2d)
∣∣).

A calculation using property (4.24) with (4.8) and (4.9) for Lεt reveals

Lεt ln(R+ 2d) =
LεtR

R+ 2d
− (∇R)>Aε∇R

(R+ 2d)2

≤ −cTtR+ dT−1
t

R+ 2d
− ε(|∇xR|2 + |∇yR|2) +Ac|∇zR|2

(R+ 2d)2

≤ −cTt(R+ d) + cTtd+ dT−1
t

R+ 2d
− ε(|∇xR|2 + |∇yR|2) +Ac|∇zR|2

(R+ 2d)2

(∇ ln(R+ 2d))>Aε∇ ln(R+ 2d) ≤ (|A|+ 2)|∇ ln(R+ 2d)|2

= (|A|+ 2)

∣∣∣∣ ∇RR+ 2d

∣∣∣∣2,
which are bounded above as claimed considering (4.23) and that ∇R grows linearly in space and is uniformly
bounded in time.

Remark 6 Lemma 4 is different to Lemma 16 in [55]. We believe the first few equations in the proof of Lemma 16
in [55] contain a sign error; as a consequence the proofs in [55] beyond that point require significant modifications.
Here we address this by modifying the truncation arguments we require proving (4.53) instead of Lemma 17 of [55].
In addition, the finiteness of the distorted entropy is required, which is the reason for using the perturbed dynamics
in (4.7) and then later taking ε→ 0.

The proof of Proposition 10 follows in the direction of Lemma 19 of [55].

24



Proposition 10 Under Assumption 1, 2, 3 and 4 and for 0 < ε ≤ min(1, ε′), it holds that for any 0 < α ≤ 1
2 (1− Ê

E ),
there exists some constant B > 0 and some tH > 0 both independent of ε, such that for all t > tH ,

Hε(t) ≤ B
(

1

t

)1− ÊE−2α

. (4.54)

Proof Consider for t ≥ 0 the auxiliary distorted entropies

Hε
k(t) =

∫
ηk

(∣∣2∇xhεt + 8S0(∇yhεt + λ−1∇zhεt)
∣∣2

hεt
+

∣∣∇yhεt + S1λ
−1∇zhεt

∣∣2
hεt

+ β(T−1
t )hεt ln(hεt)

)
dµTt

=

∫
ηk(Φ1(hεt) + Φ2(hεt) + β(T−1

t )Φ3(hεt))dµTt

=

∫
ηkΨTt(h

ε
t)dµTt , (4.55)

where hεt = mε
tµ
−1
Tt

is as defined (2.3), Φ1, Φ2, Φ3 is as in (4.48) and ηk are as in Lemma 4. Due to ηk, the order
between the time derivative and the integral can be exchanged:

d

dt
Hε
k(t) =

∫
ηk∂t(ΨTt(h

ε
t))dµTt + T ′t

∫
ηk∂Tt(ΨTt(h

ε
t)µTt)dxdydz. (4.56)

The terms will be considered separately. Since mε
t is the density of the law of (4.7) and Lε∗t is the L2(µTt) adjoint

of Lεt, by Itô’s rule for smooth compactly supported f on R2n+m,∫
f∂tm

ε
t = ∂t

∫
fmε

t =

∫
Lεtfm

ε
t =

∫
Lεtf

mε
t

µTt
µTt =

∫
fLε∗t

(
mε
t

µTt

)
µTt . (4.57)

The first term in (4.56) is then bounded as follows.∫
ηk∂t(ΨTt(h

ε
t))dµTt =

∫
ηkdΨTt(h

ε
t).∂th

ε
tdµTt

=

∫
ηkdΨTt(h

ε
t).
∂tm

ε
t

µTt
dµTt

=

∫
ηkdΨTt(h

ε
t).L

ε∗
t h

ε
tdµTt

= −
∫

2ηkΓLε∗t ,ΨTt (h
ε
t)dµTt +

∫
ηkL

ε∗
t (ΨTt(h

ε
t))dµTt

= −
∫

2ηkΓLε∗t ,ΨTt (h
ε
t)dµTt +

∫
Lεtηk

(
ΨTt(h

ε
t) + β(T−1

t )e−1
)
dµTt

≤ −2

∫
ηk
|∇hεt|2

hεt
dµTt +

CT−1
t

k

∫ (
ΨTt(h

ε
t) + β(T−1

t )e−1
)
dµTt , (4.58)

using Proposition 8 and Lemma 4, where β(T−1
t )e−1

∫
Lε∗t ηkdµTt = 0 is added to force

β(T−1
t )(hεt lnhεt + e−1) ≥ 0, so that ΨTt(h

ε
t) + β(T−1

t )e−1 ≥ 0.

For the second term in (4.56), consider the Φ1 and Φ2 terms in the integrand ηk∂Tt(ΨTtµTt) = ηk∂Tt((Φ1 + Φ2 +
β(T−1

t )Φ3)µTt) of Hk(t) with the forms

∂Tt(Φi(h
ε
t)µTt) = ∂Tt

∣∣∣∣Mi∇ ln

(
mε
t

µTt

)∣∣∣∣2mε
t, i = 1, 2

for the corresponding matrices M1 and M2 depending on S0, S1 and λ. Applying the partial derivative in Tt,

∂Tt(Φi(h
ε
t)µTt) = −2(Mi∇ lnhεt ·Mi∇∂Tt lnµTt)m

ε
t, (4.59)
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and using definition (2.2) for µTt and ZTt =
∫
R2n+m e

− 1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

)
dxdydz, gives

∂Tt lnµTt = µ−1
Tt
∂Tt

(
Z−1
Tt
e−

1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

))
= µ−1

Tt

(
− Z−2

Tt
∂TtZTt +

Z−1
Tt

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

))
e−

1
Tt

(
U(x)+

|y|2
2 +

|z|2
2

)

= µ−1
Tt

(
− µTtZ−1

Tt
∂TtZTt +

µTt
T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

))

= −
∫

1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

)
dµTt +

1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2

)
. (4.60)

Note the exchange in differentiation and integration is justified by the quadratic bounds (2.8) on U . Integrating by
parts in y and z (or simply using formulae for second moments) gives n+m

2Tt
for the |y|2 and |z|2 terms in the first

integral. The integral over U can be dealt with using assumptions (2.5) and (2.6), to be specific:∫
UdµTt ≤

∫
(a2
M |x|2 + UM )dµTt ≤

∫ (
a2
M

r1
(∇U · x+ Ug) + UM

)
dµTt =

a2
M

r1
(nTt + Ug) + UM∫

UdµTt ≥
∫

(a2
m|x|2 + Um)dµTt

≥
∫ (

a2
m

r2 + 1
(|∇U |2 − Ug + |x|2) + Um

)
dµTt

≥
∫ (

a2
m

r2 + 1
(2∇U · x− Ug) + Um

)
dµTt =

a2
m

r2 + 1
(2nTt − Ug) + Um.

Plugging into (4.60) gives

p1

(
T−1
t

)
≤ ∂Tt lnµTt −

1

T 2
t

(
U(x) +

|y|2

2
+
|z|2

2
− n+m

2
Tt

)
≤ p2

(
T−1
t

)
. (4.61)

where p1(x) = −a
2
Mn
r1
x−

(
a2MUg
r1

+ UM

)
x2 and p2(x) = − 2a2mn

r2+1 x+
(
a2mUg
r2+1 − Um

)
x2.

Substituting (4.60) back into (4.59),

∂Tt(Φi(h
ε
t)µTt) ≤

(
|Mi∇ lnhεt|

2
+ T−4

t

∣∣∣∣Mi∇
(
U(x) +

|y|2

2
+
|z|2

2

)∣∣∣∣2
)
mε
t

≤ Φi(hεt)µTt + C̃T−4
t

(
1 + |x|2 + |y|2 + |z|2

)
mε
t (4.62)

for a constant C̃ ≥ 0 independent of k and ε by the quadratic assumption (2.6) on |∇xU |2 and ηm ≤ 1.

For the last integrand in the last term of the right hand side of (4.56), namely the derivative over Φ3(hεt)µTt =
mεt
µTt

ln
mεt
µTt

µTt , the left inequality of (4.61) gives

∂Tt(β(T−1
t )Φ3(hεt)µTt)

= −T−2
t β′(T−1

t )Φ3(hεt)µTt + β(T−1
t )∂Tt ln

mε
t

µTt
mε
t

= −T−2
t β′(T−1

t )(Φ3(hεt) + e−1)µTt + T−2
t β′(T−1

t )e−1µTt − β(T−1
t )∂Tt lnµTtm

ε
t

≤ T−2
t β′(T−1

t )e−1µTt + β(T−1
t )

∣∣∣∣p1

(
T−1
t

)
+

1

T 2
t

(
− n+m

2
Tt+ UM+ aM |x|2+

|y|2

2
+
|z|2

2

)∣∣∣∣mε
t, (4.63)
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where in the last step Φ3 + e−1 ≥ 0, β1, β2 > 0 and (2.8) have been used. Putting together the bounds (4.62) and
(4.63) and applying Corollary 1 yields∫

ηk∂Tt(ΨTt(h
ε
t)µTt)dζ ≤ q

(
T−1
t

)(
Hε
k(t) + E

[
1 + |Xε

t |
2

+ |Y εt |
2

+ |Zεt |
2
])

≤ p
(
T−1
t

)(
Hε
k(t) + Ĉ

)
, (4.64)

where p and q are some finite order polynomials with nonnegative coefficients, Ĉ > 0, both independent of k and ε.

Returning to (4.56), collecting (4.58) and (4.64) then integrating from any s ≥ 0 to t > s gives

Hε
k(t)−Hε

k(s) ≤ 2

∫ t

s

(
−
∫
ηk
|∇hεu|2

hu
dµTu +

CT−1
u

k
(Hε(u) + β(T−1

u )e−1) + |T ′u|p
(
T−1
u

)(
Hε
k(u) + Ĉ

))
du.

(4.65)

Fix an arbitrary S > 0. By the square integrability Theorem 7.4.1 in [7], the log-Sobolev inequality (4.51), (2.6)
and the finiteness of second moments (4.10), it holds that∫ S

0

Hε(u)du ≤
∫ S

0

Cu

∫
|∇hεu|

2

hεu
dµTudu

=

∫ S

0

Cu

∫ ∣∣∇mε
u + T−1

u mε
u(∇xU + y + z)

∣∣2
mε
u

dxdydzdu <∞. (4.66)

Then in (4.65) the k → ∞ limit can be taken. Due to (4.66), the term denominated by k goes to zero. Applying
Fatou’s lemma (adding and subtracting β(T−1

t )e−1
∫
ηmdµTt wherever necessary for positivity) and using ηm ≤ 1,

it holds that for s < t,

Hε(t)−Hε(s) ≤ −2

∫ t

s

∫
|∇hεu|2

hεu
dµTudu+

∫ t

s

|T ′u|p
(
T−1
u

)(
Hε(u) + Ĉ

)
du (4.67)

and for5 tls < s < t,

Hε(t)−Hε(s) ≤
∫ t

s

((
|T ′u|p

(
T−1
u

)
− 2C−1

u

)
Hε(u) + Ĉ|T ′u|p

(
T−1
u

))
du. (4.68)

Since tα � (ln t)
ρ
2 for any ρ, α > 0 and large enough t > 0, for any α > 0, there exists t1 > max(tls, t0), where t0 is

as in Assumption 3, and c1, c2 > 0 independent of k, ε such that for all t ≥ t1,

|T ′t |p
(
T−1
t

)
≤ c1

(
1

t

)1−α

, (4.69)

−2C−1
t ≤ −c2

(
1

t

) Ê
E+α

, (4.70)

where the assumption Tt ≥ E
ln t and (4.52) have been used. Using further that E > Ê by Assumption 3, then taking

α < 1
2 (1− Ê

E ), there exists t2 ≥ t1 independent of ε such that for t ≥ t2,

|T ′t |p
(
T−1
t

)
− 2C−1

t ≤ −c3
(

1

t

) Ê
E+α

(4.71)

and from (4.68), for t2 < s < t,

Hε(t)−Hε(s) ≤
∫ t

s

(
− c3

(
1

u

) Ê
E+α

Hε(u) + Ĉc1

(
1

u

)1−α)
du. (4.72)

5 tls from Proposition 9
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To obtain the corresponding differential inequality for all time, (4.72) can be divided by t− s, mollified with (4.1)
for 0 < k < 1 and the limit s→ t can be taken:

lim
ε̂→0

1

2ε̂

∫ t+1

t−1

ϕk(t− u)(Hε(u+ ε̂)−Hε(u− ε̂))du

≤ lim
ε̂→0

1

2ε̂

∫ t+1

t−1

ϕk(t− u)

∫ u+ε̂

u−ε̂

(
− c3

(
1

u′

) Ê
E+α

Hε(u′) + Ĉc1

(
1

u′

)1−α)
du′du

≤
∫ t+1

t−1

ϕk(t− u) lim
ε̂→0

1

2ε̂

∫ u+ε̂

u−ε̂

(
− c3

(
1

u′

) Ê
E+α

Hε(u′) + Ĉc1

(
1

u′

)1−α)
du′du

=

∫ t+1

t−1

ϕk(t− u)

(
− c3

(
1

u

) Ê
E+α

Hε(u) + Ĉc1

(
1

u

)1−α)
du

for t ≥ t2 + 2, where the second-to-last line follows from Fatou’s lemma and dominated convergence (adding and
subtracting β(T−1

u′ )e−1 to Hε for Fatou); the last equality follows by the Lebesgue differentiation theorem. Therefore

d

dt
(ϕk ∗Hε)(t) ≤ −c3

(
1

t+ 1

) Ê
E+α

(ϕk ∗Hε)(t) + Ĉ ′
(

1

t− 1

)1−α

for some constant Ĉ ′ > 0 independent of k, ε. Setting

γ1(t) := c3

(
1

t+ 1

) Ê
E+α

, γ2(t) := Ĉ ′
(

1

t− 1

)1−α

and following the argument as per [55] from Lemma 6 in [54], there exists t3 ≥ t2 + 2, c4, c5, c6 > 0 independent of
k and ε such that for t ≥ t3,

d

dt

(
γ2

γ1

)
(t) =

(t+ 1)
Ê
E+α

(t− 1)1−α

(
c4
t+ 1

− c5
t− 1

)
≥ −c6t−1,

so that there exists t4 ≥ t3 independent of k and ε such that for t ≥ t4,

d

dt

(
ϕk ∗Hε − 2γ2

γ1

)
(t) ≤ −γ1(t)

(
ϕk ∗Hε(t)− 2γ2(t)

γ1(t)

)
and consequently

ϕk ∗Hε(t) ≤ 2γ2(t)

γ1(t)
+ ϕk ∗Hε(t4)e

−
∫ t
t4
γ1(u)du

. (4.73)

Finally, from (4.72) (adding and subtracting β(T−1
u′ )e−1 to Hε), it holds that for t ≥ t4 + 2,

Hε(t) =

∫ t

t−2k

ϕk(t− k − s)dsHε(t) ≤
∫ t

t−2k

ϕk(t− k − s)Hε(s)ds+ g̃(2k) (4.74)

for some g̃ : R→ R satisfying g̃(k′)→ 0 as k′ → 0, so that (4.73) yields

Hε(t) ≤ 2γ2(t− k)

γ1(t− k)
+ ϕk ∗Hε(t4)e

−
∫ t−k
t4

γ1(u)du
+ g̃(2k),

where ϕk ∗Hε(t4) can be bounded independently of k in a similar spirit to (4.74), and taking k → 0 concludes the
proof.

Remark 7 The annealing schedule Tt is chosen to satisfy the relationship (4.71) between C−1
t and |T ′t |p

(
T−1
t

)
.
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4.7 Degenerate noise limit

After taking advantage of the square integrability Theorem 7.4.1 in [7] for the case with a nondegenerate diffusion
term in the proof of Proposition 10, the ε→ 0 limit is taken to obtain the same dissipation inequality in this section.

Proof (of Proposition 4) From (4.67), for any 0 ≤ s < t and 0 < ε ≤ min(1, ε′), it holds that

Hε(t)−Hε(s) ≤
∫ t

s

|T ′u|p
(
T−1
u

)(
Hε(u) + Ĉ

)
du,

where p is a finite order polynomial with nonnegative coefficients and Ĉ > 0 is a constant both independent of ε.
Therefore, mollifying in time and taking s → t as in the end of the proof by Proposition 10, it is straightforward
that Hε is uniformly bounded in6 0 ≤ t ≤ tH and 0 < ε ≤ min(1, ε′). Moreover by Proposition 10, the entropy∫
hεt lnhεtdµTt is bounded uniformly in t > tH and 0 < ε ≤ min(1, ε′). Therefore for any t ≥ 0 by the de la Vallée-

Poussin criterion (see for example [18]), the subset {hεt : 0 < ε ≤ min(1, ε′)} ⊂ L1(µTt) is uniformly integrable and
consequently the Dunford-Pettis theorem imposes the existence of a weak limit gt ∈ L1(µTt) for a (sub)sequence
(εi)i∈N such that εi → 0,

hεit ⇀ gt, in L1(µTt) as i→∞.

For any S > 0, any compactly supported smooth test function φ : [0, S) × R2n+m → R, omitting the dependence
on the space variable ζ = (x, y, z) wherever convenient and using Itô’s rule,

0 = lim
i→∞

∫
(0,S)×R2n+m

(mεi
t − gtµTt)(−∂t − Lt)φdtdζ

= lim
i→∞

∫
(0,S)×R2n+m

εim
εi
t (Sxt + Syt )φdtdζ +

∫
(0,T )×R2n+m

gtµTt(∂t + Lt)φdtdζ +

∫
R2n+m

m0φ(0, ζ)dtdζ,

=

∫
(0,S)×R2n+m

gtµTt(∂t + Lt)φdtdζ +

∫
R2n+m

m0φ(0, ζ)dtdζ, (4.75)

so that in the distributional sense of [7],{
∂t(gtµTt) = L>t (gtµTt) on R2n+m ∀t > 0,

(g0µT0
) = m0.

(4.76)

By Proposition 7, the solution to (4.76) is unique in the class of integrable solutions and since mt belongs in this
same class, it holds that

gtµTt = mt

for all t ∈ [0, S], which is that

mεi
t ⇀mt, in L1(µTt) as i→∞.

for all 0 ≤ t < S. By Corollary 3.8 in [9], there exists a sequence (m̂i
t)i∈N made up of convex combinations of mεi

t

that converge strongly to mt in L1, hence a subsequence (m̂
ij
t )j∈N that convergences pointwise almost everywhere.

By Fatou’s lemma, convexity of f(x) = x lnx ≥ e−1 for x > 0 and Proposition 10, for t > tH , we get∫
ht lnhtdµTt =

∫
mt ln

(
mt

µTt

)
≤ lim inf

j→∞

∫
m̂
ij
t ln

(
m̂
ij
t

µTt

)

≤ B
(

1

t

)1− ÊE−2α

.

6 tH from Proposition 10
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5 Conclusions

We explored the possibility of using the generalised Langevin equations in the context of simulated annealing.
Our main purpose was to establish convergence as for the underdamped Langevin equation and provide a proof of
concept in terms of performance improvement. Although the theoretical results hold for any scaling matrix A given
the stated restrictions, we saw in our numerical results that its choice has great impact on the performance. In
Section 3, A2, A3 or A4 seemed to improve the exploration on the state space and/or the success proportion of the
algorithm. There is plenty of work still required in terms of providing a more complete methodology for choosing
A. This is left as future work and is also closely linked with time discretisation issues as a poor choice for A could
lead to numerical integration stiffness. This motivates the development and study of improved numerical integration
schemes, in particular, the extension of the conception and analysis on numerical schemes such as BAOAB [45] for
the Langevin equation for (1.3) and the extension of the work in [57] for non-identity matrices λ and A. See [46]
for work in this direction.

In addition, the system in (1.3) is not the only way to add an auxiliary variable to the underdamped Langevin
equations in (1.2) whilst retaining the appropriate equilibrium distribution. Our choice was motivated by a clear
connection to the generalised Langevin equation (1.4) and link with accelerated gradient descent, but it could
be the case that a different third or higher order equations could be used with possibly improved performance.
Along these lines, one could consider adding skew-symmetric terms as in [20]. As regards to theory, an interesting
extension could involve establishing how the results here can be extended to establish a comparison of optimisation
and sampling in a nonconvex setting for an arbitrary number of dimensions similar to [49]. We leave for future work
finding optimal constants in the convergence results, investigating dependence on parameters and how the limits
of these parameters and constants relate to existing results for the Langevin equation in (1.2) in [55,64]. Finally,
one could also aim to extend large deviation results in [42,50,68] for the overdamped Langevin dynamics to the
underdamped and generalised case.
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Appendices
Appendix A Additional Results

We present the analog of Proposition 10 for the Tt = T > 0 sampling case and a result about the choice of the
annealing schedule.
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Proof (of Propostion 6) After Pinsker’s inequality (2.12) and consideration of the definition (4.39) of H, what re-
mains is the partial time derivative part of the proof of Proposition 10. The proof concludes by the same calculations
as in Proposition 10, keeping in mind T ′t = 0, until (4.68) followed by the Grönwall argument. Note that (4.52) and
(4.70) are not required and a log-Sobolev constant (in t also) works, in which case (4.51) and hence the current
argument follow without requiring Assumption 2. The limiting ε argument as in Proposition 4 is the same.

Proposition 11 Under Assumption 1, 3 and 4, the schedule Tt = E
ln(e+t) , E > Ê is optimal in the sense that for

any differentiable f : R+ → R+, if

Tt =
1

f(t)

(
Ê

ln(e+ t)

)
, (A.1)

Ct is the log-Sobolev factor (4.52) and p is the finite order polynomial with nonnegative coefficients from the proof
of Proposition 10, then the relation

2C−1
t � |T ′t |p

(
T−1
t

)
(A.2)

holds for large times only if lim supt→∞ f(t) ≤ 1.

Proof Suppose there exists a constant δ > 0 and times (ti)i∈N such that 0 < ti →∞ and

f(ti) ≥ 1 + δ ∀i.

From (4.52),

C−1
t ∼ O(e−ÊT

−1
t T−1

t ),

which after substituting in (A.1) gives

e−ÊT
−1
t T−1

t = (e+ t)−f(t) f(t) ln(e+ t)

Ê
∼ O(t−f(t)f(t) ln t). (A.3)

Compare this to

|T ′t |p
(
T−1
t

)
∝ p(f(t) ln(e+ t))

(f(t) ln(e+ t))2

(
f(t)

e+ t
+ |f ′(t)| ln(e+ t)

)
, (A.4)

which has order at least (tf(t))−1(ln t)−2. For t = ti, i large enough, f(t) ≥ 1 + δ and so

t−f(t)f(t) ln t� (tf(t))−1(ln t)−2, (A.5)

which violates (A.2).

Remark 8 One can strengthen the proposition by making precise the form of p from Proposition 10, which will deter-
mine how slowly f(t) is allowed to converge to 1; in fact p should be at least sixth order. This seems inconsequential
with respect to optimality and so is omitted.
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Fig. 3.1: Dynamics in order from top: (3.2), (3.1) with A = A1, . . . , A4. Left: One instance of noise realisation.
Right: Log histogram of 20 independent runs.
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Fig. 3.2: Proportion of simulations satisfying optimality tolerance for U = U1. Panels from top to bottom: (3.2),
(3.1) with A = A1, A2, A3. Left: Final position. Right: time-average of last 5000 iterations. We use γ = 3 for
improving visualisation, the results and improvement in using (3.1) are similar for the case of γ = 1. Results here
are for 20 independent runs and k ≤ 5 · 104 -iterations.
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Fig. 3.3: Both proportion of success and numerical transition rates for U = U2. Panels from top to bottom: (3.2),
(3.1) with A = A1, A2, A3, A4. Left: Proportion satisfying the optimality tolerance for time-average of last 5000
iterations. Right: Average number of crossings of position averages over 5000 iterations across {x1 = 0} for each
independent run. The remaining details are as in caption of Figure 3.2.
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Fig. 3.4: Results for U = U3. Details are as in caption of Figure 3.3.
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