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UTILITY MAXIMIZATION IN MULTIVARIATE VOLTERRA MODELS

FLORIAN AICHINGER* AND SASCHA DESMETTRE'

ABSTRACT. This paper is concerned with portfolio selection for an investor with power utility
in multi-asset financial markets in a rough stochastic environment. We investigate Merton’s
portfolio problem for different multivariate Volterra models, covering the rough Heston model.
First we consider a class of multivariate affine Volterra models introduced in [E. Abi Jaber et al.,
SIAM J. Financial Math., 12, 369-409, (2021)]. Based on the classical Wishart model described
in [N. Bauerle and Li, Z., J. Appl. Probab., 50, 1025-1043 (2013)], we then introduce a new
matrix-valued stochastic volatility model, where the volatility is driven by a Volterra-Wishart
process. Due to the non-Markovianity of the underlying processes, the classical stochastic control
approach cannot be applied in these settings. To overcome this issue, we provide a verification
argument using calculus of convolutions and resolvents. The resulting optimal strategy can then
be expressed explicitly in terms of the solution of a multivariate Riccati-Volterra equation. We
thus extend the results obtained by Han and Wong to the multivariate case, avoiding restrictions
on the correlation structure linked to the martingale distortion transformation used in [B. Han
and Wong, H. Y., Finance Res. Lett., 39 (2021)]. We also provide existence and uniqueness
theorems for the occurring Volterra processes and illustrate our results with a numerical study.

KEY WORDS : stochastic control, utility maximization, rough volatility, Volterra-
Wishart model, Riccati-Volterra equations, non-Markovian

1. INTRODUCTION

Since the observation was made that the paths of realized volatilities are rougher than estab-
lished volatility models would suggest, cf. [17], there is a growing research interest in developing
new models that better fit empirical data. In [I9], the popular Heston model [I8] was adapted
to the rough volatility framework by using a fractional process with Hurst index H < % as driver
of the volatility process. A more general class of volatility models covering the rough Heston
model in [19] is obtained by modelling the volatility process as a stochastic Volterra equation of
convolution type [1I, 20, 5]. Although most of the literature about rough volatility is concerned
with option pricing, there are some recent works dealing with Merton portfolio optimization in
such models. While [10] and [5] are dealing with the Markowitz portfolio problem, the Merton
portfolio problem is studied in [6], 2, 9].

Merton’s portfolio problem aims at maximizing an investor’s utility from terminal wealth
with respect to his utility function. The problem for the classical Heston stochastic volatility
model was explicitly solved in [27], based on the represenation result of [4], and solutions for
affine stochastic volatility models were derived in [30]. In [3], the Merton problem was studied
for a multi-asset financial market where the volatility is modeled by a matrix-valued Wishart
process, using stochastic control theory. In the rough framework it is no longer possible to
apply the classical stochastic control approach deriving the corresponding Hamilton-Jacobi-
Bellman equation, due to the non-markovianity of the rough volatility processes. In order to
circumvent this problem, in [2], Béuerle and Desmettre use a finite dimensional approximation
of the volatility process in order to cast the problem back into the classical framework. However,
this only yields explicit solutions in case that there is no correlation between stock and volatility.
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Han and Wong [9] overcome this difficulty using a martingale distortion Ansatz and applying
the martingale optimality principle to obtain an explicit solution for the optimal investment
strategy in a mono-asset Volterra Heston model. In order to take into account several important
stylized facts about real financial markets such as choice among multiple assets, roughness of
the volatility, correlation between different stocks and leverage effects, i.e. correlation between
a stock and its volatility, multivariate rough volatility models have recently been developed (cf.
[23], [24], [1]). In [5], Abi Jaber et al. study the Markowitz portfolio problem for a class of
multivariate affine Volterra models, that features correlation between the stocks and between a
stock and its volatility.

In this paper we solve the Merton portfolio problem for an investor with a power-utility
function for different multivariate Volterra models including the rough Heston model. The
outline of the paper is as follows: Section [2| gives an overview of the calculus of convolutions
and resolvents which is needed throughout the paper. In Section [3| we introduce a class of
multivariate affine Volterra models studied in [I] and [5]. For such a market model we consider
two different approaches to solve the Merton portfolio problem. We first adapt the martingale
distortion transformation used in [9] to the multivariate case. However, as it is pointed out in
[5], this only works if the correlation structure is highly degenerate. Inspired by the techniques
used in [3], we then provide a solution for the Merton portfolio problem for a more general
correlation structure using calculus of convolutions and resolvents. In Section {4] we introduce
a more general market model where the volatility is a matrix-valued stochastic process. In our
model we adapt the Wishart stochastic volatility model studied in [26] and [3] to the Volterra
framework, defining the variance-covariance matrix as the solution of a matrix-valued Volterra-
Wishart equation, thus extending the Heston model. Considering a matrix-valued volatility
process allows us to take into account correlation between different assets. Despite the non-
Markovianity of these settings, the optimal strategy can be expressed explicitly in terms of the
solution of a multivariate Riccati-Volterra equation. In Section [5| we illustrate our results with
a numerical example. Section [0] provides existence and uniqueness results for the appearing
Volterra equations even in the matrix-valued case. Auxiliary results and longer proofs can be
found in the Appendix.

2. CONVOLUTIONS AND RESOLVENTS

In this section we give a short overview of some important definitions and results from the
calculus of convolutions and resolvents, that we are going to use frequently throughout the
paper. We start by defining three different types of convolutions:

Definition 2.1 (Convolution of two functions). [I, Chapter 2] Let K and F be functions defined
on R;. Then the convolution K * F' of K and F' is defined as

t
(K + F)(t) = / K(t — 5)F(s)ds, (2.1)
0
whenever the above expressions are well-defined.

This definition can of course be extended to matrix-valued functions. In this case it is impor-
tant that the dimensions of the matrices are compatible.

Definition 2.2 (Convolution of a measurable function and a measure). [I, Chapter 2] Let K
be a measurable function on R} and L be a measure on Ry of locally bounded variation. Then
the convolutions K * L and L % K are defined as

(K+L)(t)= | K(t— s)L(ds); (L*K)(t):/ L(ds)K(t — s), (2.2)
[0,¢] [0,¢]

for all t € R for which the above integrals exist.
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Definition 2.3 (Convolution of a measurable function and a local martingale). [1, Chapter 2]
Let M be a d-dimensional continuous local martingale and K : R, — R™*? be a function. Then
the convolution K % dM is defined as

t
(K dM); — / K(t — s)dM,. (2.3)
0
Remark 2.4. The above convolution is well-defined as an [t6-integral for any t > 0 satisfying
t
/ |K(t — s)|* dtr(M,) < .
0

If K € L? (Ry) and there is a locally bounded process a such that (M), = fds aydu then the

loc
convolution is well defined for all ¢t > 0.

The following lemma shows that also this type of convolution is associative.

Lemma 2.5. [I, Lemma 2.1] Let K € L2 (R;,R™*9) and let L be an R™™-valued measure

loc
on Ry of locally bounded variation. Let M be a d-dimensional continuous martingale with

(M) = fg asds, t > 0, for some locally bounded adapted process a. Then
(L* (K*dM)); = (L% K)*dM), (2.4)

for every t > 0. In particular, taking F € Llloc(R+) we may apply (2.4)) with L(dt) = Fdt to
obtain (F * (K xdM)); = ((F * K) %« dM)y.

Another useful concept related to the integral kernel K are so called resolvents. We distinguish
between resolvents of the first and the second kind.

Definition 2.6. Let K € L{. (R, R™%) and L be a R?*?-valued measure on R,. Then L is

loc

called the resolvent of the first kind of K if
KxL=LxK=1 (2.5)
where I is the d-dimensional identity matrix.

Definition 2.7. For a kernel K € L (R, R4 R e LL (R, R??) is called the resolvent of
the second kind of K if
KxR=R+«K=K—R. (2.6)

The following table (cf. [I]) gives an overview of some kernels and their corresponding resol-
vents of the first and second kind.

| Type K(t) R(t) L(dt) |
Constant c ce c 160(dt)
Fractional c% ct* 1B, o(—ct®) ¢! F{l%a)dt
Exponential ~ ce™ ce Mect c1(8o(dt) + Adt)
Gamma ce*’\t% ce N IE, o(—ct®) ¢t F(laa) e~ d (1= x M) (t)dt

For a more detailed discussion of the topic we refer to [14].

3. A CLASS OF MULTIVARIATE AFFINE VOLTERRA MODELS

To start our investigation, we use the affine Volterra model introduced in [5, Chapter 4]. Let
K = diag(K1, ..., K4) with scalar kernels K; € L?([0,T],R) on the diagonal. In our model we
consider d stocks and we assume that the price of the ith stock has dynamics

dS} = S} (r¢ + 0;V)dt + Si\/VidWH,, (3.1)
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where Wi, is a d-dimensional Brownian motion and 6; > 0. For N = diag(v1,...,vy) and
D € R%? guch that D;j > 0if i # j, the volatility V = (V,..., VAT is defined as a Volterra
square-root process

Vi =wvo(t) + /Ot K(t — s)DVsds + /Ot K(t — s)N+/diag(V;)dBs. (3.2)

Here vg : Ry — Rﬁlr is a deterministic function and B is a d-dimensional Brownian motion for
which the correlation structure with Wi is given by

where W is a d-dimensional Brownian motion independent of Wy and (p1, . .., pg) € [-1,1]%. In
accordance with [5], we assume that there exists a continuous R2%-valued weak solution (V, S) to
— on some filtered probability space (€2, F, (F)>0, P), satisfying the usual conditions.
A function f is completely monotone on (0,00) if it is infinitely differentiable on (0,00) and
(=1)™f™(t) > 0 for all n > 1 and ¢ > 0. Under the assumption that for each i = 1,...,d, K, is
completely monotone on (0,00) and that there exists x; € (0,2] and k; > 0 such that
h T
/ K2(t)dt +/ (Ki(t +h) — Ki(t))%dt < k;h"™, h > 0, (3.4)
0 0

the existence of a unique in law Ri—valued continuous weak solution V' of equation is

ensured by [I, Theorem 6.1] in case that vg(t) = Vp + f(f K(t — s)b%ds for some Vp, b0 € RY (cf.

[0, Remark 4.1]). For a discussion about existence of a solution for more general input curves

vo(t), see [16]. Note that condition is fulfilled for constant, non-negative kernels, fractional
1

kernels of the form % with H € (0, %], and exponentially decaying kernels e %% with 8 > 0.
2
The existence of S defined via equation (3.1]) follows from that of V.

3.1. The optimization problem. A portfolio strategy m; = (m¢1,..., 7 4) is an (RY)* valued,
progressively measurable process, where m; ; represents the proportion of wealth invested into
stock k at time ¢. Under a fixed portfolio strategy, the wealth process (X/) has dynamic

dXT = XT (ry + mdiag(V)0 " )dt + Xymy/diag(Vi)dWy, (3.5)
where 0 = (01,...,04). By A we denote the set of admissible portfolio strategies. The conditions
under which we consider a strategy to be admissible will be specified later. We want to solve
the Merton portfolio optimization problem for power utility, i.e. our aim is to find the value
function V(zo,vo) such that

B

V(zo,v0) = sup Egg o 7(X;E)V]; 0<vy<1, (3.6)

TeA

where E; 4, is the conditional expectation given Xy = x, Vo = vg. The parameter v represents
the relative risk aversion of the investor. Smaller + correspond to higher risk aversion. A
portfolio strategy m* for which the supremum is attained is called an optimal strategy. Seen
as an optimization problem with state process (X;) this problem is non-Markovian and the
standard stochastic control approach cannot be applied.

3.2. The martingale distortion transformation. Consider a one-dimensional market model
where the risky asset S; is given by

dSt = (Tt + ,u(Y}))Stdt + O'(Y;t)Stth
and Y; is a markovian process defined via the SDE

dY; = k(Y;)dt + h(Y;)dW,",
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where W and WY have correlation p. In this setup, a candidate for the value function

X
V(t,z,y) = SupE[(j)lXt =1,Y; =y
can be obtained by solving the corresponding Hamilton-Jacobi-Bellman equation. The distortion
transformation introduced in [4] uses the Ansatz
x’y
V(ta z, y) = Tq)(t y)cv

1_1_772. With this choice of ¢, the quadratic terms (®,)?

in the HJB equation cancel out, leading to a linear PDE for ®

where the constant c is defined as ¢ :=

2
oy + (%hQayy + k() + ﬁ“ )ch(y)ay)cb + %(n + M)@ —0, (T, y) = 1,

where the Sharpe ratio A is defined as A(y) := u(y)/o(y). By the Feynman-Kac Theorem, ®

can be written as
O(t,y) = Elexp { /tT 1(?“ + Q?i(f)))ds}‘yt =y,

C

where under the probability measure P with Radon-Nikodym density

dP by 1 [t 242 2y
— |7 = A(Ys)dWy — ——= A (Ys)ds ),
Flr = e ([ TZoampaw, - 5 [ G

wYy =w) - t = ~A(Ys)ds is a standard Brownian motion.
In [6] Fouque and Hu showed that if the Sharpe-ratio A is bounded and has bounded derivative,
then the value process V; can be expressed as Vi(x,y) = Ji(X¢ = z,Y; = y), where

(XD (& T N2 (Y5) ¢
Hg )= = (Blew Jis}i7])
iy = Elewy et g gy )
even if the volatility process Y; is non-Markovian. This approach is called the martingale dis-
tortion transformation and was first introduced in the seminal paper [4] and later transferred
to a non-Markovian setting in [I2]. The extension to the multi-asset case is straight forward in
the case of a bounded risk premium (cf. [6], Remark 2.5.).

3.3. The degenerate correlation case. In this section we present an extension of the proof
of [9] to the multivariate case for a degenerate correlation structure, i.e. we assume that the
correlation in is of the form (p, ..., p) for p € [—1,1]. Note that since in our model the risk
premium is unbounded, we can not apply the results of [6]. As in the one dimensional case, the

Ansatz
T _ T ia g T c
= 0 e [ o P

is inspired by the martingale distortion transformation described in the previous section. Here
we use the short notation JI for Jy(X[,Y:). Define the diagonal matrices P := diag (p1, - - ., pd),
© := diag (61,...,04), ¥ := diag (¢1,...,14) and recall that N = diag(v1,...,v4). Under the

new probability measure P defined via the Radon-Nikodym density

dP t
——|F, = exp (7/ 0+/diag(Vy)dWis — / fdiag(V, 9T>
together with the new standard brownian motion under P

t
Wy, = Wi, — 177/ 0\/diag(V,)ds,
- 0
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an application of the exponential-affine transform formula in [Il Theorem 4.3] yields

oo [ (oo} -
T
= exp { /t 72???(;’)) + gi/)(T — s)N2Y(T — s)ft(s)ds} =: M,

where & (s) := E[V;|F] denotes the conditional P-expected variance and ¢ € L2([0,T], (R%)*)
solves the Ricatti-Volterra equation

(3.7)

Y 1 2
=(———0 A+ —YN*U) x K
v (20(1—7)@+w T UNT) K,
WithA:DqLﬁNP@. Thus we obtain
X
JtTr:( t) Mt-
v

In order to find the value function and the optimal strategy, we show that the family {J/ }rc 4
fulfills the martingale optimality principle (cf. [22, 13, [9]), i.e. we show that:
(a) J} = %(X%)7 for all T € A,;
(b) J§ = Jo is a constant independent of 7;
(c) JI is a supermartingale for all 7 € A and there exists 7* € A such that J is a
martingale.
A family of processes with the above properties can now be used to compare the expected
utilities of an arbitrary strategy = and the strategy 7*:

=

EL-(XP") = BUF < f = J§ = EUF | = E[i(ng V] = V(xo, o).

Thus the strategy 7 is indeed our desired optimal portfolio strategy.

Definition 3.1. In the setting described above, we say that a portfolio strategy 7 is admissible
if
(a) the SDE (3.5]) for the wealth process (X]') has a unique solution in terms of (S, V, W1);
(b) E[%(X;E)V] <ooforall 0 <~y <1;
(c) fg 7 diag (Vi)m] ds < 0o a.s.

The main result we get for the degenerate correlation case is the following, our proof enhances
the arguments of the proof of [9, Theorem 3.3] to the multi-dimensional case:

Theorem 3.2. Let A = D + %NP@ be invertible and let ¢ be the unique, continuous non-
continuable solution of the Riccati- Volterra equation

t
vt = [ A=K (s (38)
g 1 2
F =———0 A+ =) N°T .
on the interval [0, Tmax], given by Theorem |6.4'L Then JI = @Mt satisfies the martingale
optimality principle for t € [0,T], T < Twmax and the optimal portfolio strategy 7 is given by
1

IMore details on Tmaz can be found in Section 6.2.
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Proof: We show that J[ fulfills the martingale optimality principle. For the first condition,

o
note that M7 = 1 and hence J} = %(X;E)7 Since M)y is a constant independent of 7, JJ = %OMO
is also independent of m and thus also the second condition is satisfied. In order to show that
also the third condition is fulfilled, we apply It0’s formula on J/. Using Lemma this yields

dJT = (ry + m diag (V)0 ) My X[ dt + My X, mp/diag(Vy)dWiy
1

— M. XY -

T 5

M X 2)p(T — t)N2PEO? diag (Vi) | (T — t)dt

1
0 diag(V;)0 " )dt — 171\4t)<;7cq/)(T — t)N P, diag(V;)0 " dt
-
_
2(1 =)
X7 X;
+ Mtthw(T — t)NPlx/ diag(V})qu + MtTthJ(T — t)NPQ\/ diag(V})dWQt
-1
+ ’VTMtXt%rt diag (V;)m dt + M; X, emy N Py diag(V;)p " (T — t)dt

= JIF(m, t)dt + J[ (cp(T — t)N P/ diag(V;) + ymen/diag (V3))dWo,
+ JIep(T — t)N Po/diag(Vi)dWoy
with

Fir.t) = 10D Ging (V)] + ym(ding(V)6T + N P diag (Viw T (T — 1)

ﬁ\\diag(VtMT + eNPy diag (Vi)o (T — 1)|2.

Note that F(n*,t) = 0 and since F' is a quadratic function in 7 and v € (0,1) we have
F(m,t) <0. Solving the stochastic differential equation for J7 yields

94
Jgr _ M01'0 efg F(ws,s)dsG(Trt’t)
Y
with

t
Gl 1) = expl 3 [ (e Py ding (VuT (7 = 1)+ 7/ Fag(Vom] 3
+ eV Py dias (V)T (7 — 1) [B)ds

+ [ lew )N P g (V) + /g (VWi
[ ol = )N P TV )

Now, since F(m,t) <0, elo F(mss)ds jg 5 non-increasing function. By our assumptions on the
admissible strategies, fot s diag (Vi) ds < 0o and thus the stochastic exponential G is a local
martingale (which follows from the basic properties of the Dooléans-Dade exponential). There-
fore we can find a sequence of stopping times 71, 79, 73,... with lim, ., 7, = T a.s. satisfying

E[J{nr, | Fs] < Jg

SATp?

s <t.

Since J* > 0, an application of Fatou’s Lemma yields that JJ is a supermartingale for every
arbitrary admissible strategy 7. It remains to show that J7 is a true martingale for the optimal

* : JEF(ms,s)ds _ 7+ _ Mox] * * : i
strategy 7. In this case e/o “1"*% = 1 and hence Ji' = =—G(n7,t). G(7*,t) is a martingale
by Lemma and so is JF . In order to show that 7* is admissible, we have to show that (a),
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(b), (c) of Definition hold. Part (a) is true because (3.5) has a unique solution in terms of
(S,V,W1) as 7* is deterministic. For part (b) it suffices to show that

E[supsepon X719 < oc.

Inserting the explicit solution of the wealth process X into the left-hand side and applying a
combination of Doob’s maximal inequality together with Holder’s inequality then leads to the
desired result. Part (c) is true as our resulting optimal strategies are deterministic. O

3.4. The general correlation case. For the case where the correlation in is given by an
arbitrary vector (p1,...,pq) € [~1,1]¢, the martingale distortion arguments from the previous
section do not work anymore. Therefore, we develop a new approach inspired by the verifica-
tion arguments used in [3] to solve the optimization problem for this more general correlation
structure. In this setting we say that a portfolio strategy 7 is admissible if

(a) the SDE for the wealth process (X[') has a unique strong solution;

(b) ]E[%(X;E)V] <ooforal 0<~vy<1,;

(¢) 7 is bounded.
Remember that N = diag(v1,...,v4), P = diag(p1,...,pq), © = diag(01,...,04), ¥ =
diag (¢1,...,14). The main result we provide for this case is the following:

Theorem 3.3. For A =D + %NP@, let ¢ be the solution of the Riccati- Volterra equation

b(t) = /0 Fa()(t — )K (s)ds (3.11)

with
~
B{Y)=g—=
2(1—7)
on the interval [0, Timax), given by Theorem . Then for t € [0,T], T < Tmax, an optimal
investment strategqy m; for the Merton portfolio problem (3.6 is given by

00 + A + %(@w?qf + ﬁw%ﬂqj) (3.12)

1
T = 1~ @+ (T —t)NP) (3.13)
-
and the value function can be written as

T
V(. Vo) = B ([ are+ 6T = 5)Vals)is).

Proof: The proof is a straight forward adaption of the arguments from the proof of Theorem
to the vector-valued case. O

3.5. Comparison of the different approaches. The martingale distortion approach in sec-
tion |3.3|yields the following solution for the Merton portfolio problem in the d-dimensional affine
Volterra model. The optimal portfolio strategy is given by

1
T = 1—(9 +cp(T —t)NP).
-
The value function can be written as

1
sup Et,Xt,V;t [7(X%)7] = H(t, Xt7 ‘/t)
TEAL v

with
e r vy c
H(t, X:, Vi) = N exp (/t (vrs + megft(s) + Qw(T — s)N?U(T — 5)&(3))‘15)

where v is the solution of the Riccati-Volterra equation

b(t) = /O Fy () (t — 5)K (s)ds (3.14)
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For the approach in section we get the followmg results. The optimal portfolio strategy is
given by
1

[ (0+6(T —NP),

*
T, =
t 1_

The value function can be written as

Supiﬁoxo”ﬁ[ (X7)7] = G(0, z0, Vo)
TEA2 Y

with
.

T
G(0,z0, Vo) = 9%0 exp </0 yrs + Fa (o) (T — s)%(s)ds)

where ¢ is the (unique, global) solution of the Riccati-Volterra equation

t
o) = [ Rao)(t— 5)K(5)ds (315)
0
Fy(¢) = 2(17_)9@ + ¢A + = (¢N2<I> +3 7¢N2P2<1>)
Lemma 3.4. Let py = --- = pg and define ¢ := ﬁ. If 1 is the unique global solution of

the Riccati Volterra equation

- /0 Fy(6)(t - $)K(s)ds,

then ¢ = cy is the unique global solution of

:/0 Fy(o)(t — s)K(s)ds.

Proof. First we show that cF(v)) = Fa(cy).

cFi(¢) = c(ﬁe@ + A+ 1¢N2\1/) - me@ + oA + ngv?qf
— 2
_ — v+
=5 — )9@ +(c)A + 5 [(CQ/))NQ(C\IJ) 4 T (OINE P )]
= Fy(cy)
Since % is the unique solution of () fo Fi1(¥)(t — s)K(s)ds, we have

c(t) = /0 cFi(Y)(t —s)K(s)ds = /0 Fy(e)(t — s)K(s)ds

and thus ¢ = ¢ has to be the unique solution of ¢(t) fo Fy(9)(t — s)K(s)ds. O

Theorem 3.5. Let p1 = --- = pg. Then n*( A1) = 7*(As2) and for the value functions we have
H(Oa Zo, ‘/0) = G(Oa Zo, %)
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Proof. Recall that 7 (A1) = 125 (0 + c)(T — )N P) and 77 (A2) = 12 (0 + (T — t)NP). By
the Lemma we have ¢y = ¢ and the equality follows immediately. It remains to show that the
value functions are equal. From Lemma 4.2 (Abi Jaber, affine Volterra processes) we know that

Solt) = / R (u)du) Vi

Using this fact, the value function H reads
(0 zo, Vo) =

— exp

(/] Sk ST 7706 (9) + VT — INPU(T — )éo(s)ds)
exp (
(

exp

3 / ws+cF1(1/1)(T—5)§0(s)—i—cw(T—s)Agg(s)ds)
gff / e BT =)= [ RatuduVo(s)

0

(T — s)A(I — /O ) RA(u)du)Vo(s)ds>

”
Lo

= Doy ([ ara+ BT - o)Vo(5)s)
- exp (/OT —cF (T — s) /OS R (u)duVp(s)ds + /OT c(F1(v) * K)(T — s)AIVy(s)ds
-/ " e(Ru) < )T — 5)A | Bawyduti(s)as)

0 0

~
-0

T
= Ji}’ exp </0 yrs + cFy (¥)(T — s)Vo(s)ds) - exp ( —cFi () x (Rp * D)Vo)(T)

+ c((F1() % K)A) % IVo(T) — c((F1(9) * K)A) * ((Ra * I)Vc))(T))

.
Lo

= 7exp (/OT’W“S + cF () (T — S)VO(S)ds> - exp ( — (cF1(¥) * Ry = IVp)(T)

(B (9) + KA = IV)(T) — (cFy (@) * (KA + Ra) « IV)(T))

= afge)(p </0T’y7“s +cF () (T — 8)Vo(3)ds> - exp < Ry () * Ry % IV)(T)

+ (P () + KA = IVO)(T) = (cFy(w) + (KA = Ra) = IV0)(T))

370

= exp </0T yrs + cFy(¥)(T — s)%(s)ds) -exp(0)

LU’Y T
— ey ( /0 A7+ Ba(c))(T = 5)Vi(s)ds ) = G(0,0, Vo). T

4. THE VOLTERRA-WISHART VOLATILITY MODEL

In this section we present the Volterra-Wishart model which is a generalization of the Wishart
volatility model described in [26] and [3] to the Volterra framework. In contrast to the class
of models presented in the previous section, the volatility is now modeled as a matrix-valued
stochastic process. The main advantage of using a matrix-valued volatility model is that this
allows us to take into account the correlation between different stocks in our market and therefore
extending the vector-valued model presented in the previous section. In contrast to the quadratic
volatility models described in [5, Chapter 5] and [31], generalizing the Stein-Stein and Schébel-
Zhu model respectively, our model is an extension of the Heston model to the multivariate
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Volterra framework. The reason why we in particular investigate a Wishart model is that,
besides being a straight forward generalisation of the popular Heston model, the additional
degrees of freedom with regard to the stochastic correlation enable a better fit of market data
while being still efficiently tractable, compare e.g. [33] and [34].

4.1. Market model and optimization problem. In our model the market consists of one
riskfree asset with time-dependent, deterministic risk free rate r; and d risky assets. The asset
return vector process (S¢)i>0 = (St.1,- - ., S¢d)e>0 is defined via the stochastic differential system

dS; = diag(S)((re + Sev)dt + X/ 2dW ), (4.1)

where (W;);>0 is a d-dimensional Brownian Motion vector. The stochastic volatility process
(3¢)+>0 is given by the solution of the matrix-valued Volterra equation

Y=o+ / K(t—s)(NNT + MY, + X,M " )ds
(4.2)
/K 21/2dW"Q+/ QT(dW?) SIPK(t — s).

The integral kernel in the above equation K = diag(K7, ..., Ky) is diagonal with scalar kernels
K; € L*([0,T],R). The deterministic initial value Xy is assumed to be positive definite. The
d x d matrices N and M are responsible for the mean reversion, while matrix ) governs the
volatility of the process which is driven by a d x d Brownian motion matrix(W/);>o. In order
to incorporate the leverage effect in our model, we allow the Brownian motions (Wts )t>0 and

(W¢)e>0 to be correlated and we assume that d(Wt 1o Wiii) = Prjij with pg ;= 0 for k # i and

pkkj = p;j independent of k. Thus for p = (p1,...,ps) and another d-dimensional Brownian
motion vector B; independent of (W), we have

=1—pTpB:+W/7p.

Under the assumption that the components of the kernel K fulfill the condition

h
K; € L: (R, R) and there is ; € (0,2] such that / K(t)%dt = O(h"™)
0
. (4.3)
and / (K(t+ h) — K(t))%dt = O(h"™) for every T < oo,
0

Theorem ensures the existence of a continuous, symmetric and positive definite R4*?-valued
local weak solution X to — on some filtered probability space (€2, F, (F):>0, P), satisfying
the usual conditions. For such a symmetric, positive definite matrix ¥, by /2 we denote the
unique symmetric, positive definite matrix M for which M? = ¥£. Note that for K = I we
recover the classical Wishart model described in [3].

A portfolio strategy m = (m¢1,...,mq) is an R?-valued, progressively measurable process,
where m; . represents the proportion of wealth invested into stock k at time ¢. Under a fixed
portfolio strategy, the wealth process (X7) has dynamics

AXT = XT[(ry + 7] S,0)dt + ) S2dWS), Xo = 0. (4.4)
By A we denote the set of admissible portfolio strategies.

Definition 4.1. In our setting we say that a portfolio strategy = is admissible if

(a) the SDE (4.4) for the wealth process (X[) has a unique solution in terms of (S, 3, W*9);
(b) IE[%(X%)'Y] <ooforal 0<~vy<1,
(c¢) 7 is bounded a.s.
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We want to solve the Merton portfolio optimization problem for power utility, i.e. our aim is
to find the value function V(zg, ¥¢) such that

V(zg, Xo) = sup Exo’zo[l(X%)'y}, 0<vy<1, (4.5)
TeA Y

where E;, v, is the conditional expectation. Again, the parameter  represents the relative risk

aversion of the investor. A portfolio strategy n* for which the supremum is attained is called

an optimal strategy. As stated before, seen as an optimization problem with state process (X¢)

this problem is non-Markovian and the standard stochastic control approach cannot be applied.

4.2. The main result. We solve the Merton portfolio problem for the Volterra-Wishart model
using a verification argument inspired by [3]. As it was pointed out in Section the martin-
gale distortion approach, used by [9] in the one dimensional case, can only be applied to the
multivariate setting if the correlation structure is highly degenerate, i.e. p; = --- = pg. Since in
our model we allow arbitrary correlation vectors p, we have to use different techniques. The
proof builds on ideas presented in [3] for the classical Wishart volatility model, yet we are facing
serious technical challenges by doing that. In particular, in our case the stochastic volatility
process is of convolution type and hence non-markovian, and therefore we cannot use It6’s for-
mula in order to show optimality of the candidate for the optimal strategy. In order to overcome
this, we have to resort to the calculus of convolutions and resolvents. Note that the techniques
we apply in our proof rely on the affine structure of the Volterra-Wishart convolution equation.
Since the resulting calculations are rather involved, we present a condensed version of the proof
here and the full proof can be found in Appendix [A] Note that in contrast to the vector-valued
cased, we cannot prove global existence of a week solution for the Volterra-Wishart process (4.2))
and also the Riccati equation can only be solved locally. Therefore we can only solve the
Merton problem for a time horizon 7" within the interval [0; Tiax A Tpos)-

Theorem 4.2. Assume that equation (4.2) has a positive definite, continuous weak solution on
the interval [0, Tpos). Let 1) be the solution of the matriz Riccati- Volterra equation

() = / )t — $)K (s)ds (4.6)

with
f) =M+ M +2¢QT Qi + T, (4.7)
v g 5 8] - v
M=M+——QTw", QQ=Q'Q+——QTp'Q [=g——w'
1—vy 1—vy 2(1 =)
on the interval [0, Tmax), given by Theorem . Then fort € [0,T), T < Tmax ANTpos, an optimal
investment strategqy m; for the Merton portfolio problem (4.5)) is given by

M= 0+ (T - 9QT) (4.8)

and the value function can be written as

ZZ"Y T
V(wo, Xo) = Fyoexp</0 A7 + T f()(T = )T + (T — $)NNTds).

Sketch of Proof: In order to prove that 7* is indeed the optimal portfolio strategy, we show
that for
-

" T
G(z9,%0) := 70 exp (/0 yrs + Tre[f () (T — )20 + (T — s)NNT]ds>,

we have
(a) B0 [L(XF )] = Glao, o) for 7} = £ (v + 20(T — QT p),
(b) Eo->o [%(X%)W] < G(x9,X0) for every other admissible strategy.
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Proof of the equality (a): The SDE for the wealth process can be solved explicitly:
T 1 T
X = Xgexp ([ ratn] Sao = Slnl SR+ [l EV2aWE) X5 =,
0 0

Introducing a new probability measure Q with Radon-Nikodym density

dQ o 2T
Zo =l = exp (v / ()2 2aws - L / (7)Y 3ds)), (4.9)
dP 0 2 Jo

we obtain
. 0 T T
Ty By (X7 )Y = Exo,Eo [exp (/ yrsds + / Tr [Fszs]ds)},
0 0
where the matrix-valued, deterministic process Fy is given by

*)T + ’Y(’y - 1)71_*(71,*)T.

S 2 S S

Fs :=~v(m

Inserting the candidate for the optimal strategy 7} = ﬁ(v +2¢(T —t)Q T p), Fs can be written
in terms of f(v)

Fo=f()(T —5) = (T — )M — M (T — s) — 20(T — 5)Q T Quo(t — s)

T U = 9)QT T + (T~ 5)QT pp! QU(T —5).

Let L be the resolvent of the first kind of the integral kernel K. Then by the associativity of
the convolution and applying the fundamental theorem of calculus we obtain

FO)T = 3) = s (6 DT = ).

Thus we can write F§ as
Fo= 2 W x D)(T =) = (T = )M = M (T = 5) = 20(T = 5)Q" Qu(t — s)
29(T = 5)Q " po" +49(T = $)Q " pp ' QY(T — 5)),

5

We are interested in the expression fOTTr [FsZs]ds. Under the probability measure Q, the
process

Wt =Wy —VEI/QWZPT
is a d x d-dimensional brownian motion by Girsanov’s theorem. The dynamics of the volatility
process ¥ under Q can thus be written as
t
S = Do + / K(t—s)(NNT + MY, +S,M" + %251),?@
272 T 0T poT T, Y T T OWT — $)5.)d
+ (T =)@ pp Q@+ 5 va + _7Q pp QY(T — s)Xs)ds

/ K(t—s)SY2dweQ 4+ QT(dWw?o) TS 2K (t — s).

We insert the dynamics of ¥ into the expression Tr| fOT ﬁ(w « L)(T — s)Xsds] and simplify
using calculus of convolutions and resolvents. Finally, some terms cancel out and we end up
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with . . .
/ Tr[FsXs|ds = Tr[/ FWNT — s)Xods| + Tr[/ (T — s)NN " ds]
0 0 0

T
T /0 W(T — $)QT Qut — 5)Ssds]

/ w El/QdWUQ—FQT(dWU)TEl/Q)].
Hence we obtain

23" Eagy (X )7 =E2 o [exp ( /0 ! yreds + /0 ! ﬂ[Fsm]ds)]
— exp (/OT rsds + Tr[/OT FO)T — $)Sods] + Tr[/OT (T — s)NNTdsD

xEQ [exp ( - 2Tr[/OT QU(T — 8)Ss(t — 5)Q T ds] + 2Tr[/OT Qu(T — s)z;ﬂdvvg})} .

Since v is continuous, it is bounded and therefore the stochastic exponential is a true Q- mar-
tingale with expectation 1 by Lemma Thus we get

Ey, 5, [i(x;;*)ﬂ - a;gexp (/OT 1+ Te[f ()(T — 8)So + (T — s)NNT]ds).

This completes the first part of the proof.

Proof of the the inequality (]ED First note that standard techniques to prove the inequality like
[27, Proposition 4.5] do not apply in our setting, since we can not use Itd’s formula due to the non-
Markovianity of our volatility model. Therefore, we use a different approach writing an arbitrary
strategy 7 in terms of 7* and some remainder 7. To this end, let m; be an arbitrary admissible
portfolio strategy. Define 7 := 7 —7* and write m; = 7} + 7, where 7} = ﬁ(v +20(T—-1)Q T p.
Since m; is bounded by assumption, we can define a new probability measure Q with Radon-
Nikodym density

R dA T 2 T
Zni=Blr =exp (v [ alsaws = 2. [ el as) (4.10)

by Lemma Analogously to the first part we obtain

T T
25 Epy 5 (X7) Exo S {exp </0 yreds —i—/o Tr [FiXs] ds)].

with )
FS = fymr;r + ’Y(’Y;)Fsﬂ;r
. *a 1. .
= Rt ] a0y - ] + 10 Wa st

and F is like in the first part. Under the probability measure (@ defined in (A.2]), the process
Wta — Wtcr _ 721}/271-#’ WU _ 721/2 * T 721}/27%;)7'

is a d x d-dimensional brownian motion by Girsanov’s theorem. Hence the dynamics of the
volatility process ¥ under Q can be written as

t
zt=20+/ K(t—s)(NNT+M28+28MT+1L2SWTQ
; -
2y s CanT T T, 2y 7T e
S (T =)@ pp Q@+ 7 Q pv- Bs + _VQ pp QU(T — )%

4+ XsTp Q+7QTp7T /K Zl/QdWUQ—FQT(dWU)TZl/ZK( )
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Again we calculate Tr| fo TT=5) (w « L)(T — s)Xsds] inserting the dynamics of ¥ and using
calculus of convolutions and resolvents Some terms cancel out and this time we end up with

T A
/ Te[E,3,]ds

/ fW)T — s)Eods] +T1"/ (T — s)NN " ds]
o /0 20T - 5)Q" QU(t — 5)Suds]
T
+ Tx| / O(T — 8)(Z2aWeQ + QT (W) TSY2)] + Tr [/ Mﬁsﬁjzsds]
0 2

The term Tr[f, T 7(7 20-D 4 #7%.ds] is equivalent to OT 7(7 0=V 4 5,77 ds and since S is positive

definite and ~ E (0, 1) it has to be less than or equal to 0 Thus, for the expectation we get
T

7y Erg 3o (XP) =E2 5 [exp ( /0 " rads + /0 THF,5,Jds ) |
~ exp (/OT yrads + Tr[/o FO)(T — 5)Sods] + Tr[/OT U — )N ds))
< ED 5 [exp ( — T /0 ' 20(T = 5)Q T QU(t — 5)sds] + 2 Tx[ /0 ' QU(T — 5)2)/2dWy]
+ T /0 ' ”“2—1)7%5257%2 as))|

< exp (/OT yrsds + Tr[/OTf(w)(T — 5)¥ods] + Tr[/OT (T — s)N]\ﬁdS])

<E2 s, [on (2 [ Quir - et - QT a] + 201 Quir i)

Note that the last inequality does not hold for the case v < 0. Since the stochastic exponential
is a Q-martingale with expectation 1 by Lemma we finally obtain

Buusy [ (X)) < fg exp /O e+ )T — )50 + 9(T — ) NN ),

which completes the proof. ]

5. NUMERICAL EXAMPLES

In this section we compute the optimal portfolio strategy numerically in two-dimensional
examples. To begin, we consider a financial market with one riskfree asset and d = 2 risky
assets and an investment horizon of 7' = 1 year. The parameters are taken from [25], where such
a model is calibrated to real market data from the Standard and Poor’s 500 Index and 30-year
Treasury bond. They obtained the following estimation for the model parameters:

v —121 0491 o (0167 0033
=\ 03202 —1.271 )° =\ 0001 009 )
[ -0115 (4722
~\ 0549 )0 YT\ 3317 )0

and NNT =10Q"Q. Roughness of the model is obtained by taking an appropriate integration
kernel. We choose a fractional kernel of the form

ta—1 O 1
K(t) = ( I(a) ja1 ) , a € (5,1).
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This corresponds to the rough Heston model in the one-dimensional case. The roughness of
the volatility paths is determined by the parameter o and for o — 1 we recover the classical
model. The parameter « is linked to the Hurst parameter H via the equation « = H + % In
our example the investor has a power utility function

1
Ulx)=-2", 0<y<l.
Y

The optimal strategy 7 consists of a constant term
v

-y

and a time-depending term
2

-
. ,Yw(T HQ p,

the hedging demand. Here the parameter v is the market price of risk, v is the relative risk
aversion, p is the correlation vector, ) is the Matrix governing the diffusion of the volatility
process and % is the solution of the matrix-valued Riccati-Volterra equation (4.6)). In order to
compute the hedging demand, we have to find the solution ¥ of equation To this end
we use the fractional Adams method developed in [28],[29] to obtain a numerical solution. The
next diagram shows that if the roughness level a — 1, we recover the results of [3, Figure 1] for
the classical Wishart model.

0
0
i
7 ° ’.-
0.02 |
4 |
: S 2 e,
,/ 3F /
-0.06 p 4 // | //
-0.08 e /S 4t - . /
e / ) )
: // -5 - /
-0.12 - !
014F - ]
o :
018} .g-
-0.2 -10 .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 - . |
(A) (B)

FiGUrE 1. Hedging demands for roughness level a = 0.99 for parameter v = 0.2
(A) and v = 0.8 (B).

Figure [2[ and [3| show that, in accordance with [3], the hedging demand for v € (0,1) is
negative. The lower the risk aversion of the investor, the more negative is his hedging demand.
The roughness of the volatility of the assets also affects the hedging demand over time. Our
illustrations show that the curvature of the hedging demand is increasing as the paths of the
volatility become rougher.

To have a comparison with another multivariate Volterra model, we adapt a numerical experi-
ment from [5, Chapter 6] which was carried out for the Markowitz problem in a rough Stein-Stein
model. Our aim is to investigate how the optimal investment strategy is affected on different
time intervals within the investment horizon, if the investor can choose among a rough and a
smooth asset with Hurst parameters H; < Hso. For this experiment we again use the parameters
M,Q, p and v as in the beginning of this section. Recall that the Hurst parameter H is linked
to the parameter « in our integral kernels via H = o — % It turns out that as in [5], we end up
with three distinct regimes:
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FIGURE 2.

Left hand side: Paths of the volatility matrix for different levels of rough-
ness a = 0.95 (A), a = 0.75 (B), a = 0.55 (C).

Right hand side: The corresponding hedging demands %w(T - HQp
for risk aversion parameter v = 0.2.
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Right hand side: The corresponding hedging demands %¢(T —HQTp
for risk aversion parameter v = 0.8.
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(a) T'<< 1: When the investment horizon is close to the end, the investor is selling a larger
amount of the smooth asset than of the rough one.
(b) T~ 1: Here a transition of the investors behavior appears. First the agent prefers selling
the rough asset but as the final horizon approaches, he prefers to sell the smooth asset.
(¢c) T >> 1: All the time until the transition point close to the maturity, the investor prefers
selling the rough asset.
Our results are illustrated in Figure As pointed out in [5], a possible interpretation of this
transition could be that rough processes are more volatile than smooth processes in the short
term but less volatile in the long term. Thus, when there is not much time left, the investor
prefers rough assets to obtain some performance, whereas he favors the smooth asset on the
long run. It turns out that the larger the difference of the roughness of the two assets becomes,
the more the effect described above is pronounced. This means that if the second asset is very
rough, the transition of the investors behavior happens earlier and the amount of rough assets
the investor is selling decreases faster. In contrast to the Markowitz portfolio strategies studied
in [5], we do not observe a structural difference in our portfolio strategies for different levels of
asset correlation. While a positive asset correlation leads to a buy rough sell smooth strategy
(cf. [32]) for the optimization problem in [5], in our case the correlation level only affects the
extent to which the investor is selling both the smooth and the rough asset (see Figure @ We
want to point out that an average asset correlation of 0 can be obtained by setting the non-
diagonal entries of the matrices M and @ to zero. Since our hedging demands are linear in
terms of the vol-of-vol (), the investors’ preferences are preserved in our model if @) is multiplied
with constant, whereas in [AJMP21] the investor’s preferences do depend on the vol-of-vol. For
completeness, this is illustrated in Figure

0 0
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002} / /A /"
Yo 04 s
-0.03 // P e /
S s
/o 0151
004 // 4 '/
-0.05 T q 021 P
-0.06 | 1 0251
-0.07 [ —
03f
-0.08
009k _— 035
'0.1 i L i L _0‘4 ~ i i L L
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

(A) Vol of vol 3Q (B) Vol of vol 2Q)

FIGURE 4. Effect of two different levels of the volatility of volatility on the hedg-
ing demand. The hedging demand depends linearly on the vol of vol Q.
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6. EXISTENCE AND UNIQUENESS RESULTS FOR THE VOLTERRA EQUATIONS

In this section we provide existence and uniqueness results for the Riccati-Volterra equations

(4.6) and the stochastic Volterra equation (4.2)).

6.1. Solution of the Volterra Wishart process. Previous research on stochastic Volterra
equations has been carried out in the vector framework (cf. [5],[I]). For proving existence of a
weak solution for the matrix-valued Volterra-Wishart equation , we use the vectorization
operator in order to be able to resort to existing literature.

Theorem 6.1. Assume that K admits a resolvent of the first kind and that the components of

K satisfy . Then the stochastic Volterra equation has a unique in law R yalued

continuous weak solution on the interval [0, Thos), where Tpos := inf{t > 0: 7 >t almost sure}
= inf{t > 0: 3 is not positive definite}.

Proof: We cast the problem into the vector framework using the vectorization operator vec :
R¥xd 5 R¥4 stacking the columns of a matrix on top of one another. This leads to the R%4-
valued stochastic Volterra equation

vee(X) = vee(K * (NNT + M +SM T +SY2dwoQ + QT (dw?)T51/2))
= (I®@K)*vec(NNT + ML + XM " +SY2dw7Q + QT (dw?) £1/?)
=(I®K)*[vec(NNT) + (I ® M+ M ® I) vec(X)
+ QT @22 vec(dW) + 22 0 QT vec((dW)T)]
= (I ® K) * [b(vec(X))dt + c(vec(X))d vec(W)]
where
b(vec(X)) :=vec(NN ) + (I @ M + M & I) vec(X)
and
c(vee(D) :=Q @2+ 20 QTU

for some unitary matrix U. We now show that b and ¢ fulfill a linear growth condition.

b(vec( ) ¢(NNT) (+ 1L ® M+ M & I||p [vec(S)]

< |vec(NNT) (+zf||M|\F|vec( )| < Ci(1+ [vee(D)))
with C7 = max ‘VGC (NN,

e(vec(®)] < 107 @ V25 + 572 @ QTU | = 21Q7 £l 22
Using the fact that |22 p = /Tr(S1/251/2), we obtain
le(vee(E)* < 4] QIFIZ"IF = 41QT |17 Te(£V/2£2) = 4]|Q | : Tx(E)
<4QTFVAL+[IZ]F) < AQTIFVAL + |E]#)? = CF(L + |vee(T)))*.

Here we have used the fact that

d d
202 SVA(1+D op) <VA(L+ ) of) = Vd(1 + Tx(S?)).
i=1 ij=1

Hence for Cy = 2d'/*||Q||, we get
le(vee(2))| < Co(1 + |vec(X)]).

Thus b and ¢ fulfill the linear growth condition [I, Condition 3.1] and hence we can apply [,
Theorem 3.4] to get the desired result. O

d
= Z%‘ <Vd
i=1
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6.2. Solution of the Riccati Volterra equation. We use the concept of non-continuable
solutions described in [I]. For an integral kernel K; € L2 (R4, R%*9) and a function f : R — R?
consider the Volterra integral equation

b= K f(). (6.1)
For 0 < Tjhax < 00, by a non-continuable solution of (6.1) we denote a pair (1, Tynax) with
191 5[0, Tmax) < 00, such that i satisfies on [0, Timax) and [[¥||p,[0,/7me = 00 A mon-
continuable solution (1, Timax) is unique if for any 7' > 0 and 1 with [[9)[|,[0,7] < oo satisfying

(6.1) on [0,T], we have T' < Tiax and ¥ =1 on [0,T). If Tinax = 00, we call ¥ a global solution
of (6.1)).

Theorem 6.2. For each of the Riccati-Volterra equations (3.8)) and (3.11)) there exists a unique
non-continuable continuous solution (¢, Tax)-

Proof: The Riccati-Volterra equations (3.8) and (3.11]) are both of the form
X =F(x) K
where F' is given by
F(x) = a+Bx+ (cixi, - caxa) '
with @ € R?, B € R¥™? and ¢; € R. Thus for z, y € R? we get

F@) = Pl = |Br+ (e eand) T = By = (easdh - cad) |

< [B(x -y +

(c1(@d = 9)s - calad = 4|

<o =yl 1Blle + mas (leil) (@1 + 3@ = ), (20 + 9a) (2 — va)"
< l|g— ) e —

<[z~ yl|Bllr + max (e o+ |- | o]

<Cile—y|+Colz —y| (Jz| + |y|)

with positive constants C; = ||B||r and Cy = maxj<;<4(|c;|). Here we have used the tri-
angle inequality, the Cauchy-Schwarz inequality and the fact that for «, § € R‘fr we get
dimiqifi < 3l aiy iy Bj. Now existence and uniqueness of a non-continuable solution
(X, Tmax) follows directly from [I, Theorem B1]. O

In case that the matrix D in equation (3.2)) is diagonal, there exists even a global solution.

Theorem 6.3. Assume that the matriz D in the drift of the wvolatility process is a diagonal
matriz, i.e. D = diag (d1,...,04). Then the Riccati- Volterra equation (3.11)) has a unique global
solution if for all 1 <1 <d

B e e
1—v 1—7
Proof: If D is a diagonal matrix, the matrix A in equation (3.11]) becomes a diagonal matrix

of the form A = —diag(\1,...,\g) with \; = —§; — ﬁl/ipzﬂi. Now the vector valued equation

(3.11]) can be decomposed into d real valued Riccati-Volterra equations such that for the ith
component 1; of ¢ we obtain

)27 > 0.

5; + LViPiei <0 and (6; + LVipiei)Q
1—x -~y

t 2
2 2 L ol—y+7p; o
;i (t :/Kit—s[@—)\iwis + v ——————L; s}ds 6.2
0= [ Kt =) [z (5) + gr L) (62)
By our assumptions \; > 0 and A\? — 22(716_1'27) v? 1_17127‘0 : > 0 and therefore [10, Lemma A2] (cf.

[8, Lemma Ab5]) guarantees the existence of a unique continuous global solution of the equation
(6.2). Combining the component-wise solutions, we finally obtain the unique global solution 1)

of equation (3.11)). O



24 F. AICHINGER AND S. DESMETTRE

A vectorization argument allows us to prove existence of a local solution for the matrix
Riccati-Volterra equation (4.6)).

Theorem 6.4. The matriz Riccati-Volterra equation (4.6) has a unique non-continuable con-
tinuous solution (v, Tyaz)-

Proof: We cast the problem into the vector framework using the vectorization operator vec :
R%*4 5 R%? stacking the columns of a matrix on top of one another. This leads to the R%%-
valued Riccati-Volterra equation

vec(t)) = vec(K x [ M + M +20Q T Q¢ + 1)
= (I ® K) = vec(M + M ¢ +20Q " Qv+ T) =: (I ® K) » p(vec(v))),

where @ : R¥*d x Réxd _ Rd-dxdd denotes the Kronecker product. We now show that p fulfills
the growth condition

[p(vec(X)) — p(vee(Y))[ < C [vee(X) — vec(Y)| + Ca [vee(X) — vee(Y)] (Jvec(X)[ + |vec(Y)])
with positive constants C7 amd Co.
[p(vec(X)) — p(vec(Y))|
= |vec(XM + MTX +2XQTQX +T) — vec(YM + M"Y +2YQTQY + f)\
— [vec((X = Y)M) + vee(M T (X — Y)) + vec(2XQTOX — QYQTQY)‘
< |vec((X — Y)M)) + ‘VGC(MT(X - Y))‘ 42 ‘vec(XQTQX - YQTQY))

For the first and the second term of this sum, we have

vee((X — Y)M)‘ - ](MT ® I)vec(X — Y)’ < |MT @ I||p [vec(X — V)]

and
‘vec(MT(X - Y))‘ - ‘(1 ® M) vee(X — Y)‘ < | IT® M| |vec(X —Y)].

Since |[MT @ I||lp = I ® M"||p = Vd|M||F, we choose C; = 2v/d||M||p. For the third term,
it holds that

vee(XQTQX ~YQTQY)| = |XQTQX ~ YQTQY s
One of the following statements must be true:
IXQTRX —-YQTQY||lr < [XQTQX + XQTQY -YQTQX - YQQY|r
or ) . ) ) ) )
IXQTQX ~YQTQY|lr < [XQTQX - XQ'QY +YQTQX ~YQ'QY||F.
Without loss of generality we only treat the first case. Thus we obtain
IXQTQX - YQ'QYlr < (X = Y)QTQ(X +Y)||p-
The matrix QTQ(QT@)T is symmetric and thus its spectral decomposition can be written
as OA~OT for an orthogonal matrix O. Let Amax be the largest eigenvalue of QRQTQQTY)T.
Since QTQ(QTQ)" has only non-negative eigenvalues, Amax] — A is positive definite and so is

(X =YX +Y)OAmaxI —A)OT(X +Y)T(X —Y)T. Since the trace of a matrix is the sum of
its eigenvalues we have

Tr[(X —Y)(X +Y)OMmax] —AOT (X +V) (X =Y)T] >0
and thus
Amax TH[(X =YX+ VX +)(X =) > Te[(X =YX +Y)OAOT (X +V)T (X —=Y)]

Using the above facts, we obtain
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(X -Y)QTRX +Y)[F =Tr[(X -Y)QTQX +Y)(X +Y)(QTQ) (X -Y) ]
= Tr[(X - YV)(X +Y)QTQQTQ) (X +Y) (X -Y)T]
< Amax TH(X = V) (X +Y)(X +Y) (X - V)]

= Amax|[(X = Y)(X +Y)|%.

Hence we have

vee(XQTQX = YQTQY)| < v/ Anax vec((X = Y)(X +Y))|
= Vmax [(I @ (X = Y)vec(X +Y))|
<V sl T © (X =Y [vee(X +Y))|
= VAVl (X = )| [vee(X + V)|
< VAV [vee(X) = vee(Y)] ([vee(X)| + [vee(Y)])

leading to Cy = 2v/dv/Amax. Now an application of [I, Theorem B2] yields the desired re-
sult. O

APPENDIX A. DETAILED PROOF OF THE MAIN RESULT

Proof: In order to prove that 7* is indeed the optimal portfolio strategy, we show that for

ZL"Y T
Gl %) 1= "2 exp /O 1o T ()T — )0 + 0(T — ) NN T]ds),

we have

(a) B0 [L(XF)7] = G0, So) for mf = 11 (v + 20(T — QT p),
(b) E¥o->o [%(X%E)V] < G(=g, Xo) for every other admissible strategy.

We start with equation . The SDE for the wealth process can be solved explicitly and we
obtain for an arbitrary admissible portfolio strategy

T T
1
XF = X§ exp (/ (rs + 7] Bov = Sl B2 B)ds +/ rls2awy)
0 0

with X7 = xo.
Since 7 is continuous by the continuity of 1, it is also bounded and thus we can define a new
probability measure Q with Radon-Nikodym density

d@ T . 2 T .
Zoi= gl =ep (v [ @)Tsaws - 3 [ TE R Rs), (A
dP 0 2 Jo
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which is a martingale by Lemma [B:2] Then we obtain

1o,
Sl TEV2(3)ds

T
55" Brg 5 (XF ' = Eay [exp (7 [ e+ (7)) T80 = 5
0

#a [ i)

2

T
g %
+ 2 [Ty pas)
0
T 2 T
xoxp (v [ mTsraws = 2 [T ds)
0 2 Jo

T
1
%5, (e (v [ 0t (1) B0 = ) TEV s
’ 0

2 T
+ 2 [Ty pas)
T

2
ex [rs + () TS0 + y 1 D> mi|ds
0,20 P\ 0 S S S 2 S ss

=585, [ ([ ands+ [0 G+ 20 Dy as)|

[en]

In the following, we denote the matrix-valued deterministic process F; by

—1
Fy o= o)™+ W Dy,

Inserting the optimal strategy n} = ﬁ(v +2¢(T — t)Q T p), we obtain

Fo=1 - 7(;UUT +op QYT = 5) = (T = 5)Q pv" = 24(T = 5)Q pp" QU(T — 5))

— )T = ) = (T — )M = MTG(T = 5) — 26(T — )@ Qus(t — 5)
+ L @UT = QT T + (T — 5)QT 0T QU(T ).

Under the probability measure Q defined in (A.1}), the process
Wt Wy — ’Yzl/QWfﬂT

is a d x d-dimensional brownian motion by Girsanov’s theorem. The dynamics of the volatility
process X under Q can thus be written as

t
=Y + / K(t—s)(NNT + MY, + S, M T + i j Sep' Q
2y 2
+ 72 (T =9)Q pp' Q+ 5 QTvaE + _VVQTppTQw(T — 5)%,)ds

/ K(t—s)SY2aweQ 4+ QT (dW?o) TS 2K (t — s).
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Let L be the resolvent of the first kind of the integral kernel K. Then by the associativity of
the convolution and applying the fundamental theorem of calculus we obtain

T—s T—s
FONT = 5) = d(Td_s)/O F@)(u)du = d(Td_s)/O FONT — s — u)du
d d
- m(f(@b)w)(:r—s) = m(f(zp)*(K*L))(T—s)
d d
= m((f(w)*K)*L)(T—s) = m(wL)(T—s).

F, =

Here the last equality follows from equation (4.7)). Thus we can write Fy as
T (0 DT = 8) = 0(T = )M = MTU(T = ) = 20(T = )@ Qu(t =)
g

T U = 9)QT o + 4T~ 9)QT pp QUT — 5)).

and consequently we have

T
/ Tr[FsX]ds
’ T d T
= Tr[/o m(@b x L)(T — s)Xsds] — Tr[/0 (T — s)MXsds]
T T
— Tr[/ M (T — 5)Sqds] — Tr[/ 20(T — 5)Q T Qu(t — 5)Xds]
0 0

T2y T T T 4y T T

— Tr| ; 71/)( —35)Q pv' Xgds] — Tr] ; EI/}(T —35)Q pp QY(T — s)Xsds].
We consider the term Tr[ fo T3 (w « L)(T — s)Xsds] and substitute
=%+ K+ (NNT+ M2 +5MT + %mf@
2 _
om0 QT Q4 T Q T R QT QU )
+ K * 21/2dW"Q + QT(dW")Tzl/2 « K.
This yields

T d d
T /O T 0 DT = 5)uds] = TWW(‘” + L))+ 3)(T)]

:Tr[%i%*<E°+K*(NNT+ME+2MT R Q@ QT
+ 1 QTpUTZ—i- QTIOPTQwT E+21/2dWUQ—|—QT(dWU)TZI/2))( )]

- Tr[((d(Td_ S+ L) zo) GO

d
-f—Tr[((d(T )(1/}*L))*(K*(NNT—FME—FEMT—F%EUPTQ

+127 50T QT @+ - QTvaE+ QT QU))@))

+ Tr[((d(Td_s)w « L)) % (K « (z;/degQ + QT(dWSU)Tz;/?))) (). ()
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We now simplify the terms (I), (IT) and (III) using stochastic calculus of convolutions and
resolvents.

ad (I):

Tr [((d(Td_ 5w L)) * 20)(T)} _ [/OT d(Td_ S T = 5) - Sods

ad (II):

Tr K(d(Td)(w *L)) * (K * (NNT +ME+YMT + %Evp—r@
+ 12V ST~ QTppTQJr QTP’UT2+ QTPPTQwT ))>(T)]
=Ty [((d(Td)(zp « (L% K))) « (NNT 4+ MY + EMT + %EvaQ
+ 127 STQ e Q + o QTPUTZ + 1 QTppTQ%DT ))( )}
—Tr [((d(Td_)(w < 1)) * (NNT +ME+EMT 4+ 1—zvaQ
TS QT @+ QT R Qe QU ) ) (7))
—Tr [(zp « (NNT +M§:+2MT — 7 ZUpTQ-i- i sz QT pp O
Y AT T 2y AT T T
F QT R QT QU ) (1)
T T T
= Tr[/ (T — s)NN"ds] + Tr[/ (T — s)MXeds] + Tr[/ M (T — 5)5ds]
0 0 0
T

T
+ Tr[/o 12_771/;(1’ —$)Q pv  ,ds] + Tr[/o lll_’va(T — $)Q pp T QU(T — 5)S,ds].

ad (III):

The processes dM; = E;/QQdWS" and dM, = QTZi/Q(de)T are both continuous local
martingales and (M), and (Ma), are locally bounded. Thus we can apply Lemma [2.5] to obtain

T [([Gagrgy @ = 1)« (K « (PaW7 @+ QT(aiVy) T2/%) ) (7)]

|®~m

(6% L)] = (K + (SY2Qawy) ) (1)

=3
N
S~—

[

(G @ = 1)) = (K + (@T2V2(@iy) ) ) ()
=0 ([ gy (0 1) = K] (322Qay) ) ()]

|

[

a5y @ 1) = K] = (QT(@ivy)T) )r)]

Ty D) K] (S2VIQ + QT (W) =) ) (1)
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= :(d(Td—s)

- (57 )[w*f] (SY2AWEQ + QT (D) T5) ) (1)

[ (L )]+ (SY2aW7Q + QT (W) TsL/) ) (1)

— Ty / 1/] 21/2dWJQ + QT(dWU)T21/2)]

Combining the above results, we end up with

T T T
/ Tr[F,V,]ds = Tr[/ FNT — 5)Sods] + Tr[/ (T — s)NN "ds]
0 0 0
T
— Tr[/o 2(T — 5)Q " Qu(t — 5)Xsds]

+ Tx| / W(T — 8)(BV2dWeQ + QT (dW?) Txl/2)).

Hence we obtain

. T T
2y Eag5o (XF)7 = E2 o [exp ( /0 yrds + /O Tr[FSv;]ds)]

—E2 . [exp (/OT yrads + Tr[/OT FO)(T — $)Sods] + Tr[/OT (T — s)NNT ds]

T
Ty /0 W(T — QT Qult — 5)Lads]
+ T / O(T = $)S2dWeQ + / (T~ 5)Q" (W) x|
— exp (/O rsds + Tr[/o FO)T — $)Sods] + Tr[/o (T — s)NNTds])

xE2 . [exp ( - 2Tr[/OT QU(T — )Ss(t — 5)Q ds] + 2Tr[/0T Qu(T — s)z;ﬂdvvg})} .

Since v is continuous, it is bounded and therefore the stochastic exponential is a true Q-
martingale with expectation 1 by Lemma Thus we get

Baos (L)) = Do ([ e+ DUGIT )50 + 04T - )N NTlas),

This completes the first part of the proof.

It remains to show the inequality @ for arbitrary admissible portfolio strategies.

To this end, let m; be an arbitrary admissible portfolio strategy. Define 7 := w — n* and write
m = 7} + 7y, where 7} = ﬁ(v +2¢(T — t)Q " p. Since m; is bounded by assumption, we can

define a new probability measure Q with Radon-Nikodym density
R d A T 2 T
2= Blr = e (v [ alsifaws = 2 [ el i as) (A2)

by Lemma
Analogously to the first part we obtain

257 B (XF)Y = EC A T4 2020 s,
0 Egyso (XT)T = 0.5 | €XP ; yrsds + ; r[(’ymrs + 5 7rs7rs) s] s)|.
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We define
Boimon] + 20Dt )T+ 2D + 20D ) ()T )
= o) T + 20 ey Ty o] a0y - sl + 20D
= Fy + i) +y(y— D)mia] + 7(72_1)7%57“{,
with
Fo= gy 0+ DT =) = (T = )M = MT(T = 9) = 20(T = )Q7 Q¢ ~
n %@W —8)Q pvT + (T — $)Q  pp  QU(T - 3)).

Under the probability measure Q defined in (A.2]), the process
W =W — S 2mpT =W — 45 2t pT — A0 a7

is a d x d-dimensional brownian motion by Girsanov’s theorem.
Then the dynamics of the volatility process ¥ under Q can be written as

t
zt:20+/ K(t—s)(NNT+M25+28MT+1L25WTQ
; -
2y T T T T 2y ToT _
+—1_725w< 5)@ pp @+ 7 Q pv s+ —vQ pp QU(T — s)Es
+8ap  Q + QT p TR + / K(t—s)SY2dWiQ+ QT (W) TSIPK(t — s)
0

Therefore, we get

T
Tr[/ zf‘l_s)(w « L)(T — 8)5sds]
—Tr/ FO)N(T — 5)Sods] +ﬁ/ (T — s)NN " ds]
+ Tr[/ W(T — s)MXyds] + Tr[/ M (T — 5)%ds]
0 0
T 0T T T 0T T BT —
ST [ (T =)@ 0 B+ Tl | (T = 9)Q p QuIT — 5) s
T T
+ Tr[/ O(T — s)ySs7p' Qds] + Tr[/ W(T — s)yQ " pit T Xyds]
0 0
T N T .
O [ u(T - RAVIQ+ [ - QT @) TR
0 0

Combining the above results, we obtain
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T A
/ Tr[E,5,]ds
0

T
= Tr[/ [Fs +yory +y(y — Drtrl + 7(72_ 1)ﬁsﬁT]Esds]
/ FONT — 5)Sods] +Tr/ (T — s)NN " ds]
— T / 20(T — 5)QT QU(t — 5)Eds]
0

/ (T El/2dWUQ+QT(dWJ) 21/2) —|—2Tr/ (T —s)'yQT,OTrTE ds]

’ T -1
+ Tr[/ o) Leds] + Tr[/ Yy = D)rirl Seds]) + Tr[/ 5 Fir] Byds]
0 0 0
Since
T T T
Tr[/ yoit] Bds] + 2Tr[/ W(T — s)yvQ pit ' Syds) = Tr[/ (v +20(T — 5)Q T p)it] Syds]
0 0 0

T
= Ty / (1 — )T Sads],
0

three terms in the above sum cancel out and we end up with

T A
/ Tr[FsX]ds

/f T — 5)Xds] +Tr/ (T — s)NN T ds]

T /0 2(T — $)QT Qut — )Suds]

T
+ T / O(T — 8)(EV2dWeQ + QT (dW?)TxL/2)] + Tr[/o 7(72_ Y s 4T5.ds]

Thus, for the expectation we get

) T T
2y Egyxo (XT) = IE%)?EO {exp (/0 yrsds +/0 Tr[FSZs]dsﬂ

:exp(/OT’Wst—l-Tr[/OTf(w) — §)ods] + / (T — $)N NTds])

T ~
X Ego 20 [exp ( - Tr[/ 20(T — 5)Q" Qu(t — 5)Tsds] + 2Tr[/ QU(T — 5)2L/2dW?]
0 0
T
+ Tr[/ 7(72_ 1)ﬁ525ﬁ2ds]>}
0

< exp (/OT yrsds + Tr[/OT FW)T — s)Xods] + Tr[/OT (T — s)NNTdS])

<, 5, [exp (— 2ol | L QUT — )8t - )QTds] + 2T / " Quir - sstPai?)).
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The last inequality follows from the fact that X is positive definite and v € (0,1). Since the
stochastic exponential is a (Q-martingale with expectation 1 by Lemma we finally obtain

1 x’Y T -
B | (X)) < 20 e ( / A7 + T f()(T = )T + (T — s)NNTds),
0
which completes the proof. O

APPENDIX B. MARTINGALE PROPERTY OF STOCHASTIC EXPONENTIALS

In this section we proof the martingale property of the stochastic exponentials appearing
in Section |3| and Section The following lemma is an adaption of [I, Lemma 7.3] to the
multivariate case.

Lemma B.1. Let us denote
t 1 t
M; = exp(/ Tr(Asz;/zdwg)—Q/ HASZ;/QHQdS)
0 0

where (At)iejo,1] 95 a deterministic process with values in R4 gnd bounded by A* € R¥¢. Then
(My)iepo,r) is a martingale.

Proof: The process M, is a stochastic exponential of the form M; = fo r(As El/ 2alW"))
Since M is a non-negative local martingale, M is a supermartingale by Fatou’s lemma. Thus,
in order to show that M is a true martingale, it suffices to show that E[My]| =1 for any T > 0.
For a fixed T' > 0 we define the stopping times

Tn::inf{tZO:ngi,jgd:‘Z?

> n}.

The process M™ = M, . is a uniformly integrable martingale for each n, since the Novikov

n

condition is fulfilled due to the boundedness of A. Thus we get
1= Mg" = Ep[M7"] = Ep[Mrls,>7] + Ep[Mrls, <1].

By the theorem of dominated convergence, Ep[Mr1,, >7] — Ep[M7] and thus, in order to show
that Ep[My] = 1, it is sufficient to prove that

Ep[M71, 7] — 0, as n — 0.
Since M is a martingale, we can define probability measures Q™ with Radon-Nikodym densities
dQm
=M, .
dp "
By Girsanov’s theorem the process W™ defined by
AW = dW? + 1<y, 512 Al ds

is a d-dimensional Brownian motions under the measure Q". Furthermore, under Q™ we have
with

zg_zo+/ K(t—s)(NNT + MY + 2,M T + 15<, BAL Q + 15<,, QT AsX5)ds

/ K 21/2dWanQ+QT(dWan)T21/2)
Using the vectorization operator from Section [6] the above equation can be written as
vec(X") = vec(Xg) + (I @ K) * [vec(NNT)
+(I®(M+1<,QTA) + (M +1<,Q"A) @ I) vec(X)]
+ (I QK)*[QT @ Y2 vec(dW™) + 22 @ Q vec((dW ™) T)]
= (I ® K) * [b(vec(X))dt + c(vec(X))d vec(WW™)].
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where
b(vec(X)) ;== vec(NNT )+ (I @ (M + 1<, QTA) + (M + 1<, Q" A) @ I) vec(X)
and
c(vee(E)) :=Q T @22+ 320 Q"U
for some unitary matrix U. Using similar arguments as in the proof of Theorem one can

show that the drift and the diffusion term of the above equation fulfill the linear growth condition
[1, condition (3.1)], i.e. we have

|b(vec(X))] V [e(vec(2))| < erpa(l + |[vee(X))).

Note that the argument for the drift only works if the matrix A; is bounded. Choose p > 2
sufficiently large that x/2 — 1/p > 0 where kK = max k; for k; defined in (4.3]). An application of
[1, Lemma 3.1] yields the moment bound

sup E[|vec(X)[P] < ¢
t<T

for some constant ¢ independent of n. The 0-Holder seminorm of a function f is defined as

’f’co,O(o,T) = o sup | f(t) — f(s)].

<s<t<T
Claim: For some constant C' independent of n the following inequality holds:
Z ‘Eij‘go,o < C'|vec(%) go,o .
1<i,j<d
Proof of Claim: We have to show that

( sup ‘Z? -y <c( sup ( Z ‘g? — xid )1/2)p
1<i,j<d 0Ss<t<T 0<s<t<T | Sy
or equivalently
i .. 2
i3 |)P)1 7| “\1/2
(2 ( swp =7 —zipyr<e s (3 [P - i)
1<i,j<d 0S5<IsT 0<s<t<T | 50y

Since for a vector x we have ||z]|;e < ||z||;p for 1 < p < ¢ < oo, it holds that the left-hand side
is bounded by
(> ( swp |53y )2,
| <Sijed 0Ss<t<T

PIP< (Y ( sup |5 - s
1<i,j<d 0<s<t<T

Using the fact that the square of the supremum of a set of non-negative numbers equals the
supremum of the squares, it remains to show that

ij _ s ij _ g
sup ‘Et -YY <C sup Z ‘Et — X%
0<s<t<T

1<i,j<d 0S5<IsT 1<i,j<d
Clearly
tj ij |2 2 ij ij |2
sup |X) —¥Y| <d® max ( sup |X/ —XY|).
0<s<t<T B 1<i,j<d 0<s<t<T B
1<i,j<d V=SS ==t Ose<is
and since
Vi<ij<dWo<s<t<T:|nV_xil < s _ |
=) >a, =S = . t s — t s
1<i,j<d
we get,

2 2

max ( sup ‘E? — XY

1a )< sup Y ‘E?—E?
1<4,j<d 0<s<t<T

0<s<t<T 1<ij<d

This completes the proof of the claim. O
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We now show that Ep[Mr1, 7] — 0 as n — oc:

Ep[Mrly<r] = Q" <T) = Q"(31 < i,j < d : sup|£¥ ] > n)

t<T
< D QU Zj’ >n) < Y, QT Y|coor) > )
1<ij<d =T 1<1,]<d
1 .
< Z (———)" EQ”HEU‘Z‘O,O(O,T)] (Markov inequality)

)
1<ij<d T~ ‘20

1
< (—=m )P Egr »i ]
n—[ogs] 1<;<d‘ OOOT)
1 .
< C(m)p EQ"HVGC(E)‘I()]O,O] (Claim)
0
1
< C(w) SUPE@”Hb(VeC(Et))|p + le(vec(2¢))[”] ([1, Lemma 2.4])
1
< C(W) sup Egn[(1 + |vec(X:)])P] (Growth condition)
< C(W) supEQn[ + [vec(3) 7]
1
< - P ).
< C(n — \Zf)nax]) ([I, Lemma 3.1])

Since the constant C' is independent of n we finally obtain

E]P’[MTlTn<T] S C(n )P n—oo0, 0

9

— 5]
which completes the proof. O

Lemma B.2. Let us denote
T T
1
M, = exp(/ Tr(ASTz;/2dW§)—2/ ||Ajzg/2\|2ds)
t t

where (At)cjo,r) 15 a deterministic process with values in RY and bounded by A* € RY. Then
(My)iejo,m s a martingale.

Proof: This is a direct consequence of Lemma and [3, Proposition A.2.]. O

The next lemma is an enhancement of [5, Appendix C], the proof follows similar arguments.

Lemma B.3. Let W1, W5 be two independent d-dimensional brownian motions and for 1 <i <d
let g1i, g2; € LOO(R+,R). Then the local martingale

t d
/ Zgh VWi, + [ gu()y/Viaws,)
0 =1
s a true martingale.

Proof: Set U = fo Vsds. Then by the stochastic Fubini theorem we get

t t
Ul = / vh(s)ds —|—/ Ki(t —s)Zds
0 0

t t
Z;_/ (DVS),»ds—Ir/ viy/ VidB:.
0 0

with
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Since M is a non-negative local martingale, M is a supermartingale by Fatou’s lemma. Thus,
in order to show that M is a true martingale, it suffices to show that E[Mr]| =1 for any 7" > 0.
For a fixed T' > 0 we define the stopping times

t
Tn :—inf{tZO:EllgiSd:/ Vids > n}.
0
The stopped process M™ = M, A is a uniformly integrable martingale for each n, since the
Novikov condition is fulfilled due to the boundedness of g; and g2. Thus we get
1= Mg" = Ep[M7"] = Ep[Mr1y,>7] + Ep[Mr1y, <7].

By the theorem of dominated convergence, Ep[Mr1,, >7] — Ep[M7] and thus, in order to show
that Ep[My] = 1, it is sufficient to prove that

EIP’[MTlrn<T] — 0, as n — Q. (B.l)
Since M ™ is a martingale, we can define probability measures Q™ with Radon-Nikodym densities
dQm
=M, .
dpP "
By Girsanov’s theorem the processes W{* and W3' defined by

Wit = Wi +/0 Locr, g1i(s)y/Vids, 1 < i < d,

WQn’i = WQZ + /0 1537—7“927@'(8) des, 1< < Cl,

are d-dimensional Brownian motions under the measure Q". Furthermore, under Q™ we have

. t . t .
U = / vo(s)ds +/ Ki(t—s)ZMds
0 0

. t . .
zZ = / ((DVi)i = Ls<r, pivigri(s)Vy — Ls<r, )\/ 1 = pivigai(s)Vy)ds
0

t . .
+/ vin/ VE(pidWi2' + /1 — p2dWo2")
0 1 2

and under Q™, the drift of Z" satisfies a linear growth condition in U for some constant kr,
independent of n. Therefore an application of the generalized Gronwall inequality (cf. [7
Lemma 3.1]) yields the moment bound

EQ" HUT|2] < n(’{La Tv K7 ’Uo),
where n(kr, T, K,vg) does not depend on n. An application of Chebyshev’s inequality yields
EP[MTlTn<T] = Qn(Tn < T)

d
<> Q"(Uf>n)
=1

1 )
<Y 5 El|UH]

d
=1
1 2
3 Eqgn[|Ur|7]

n—oo

1
ﬁn("i[n T7 K7 UO) — 0

IN

This completes the proof. O
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APPENDIX C. DYNAMICS OF THE PROCESS M

We derive the dynamics of the process M appearing in the martingale distortion approach
using It6’s formula (cf. [9, Theorem 3.2]).

Lemma C.1. The process My defined in (3.7) has dynamics

th = Mt[—’ﬂ“t — GGW]d

2(1— )
+ Mycehp(T — t)N+/diag (Vi) PrdWq + Mtcw — t)N+/diag (V;) PodWoy,
- ﬁMtcw — t)N Py diag(V;)0 " — 2(1 —yMillew(T ~ ¢ )N \/diag (V) P[5

Proof: Let Z; = ft yrs + 2(1_ 00&(s) + SAW)(T — s)&(s)]ds. Then My = e”*. Applying
Itd’s lemma to & (s) yields

d&(s) = Ry (s — t) AT N /diag(V;)d B,

by [I, Lemma 4.2]. Define A(¢)) := ¢ N?¥. Then

dZy = [—yre — ﬁeevt 2A(1/1)(T —t)Vi]dt
/ HGRA (s — t)A"'N\/diag (V;)dByds
/ g T — s)Rp(s —t)A 1N\/dlag Vi) dByds

= [y —

m‘g@m 2A(1/J)(T — t)ViJdt

HG)RA(S —t)A"  Nds+/diag (V;)d By

/ g T — $)Ra(s — ) A~ Nds+/diag (V;)dB,

- me@vt — SAW)(T - Vit

T
+/t [%A(u})(T— s) + 2(17_7)9@]&(5 — t)A~dsN\/diag (V;)dB;.

Here, for the second equality, we used the stochastic Fubini theorem from [I5]. Next, we show
that

T
/t [SAWYT - 5) + 2(17_ LN YA~ ds = (T — ).
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We have
T . ~
/ [ZAW)T — s) + =————00O]|Rp(s — t)Aflds — (T —1)
t 2(1 - V)
00] x (RAAH)(T —t)

N 2‘4 2(1— )

~[5A) ~ oA+ g

00] * (RAA™F — K)(T —t) + c(A) x K(T —t)

00] * (cK)(T - 1)

B 2‘4 2(1— )

C y _
= [§A(¢) — A + A + 21 7)ee] * (RAA™Y — K)(T —t) + c(¢A) * K(T —t)

= [5AW) —coh+ 5

00] x ((—KA x Ry\)A™Y)

+ c(PA) % (—Rp * K)(T —t) + c¢(vA) « K(T —t)
= (—c(A) * RAAN)(T —t) — c(pA) * (Rpy * K)(T — t) + c(¢A) x K(T —t)
= c(YA) x [K — Ry * K — RAAN (T —t) = 0.

Here the last equality holds, since

K—Ry+K=(K—Rpy*K)AM ™' = (KA — (Ry * K)A)A™!
= (KA — Ry (KA)A™ = (KA — (KA — Rp))A™t = RaA™L,

Thus we get

dZy = [—yry — mg@vt 2A(¢)( — O)Vildt + (T — t)N\/diag (V;)dB,

= [=vre - 00V; — *A(d})(T — t)Vildi

2(1 7)
+ (T — t)N+/diag (V4) Plqu—i—cw — t)N+/diag (V) PadWo,

where P; = diag (p) and P, = diag (v/1 — p?).
Since M, = e%t, by Itd’s formula we obtain dM; = M,dZ; + %Mtd(Zt, Zy), i.e

dM; = My|—~ry — 0OV, — EA(w)(T — )Vt

_r
2(1 =)
—|—Mtcw — t)N+/diag (V;) PldWlt—i—Mtcw — t)N+/diag (V;) P, dWo,
+ MtHC?/’ — t)N/diag (Vi) P1[|5 + Mt||0¢ — t)N/diag (Vi) Pyl

= My[—yre — 00V;]dt

2(1— )
+ Mych)(T — t)N+/diag (Vi) PrdWq + Mtcw — t)N+/diag (V;) PodWoy,
- ﬁMcw(T — )N Py diag(V;)0" — 2(1 —y Mellew(T ~ )N /ding (V) P1 3.

The last equality holds, since in the degenerate correlation case we have the following identity:
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C
—Mth(w)( — t)Vidt + Mtllcw — t)N+/diag (V;) P, ||?

:_fMtij — O2Vidt + MtE YT — Vi1 — p?)dt
i=1
1
= (- +01- Mt § ch — )i Vdt
2ol 11O
2.2 2 2.2 2 2
1_’” > lcwl( WiV, =53 t;lcwz( iVip

1
:_177 illew(T — )N /diag (Vi) P13
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