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On the Deep Active-Subspace Method*

Wouter Edeling\dagger 

Abstract. The deep active-subspace method is a neural-network based tool for the propagation of uncer-
tainty through computational models with high-dimensional input spaces. Unlike the original active-
subspace method, it does not require access to the gradient of the model. It relies on an orthogonal
projection matrix constructed with Gram--Schmidt orthogonalization to reduce the input dimension-
ality. This matrix is incorporated into a neural network as the weight matrix of the first hidden
layer (acting as an orthogonal encoder), and optimized using back propagation to identify the ac-
tive subspace of the input. We propose several theoretical extensions, starting with a new analytic
relation for the derivatives of Gram--Schmidt vectors, which are required for back propagation. We
also study the use of vector-valued model outputs, which is difficult in the case of the original
active-subspace method. Additionally, we investigate an alternative neural network with an encoder
without embedded orthonormality, which shows equally good performance compared to the deep
active-subspace method. Two epidemiological models are considered as applications, where one
requires supercomputer access to generate the training data.

Key words. deep active subspaces, high-dimensional uncertainty quantification, Gram--Schmidt derivative, sen-
sitivity analysis, epidemiology, neural networks
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1. Introduction. Since computational models play an increasingly important role in so-
ciety, it is important to realize that these models are subject to (substantial) uncertainty.
One form of uncertainty is parametric in nature, as models contain input parameters which
are usually only known to an approximate degree. The uncertainty in the input values will
propagate to the predictions of the model, rendering them uncertain as well.

Before the outcome of the model is acted upon, the (parametric) uncertainty should there-
fore first be assessed. Hence, we will focus on so-called forward uncertainty-quantification
problems, where a probability distribution on the input is assumed, and the goal is to as-
sess the corresponding distribution of the model outputs. A well-known technique, which
scales well to high-dimensional input spaces, is Monte Carlo (MC) sampling. However, as MC
sampling suffers from a slow convergence rate, other techniques have been developed. Ex-
amples include stochastic collocation (SC) and polynomial chaos (PC) expansions [17], which
can show exponential convergence, therefore requiring many fewer samples from (expensive)
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ON THE DEEP ACTIVE-SUBSPACE METHOD 63

computational models compared to MC sampling. However, this potential convergence rate is
conditional on the regularity of the model outcome, and the number of considered input pa-
rameters. The curse of dimensionality is inherent in the tensor-product based construction of
the SC and PC methods, limiting their application to (typically) no more than 5 parameters.

However, even when a model contains a large parameter set, it is likely that in practice not
all parameters will be of equal importance. Often, a relatively low-dimensional effective input
dimension exists, in which most of the output variation takes place. If one is able to identify
this dimension, the cost of sampling can be brought down substantially. The aforementioned
SC and PC type methods have their adaptive counterparts, which concentrate on more impor-
tant input variables in an iterative manner, thereby creating an anisotropic sampling plan; see,
e.g., [19 26 2]. These have been applied to computational models with \scrO (10) parameters [16]
or sometimes (simple) problems with \scrO (100) inputs; see, e.g., [24]. Another class of methods
are those based on the high-dimensional model representation framework [32]. Rather than
trying to efficiently sample a high-dimensional input space, these methods break the problem
up into a series of low-dimensional forward uncertainty-propagation problems. Adaptivity can
be incorporated here as well [30].

All aforementioned adaptive methods are iterative in nature, and build the final sampling
using several smaller (sequential) ensembles. Active-subspace methods [9] are different, and
perform dimension reduction in the stochastic input space in a postprocessing step, using a
single (MC) ensemble. The goal is to discover an important, linear, low-dimensional manifold
embedded in the high-dimensional input space. Once the active subspace is identified, one
can exploit it by creating surrogate models (cheap approximations of the original code), in the
active (reduced) input dimension. Active subspaces have been found in a wide range of prob-
lems, for instance in hydrology [27], hypersonic aerodynamics [8], airfoil shape optimization
[20], and epidemiology [29]. Interesting connections between active subspaces and dimensional
analysis have been made [11], and they have also been used to compress the size of neural
networks [10].

To find the active subspace, the gradient of the model output with respect to the input
parameters is required. In some simple cases this can be done analytically. Other options
include finite differences or adjoint solvers. However, an adjoint solver might not be avail-
able and sampling enough code evaluations to compute the finite-difference derivatives might
become prohibitively expensive in high dimensions. Other options include gradient sketching
[7], or the use of an active-subspace approach that does not require direct access to gradi-
ent data to begin with. The focus of our investigation falls in the latter category. So-called
deep active subspaces are introduced in [37], which combine active-subspace ideas with neural
networks. The high-dimensional input vector, which forms the input layer of the neural net-
work, is projected to a low-dimensional subspace via an orthogonal projection matrix based on
Gram--Schmidt orthogonalization of an unconstrained matrix. This projection matrix forms
the weight matrix of the first hidden layer, which acts as an orthonormal encoder. Since
Gram--Schmidt is fully differentiable, back propagation can still be applied to minimize the
(squared) loss function of the neural network.

To our knowledge, the deep active-subspace method has to date only been applied to
relatively simple uncertainty-quantification problems in [37]. Our main goal with this pa-
per is twofold. First, we apply the method to more demanding problems (in epidemiology),
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64 WOUTER EDELING

one of which requires access to a supercomputer. Second, we extend the method on various
theoretical grounds. Instead of relying on automatic differentiation of Gram--Schmidt's con-
stituent arithmetic operations, we derive a new analytic recurrence relation for the derivative
of Gram--Schmidt vectors, which are required to train the neural network. We also investigate
the need for orthonormality in the first hidden layer, by contrasting the performance of the
deep active-subspace method to a similar neural network without embedded orthonormality.
Another subject of study is vector-valued quantities of interest, which are difficult in the
case of the original active-subspace method. Finally, we also show how we can easily extract
derivative-based global sensitivity metrics from the neural networks.

This article is organized as follows. The original and deep active-subspace methods are
described in sections 2 and 3. Section 4 discusses the alternative neural network without
an orthonormal weight matrix. Vector-valued quantities of interest are covered next, and in
section 6 we describe the sensitivity analysis method. This is followed by a brief description
of an alternative derivative-free active-subspace approach in section 7. Finally, sections 8 and
9 contain our results and the conclusion.

2. Active subspaces. Let f(x) represent our quantity of interest (QoI), i.e., the output of
some (expensive) computational model, where x = [x1, x2, . . . , xD]

T is a D dimensional vector
of continuous, imperfectly know input parameters. We will assume f is a scalar QoI, unless
specified otherwise. The uncertainty in x is specified by a joint probability-density function
p(x), which we assume is given.

The active-subspace method, introduced by [9], is a method for forward propagation of
uncertainty in high-dimensional input spaces. Since we generally cannot assume that f(x) will
show the greatest variation in a direction that is exactly aligned with the coordinate axes of x,
the active-subspace method attempts to find a rotated coordinate system that is aligned with
the directions along which f varies the most on average. A low-dimensional approximation of
f is then created by only retaining the d < D directions of greatest variability. To find these
directions, the following gradient matrix is constructed:

C = \BbbE 
\Bigl[ 
(\nabla f (x)) (\nabla f (x))T

\Bigr] 
=

\int 
(\nabla f (x)) (\nabla f (x))T p(x)dx.(2.1)

Since C is an (uncentered) covariance-like matrix, it is symmetric positive semidefinite and
has the following spectral decomposition,

C = U\Lambda UT = [U1 U2]

\biggl[ 
\Lambda 1 0
0 \Lambda 2

\biggr] 
[U1 U2]

T ,(2.2)

with real eigenvalues \lambda i \geq 0 contained in the diagonal matrices \Lambda 1 := diag (\lambda 1, . . . , \lambda \mathrm{d}) and
\Lambda 2 := diag (\lambda d+1, . . . , \lambda D). The eigenvalues are ordered as \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda D such that
\Lambda 1 contains the d largest eigenvalues and the column vectors of U1 point in the direction
of largest (on-average) variability. As such, most of the variability of f is retained along
directions obtained by linearly projecting the input x \in \BbbR D to a low-dimensional `active'
subspace y \in \BbbR d via the tall-and-skinny matrix U1 \in \BbbR D\times d of orthonormal basis vectors, such
that UT

1 U1 = Id, where Id is the d-dimensional identity matrix. The active subspace is thus
given by

y = UT
1 x,(2.3)
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ON THE DEEP ACTIVE-SUBSPACE METHOD 65

and in a similar vein z = UT
2 x are the ``inactive"" variables along which f varies relatively

little. Lemma 2.2 from [9] relates the gradients of f with respect to y and z to the eigenvalues
of \Lambda 1 and \Lambda 2, respectively:

\BbbE 
\bigl[ 
(\nabla yf)

T\nabla yf
\bigr] 
= trace (\Lambda 1) ,(2.4)

\BbbE 
\bigl[ 
(\nabla zf)

T\nabla zf
\bigr] 
= trace (\Lambda 2) .

If all eigenvalues of \Lambda 2 are zero, (2.4) implies that \nabla zf is zero everywhere in the stochastic
domain. Such a function is called ``z-invariant,"" and we will show that the deep active-subspace
method described later is z-invariant by construction. Active-subspace methods approximate
f(x) = f

\bigl( 
UUTx

\bigr) 
= f

\bigl( 
U1U

T
1 x+ U2U

T
2 x
\bigr) 
= f (U1y + U2z) via a conditional expectation,

f(x) \approx G (y) = \BbbE z [f | y] =
\int 
f (U1y + U2z) p (z | y) dz \approx 1

N

N\sum 
i=1

f (U1y + U2zi) .(2.5)

While (2.5) may describe a high-dimensional integral, if f is (nearly) z-invariant, its MC
approximation shown on the right will only require a very small number of samples, e.g.,
N = 1 [9].

Finally, note that our goal is to create an efficient surrogate model for the code output
f (x) using active-subspace ideas. To differentiate between the output of the code and the
surrogate, we introduce the notation \widetilde f(x), \widetilde G(y) for the latter.

2.1. Finding \bfitU 1. The approach described above is intuitive, and has nice theoretical
properties, such as error bounds; see [9]. The downside, however, is that the gradient \nabla f(x)
must be available. This downside has prompted the development of other active-subspace
methods which do not require access to the gradient. Some of these methods involve Gaussian
processes [28 38] or linear regression [4], whereas others use deep learning. We will mainly
focus on the latter.

3. Deep active subspaces. In [37], an approach is described in which artificial neural
networks (ANNs) are used to construct \widetilde G (y), and where the equivalent to U1 (denoted by
W1), is found using stochastic gradient descent and back propagation. Like the classical active-
subspace method, the column vectors of W1 still form an orthonormal basis. The difference
is that the column vectors of W1 are no longer the eigenvectors of the gradient matrix C, but
instead are constructed using Gram--Schmidt orthogonalization. As such, W1 is parametrized
by an unconstrained matrix Q of the same dimension (Q \in RD\times d), where the nonorthogonal
(yet independent) column vectors qi \in \BbbR D are made orthogonal via

wi = qi  - 
i - 1\sum 
j=1

\Biggl( 
wT

j qi

wT
j wj

\Biggr) 
wj , i = 1, . . . , d.(3.1)

That is, we start with w1 := q1, and for all subsequent vectors qi we subtract the projec-
tions of qi onto each vector wj which has previously been orthogonalized. This leaves us
with an orthogonal basis [w1(q1) w2(q1,q2) \cdot \cdot \cdot wd(q1,q2, . . . ,qd)]. Finally, to obtain an
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66 WOUTER EDELING

orthonormal basis, each column vector is divided by its length, such that our final weight
matrix becomes

W1(Q) =

\biggl[ 
w1(q1)

\| w1(q1)\| 2
w2(q1,q2)

\| w2(q1,q2)\| 2
\cdot \cdot \cdot wd(q1,q2, . . . ,qd)

\| wd(q1,q2, . . . ,qd)\| 2

\biggr] 
.(3.2)

While we experienced no issues in our computations, it should be noted that Gram--Schmidt
orthogonalization can be numerically unstable; see, e.g., [25] for more information and miti-
gation strategies.

Note that the projection y = \Phi 
\bigl( 
W T

1 x
\bigr) 
=W T

1 x also occurs in a layer of a neural network
if the activation function \Phi (\cdot ) is linear [1]. Thus, we can interpret W1 as the weight matrix
of the first hidden layer (with d neurons and linear activation), connected to an input layer
through which x is passed. Each column vector wi contains all the weights connecting the
input layer to the ith neuron of the first hidden layer; see Figure 1. Since the first hidden layer
has only d neurons, and its weight matrix is determined from a Gram--Schmidt procedure, we
call this layer the deep active-subspace (DAS) layer.

The surrogate of G(y) is the ANN from the DAS layer onward; see Figure 2. Each hidden
layer has a weight matrix Wi \in \BbbR p+1\times p, assuming that all hidden layers have p neurons plus 1
bias neuron. As per usual, these weight matrices are optimized through the back propagation

Input Layer ∈ ℝ⁸ DAS Layer ∈ ℝ³

Figure 1. Diagram showing a DAS layer with D = 8 and d = 3. The thick lines contain the weights coming
from the first column vector of W1(Q). Likewise, the second column vector contains the weights of all lines
ending at neuron y2, etc.
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ON THE DEEP ACTIVE-SUBSPACE METHOD 67

Input Layer DAS Layer Hidden Layer Hidden Layer Output Layer

Figure 2. A full schematic of a DAS surrogate. The red matrices (Q, W2, W3, and W4) are optimized
using stochastic gradient descent and back propagation.

algorithm [1], in which the gradient \partial L/\partial Wi is computed (where L \in \BbbR is the loss function).
Generally, the weights are updated via Wi = Wi  - \alpha \partial L/\partial Wi, where \alpha is the learning rate,
specified later.

The situation in the DAS layer is different. Since W1 = W1(Q), we need to optimize the
loss with respect to Q instead of directly optimizingW1. Hence, we also require \partial L/\partial Q, which
in turn, via the chain rule, requires the derivates of wi/\| wi\| 2 with respect to the qk vectors.
The authors of [37] suggest using automatic differentiation. This does make sense, since al-
though wi/\| wi\| 2 is algebraic and differentiable, it quickly becomes a complicated expression
involving a very large number of qij terms. Here, qij are the entries of qj = [q1j , . . . , qDj ]

T ,
j = 1, . . . , d. That said, we will show that we can also use matrix calculus to find a sim-
ple analytic expression for \partial L/\partial Q. Note that this is an alternative to the approach of [37],
where Gram--Schmidt was implemented in an automatic-differentiation capable library such
as PyTorch [36]. The main reason we use the analytic expression here, is that these are new
expressions which might be useful outside a machine-learning context as well. Second, the
analytic expressions are intuitive, as we can see that the Gram--Schmidt derivatives are a
simple sum of matrix-matrix multiplications (see Appendix A). This gives insight into the
structure and cost of computing \partial L/\partial Q, as we also derive an analytic formula for the number
of matrix-matrix multiplications involved. We do not compare the performance of our code to
the automatic differentiation of, e.g., PyTorch in terms of training time. The largest training
time we observed was around 30 seconds, and even if we could exploit some (potential) method-
ological advantage with the analytic expressions, in practice it is unlikely that our in-house
Python implementation (section 8.3) will outperform the highly optimized C++ backend of
PyTorch.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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68 WOUTER EDELING

3.1. Differentiating Gram--Schmidt. The gradient matrix of L with respect to Q is given
by

\partial L

\partial Q
=

\left[   
\partial L
\partial q11

\cdot \cdot \cdot \partial L
\partial q1d

...
. . .

...
\partial L
\partial qD1

\cdot \cdot \cdot \partial L
\partial qDd

\right]   \in \BbbR D\times d,(3.3)

where each entry is computed via the chain rule as

\partial L

\partial qij
=

\partial L

\partial w11

\partial w11

\partial qij
+

\partial L

\partial w12

\partial w12

\partial qij
+ \cdot \cdot \cdot + \partial L

\partial wDd

\partial wDd

\partial qij
, i = 1, . . . , D, j = 1, . . . , d.(3.4)

This expansion contains Dd terms, although \partial wkl/\partial qij = 0 whenever j > l. This can be seen
by examining (3.2), in which the dependence of the w vectors on the q vectors is made explicit.
The terms of the summation (3.4) are those resulting from the elementwise multiplication of
the matrices \partial L/\partial W1 and \partial W1/\partial qij . Thus, we can rewrite (3.4) in shorthand as

\partial L

\partial qij
=

\biggl\langle 
\partial L

\partial W1
,
\partial W1

\partial qij

\biggr\rangle 
F

,(3.5)

where \langle \cdot , \cdot \rangle F is the Frobenius inner product. Thus, the gradient we must compute to back
propagate the loss through the DAS layer is given by

\partial L

\partial Q
=

\left[     
\Bigl\langle 

\partial L
\partial W1

, \partial W1

\partial q11

\Bigr\rangle 
F

\cdot \cdot \cdot 
\Bigl\langle 

\partial L
\partial W1

, \partial W1

\partial q1d

\Bigr\rangle 
F

...
. . .

...\Bigl\langle 
\partial L
\partial W1

, \partial W1

\partial qD1

\Bigr\rangle 
F

\cdot \cdot \cdot 
\Bigl\langle 

\partial L
\partial W1

, \partial W1

\partial qDd

\Bigr\rangle 
F

\right]     .(3.6)

Note that \partial L/\partial W1 will be available through standard back propagation. However, the Dd
matrices \partial W1/\partial qij will require us to compute the derivatives of the Gram--Schmidt vectors
wi with respect to the original, nonorthogonal vectors qk.

3.1.1. Derivatives of unnormalized Gram-Schmidt vectors. The derivatives of wi with
respect to qk are given by the following recurrence relationships:

\partial w1

\partial q1

=: D11 = ID,(3.7)

\partial wi

\partial qi

=: Dii = Di - 1, i - 1  - 
wi - 1w

T
i - 1

wT
i - 1wi - 1

, i > 1,(3.8)

\partial wi

\partial qk

=

i - 1\sum 
j=1

Dij
\partial wj

\partial qk

, i \not = k, i > k,(3.9)

Dij :=  - \partial 

\partial wj

\Biggl[ \Biggl( 
wT

j qi

wT
j wj

\Biggr) 
wj

\Biggr] 

=  - 

\Biggl[ 
1

wT
j wj

wjq
T
i  - 

2wT
j qi

(wT
j wj)2

wjw
T
j +

wT
j qi

wT
j wj

ID

\Biggr] 
, i \not = j, i > j.(3.10)
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ON THE DEEP ACTIVE-SUBSPACE METHOD 69

These are derived in Appendix A. Note that we have separate expressions for the ``normal""
derivatives \partial wi/\partial qi and ``shear"" derivatives \partial wi/\partial qj (where i \not = j), i.e., (3.8) and (3.9),
respectively. The latter can be expanded as a sum of matrix-matrix multiplications involving
only Dij matrices (see Appendix A), although in practice we will compute (3.8) and (3.9)
recursively, starting with i = 1.

3.1.2. Derivatives of normalized Gram--Schmidt vectors. Equations (3.9) and (3.8) give
simple expressions for \partial wi/\partial qk. However, the weight vectors of the DAS layers are normalized
(see Figure 1), and so we need to compute \partial (wi/\| wi\| 2)/\partial qk. As shown in Appendix B, we
can just premultiply \partial wi/\partial qk with a matrix which only depends upon wi, to obtain the
gradient of the corresponding normed vector:

\partial 

\partial qk

\biggl( 
wi

\| wi\| 2

\biggr) 
=

\biggl[ 
ID

\| wi\| 2
 - wiw

T
i

\| wi\| 32

\biggr] 
\partial wi

\partial qk

.(3.11)

We have placed our Python subroutines, as well as symbolic math scripts to verify the validity
of (3.7)--(3.11) on a separate GitHub repository; see [14].

3.1.3. Assembling the loss gradient. Computing all \partial (wi/\| wi\| 2)/\partial qk gives us the infor-
mation we need to assemble the loss gradient (3.6), provided that standard back propagation
has provided \partial L/\partial W1. However, the information is not yet in the right place to compute
the Frobenius inner products \langle \partial L/\partial W1, \partial W1/\partial qij\rangle F of (3.6), because these require \partial W1/\partial qij
instead of \partial wi/\partial qk. The matrices \partial wi/\partial qk and \partial W1/\partial qij are given by

\partial wi

\partial qk

=

\left[        

\partial w1i

\partial q1k
\partial w1i

\partial q2k
\cdot \cdot \cdot , \partial w1i

\partial qDk

\partial w2i

\partial q1k
\partial w2i

\partial q2k
\cdot \cdot \cdot , \partial w2i

\partial qDk

...
. . .

...
\partial wDi

\partial q1k
\partial wDi

\partial q2k
\cdot \cdot \cdot , \partial wDi

\partial qDk

\right]        \in \BbbR D\times D,
\partial W1

\partial qij
=

\left[        

\partial w11

\partial qij
\partial w12

\partial qij
\cdot \cdot \cdot , \partial w1d

\partial qij

\partial w21

\partial qij
\partial w22

\partial qij
\cdot \cdot \cdot , \partial w2d

\partial qij
...

. . .
...

\partial wD1

\partial qij
\partial wD2

\partial qij
\cdot \cdot \cdot , \partial wDd

\partial qij

\right]        \in \BbbR D\times d.

(3.12)

To compute the Frobenius inner products \langle \partial L/\partial W1, \partial W1/\partial qij\rangle F , we need to assemble Dd
matrices \partial W1/\partial qij . From (3.12), we see that this is done as

\partial W1

\partial qij
=

\biggl[ 
col

\biggl( 
i,
\partial w1

\partial qj

\biggr) 
col

\biggl( 
i,
\partial w2

\partial qj

\biggr) 
\cdot \cdot \cdot col

\biggl( 
i,
\partial wd

\partial qj

\biggr) \biggr] 
,(3.13)

where col (i, A) returns the ith column of matrix A. Hence, we can easily assemble \partial W1/\partial qij
by selecting the ith column of the d derivatives \partial wk/\partial qj , k = 1, . . . , d. In fact, if we store
all \partial wi/\partial qk derivatives in a 3-dimensional (3D) array of shape [d2, D,D], we can form the
\partial W1/\partial qij matrices by just taking 2-dimensional (2D) slices from this array.

4. Orthonormality through postprocessing. The DAS method as described previously
always maintains orthonormality of W1, also during training. However, as pointed out by a
reviewer, this may not be necessary. Consider a feed-forward neural network where the weight
matrices are denoted byMi. The architecture of this network is the same as the DAS network
shown in Figure 2, except orthonormality is not enforced for M1 \in \BbbR D\times d, i.e., M1 \not = M1(Q).
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70 WOUTER EDELING

To differentiate this network from the DAS network, we denote it as a ``constrained"" ANN,
due to the fact that the number of neurons in the first hidden layer is constrained to the
dimension of the active subspace d. In order to maintain a connection to the original active-
subspace method (which serves as a reference throughout this article), we must now extract
an orthonormal projection matrix a posteriori, i.e., after training. Specifically, if we apply the
original active-subspace method to the surrogate \widetilde f , the resulting dominant eigenvectors of
the neural-network equivalent of C (denoted by V1), can perform the same function asW1(Q).

4.1. Derivative of a neural network. To compute the original active subspace of (any)
neural network \widetilde f , we must compute \partial \widetilde f/\partial x. Let Mr \in \BbbR pr - 1\times pr be the weight matrix of the
rth layer, for r = 0, 2, . . . , N . Here, pr - 1 is the number of neurons of the preceding layer,
and pr is the number of neurons of the rth layer (not including the bias neuron). Each layer,
except the input layer (r = 0), has its own weight matrix Mr. Let hi := \Phi (MT

r hr - 1) =
\Phi (ar) \in \BbbR pr be the activation of the rth layer, with activation function \Phi (\cdot ). Finally, let

Dr := diag(\Phi \prime (ar)) \in \BbbR pr\times pr be the diagonal matrix with \Phi \prime (a
(i)
r ) := d\Phi (a

(i)
r )/da

(i)
r as entries,

for i = 1, . . . , pr. If the output is scalar (or if we are computing the gradient of a norm of
the output vector), we can compute \partial \widetilde f/\partial x with just a small modification of the standard
back propagation algorithm. Working from the output layer backwards, we have the following
recurrence relation,

\partial \widetilde f
\partial hN

=
\partial \widetilde f
\partial \widetilde f = 1, r = N,(4.1)

\partial \widetilde f
\partial hr

=Mr+1Dr+1
\partial \widetilde f

\partial hr+1
, r = N  - 1, N  - 2, . . . , 0;(4.2)

see, e.g., [12 1]. When we set \widetilde f = L, we obtain the standard back propagation algorithm for
computing \partial L/\partial hr. In (4.1) we assume that the activation hN of the output layer equals \widetilde f .
If standardization is used during training (as is common practice), hN = ( \widetilde f  - \mu f )/\sigma f , where
\mu f and \sigma f are the data mean and standard deviation. Following (4.2), at r = 0 we get

\partial \widetilde f
\partial x

=M1D1
\partial \widetilde f
\partial y

\in \BbbR D\times 1.(4.3)

Then, \Biggl( 
\partial \widetilde f
\partial x

\Biggr) \Biggl( 
\partial \widetilde f
\partial x

\Biggr) T

=M1D1

\Biggl( 
\partial \widetilde f
\partial y

\Biggr) \Biggl( 
\partial \widetilde f
\partial y

\Biggr) T

D1M
T
1 .

Let CANN be the neural-network equivalent of C, i.e.,

CANN =

\int \Biggl( 
\partial \widetilde f
\partial x

\Biggr) \Biggl( 
\partial \widetilde f
\partial x

\Biggr) T

p(x)dx =M1

\int 
D1

\Biggl( 
\partial \widetilde f
\partial y

\Biggr) \Biggl( 
\partial \widetilde f
\partial y

\Biggr) T

D1 p(x)dxM
T
1 .(4.4)

Since the network is fast to evaluate, we can easily approximate this via MC sampling:

CANN \approx CANN =

\Biggl( 
\partial \widetilde f
\partial x

\Biggr) \Biggl( 
\partial \widetilde f
\partial x

\Biggr) T

=M1D1

\Biggl( 
\partial \widetilde f
\partial y

\Biggr) \Biggl( 
\partial \widetilde f
\partial y

\Biggr) T

D1M
T
1 ,(4.5)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

7/
23

 to
 1

92
.1

6.
19

1.
40

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE DEEP ACTIVE-SUBSPACE METHOD 71

where X denotes the MC approximation of X. Following the original active-subspace method,
we can orthogonally diagonalize C since it is a symmetric matrix,

CANN = [V1 V2]

\biggl[ 
\Lambda 1 0
0 \Lambda 2

\biggr] 
[V1 V2]

T =M1C1M
T
1 ,(4.6)

where we have introduced the shorthand C1 := D1

\Bigl( 
\partial \widetilde f/\partial y\Bigr) \Bigl( \partial \widetilde f/\partial y\Bigr) T D1 \in \BbbR d\times d. Note

that in the DAS case we have D1 = Id, since there the activation is linear in the first layer.

4.2. Eigendecomposition of \bfitC \bfitA \bfitN \bfitN . We state the following lemma.

Lemma 4.1. Any neural network, with d neurons in the first hidden layer, has a CANN

gradient matrix with at most d nonzero eigenvalues, such that \Lambda 2 = 0.

Proof. C1 is symmetric positive semidefinite, since

aTC1a =
1

I

I\sum 
i=1

aTD1i

\Biggl( 
\partial \widetilde f
\partial yi

\Biggr) \Biggl( 
\partial \widetilde f
\partial yi

\Biggr) T

D1,ia =
1

I

I\sum 
i=1

\Biggl( 
\partial \widetilde f
\partial yi

T

D1,ia

\Biggr) T \Biggl( 
\partial \widetilde f
\partial yi

T

D1,ia

\Biggr) 
\geq 0 \forall a \in \BbbR d.

Therefore C1 \in \BbbR d\times d has d real eigenvalues \mu i \geq 0, and rank(C1) \leq d, with equality when all
\mu i > 0. SinceM1 \in \BbbR D\times d, rank(M1) \leq d. From standard textbooks on linear algebra we know
that rank(AB) \leq min\{ rank(A), rank(B)\} , and rank(A) = rank(A\mathrm{T}). Hence rank(C\mathrm{A}\mathrm{N}\mathrm{N}) =
rank(M1C1M

T
1 ) \leq d. Let \Lambda 1 contain the d largest eigenvalues. Since D = rank(CANN ) +

dim(null(CANN )), the null space of CANN is at least D  - d dimensional, and hence \Lambda 2 = 0.
In active-subspace terminology, we say that the network is z-invariant.

This also holds for the DAS network, which makes intuitive sense, since it has no repre-
sentation of the inactive variables z = V T

2 x \in \BbbR D - d in the DAS layer. Since \Lambda 2 = 0, we can
rewrite (4.6) as

CANN = V1\Lambda 1V
T
1 =M1C1M

T
1 \in \BbbR D\times D.(4.7)

Clearly, once we solve the eigendecomposition of CANN , we can use V1 in a way similar toW1,
i.e., to find the active subspace as y = V T

1 x. As a side note, in the case of a DAS network we
write CDAS . Here we can solve the smaller eigendecomposition of C1 to obtain both \Lambda 1 and
V1 (making use of the orthonormal nature of W1(Q)). C1 shares the \Lambda 1 eigenvalues of CDAS ,
and V1 is found by premultiplying the C1 eigenvectors with W1. However, since we already
found W1 during training, we have no need for a second projection matrix.

5. Vector-valued QoIs. The construction of C assumes that the QoI f is scalar; see
(2.1). That said, recent work has shown that with some modification, the active-subspace
method can be extended to vector-valued QoIs. These are based on minimizing an upper
bound on the approximation error [39] or modeling the output with a truncated Karhunen--
Lo\`eve expansion [23]. The constrained ANN and DAS method can handle vector-valued QoI
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72 WOUTER EDELING

without modification, as it will just increase the number of output neurons, without changing
the DAS layer. However, by this we mean that we can train a surrogate on vector-valued
outputs. Whether or not the network converges to a meaningful active subspace depends
on the underlying assumption, that (besides the existence of a linear active subspace), the
different outputs fi \in f also share approximately the same active subspace, which could be
unrealistic.

After training, we can compare our surrogates to the reference active subspace of \| f\| 2,
which is something that can be computed using the original active-subspace method if \partial \| f\| 2/\partial x
is available. The neural-network equivalent of (2.1) in this case is

CANN =

\Biggl( 
\partial \| \widetilde f\| 2
\partial x

\Biggr) \Biggl( 
\partial \| \widetilde f\| 2
\partial x

\Biggr) T

.(5.1)

The gradient appearing in (5.1) can still be computed exactly, by replacing (4.1) with \partial \| \widetilde f\| 2/\partial hN

= \partial \| \widetilde hN\| 2/\partial hN = hN/\| hN\| 2, and proceeding from there in the same manner as for the com-
putation of \partial \widetilde f/\partial x.

6. Sensitivity analysis. Besides uncertainty propagation, another common use case of
uncertainty quantification is to assess which inputs are more influential than others. One
of the most common options is to use global variance-based sensitivity methods (e.g., [34]).
Other global approaches are derivative based, e.g.,

\nu i :=

\int \biggl( 
\partial f

\partial xi

\biggr) 2

p (x) dx.(6.1)

These indices measure the (average) sensitivity of f to small perturbations in the inputs x, and
are especially suited for identifying noninfluential parameters [35]. Note that the \nu i indices
are the diagonal elements of the matrix C, such that

[\nu 1, . . . , \nu D]
T = diag (C) = diag

\bigl( 
U\Lambda UT

\bigr) 
(6.2)

=

\left[  D\sum 
j=1

\lambda jU
2
1j , . . . ,

D\sum 
j=1

\lambda jU
2
Dj

\right]  T

=: [\alpha 1(D), . . . , \alpha D(D)]T .

The \alpha i are called ``activity scores"" [6] in the context of active subspaces, and from (6.2) we
see that \alpha i(D) = \nu i. That said, active subspaces are truncated at some d < D, such that

\alpha i(d) :=

d\sum 
j=1

\lambda jU
2
ij \leq \alpha i(D) = \nu i.(6.3)

Since we can compute the exact \partial \widetilde f/\partial xi of a neural network very quickly, an MC approximation
of (6.1), replacing \partial f/\partial xi by \partial \widetilde f/\partial xi, is readily obtained. For the constrained ANN and DAS
surrogate we further know that \widetilde f is z-invariant, such that \lambda i = 0 for i > d. In this case (6.3)
becomes \alpha i(d) = \alpha i(D) = \nu i,, i.e., also the truncated activity scores \alpha i(d) are exactly the
same as the global derivative-based sensitivity measures.
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ON THE DEEP ACTIVE-SUBSPACE METHOD 73

7. Other derivative-free active-subspace approaches. For comparison purposes we briefly
outline one other simple alternative for derivative-free active-subspace estimation. In partic-
ular, we focus on the use of linear regression in a ``quick-and-dirty check"" [4] for the existence
of a one-dimensional (1D) active subspace. Briefly, consider the linear-regression model

f(x) \approx \widetilde f(x) = a0 + a1x1 + a2x2 + \cdot \cdot \cdot + aDxD,(7.1)

where the coefficients ai are estimated via standard least squares; see [4] for more details.
Clearly, the derivative of the surrogate \widetilde f is given by a\prime := [a1, a2, . . . , aD]

T . While the linear
regression surrogate may be inaccurate, if a single dominant and monotonic trend is present
in f , this simple method may still be used to identify this trend. In other words, if f contains
a 1D active subspace, a\prime /\| a\prime \| 2 may serve to approximate it.

8. Results. Let us now show the results of all the preceding analyses. Our applications
involve two disease models, namely, an HIV model and a much more computationally de-
manding COVID19 model. Three network types will be considered. The DAS network from
section 3, the constrained ANN from section 4, and a standard (unconstrained) ANN, where
the number of neurons in the first hidden layer is not constrained to the dimension of the
active subspace. The linear regression approach is tested on the HIV model only.

8.1. HIV model. The original active-subspace method has already been applied to this
model [29], and the source code and data are available from [5]. This provides us with a
reference solution, where the derivatives needed to build the C matrix are finite-difference ap-
proximations. Briefly, the model consists of 7 coupled ordinary differential equations (ODEs),

dT

dt
= s1 +

p1
C1 + V

TV  - \delta 1T  - (K1V +K2MI)T,

dTI
dt

= \psi (K1V +K2MI)T + \alpha 1TL  - \delta 2TI  - K3TICTL,

dTL
dt

= (1 - \psi )(K1V +K2MI)T  - \alpha 1TL  - \delta 3TL,

dM

dt
= s2 +K4MV  - K5MV  - \delta 4M,

dMI

dt
= K5MV  - \delta 5MI  - K6MICTL,

dCTL

dt
= s3 + (K7TI +K8MI)CTL - \delta 6CTL,

dV

dt
= K9TI +K10MI  - K11TV  - (K12 +K13)MV  - \delta 7V,(8.1)

with 27 input parameters that we model via uniform distributions with boundaries set at \pm 
2.5\% of their nominal values (see the supplementary materials (supplement.pdf [local/web
184KB]) for specific values, and for a description of the ODE variables). We just note that
our QoI is the T-cell count T (t) over time, and we refer to [29] for further information on the
model.

We will consider two cases, namely, one that is intentionally overfitted (using 100 neurons
per hidden layer), and one that is not, with 10 neurons per hidden layer. Rather than finding
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74 WOUTER EDELING

the best model via an exhaustive hyperparameter search, our goal here is to contrast the
performance of the different networks in these two cases. For all networks the standard squared
loss function, \Phi = tanh activation, and a minibatch size of 64 is used. Back propagation is
performed with stochastic gradient descent with the RMSProp optimizer and a learning rate
of 0.001 [1]. The number of training iterations is set to 10000. To make sure that all inputs
have a common scale, we normalize the inputs such that xi \in [ - 1, 1] for all i = 1, . . . , D,
which is common in the uncertainty-quantification literature. For the T-cell count output
data we experimented with normalization to the unit interval [0, 1], and with standardization
to mean 0 and standard deviation 1. We found that the latter technique yielded more accurate
surrogates. Hence, in the following, consider f as standardized unless noted otherwise, and \widetilde f
as the corresponding surrogate.

The reference eigenvalues are shown in Figure 3. There is a large gap between \lambda 1 and
\lambda 2, indicating the existence of a 1D active subspace [9]. Clearly, we cannot rely on such
information to be available in general, and we therefore need a strategy of determining d. A
simple method consist of computing the eigenvalues \Lambda 1 of CANN or CDAS for some d > 1,
and to look for a large eigenvalue gap there. Figure 3 also displays the constrained ANN and
DAS surrogate eigenvalues with d = 5, and in both cases we also observe a large gap between
\lambda 1 and \lambda 2. Hence, even without the reference solution we would come to the same conclusion,
i.e., in all subsequent analyses we set d = 1. Figure 3 also shows that \Lambda 2 = 0 as discussed in
section 4.2.

Figure 4 shows a heat map of the C matrices, for the reference active-subspace method
computed with finite-difference gradients of the code, and the same heat map for the con-
strained ANN and DAS surrogate, for which no direct gradient data were used. The scalar
QoI f(x) was the T-cell count at t = 45 days. Both the ANN and DAS surrogates capture the
overall structure of C quite well compared to the reference case, despite the lack of gradient
data.

Next we examine the relative training and test error distribution, as a function of the
training data size. Both the constrained ANN and DAS networks have d = 1, such that the
main difference between them is the imposed orthogonality of W1 in the architecture of the

1 3 5 7 9 11 13 15 17 19 21 23 25 27
i

10 16

10 13

10 10

10 7

10 4

10 1

i

reference eigenvalues

1 3 5 7 9 11 13 15 17 19 21 23 25 27
i

10 16

10 13

10 10

10 7

10 4

10 1

i

CDAS eigenvalues, d = 5

1 3 5 7 9 11 13 15 17 19 21 23 25 27
i

10 16

10 13

10 10

10 7

10 4

10 1

i

CANN eigenvalues, d = 5

i of CDAS

Figure 3. Left: the reference eigenvalues of C. Right: the eigenvalues of CANN in the case of a constrained
ANN. Middle: the eigenvalues of the CDAS matrix. Due to Lemma 4.1, the eigenvalues \lambda i are (numerically)
zero for CANN and CDAS when i > d.
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Figure 4. Heat map of the gradient matrix C = (\partial f/\partial \bfx )(\partial f/\partial \bfx )T for the reference active-space method,

and the corresponding DAS and constrained ANN approximations based on \partial \widetilde f/\partial \bfx . The outputs f and \widetilde f were
standardized.

DAS network. To isolate the effect of this orthonormality we also train an unconstrained ANN.
Due to the stochastic nature of the training, the error is a random variable. We therefore
train 100 replica networks, for every network type and at every training data size to compute
95\% confidence intervals of the errors. We define the relative error as a percentage,

e =
1

T

T\sum 
i=1

| f(xi) - \widetilde f(xi)| 
| f(xi)| 

\times 100.(8.2)

Here, T is either the size of the training or test data set. We have 1000 code samples in total,
and consider training data sizes ranging from 500 to 900. The test data are whatever remains
from the total data set. The results for the overfitted case are shown in Figure 5. Note that all
displayed errors are low, less than 0.5\% in all cases. That said, the confidence intervals show
that variation of the unconstrained ANN error is significantly larger than that of the other
two surrogates. And while the unconstrained ANN achieves a lower training error on average,
a relatively large jump in its test error is observed, which progressively decreases with more
training data. No discernable difference between training and test performance can be seen
for the DAS surrogate or the constrained ANN, and the general trend of both the training
and test error is constant with respect to the considered range of training data sizes. Further
note that the error confidence intervals of the DAS surrogate and the constrained ANN are
very similar. This shows that funneling the inputs through a hidden layer constrained to just
d neurons is what causes the good generalization properties, rather than the orthonormality
of W1. Note that since d = 1 here, w1 is only orthonormal with respect to itself, but the
confidence intervals were also very similar for d = 2 (data available at [15]).

The jump in the unconstrained ANN test error is a clear indication of overfitting. Figure 6
shows the same results when using 10 (instead of 100) neurons per hidden layer. Again, all
errors are very low, yet now the unconstrained ANN generally gives a lower test error than
the other surrogates. That said, the noise in the unconstrained ANN error is still relatively
large, and the DAS network and constrained ANN are still more robust in the sense that not
much difference can be observed between the training and test performance. While we could
have used, for instance, L2 regularization to reduce the unconstrained ANN overfitting, these
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Figure 5. The training (left) and test (right) error for the DAS and (constrained and unconstrained) ANN
surrogates versus the training data size, using 100 neurons for the hidden layers. The 95\% confidence intervals
are computed from 100 replica neural networks, independently trained at every training data size. Since we
have 10 training data sizes and 3 surrogate methods, a total of 3000 neural networks are trained to generate
these results.
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Figure 6. The training (left) and test (right) 95\% error confidence intervals for the DAS and (constrained
and unconstrained) ANN surrogates versus the training data size, using 10 neurons for the hidden layers.

results indicate that restricting the number of neurons to the dimension of the active subspace
also can act as a means of regularization.

To see why, consider Figure 7, which shows the predicted response in the active subspace
of the DAS and ANN surrogates (i.e., \widetilde G(y1)), at t = 3400 days. As a validation exercise,
we also plot 100 new random code evaluations along y1. Clearly, the model outcome is very
well predicted along this dimension in the case of the DAS and constrained ANN surrogates.
Since the active subspace of the HIV model is (approximately) 1D, and we also restrict the
y space of these surrogates to one dimension, we essentially fit the ``signal,"" while ignoring
the ``noise."" The unconstrained ANN does fit the noise; again see Figure 7. This may result
in a smaller training error, but may not generalize well and is likely to cause more variation
between replica networks.
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Figure 7. The predictions at t = 3400 days, and 100 (nonstandardized) validation samples f(\bfx \ast 
i ),

i = 1, . . . , 100, from (8.1), plotted along the y1 coordinate extracted from the DAS (right), constrained ANN
(middle), and unconstrained ANN (right). All networks used 100 neurons per hidden layer, besides the DAS
and constrained ANN obviously, which used d = 1 neuron in the first hidden layer.

Hence, even though the model has 27 inputs, it is (almost) a 1D function if one is able to
identify the active subspace. These results indicate that u1 \approx w1/\| w1\| 2 (up to multiplication
by -1), i.e., that the 1D active subspace spanned by the dominant orthonormal eigenvector
of U approximately equals the (only) column vector of W1. Likewise, we have u1 \approx v1. For
d > 1 the DAS coordinate system will likely differ from the reference active subspace by some
arbitrary rotation, as also observed by [37]. That said, we only judge the performance of the
surrogate by whether or not it (approximately) identifies the same subspace as the original
active-subspace method, e.g., if span (U1) \approx span(W1) or span (U1) \approx span(V1) holds or not.
Since it does hold for the HIV model, we could also use a more classical (regression-based)
surrogate method to construct \widetilde G(y1). In this case we would not use the neural network \widetilde G(y1)
for prediction, and instead only use the network to generate a projection matrix W1 or V1,
and subsequently train our surrogate of choice in the corresponding active subspace.

Taking this argument one step further, in section 7 we discussed a linear-regression based
method to identify a 1D active subspace, cutting out machine learning altogether. The results
of this method are shown in Figure 8. While linear regression is clearly too simplistic as a
surrogate, the validation samples are comparable to those in Figure 7. Hence, this simple
(derivative-free) method is able to identify the 1D active subspace here. The advantage of
machine-learning based approaches is that they simultaneously act as a powerful surrogate
modelling method, and they also provide actual benefit when the active-subspace dimension
is 2 or higher.

Next we plot the global gradient-based sensitivity indices \nu i, i = 1, . . . , 27, in Figure 9, for
both the reference active subspace, DAS and constrained ANN surrogates at t = 3400 days.
While the magnitude is not an exact match, the order is exactly the same for all parameters
that have a significant nonzero \nu i. That said, if we retrain the surrogates, parameters that
are very close to each other (such as s2 and K7), might switch places. Hence, here it may
also be useful to consider replica networks. In any case, while results such as these are useful
to eliminate a lot of individual parameters, they do not show that here we can collapse the
input dimensionality further to 1D by taking a linear combination of parameters (y1).
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Figure 8. The linear regression prediction at t = 3400 days, and 100 validation samples f(\bfx \ast 
i ), i =

1, . . . , 100, from (8.1), plotted along y1 = \bfw T\bfx \ast , where here \bfw = \bfa \prime /\| \bfa \prime \| 2; see section 7.
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Figure 9. Global derivative-based sensitivity indices (6.1) at t = 3400 days.

Finally, we consider a case with a vector-valued QoI, namely, the T-cell count at t =
[5, 15, 24, 38, 40, 45, 50, 55, 50, 65, 90, 140, 500, 750, 1000, 1600, 1800, 2000, 2200, 2400, 2800, 3400]
days. We also compute the original active subspace where C is constructed with finite-
difference gradients of \| f\| 2, and we compare this with CANN given by (5.1). Figure 10 shows
the corresponding eigenvalues. The decay in this case is less pronounced than for the scalar
f , which can be an indication that the active subspace is not the same at every output value.
However, since we can still observe a gap after \lambda 2, we set d = 2. As before, we first train a
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Figure 10. Left: the first 5 reference eigenvalues of C, constructed with finite difference approximations of
\partial \| \bff \| 2/\partial xi. Middle and right: the nonzero eigenvalues of CDAS and CANN (5.1) with d = 5.
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Figure 11. Heat map of C = (\partial \| \bff \| 2/\partial \bfx )(\partial \| \bff \| 2/\partial \bfx )T for the reference active-space method, and the

corresponding constrained ANN and DAS approximations based on \partial \| \widetilde \bff \| 2/\partial \bfx . The outputs \bff and \widetilde \bff were
standardized.

surrogate using d = 5 to examine the eigenvalue decay of CANN . The 5 nonzero eigenvalues
of CANN show similar behavior compared to the reference case, such that we also would have
used d = 2 without access to the reference.

In Figure 11 we contrast the C matrix from the (original) active subspace of \| f\| 2 with
its constrained ANN and DAS counterparts, which are a reasonable approximation. Finally,
Figure 12 shows the contours of the 2D DAS and constrained ANN surrogates, alongside those
obtained from 1000 random validation samples from the code (8.1). We show the results at
t = 45 and t = 3400 days, where both time stamps are outputs from the same vector-valued
surrogate. The validation data are plotted in the reference [y1, y2]

T = UT
1 x coordinate system.

From the contour lines we can see that the validation data are noisy (as expected), whereas
the (z-invariant) surrogates are smooth. Note that at t = 3400 days, the surrogates struggle
to predict the region where the T-cell count is zero, in the sense that small negative values
are present. Since V1 is similar to U1 (in the sense both are the dominant eigenvectors from
approximately the same matrix), the arbitrary rotation of the constrained ANN y coordinate
system with respect to the reference y system is usually smaller than that of the DAS system.
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Figure 12. The contours of the DAS and constrained ANN prediction \widetilde G for d = 2, and the contours
computed from 1000 (nonstandardized) validation samples f(\bfx \ast 

i ), i = 1, . . . , 1000, from (8.1), plotted along
y1 = UT

1 \bfx \ast 
i . Predictions are shown at two different times, which are outputs from the vector-valued surrogates.

This is clear from Figure 11. Still, the overall structure of both surrogate responses is very
similar to the validation data, and the rotation of the y system is not of particular interest
here.

8.2. CovidSim. CovidSim is an influential individual-based simulation code developed
by the MRC centre for global infectious disease analysis at Imperial College London. It
has been used to explore various nonpharmaceutical interventions with the aim of reducing
the transmission of the coronavirus [18]. Unlike the HIV model, CovidSim requires high-
performance computing (HPC) resources if an ensemble of model evaluations is needed. In a
previous study, we applied dimension-adaptive SC to this model to estimate the parametric
uncertainty due to 19 imperfectly known inputs [16]. This method iteratively refines the
sampling plan in important directions, and in [16] we required more than 100 iterations. This
may become cumbersome if one is subject to a long queue time before each (relatively small)
ensemble is executed on the HPC resource. Active-subspace methods are in this sense more
``HPC-friendly"", since a single large ensemble can be executed, and the dimension reduction
is done in a postprocessing step.

We will consider a case with D = 51 continuous input parameters, for which we prescribe
uniform input distributions. For a table with all input parameters, their default values, and
uncertain range, we refer to the supplementary materials (supplement.pdf [local/web 184KB]).
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We sampled the input space with 3000 MC evaluations, and we executed the ensemble on
the Altair supercomputer, located at the Poznan Supercomputing and Networking Center.
Various components from the VECMA tookit [21] were used to generate the results. In
particular, the MC sampling plan was created using EasyVVUQ [33], the workflow and data
transfer to and from Altair were handled by FabSim3 [22], and the QCG-PilotJob framework
[3] was used to package the 3000 jobs into a single job allocation, thereby circumventing the
limit on the maximum number of concurrent jobs that is present on many supercomputers.
Each CovidSim sample used 28 cores per node and completed in about 10 minutes, leading to a
rough estimate of the computational cost of 14.000 core hours. Using 50 nodes in parallel, the
sampling completed in less than a full day. The surrogate is then trained on the EasyVVUQ
data frame, using the surrogate modeling component of VECMA tookit [13].

We do not have a reference active-subspace solution for CovidSim, and for conciseness we
only show the results of a DAS surrogate. The eigenvalues of the DAS surrogate do show a
small gap after \lambda 1 (see Figure 13, where d = 5). That said, since d = 1 yielded relatively high
training and test errors, we selected d = 2 in the end (note that there is also a smaller gap
between \lambda 2 and \lambda 3). The QoI we used here is the predicted cumulative death count after a
simulated time of 801 days. Figure 14 shows the contours in the y =W T

1 x coordinate system,
for both the DAS surrogate and those obtained from 1500 validation samples. These results
again show that the DAS surrogate is a smooth approximation of the code output in the active
subspace. To estimate the magnitude of the error, we repeat the replica-based error analysis
for the DAS, constrained and unconstrained ANN surrogates (using 100 replica networks
with 10 neurons per hidden layer); see Figure 15. Overall, the behavior is similar to that
of the HIV case (Figure 6), albeit with a higher error magnitude. The unconstrained ANN
error shows a jump from the training to the test set, whereas the DAS and constrained ANN
errors are similar, have small confidence intervals and remain almost constant. The similarity
aspect again indicates that embedded orthonormality does not influence the training or test
performance.

1 6 11 16 21 26 31 36 41 46 51
i

10 1

100

i

first d=5 DAS eigenvalues

Figure 13. The nonzero eigenvalues of CANN (4.5) for the CovidSim application with d = 5.x.
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Figure 14. Right: the contours of the DAS prediction \widetilde G, trained on 50\% of the CovidSim samples with
d = 2. Left: the contours computed from the remaining 50\% (nonstandardized) CovidSim validation samples
f(\bfx \ast 

i ), i = 1, . . . , 1500, plotted along y1 = WT
1 \bfx \ast 

i , where W1 = [\bfw 1/\| \bfw 1\| 2 \bfw 2/\| \bfw 2\| 2] is the orthonormal weight
matrix from the DAS surrogate. Predictions are the final cumulative death count after 801 days.
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Figure 15. The training (left) and test (right) 95\% error confidence intervals for the DAS, constrained and
unconstrained ANN surrogates versus the training data size for the CovidSim application, using 10 neurons for
the hidden layers.

8.3. Code and data availability. We implemented the DAS method in the VECMA toolkit
[13]. The Python codes and the data required to reproduce all results presented above can be
found at [15]. The Gram--Schmidt derivatives are available separately at [14].

9. Conclusion. We examined the DAS method, which is a derivative-free active-subspace
method based on neural networks. The main components of this method are contained in
the first hidden layer, where the number of neurons is restricted to the dimension of the
active subspace (d), and the weight matrix is kept orthonormal via Gram--Schmidt. This
mimics the original active-subspace method (which we consider as the reference solution),
where an orthonormal matrix is used to project the high-dimensional input vector to a
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low-dimensional active subspace. Several new theoretical investigations were performed. First,
the back-propagation step requires the derivative of Gram--Schmidt vectors with respect to
the original, nonorthogonal basis vector, for which we have derived a new analytic recurrence
relation, which might prove useful outside the DAS method. We further showed that the DAS
network is z-invariant, i.e., has at most d nonzero eigenvalues. We also note that unlike the
original active-subspace method, the DAS network can easily handle vector-valued QoI. That
said, the performance can degrade if vector entries have different active subspaces. Addition-
ally, we investigated a constrained neural network, where the number of neurons in the first
hidden layer is still restricted to d, but where orthonormality of the corresponding weight
matrix is not enforced during training. We can still extract an orthonormal projection matrix
in a postprocessing step.

We first assessed the performance of both the DAS method and the constrained neural
network on an HIV model with 27 input parameters, for which we have an (active-subspace)
reference solution. Both methods gave a good approximation of the reference, despite the
lack of direct gradient data. The DAS method and constrained neural network generated
a surrogate model with d = 1 which was more robust than a classical (unconstrained) neu-
ral network, in the sense that its training error closely matched the test error, at various
training/test data splits. Since the DAS and constrained neural network only differ by the
enforcement of orthonormality, this is an indication that the good generalization properties
are a result of restricting the neurons to the active-subspace dimension in the first hidden
layer, and not due to enforced orthonormality during training. By repeating the error analy-
sis 100 times, we also found that the training and test errors from the DAS and constrained
neural network showed (very) little variation compared to those from a standard ANN. Our
final application was a computationally expensive COVID19 model with 51 inputs, where
high-performance computing resources were required to sample the input space. We found
similar results compared to the HIV application, except that the model response could only
be reasonably approximated in a 2D active subspace.

Appendix A. Gram--Schmidt derivative derivation. We will first compute the derivative
of wi, before it is normalized by its length \| wi\| 2:

\partial wi

\partial qk

=
\partial qi

\partial qk

 - 
i - 1\sum 
j=1

\partial 

\partial qk

\Biggl[ \Biggl( 
wT

j qi

wT
j wj

\Biggr) 
wj

\Biggr] 
, i = 1, . . . , d, k = 1, . . . , d.(A.1)

A brute-force computation of this derivative using a computer algebra system will show that
this quickly becomes a complicated expression with a very large number of terms. However,
we can find a simple expression for this derivative by computing it in an iterative fashion:

i = 1 : w1 = q1 \Rightarrow 
\partial w1

\partial q1

= ID =: D11 and
\partial w1

\partial qi

= 0 for i > 1,(A.2)

i = 2 : w2 = q2  - 
\biggl( 
wT

1 q2

wT
1 w1

\biggr) 
w1.(A.3)
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First we compute the shear derivative \partial w2/\partial q1 (defined as \partial wi/\partial qk, where i \not = k):

\partial w2

\partial q1

=  - \partial 

\partial q1

\biggl[ \biggl( 
wT

1 q2

wT
1 w1

\biggr) 
w1

\biggr] 
=  - \partial 

\partial w1

\biggl[ \biggl( 
wT

1 q2

wT
1 w1

\biggr) 
w1

\biggr] 
\partial w1

\partial q1

=  - 
\biggl[ 

1

wT
1 w1

w1q
T
2  - 2wT

1 q2

(wT
1 w1)2

w1w
T
1 +

wT
1 q2

wT
1 w1

ID

\biggr] 
\underbrace{}  \underbrace{}  

=:D21

\partial w1

\partial q1

= D21
\partial w1

\partial q1

= D21D11.(A.4)

Here, the second equality is just the chain rule, and in the third we used the following matrix
calculus identity:

Dij :=  - \partial 

\partial wj

\Biggl[ \Biggl( 
wT

j qi

wT
j wj

\Biggr) 
wj

\Biggr] 
=  - 

\Biggl[ 
1

wT
j wj

wjq
T
i  - 

2wT
j qi

(wT
j wj)2

wjw
T
j +

wT
j qi

wT
j wj

ID

\Biggr] 
,(A.5)

which is derived in Appendix B. Hence, we can compute D21, and the matrix D11 :=
\partial w1/\partial q1 = ID was already computed in the previous iteration. The matrix-matrix prod-
uct of D21 and D11 yields \partial w2/\partial q1.

We now compute the normal derivative \partial w2/\partial q2:

\partial w2

\partial q2

= ID  - \partial 

\partial q2

\biggl[ \biggl( 
wT

1 q2

wT
1 w1

\biggr) 
w1

\biggr] 
= ID  - w1w

T
1

wT
1 w1

= D11  - 
w1w

T
1

wT
1 w1

=: D22.(A.6)

In the second equality we made use of the identity:

\partial 

\partial qi

\Biggl[ \Biggl( 
wT

j qi

wT
j wj

\Biggr) 
wj

\Biggr] 
=

wjw
T
j

wT
j wj

,(A.7)

also derived in Appendix B. This holds if wj does not depend upon qi, which is true in (A.6)
since w1 = w1(q1). Also, since w2 = w2 (q1,q2), we have \partial w2/\partial qk = 0 for k > 2. Further
note that in (A.6), we can write \partial w2/\partial q2 as the difference between D11 := \partial w1/\partial q1 and
w1w

T
1 /w

T
1 w1, and that we have defined this expression for \partial w2/\partial q2 as D22.

i = 3:

w3 = q3  - 
\biggl( 
wT

1 q3

wT
1 w1

\biggr) 
w1  - 

\biggl( 
wT

2 q3

wT
2 w2

\biggr) 
w2.(A.8)
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We again compute the shear derivatives first:

\partial w3

\partial q1

=  - \partial 

\partial q1

\biggl[ \biggl( 
wT

1 q3

wT
1 w1

\biggr) 
w1

\biggr] 
 - \partial 

\partial q1

\biggl[ \biggl( 
wT

2 q3

wT
2 w2

\biggr) 
w2

\biggr] 
=  - \partial 

\partial w1

\biggl[ \biggl( 
wT

1 q3

wT
1 w1

\biggr) 
w1

\biggr] 
\underbrace{}  \underbrace{}  

=:D31

\partial w1

\partial q1

 - \partial 

\partial w2

\biggl[ \biggl( 
wT

2 q3

wT
2 w2

\biggr) 
w2

\biggr] 
\underbrace{}  \underbrace{}  

=:D32

\partial w2

\partial q1

= D31
\partial w1

\partial q1

+D32
\partial w2

\partial q1

= D31D11 +D32D21D11;(A.9)

and

\partial w3

\partial q2

=  - \partial 

\partial q2

\biggl[ \biggl( 
wT

1 q3

wT
1 w1

\biggr) 
w1

\biggr] 
 - \partial 

\partial q2

\biggl[ \biggl( 
wT

2 q3

wT
2 w2

\biggr) 
w2

\biggr] 
=  - \partial 

\partial w1

\biggl[ \biggl( 
wT

1 q3

wT
1 w1

\biggr) 
w1

\biggr] 
\partial w1

\partial q2\underbrace{}  \underbrace{}  
0

 - \partial 

\partial w2

\biggl[ \biggl( 
wT

2 q3

wT
2 w2

\biggr) 
w2

\biggr] 
\underbrace{}  \underbrace{}  

:=D32

\partial w2

\partial q2

= D32
\partial w2

\partial q2

= D32D22.(A.10)

The normal derivative is given by

\partial w3

\partial q3

= ID  - \partial 

\partial q3

\biggl[ \biggl( 
wT

1 q3

wT
1 w1

\biggr) \biggr] 
 - \partial 

\partial q3

\biggl[ \biggl( 
wT

2 q3

wT
2 w2

\biggr) \biggr] 
= ID  - w1w

T
1

wT
1 w1\underbrace{}  \underbrace{}  

D22

 - w2w
T
2

wT
2 w2

= D22  - 
w2w

T
2

wT
2 w2

=: D33.(A.11)

Finally, consider the case for i = 4 in shorthand notation only:

\partial w4

\partial q1

= D41D11 +D42D21D11 +D43D31D11 +D43D32D21D11,

\partial w4

\partial q2

= D42D22 +D43D32D22,

\partial w4

\partial q3

= D43D33,

\partial w4

\partial q3

= D33  - 
w3w

T
3

wT
3 w3

=: D44.(A.12)

The structure is now apparent. The gradients \partial wi/\partial qk, when completely expanded as in
(A.12), are determined by a series of matrix-matrix multiplications, the indices of which
come from all pairwise paths of a directed graph from i \rightarrow k, ending with k \rightarrow k. To see
this, consider the graphs of Figure 16, and compare this to the indices of the Dij matrices
appearing in the expressions of (A.12).

The graph gives some insight into the structure of each derivative, as it allows us to
directly expand all terms that make up each gradient. However, we will not directly use it
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4 3 2 1

(a) All pairwise paths from 4 to 1,
always ending with (1, 1). Corre-
sponds to indices of \partial \bfw 4/\partial \bfq 1.

4 3 2

(b) All pairwise paths
from 4 to 2, always ending
with (2, 2). Corresponds
to indices of \partial \bfw 4/\partial \bfq 2.

4 3

(c) All pairwise
paths from 4 to
3, always ending
with (3, 3). Corre-
sponds to indices of
\partial \bfw 4/\partial \bfq 3.

4

(d) The
only pair-
wise paths
from 4 to 4.
Corresponds
to index of
\partial \bfw 4/\partial \bfq 4.

Figure 16. The directed graphs that generate the indices of the Dij matrices of (A.12).

in practice to compute the gradients. Instead, we will start with the gradient of w1, then
compute the gradients of w2, etc. This is because at any given wi, we can reuse the results
from the previous iteration, thereby avoiding repeated matrix multiplications. This is clear
when we write the shear gradients as

\partial wi

\partial qk

=

i - 1\sum 
j=1

Dij
\partial wj

\partial qk

, i \not = k, i > k.(A.13)

At any given i > 1, all \partial wj/\partial qk terms above have either already been computed at the
previous iterations, or are zero when k > j. If we count the minimum number of matrix-
matrix multiplications that are required to compute all shear gradients at a given i, we find
that when k = 1, we get i  - 1 matrix-matrix multiplications. As an example, consider
\partial w4/\partial q1 = D41\partial w1/\partial q1 + D42\partial w2/\partial q1 + D43\partial w3/\partial q1, which requires i  - 1 = 3 matrix
multiplications. Technically however, D41 is multiplied by \partial w1/\partial q1 = ID, so the first product
we never have to compute. When k = 2, we still have i - 1 terms in (A.13). However, the first
term will include \partial w1/\partial q2 = 0. Likewise, when k = 3 the first two terms will be zero. Thus
the total number of required matrix multiplicationsMi isMi = (i - 1)+(i - 2)+ \cdot \cdot \cdot +2+1 - 1,
where we subtracted 1 at the end because we do not count multiplication by ID. Finally, the
total number of matrix multiplications M to compute all nonzero gradients of wi, for all
i = 1, . . . , d, is therefore given by

M =

d\sum 
i=3

Mi =

d\sum 
i=3

i - 1\sum 
j=2

j.(A.14)

We start counting at i = 3 because i = 1 and i = 2 require no matrix-matrix multiplications;
see (A.2) and (A.4). In Figure 17(a) we plotM versus d which shows that for d = 20 we would
already need to perform more than 1200 matrix-matrix multiplications. That said, it should
be noted that this is the cost of computing all nonzero gradients \partial wi/\partial qk which require
matrix-matrix multiplication. In the case of d = 20, the total number of such gradients is

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

7/
23

 to
 1

92
.1

6.
19

1.
40

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE DEEP ACTIVE-SUBSPACE METHOD 87

4 6 8 10 12 14 16 18 20
d

0

200

400

600

800

1000

1200

M

Mi
M

(a) The total number of matrix multiplication Mi at
a given i, and the total cumulative cost M .

4 6 8 10 12 14 16 18 20
d

0

1

2

3

4

5

6

7

M

(b) The total number of matrix-matrix multiplica-
tions, divided by the number of gradients that are
computed.

Figure 17. The number of matrix-matrix multiplications as a function of d.

given by 2+3+ \cdot \cdot \cdot +19 = 189. Hence, it is not particularly surprising that a large number of
multiplications are required. Figure 17(b) shows the total number of multiplications divided
by the number of gradients which are computed, which suggests that the average number of
matrix-matrix multiplications scales linearly with d. Still, for high d the number of matrix-
matrix multiplications M can be significant.

The preceding pertained to the shear gradients. From (A.4), (A.11), and (A.12), we can
see that the normal gradients are computed as

Dii :=
\partial wi

\partial qi

= Di - 1,i - 1  - 
wi - 1w

T
i - 1

wT
i - 1wi - 1

, i > 1,(A.15)

with D11 := ID. Note that no matrix-matrix multiplication is involved in computing these
derivatives.

Finally, let us note that we verified the correctness of (A.13) and (A.15) by comparing our
numerical result with the results from a computer algebra system, which used symbolic math
to directly compute the derivatives from the definition of the wi (3.1).

Appendix B. Matrix calculus identities. We will derive a number of useful matrix calculus
identities here. Let w and q be two vectors in \BbbR D. Then

\partial 

\partial w

\biggl( 
wTq

wTw

\biggr) 
=

1

wTw
qT  - 2wTq

(wTw)2
wT \in \BbbR 1\times D.(B.1)

Proof. This follows directly from the quotient rule:

\partial 

\partial w

\biggl( 
wTq

wTw

\biggr) 
=

\partial 
\partial w [wTq]wTw - wTq \partial 

\partial w [wTw]

(wTw)2
=

qT (wTw) - (wTq) 2wT

(wTw)2
(B.2)
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which yields (B.1). Going one step further, we have the following identity

\partial 

\partial w

\biggl[ \biggl( 
wTq

wTw

\biggr) 
w

\biggr] 
=

1

wTw
wqT  - 2wTq

(wTw)2
wwT +

wTq

wTw
ID \in \BbbR D\times D.(B.3)

Proof. Apply the product rule:

\partial 

\partial w

\biggl[ \biggl( 
wTq

wTw

\biggr) 
w

\biggr] 
= w

\partial 

\partial w

\biggl( 
wTq

wTw

\biggr) 
+

\biggl( 
wTq

wTw

\biggr) 
ID

= w

\Biggl[ 
1

wTw
qT  - 2wTq

(wTw)2
wT

\Biggr] 
+

\biggl( 
wTq

wTw

\biggr) 
ID

=
1

wTw
wqT  - 2wTq

(wTw)2
wwT +

wTq

wTw
ID,(B.4)

where in the second equality we inserted (B.1). One more identity we require is given by

\partial 

\partial q

\biggl[ \biggl( 
wTq

wTw

\biggr) 
w

\biggr] 
=

1

wTw
wwT \in \BbbR D\times D.(B.5)

This holds if w does not depend upon q.

Proof. Apply the product rule:

\partial 

\partial q

\biggl[ \biggl( 
wTq

wTw

\biggr) 
w

\biggr] 
= w

\partial 

\partial q

\biggl( 
wTq

wTw

\biggr) 
+

\biggl( 
wTq

wTw

\biggr) 
\partial w

\partial q\underbrace{}  \underbrace{}  
0

=
1

wTw
w
\partial 

\partial q

\bigl( 
wTq

\bigr) 
=

1

wTw
wwT .(B.6)

Since we assume that w does not depend upon q, we could take 1/wTw out of the differen-
tiation operator. This is perhaps confusing, as we do not make this assumption elsewhere.
However, in the context of deriving the derivatives of the Gram--Schmidt vectors, this assump-
tion always holds when we have to apply (B.5); see, e.g., (A.6).

Finally, a standard formula (see, e.g., [31]), for the gradient of a normed vector is

\partial 

\partial w

\biggl( 
w

\| w\| 2

\biggr) 
=

ID
\| w\| 2

 - wwT

\| w\| 32
.(B.7)

In our case, a useful related identity is

\partial 

\partial q

\biggl( 
w

\| w\| 2

\biggr) 
=

\biggl[ 
ID

\| w\| 2
 - wwT

\| w\| 32

\biggr] 
\partial w

\partial q
,(B.8)

which follows directly from the chain rule.
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