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COMPRESSIBLE NAVIER–STOKES SYSTEM WITH TRANSPORT NOISE

DOMINIC BREIT, EDUARD FEIREISL, MARTINA HOFMANOVÁ, AND EWELINA ZATORSKA

Abstract. We consider the barotropic Navier–Stokes system driven by a physically well-motivated trans-
port noise in both continuity as well as momentum equation. We focus on three different situations: (i) the
noise is smooth in time and the equations are understood as in the sense of the classical weak deterministic
theory, (ii) the noise is rough in time and we interpret the equations in the framework of rough paths with
unbounded rough drivers and (iii) we have a Brownian noise of Stratonovich type and study the existence
of martingale solutions. The first situation serves as an approximation for (ii) and (iii), while (ii) and
(iii) are motivated by recent results on the incompressible Navier–Stokes system concerning the physical
modeling as well as regularization by noise.

1. Introduction

Many SPDEs studied in the context of fluid mechanics concern fluids driven by stochastic forcing.
Randomness is incorporated through the effect of the outer world while the fluid model remains de-
terministic. The recent striking discoveries concerning possible ill–posedness of some well established
mathematical models, notably the Euler and Navier–Stokes systems, motivated a renewed interest in a
proper modification of the existing models to restore regularity and well–posedness at least at a stochastic
level.

Mikulevicius and Rozovskii [32] introduced randomness at the Lagrangian level imposing a stochastic
forcing in the equation for the streamlines X = X(t),

(1.1) dX = u(t,X) dt+ σ ◦ dW,

where the macroscopic velocity u is augmented by a stochastic forcing of Stratonovich type. Similar ideas
were incorporated in the general theory developed by Holm [26], see also the most recent development in
[1], [15], [27]. In the same spirit, a series of different models has been proposed by Cruzeiro et al. [2],
[11], [12], including stochastic variants of the compressible Navier–Stokes system, see Section 1.2 below.

From a more mathematical perspective the right choice of transport noise can lead to regularization
effects and improve well-posedeness results for deterministic problems. A breakthrough in this direction
has been achieved in [18], where it has been shown that transport noise has regularizing effects on
the transport equation. A first result for the incompressible Navier–Stokes equations has been recently
established in the remarkable work [20]. It is proved that a particular transport noise delays the blow-up
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of the vorticity with large probability. As a matter of fact, it is not stochasticity of the forcing which
provides this regularization but the roughness of the perturbation. The same effect is present in the case
of a suitable purely deterministic forcing in the context of geometric rough paths, cf. [19] .

The goal of the present paper is to develop a rigorous existence theory for models of compressible fluids
including the random effects motivated by (1.1). In general, we consider the randomness as an intrinsic
property of the fluid motion without any impact on the bulk macroscopic quantities, in particular, the
total mass, momentum, and energy. Accordingly, the bulk velocity will undergo random perturbations
only in the convective terms, while the same quantity remains unchanged in the advected quantities
and diffusion transport terms. To a certain extent, the idea is similar to the “two velocities concept”
advocated by Brenner [8], [10]. The two-velocity formulation and resulting drift in the balance of mass
and momentum are also postulated for the second-order Aw-Rascle model of vehicular traffic [3]. In this
model the velocity of free traffic u differs from the actual velocity w by the velocity offset p. The model
then consists of two conservation equations of mass and of the augmented momentum:

{

∂tn+ ∂x(nu) = 0,
∂t(nw) + ∂x(nuw) = 0,

or equivalently
{

∂tn+ ∂x(nw) = ∂x(np),
∂t(nw) + ∂x(nww) = ∂x(nwp),

where the form of the drift terms becomes apparent on the right hand side. In the simplest setting, the
difference between the velocities depends only on the concentration of the cars, i.e., there is a “pseudo-
pressure” function p(n) such that w = u+ p(n). For example, in [9], p(n) ≈ n

n∗−n , where n
∗ denotes some

safe concentration of the cars, assumed to be constant. However, by analogy to the first order models, n∗

could also include: the dependence on velocity of the cars (the safe distances between the drivers should
increase with the speed of driving), the random dependence on the space variable (modeling obstacles
on the road), or the dependence on the initial condition and time (to take into account individual initial
preferences of the interacting agents). See, for example, [4, 13, 33] for a relevant overview of the models
and results.

For the sake of simplicity, we focus on the barotropic fluid ignoring the temperature changes. In
accordance with the above philosophy, the field equations in the unknown velocity u and density ̺ read

d̺+ div(̺u) dt = div(̺Q) ◦ dW(1.2)

d(̺u) + div(̺u⊗ u) dt+∇xp(̺) dt = div S(Dxu) dt+ div(̺u⊗Q) ◦ dW,(1.3)

where
div(̺Q)dW = ∂xj

(̺Qj,k)dWk, [div(̺u⊗Q)dW]i = ∂xj
(̺uiQj,k)dWk,

and W is a K-dimensional Wiener process.

Thus, similarly to (1.1), the advective component of the velocity has been augmented by a random term

Q ◦ dW.

We suppose Newton’s rheological law

S(Dxu) = 2µDxu+ η divu I = 2µ
(

∇u+∇uT
)

+ η divu I(1.4)
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with strictly positive viscosity coefficients µ and η for the viscous stress tensor, and the adiabatic pressure
law p(̺) = a̺γ with a > 0 and γ > 1. Finally, we impose the periodic boundary conditions

(1.5) Ω = TN , N = 2, 3.

In contrast to the variants of the stochastic compressible Navier–Stokes system considered so far, cf.
[7, 6, 34], the noise in (1.2)–(1.3) is energy conservative (we outline this below in Subsection 1.1). In
fact, the noise considered in previous papers is constantly adding energy to the system. This is physically
unreasonable and even results in the non-existence of stationary solutions for the full Navier–Stokes–
Fourier system of heat-conducting fluids, cf. [5, Section 7].

In the context of transport noise we consider three different situations:

(i) The noise is smooth in time and the equations are understood as in the classical weak deterministic
theory from [30, 17], see Theorem 2.1 for details.

(ii) The noise is rough in time and we interpret the equations in the framework of rough paths with
unbounded rough drivers, see Theorem 3.5.

(iii) We have a Brownian noise of Stratonovich type and study the existence of weak martingale
solutions in the spirit of [7], see Theorem 4.1.

The study of the system subject to smooth noise in Section 2 is rather an auxiliary result (which we use as
an approximate system for the other cases). Its analysis is based on a three-layer approximation scheme
as introduced in [17].

Eventually, we turn to the case of a rough noise in Section 3. Here, the system can be driven by a
general geometric 2-step rough path which gives some flexibility from the modeling point of view. One
can consider a Brownian motion but also a fractional Brownian motion with Hurst parameter H > 1/3 or
other Gaussian processes which can be lifted to such rough paths. The proof uses the power of rough path
theory and the analysis here is entirely deterministic. Namely, after the corresponding rough path has been
built, possibly using probability theory, we fix its realization ω and deduce existence of a weak solution.
This solution is obtained via a Wong–Zakai approximation, i.e., as limit of solutions corresponding to
smooth approximate noises.

Since uniqueness is an open problem, solutions obtained this way are not stochastic processes. Indeed,
measurability has been lost by taking subsequences depending on ω. We overcome this issue by combining
rough path theory and probabilistic arguments in Section 4. More precisely, we consider (1.2)–(1.3)
perturbed by a stochastic transport noise of Stratonovich type. We employ the rough path ideas from
Section 3 and establish existence of a martingale solution based on the stochastic compactness method
using Jakubowski’s extension of the Skorokhod representation theorem from [29].

The key difficulty in both (ii) and (iii) is to obtain strong convergence of the density based on the
effective viscous flux identity mentioned above. In the smooth setting we are able to find a commutator
which gains one derivative and therefore permits to get the necessary estimate and to pass to the limit.
However, this does not seem to be possible in the irregular setting unless the vector fieldsQ are independent
of the spatial variable.1 For constant vector fields, we prove a nice cancellation of the corresponding noise
terms. As a consequence, the strong convergence of the density can be reduced to the classical arguments
from the deterministic theory from [30, 17].

1.1. Energy estimates. Let us explain on a formal level why the noise in (1.2)–(1.3) is energy conser-
vative. Let P satisfying

P ′(̺)̺− P (̺) = p(̺)

1In view of possible extensions of our results to the Dirichlet problem, where the noise should vanish at the boundary, it
would be desirable to allow x-dependence of Q.
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be the associated pressure potential. Multiplying (1.2) on P ′(̺) we get

dP (̺) + div(P (̺)u) dt+ p(̺) divudt = P ′(̺) div(̺Q) ◦ dW.(1.6)

Repeating the same with −1
2 |u|2 yields

−1

2
|u|2d̺− 1

2
|u|2 div(̺u) dt = −1

2
|u|2 div(̺Q) ◦ dW(1.7)

Finally, multiplying (1.3) on u yields

|u|2d̺+ ̺
1

2
d|u|2 + div(̺u)|u|2 dt+ ̺u

1

2
∇x|u|2 dt+ div(p(̺)u) dt− p(̺) divudt

=div(S(Dxu) · u) dt− S(Dxu) : Dxudt+ u · div(̺u⊗Q) ◦ dW.
(1.8)

Summing up (1.6)–(1.8) we obtain the total energy balance

d

[

1

2
̺|u|2 + P (̺)

]

+ div

([

1

2
̺|u|2 + P (̺)

]

u

)

dt+ div
(

p(̺)u− S(Dxu) · u
)

dt

= −S(Dxu) : Dxudt

+ P ′(̺) div(̺Q) ◦ dW− 1

2
|u|2 div(̺Q) ◦ dW.+ u · div(̺u⊗Q) ◦ dW

(1.9)

In addition, after a straightforward manipulation,

−1

2
|u|2 div(̺Q) ◦ dW+ u · div(̺u⊗Q) ◦ dW = div

(

1

2
̺|u|2Q

)

◦ dW,

and

P ′(̺) div(̺Q) ◦ dW = div(P (̺)Q) ◦ dW + p(̺) divQ ◦ dW.

Thus the energy balance (1.9) reads

d

[

1

2
̺|u|2 + P (̺)

]

+ div

([

1

2
̺|u|2 + P (̺)

]

u

)

dt+ div
(

p(̺)u− S(Dxu) · u
)

dt

= −S(Dxu) : Dxudt+ div

([

1

2
̺|u|2 + P (̺)

]

Q

)

◦ dW

+ p(̺) divQ ◦ dW

(1.10)

In order to control the energy, we need

divQ = 0 ⇔ ∂xj
Qj,k = 0 for any k = 1, . . . ,K.(1.11)

Under this additional assumption we obtain finally

d

∫

TN

[

1

2
̺|u|2 + P (̺)

]

dx = −
∫

TN

S(Dxu) : Dxudxdt.

1.2. Comparison with Chen, Cruzeiro, Ratiu. Finally, we compare the present model with the
approach of Chen, Cruzeiro, and Ratiu [11]. In [11, Theorem 5.5] they propose the following model

d̺+ div(̺u) dt = 0,

du+ u · ∇xu = −1

̺

(

√

2µ∇xu · dW− µ∆xudt− η∇x divudt+∇xp(̺) dt
)

.
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Here, in addition, the term ∇xu · dW is interpreted as

∑

k

∂xk
udWk, Wk = (W, . . . ,W )

and the stochastic integral is Itô’s integral.
As the equation of continuity is deterministic, the system can be written as

d̺+ div(̺u) dt = 0,

d(̺u) + div(̺u⊗ u) dt+∇xp(̺) dt = µ∆xudt+ η∇x divudt−
√

2µ
∑

k

∂xk
udW.

In the associated energy balance, there is the Itô’s correction term

µ

̺

∑

k

|∂xk
ui|2 , i = 1, 2, 3,

which does not seem to be controllable due to the appearance of the density in the denominator. So, it
is unclear how to prove energy estimates.

2. Smooth noise

In this section we establish existence of a solution to (1.2)–(1.3) under the assumption that the noise
is smooth in time. Specifically, we assume

Q = (Qk)
K
k=1, Qk ∈W 2,∞

div (TN ,RN ),(2.1)

W = (Wk)
∞
k=1, Wk ∈ C1(I,RN ).(2.2)

and set QW :=
∑K

k=1QkWk ∈W 1,∞(I × TN ,RN ).
A weak solution (u, ̺) satisfies the system in the following sense:

• The momentum equation

−
∫

I

∫

TN

(

̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ
)

dxdt

+

∫

I

∫

TN

S(∇xu) : ∇xϕdxdt−
∫

I

∫

TN

p(̺) divϕdxdt

=

∫

TN

q0 · ϕ(0) dx−
∫

I

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdt

(2.3)

holds for all ϕ ∈ C∞(I × TN ) with ϕ(T ) = 0.
• The continuity equation

−
∫

I

∫

TN

(

̺∂tψ + ̺u · ∇ψ
)

dxdt =

∫

TN

̺0ψ(0) dxdt

+

∫

I

∫

TN

̺Q · ∇xψ ∂tW dxdt

(2.4)
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for all ψ ∈ C∞(I ×TN ) with ψ(T ) = 0. In addition, the renormalized version of (2.4) is satisfied,

−
∫

I

∫

TN

(

θ(̺)∂tψ + θ(̺)u · ∇ψ
)

dxdt =

∫

TN

θ(̺0)ψ(0) dxdt

−
∫

I

∫

TN

(

θ(̺)− θ′(̺)̺
)

divuψ dxdt

+

∫

I

∫

TN

θ(̺)Q · ∇ψ ∂tW dxdt

(2.5)

for all ψ ∈ C∞(I × TN ) with ψ(T ) = 0 and all θ ∈ C1([0,∞)) with θ′(z) ∈ Cc[0,∞).
• The energy inequality

−
∫

I
∂tψ E dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdt ≤ ψ(0)

∫

TN

(

1

2

|q0|2
̺0

+ P (̺0)

)

dx(2.6)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

E (t) =

∫

Ω(t)

(1

2
̺(t)|u(t)|2 + P (̺(t))

)

dx,

where the pressure potential is given by P (̺) = a
γ−1̺

γ .

Theorem 2.1. Let

γ >
N

2
.

Assume that we have

̺0 ∈ Lγ(TN ), ̺0 ≥ 0,
|q0|2
̺0

∈ L1(TN ).

Furthermore, suppose that Q and W satisfy (2.1)–(2.2).
Then there exists a solution

(u, ̺) ∈ L2(I;W 1,2(TN ))× Cw(I;L
γ(TN ))

to (2.3)–(2.6).
In addition, the associated pressure admits the estimate

∫

I×TN

p(̺)̺Θ dxdt ≤ c, Θ <
2

N
γ − 1,(2.7)

where c depends on the norms of Q and W specified in (2.1)–(2.2). If Q is independent of x estimate

(2.7) is independent of Q and W.

2.1. The approximate solutions. As the “noise” is smooth, the weak solutions can be constructed
by means of the approximate scheme introduced in [28, Chapter 7]. First, fix a family of parameters
ε > 0, δ > 0 and β > max{4, γ}. Next, consider a suitable orthogonal system formed by a family
of smooth functions (ψn). We choose (ψn) such that it is an orthonormal system with respect to the
L2(TN ) inner product which is orthogonal with respect to the the W l,2(TN ) inner product. Note that in
the present setting, the basis (ψn) can be formed by trigonometric polynomials. Now, let us define the
finite dimensional spaces

Xm = span{ψ1, . . . ,ψm}, m ∈ N,

and let Pm : L2(TN ) → Xm be the projection onto Xm. We aim to find a solution (u, ̺) to the following
system.
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• The momentum equation holds in the sense that
∫

TN

̺u ·ϕdx−
∫ t

0

∫

TN

̺u⊗ u : ∇xϕdxdσ

+

∫ t

0

∫

TN

S(∇xu) : ∇xϕdxdt−
∫ t

0

∫

TN

(

p(̺) + δ̺β
)

divϕdxdt− ε

∫ t

0

∫

TN

̺u ·∆xϕdxdσ

=

∫

TN

q0 · ϕdx−
∫ t

0

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdσ

(2.8)

for all ϕ ∈ Xm.
• The continuity equation holds in the sense that

∂t̺+ div(̺u) = ε∆̺+ div(̺Q)∂tW(2.9)

in I × TN , and ̺(0) = ̺0,δ, where ̺0,δ is a smooth approximation of the initial density ̺0.

Observe that the approximate system is almost the same as in [28, Chapter 7], with the velocity in the
convection term augmented by a smooth solenoidal component

w = Q · ∂tW.

Thus the proof of convergence, consisting in three successive limits,

m→ ∞, ε→ 0, δ → 0,

remains essentially the same provided we clarify the following issues:

• Total mass and energy estimates for the system with the extra drift terms.
• The pressure estimates claimed in (2.7).
• The so-called Lions’ identity for the effective viscous flux.

2.2. Total mass and energy estimates. Obviously, the total mass
∫

TN

̺dx =M0

remains constant, meaning determined by the initial data at any level of approximation. Moreover, as
observed in Section 1.1, the total energy is conserved even in the case of a “non–smooth” noise, specifically,

−
∫

I
∂tψ E dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdt ≤ ψ(0)

∫

TN

(

1

2

|q0|2
̺0

+ P (̺0)

)

dx

holds for any ψ ∈ C∞
c ([0, T )). Here, the inequality is pertinent to weak solutions. As the energy balance

is obtained, at any level of approximation, via the scalar product of the momentum equation with the
velocity u, all relevant estimates remain valid in the new setting.

Similarly to [28, Chapter 7] we obtain the following result.

Proposition 2.2. Assume that we have for some α ∈ (0, 1)

|q0|2
̺0

∈ L1(TN ), ̺0 ∈ C2,α(TN ).

Furthermore, suppose that Q and W satisfy (2.1)–(2.2) and that ̺0 is strictly positive. Then there is a

solution

(u, ̺) ∈ C(I;Xm)× Cα(I;C2+α(TN ))

to (2.8)–(2.9).
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2.3. The viscous approximation. We wish to establish a solution to the following system with artificial
viscosity and artificial pressure.

• The momentum equation holds in the sense that

−
∫

I

∫

TN

(

̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ
)

dxdt

+

∫

I

∫

TN

S(∇xu) : ∇xϕdxdt−
∫

I

∫

TN

pδ(̺) divϕ dxdt− ε

∫

I

∫

TN

̺u ·∆xϕdxdt

=

∫

TN

q0 · ϕ(0) dx−
∫

I

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdt

(2.10)

for all ϕ ∈ C∞(I × TN ) with ϕ(T ) = 0 and we have ̺u(0) = q0.
• The continuity equation holds in the sense that

∫

I

∫

TN

(

̺∂tψ + ̺u · ∇ψ
)

dxdt =

∫

TN

̺0ψ(0) dx+ ε

∫

I

∫

TN

∇̺ · ∇ψ dxdt

+

∫

I

∫

TN

̺Q · ∇xψ ∂tW dxdt

(2.11)

for all ψ ∈ C∞(I × TN ) with ψ(T ) = 0 and we have ̺(0) = ̺0.
• The energy inequality is satisfied in the sense that

−
∫

I
∂tψ Eδ dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdσ

+ ε

∫

I
ψ

∫

TN

P ′′
δ (̺)|∇̺|2 dxdσ ≤ ψ(0)Eδ(0)

(2.12)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

Eδ(t) =

∫

TN

(1

2
̺(t)|u(t)|2 + Pδ(̺(t))

)

dx

and the pressure potential is given by Pδ(̺) =
a

γ−1̺
γ + δ

β−1̺
β.

Proposition 2.3. Assume that we have for some α ∈ (0, 1)

|q0|2
̺0

∈ L1(TN ), ̺0 ∈ C2,α(TN ).

Furthermore suppose thatt Q and W satisfy (2.1)–(2.2) and that ̺0 is strictly positive. There is a solution

(u, ̺) ∈ L2(I;W 1,2(TN ))× Cw(I ;L
β(TN )) ∩ L2(W 1,2(TN ))

to (2.10)–(2.12).

Proof. For a given m ∈ N we obtain a solution (um, ̺m) to (2.8)–(2.9) by Theorem 2.2. Testing (2.8) by
um and (2.9) by 1

2 |um|2 we have

1

2

∫

TN

̺m|um|2 dx+
∫ t

0

∫

TN

S(∇xum) : ∇xum dxdσ

=
1

2

∫

TN

|qm
0 |2
̺m0

dx+

∫ t

0
pδ(̺m) divum dxdσ
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+

∫

I

∫

TN

̺mQ · ∇x
1

2
|um|2 ∂tW dxdt−

∫

I

∫

TN

̺mum ⊗Q : ∇xum ∂tW dxdt

=
1

2

∫

TN

|qm
0 |2
̺m0

dx+

∫ t

0
pδ(̺m) divum dxdσ

for almost all 0 ≤ t ≤ T . Multiplying (2.9) by P ′
δ(̺m) we get

∂tPδ(̺m) + div(Pδ(̺m)um) + pδ(̺m) divum = P ′(̺m) div(̺mQ)∂tW.

For the last term we have
∫

TN

P ′(̺m) div(̺mQ)∂tW dx =

∫

TN

∇xP (̺m) ·Q∂tW dx = −
∫

TN

P (̺m) divQ∂tW dx = 0

such that we conclude

1

2

∫

TN

̺m|um|2 dx+
∫

TN

Pδ(̺m) dx+

∫ t

0

∫

TN

S(∇xum) : ∇xum dxdσ

=
1

2

∫

TN

|qm
0 |2
̺m0

dx+

∫

TN

Pδ(̺
m
0 ) dx ≤ c.

(2.13)

We deduce the bounds

sup
t∈I

‖̺m‖β
Lβ(TN )

+ sup
t∈I

‖̺mum‖
2β
β+1

L
2β
β+1 (TN )

≤ c,(2.14)

‖∇xum‖2L2(I×TN ) + ‖∇x̺m‖2L2(I×TN ) + ‖∇x(̺m)β/2‖2L2(I×TN ) ≤ c.(2.15)

Passing to a subsequence we obtain

um ⇀ u in L2(I;W 1,2(TN )),(2.16)

̺m ⇀∗ ̺ in L∞(I;Lβ(TN )),(2.17)

̺m ⇀ ̺ in L2(I;W 1,2(TN )).(2.18)

Since (2.9) and (2.8) yield compactness of ̺m and ̺mum, is is straightforward to pass to the limit in
(2.9) and (2.8). We obtain (2.11) and (2.10). Similarly, we can multiply (2.13) by a smooth temporal
test-function and use lower-semi continuity to obtain (2.12). �

2.4. The vanishing viscosity limit. We wish to establish the existence of a weak solution (u, ̺) to the
system with artificial pressure in the following sense:

• The momentum equation holds in the sense that

−
∫

I

∫

TN

(

̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ
)

dxdt

+

∫

I

∫

TN

S(∇xu) : ∇xϕdxdt−
∫

I

∫

TN

pδ(̺) divϕdxdt

=

∫

TN

q0 · ϕ(0) dx−
∫

I

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdt

(2.19)

for all ϕ ∈ C∞(I × TN ) with ϕ(T ) = 0 and we have ̺u(0) = q0;
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• The continuity equation holds in the sense that

−
∫

I

∫

TN

(

̺∂tψ + ̺u · ∇ψ
)

dxdt =

∫

TN

̺0ψ(0) dxdt

+

∫

I

∫

TN

̺Q · ∇xψ ∂tW dxdt

(2.20)

for all ψ ∈ C∞(I × Ω) with ψ(T ) = 0 and we have ̺(0) = ̺0.
• The energy inequality is satisfied in the sense that

−
∫

I
∂tψ Eδ dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdt ≤ ψ(0)Eδ(0)(2.21)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

Eδ(t) =

∫

Ω(t)

(1

2
̺(t)|v(t)|2 + Pδ(̺(t))

)

dx

and the pressure potential is given by Pδ(̺) =
a

γ−1̺
γ + δ

β−1̺
β.

Proposition 2.4. Assume that we have for some α ∈ (0, 1)

|q0|2
̺0

∈ L1(TN ), ̺0 ∈ C2,α(TN ).

Furthermore suppose that Q and W satisfy (2.1)–(2.2) and that ̺0 is strictly positive. There is a solution

(u, ̺) ∈ L2(I;W 1,2(TN ))× Cw(I;L
β(TN ))

to (2.19)–(2.21).

Lemma 2.5. Under the assumptions of Proposition 2.4 the continuity equation holds in the renormalized

sense, that is we have

−
∫

I

∫

TN

(

θ(̺)∂tψ + θ(̺)u · ∇ψ
)

dxdt =

∫

TN

θ(̺0)ψ(0) dxdt

−
∫

I

∫

TN

(

θ(̺)− θ′(̺)̺
)

divuψ dxdt

+

∫

I

∫

TN

θ(̺)Q · ∇xψ ∂tW dxdt

(2.22)

for all ψ ∈ C∞(I × TN ) with ψ(T ) = 0 and all θ ∈ C1([0,∞)) with θ′(z) = 0 for all z ≥Mθ.

For a given ε we obtain a solution (uε, ̺ε) to (2.10)–(2.12) by Theorem 2.3. In particular, we have

1

2

∫

TN

̺ε|uε|2 dx
∫

TN

( a

γ − 1
̺γε +

δ

β − 1
̺βε

)

dx+

∫ t

0

∫

TN

S(∇xuε) : ∇xuε dxdσ

≤ 1

2

∫

TN

|q0|2
̺0

dx+

∫

TN

( a

γ − 1
̺γ0 +

δ

β − 1
̺β0

)

dx

(2.23)

for any 0 ≤ t ≤ T . We deduce the bounds

sup
t∈I

‖̺ε‖βLβ(TN )
+ sup

t∈I
‖̺εuε‖

2β
β+1

L
2β
β+1 (TN )

≤ c,(2.24)

‖∇xuε‖2L2(I×TN ) + ε‖∇x(̺ε)
β/2‖2L2(I×TN ) ≤ c.(2.25)
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Finally, we deduce from the equation of continuity (2.11) (one easily proves that ̺ε is and admissible test
function by parabolic maximum regularity theory) that

(2.26)

∫

TN

̺ε(t, ·) dx =

∫

TN

̺0 dx, ‖
√
ε∇x̺ε‖L2(I×TN ) ≤ c.

Note that all estimates are independent of ε. Hence, we may take a subsequence such that

uε ⇀ u in L2(I;W 1,2(TN )),(2.27)

̺ε ⇀
∗ ̺ in L∞(I;Lβ(TN )),(2.28)

ε∇̺ε → 0 in L2(I × TN ).(2.29)

We observe that the a priori estimates (2.24) imply uniform bounds of ̺εuε in L∞(I, L
2β
β+1 (TN )). There-

fore, we may obtain using (2.11) in conjunction with (2.27)

̺εuε ⇀ ̺u in Lq(I, La(TN )),(2.30)

where a ∈ (1, 2β
β+1) and q ∈ (1, 2). Similarly, we can use (2.10) to conclude

̺εuε ⊗ uε ⇀ ̺u⊗ u in L1(I × TN ).(2.31)

At this stage of the proof the pressure is only bounded in L1, so we have to exclude its concentrations.
We are going to prove that

(2.32)

∫

I×TN

pδ(̺ε)̺ε dxdt ≤ c

with a constant independent of ε. In order to verify (2.32) we test the momentum equation (2.10) with
∇x∆

−1
x ̺ε. In order to deal with the term involving the time derivative we use the continuity equation

(2.11). It holds

∂t∇x∆
−1
x ̺ε = ∇∆−1

x div(̺εuε + ε∇x̺ε) +∇x∆
−1
x div(̺εQ∂tW).

such that we obtain

J0 :=

∫

I

∫

TN

pδ(̺ε)̺ε dxdσ

= µ

∫

I

∫

TN

S(∇xuε) : ∇2
x∆

−1
x ̺ε dxdσ −

∫

I

∫

TN

̺εuε ⊗ uε : ∇2
x∆

−1
x ̺ε dxdσ

+ ε

∫

I

∫

TN

∇(uε̺ε) : ∇2
x∆

−1
x ̺ε dxdσ +

∫

I

∫

TN

̺εuε∇∆−1
x div(̺εuε + ε∇x̺ǫ) dxdσ

+

∫

I

∫

TN

[

∆−1
x ∇x[̺ε] · div(̺εuε ⊗Q) + ̺εuε ·∆−1

x ∇x div(̺εQ)
]

∂tW dxdσ

= : J1 + · · ·+ J5.

(2.33)

Based on (2.27)–(2.29) it is well-known how to estimate the terms J1 − J4. As far as J5 is concerned we
rewrite

J5 =

∫

I

∫

TN

∂xj

[

∆−1
x ∂xi

[̺ε]̺εu
i
εQj,k

]

∂tWk dxdσ

+

∫

I

∫

TN

[

uiε

(

̺∂xj
∆−1

x ∂xi
[̺εQj,k]− ̺εQj,k∂xj

∆−1
x ∂xi

[̺ε]
)]

∂tWk dxdσ
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=

∫

I

∫

TN

[

uiε

(

̺ε∂xj
∆−1

x ∂xi
[̺εQj,k]− ̺εQj,k∂xj

∆−1
x ∂xi

[̺ε]
)]

∂tWk dxdσ.(2.34)

We obtain by continuity of ∂xj
∆−1

x ∂xi

|J5| ≤ ‖uε‖L2(I;L2(TN ))‖̺ε‖2L2(I;L4(TN )),

which is uniformly bounded by (2.24) and (2.25) as long as β ≥ 4. This finishes the proof of (2.32) and
we conclude there exists a function p such that

pδ(̺ε)⇀ p in L1(I;L1(TN )),

at least for a subsequence. Combining this with the convergences (2.27)–(2.31) we can pass to the limit
in (2.10) and (2.11) and obtain the continuity equation

−
∫

I

∫

TN

(

̺∂tψ + ̺u · ∇ψ
)

dxdt =

∫

TN

̺0ψ(0) dxdt

+

∫

I

∫

TN

̺Q · ∇xψ ∂tW dxdt

(2.35)

for all ψ ∈ C∞(I × TN ) with ψ(T ) = 0 and the momentum equation

−
∫

I

∫

TN

(

̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ
)

dxdt

+

∫

I

∫

TN

S(∇xu) : ∇xϕdxdt−
∫

I

∫

TN

p divϕdxdt

=

∫

TN

q0 ·ϕ(0) dx−
∫

I

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdt

(2.36)

for all ϕ ∈ C∞(I × TN ) with ϕ(T ) = 0. It remains to show strong convergence of ̺ε. The proof of
strong convergence of the density is based on the effective viscous flux identity introduced in [30] and the
concept of renormalized solutions from [16]. We aim to prove that

∫

I×TN

(

pδ(̺ε)− (λ+ 2µ) divuε

)

̺ε dxdt

−→
∫

I×TN

(

p− (λ+ 2µ) divu
)

̺dxdt

(2.37)

as ε → 0. This is based on rearranging the terms in (2.33) and passing to the limit in the corresponding
terms on the right-hand side (the term which one obtains when testing (2.36) with ∇x∆

−1
x ̺). This is

well-known for all terms except for J5. However, we can use the commutator structure in J5 from (2.34).
By div-curl lemma (in the version of [17, Lemma 3.4]) the convergences (2.27)–(2.47) are sufficient to
infer that J5 converges to its expected counterpart. This concludes the proof of (2.37).

In order to proceed we need to derive the renormalized equation of continuity. We apply a spatial
mollification with radius κ≪ 1 to (2.35) and obtain

∂t(̺)κ + div((̺)κu) = div((̺)κQ)∂tW+ r1κ + r2κ,

r1κ = div
(

(̺)κu− (̺u)κ
)

,

r2κ = div
(

(̺)κQ− (̺Q)κ
)

∂tW,
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in I × TN . Here we have

‖r1κ‖Lq(TN ) ≤ ‖u‖W 1,2(TN )‖̺‖Lβ+1(TN ),
1

q
=

1

2
+

1

β + 1
,

‖r2κ‖Lq(TN ) ≤ ‖Q∂tW‖W 1,2(TN )‖̺‖Lβ+1(TN ),

as well as r1κ, r
2
κ → 0 in L1(TN ) for a.a. t. Hence we have r1κ, r

2
κ → 0 in L1(I × TN ). For a function

θ ∈ C1([0,∞)) with θ′(z) = 0 for all z ≥Mθ we obtain using div(Q)κ = (divQ)κ = 0

∂tθ((̺)κ) + div(θ((̺)κ)u) = div(θ((̺)κ)Q)∂tW + (r1κ + r2κ)θ
′((̺)κ).

Multiplying by ψ ∈ C∞(I × TN ) with ψ(T ) = 0 integrating in space-time and passing to the limit yields

−
∫

I

∫

TN

(

θ(̺)∂tψ + θ(̺)u · ∇ψ
)

dxdt =

∫

TN

θ(̺0)ψ(0) dxdt

−
∫

I

∫

TN

(

θ(̺)− θ′(̺)̺
)

divudxdt

+

∫

I

∫

TN

θ(̺)Q · ∇xψ ∂tW dxdt.

(2.38)

By the monotonicity of the mapping ̺ 7→ p(̺), we find that

(λ+ 2µ) lim inf
ε→0

∫

I×TN

(

divuε ̺ε − divu ̺
)

dxdt

= lim inf
ε→0

∫

I×TN

(

p(̺ε)− p
)(

̺ε − ̺
)

dxdt ≥ 0

using (2.37) (together with the convergences (2.27) and (2.28)). We conclude

divu ̺ ≥ divu ̺ a.e. in I × TN ,(2.39)

where

divuε ̺ε ⇀ divu ̺ in L1(I × TN ),

recall (2.27) and (2.28). Now, we compute both sides of (2.39) by means of the corresponding continuity
equations. Since (uε, ̺ε) is a strong solution to (2.11) (which can be shown by parabolic maximum
regularity theory) it is also a renormalized solution and we have

∂tθ(̺ε) + div(θ(̺ε)u) = (θ(̺ε)− θ′(̺ε)̺ε) + div(θ(̺ε)Q)∂tW

+∆xθ(̺ε)− θ′′(̺ε)|∇̺ε|2

for any θ ∈ C2([0,∞)). Choosing θ(z) = z ln z and integrating in space-time we gain
∫ t

0

∫

TN

divuε ̺ε dxdσ ≤
∫

TN

̺0 ln(̺0) dx−
∫

TN

̺ε(t) ln(̺ε(t) dx(2.40)

for almost all 0 ≤ t < T . Similarly, equation (2.38) yields with the choice ψ = I[0,t]
∫ t

0

∫

TN

divu ̺dxdσ =

∫

Ω0

̺0 ln(̺0) dx−
∫

TN

̺(t) ln(̺(t)) dx.(2.41)

Combining (2.39)–(2.41) shows

lim sup
ε→0

∫

TN

̺ε(t) ln(̺ε(t)) dx ≤
∫

TN

̺(t) ln(̺(t)) dx
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for any t ∈ I. This gives the claimed convergence ̺ε → ̺ in L1(I × TN ) by convexity of z 7→ z ln z.
Consequently, we have p = p(̺) and the proof of Theorem 2.4 is complete.

2.5. Proof of Theorem 2.1. In this subsection we are ready to prove the main result of this section
by passing to the limit δ → 0 in the system (2.19)–(2.21) from Section 2.4. Given initial data (q0, ̺0)
belonging to the function spaces stated in Theorem 2.1 it is standard to find regularized versions qδ

0 and
̺δ0 such that for all δ > 0

̺δ0 ∈ C2,α(TN ), ̺δ0 strictly positive,

∫

TN

̺δ0 dx =

∫

TN

̺0 dx

as well as qδ
0 → q0 in L

2γ
γ+1 (TN ), ̺δ0 → ̺0 in Lγ(TN ) and
∫

TN

(1

2

|qδ
0|2
̺δ0

+ Pδ(̺
δ
0)
)

dx→
∫

TN

(1

2

|q0|2
̺0

+ P (̺0)
)

dx,

as δ → 0. For a given δ we gain a weak solution (uδ , ̺δ) to (2.19)–(2.21) with this data by Proposition 2.4.
Exactly as in Section 2.4 we deduce the following uniform bounds from the energy inequality:

(2.42) sup
t∈I

‖̺δ‖γLγ(TN )
+ sup

t∈I
δ‖̺δ‖βLβ(TN )

≤ c,

sup
t∈I

∥

∥̺δ|uδ |2
∥

∥

L1(TN )
+ sup

t∈I

∥

∥̺δuδ

∥

∥

2γ
γ+1

L
2γ
γ+1 (TN )

≤ c,(2.43)

(2.44)
∥

∥uδ

∥

∥

2

L2(I;W 1,2(TN ))
≤ c.

Finally, we have the conservation of mass principle resulting from the continuity equation, i.e.,

(2.45) ‖̺δ(τ, ·)‖L1(TN ) =

∫

TN

̺(τ, ·) dx =

∫

TN

̺0 dx for all τ ∈ [0, T ].

Hence we may take a subsequence, such that

uδ ⇀ u in L2(I;W 1,2(TN )),(2.46)

̺δ ⇀
∗ ̺ in L∞(I;Lγ(TN )).(2.47)

Arguing as in Section 2.4, we find for all q ∈ (1, 6γ
γ+6 ) that

̺δuδ ⇀ ̺u in L2(I, Lq(TN ))(2.48)

̺δuδ ⊗ uδ → ̺u⊗ u in L1(I;L1(TN )).(2.49)

As before in (2.32) we have higher integrability of the density in the sense that for 0 < Θ ≤ 2
N γ − 1

(2.50)

∫

I×TN

pδ(̺δ)̺
Θ
δ dxdt ≤ c

with constant independent of δ. In order to prove (2.50) we test the momentum equation (2.19) by
∆−1

x ∇x̺
Θ. Noticing that

∂t∆
−1
x ∇x̺

Θ
δ = ∇∆−1

x div(−̺Θδ uε) + (1−Θ)̺Θδ divuδ +∇x∆
−1
x div(̺Θδ Q∂tW)
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as a consequence of the renormalized equation of continuity (2.38) the terms arising from the noise are
(these must be controlled in addition to the known estimates)

∫

I

∫

TN

[

∆−1
x ∇x[̺

Θ] · div(̺δuδ ⊗Q) + ̺δuδ ·∆−1
x ∇x div(̺

Θ
δ Q)

]

∂tW dxdσ

=

∫

I

∫

TN

∂xj

[

∆−1
x ∂xi

[̺Θδ ]̺δu
i
δQj,k

]

∂tWk dxdσ

+

∫

I

∫

TN

[

uiδ

(

̺δ∂xj
∆−1

x ∂xi
[̺Θδ Qj,k]− ̺δQj,k∂xj

∆−1
x ∂xi

[̺Θδ ]
)]

∂tWk dxdσ

=

∫

I

∫

TN

[

uiδ

(

̺δ∂xj
∆−1

x ∂xi
[̺Θδ Qj,k]− ̺δQj,k∂xj

∆−1
x ∂xi

[̺Θδ ]
)]

∂tWk dxdσ

≤ ‖Q∂tW‖L∞(I×TN )‖uδ‖L1(I;L6(TN ))‖̺δ‖L∞(I;Lγ(TN ))‖̺Θδ ‖L∞(I;Lq(TN ))

(2.51)

with q = 6γ
6γ−γ−6 . Note that the integral above cancels if Q is independent of x such that (2.50) is

independent of Q and W in this case. In general, it is bounded by (2.42)–(2.44) as a consequence of our
choice of Θ and the assumptions on Q and W. This proves (2.50) which yields the existence of a function
p such that (for a subsequence)

pδ(̺
(δ))⇀ p in L1(I × TN ),(2.52)

δ(̺(δ))β → 0 in L1(I × TN ).(2.53)

Using (2.52) and the convergences (2.46)–(2.49) we can pass to the limit in (2.19) and (2.20) and obtain

−
∫

I

∫

TN

(

̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ
)

dxdt

+

∫

I

∫

TN

S(∇xu) : ∇xϕdxdt−
∫

I

∫

TN

p divϕdxdt

=

∫

TN

q0 ·ϕ(0) dx−
∫

I

∫

TN

̺u⊗Q : ∇xϕ ∂tW dxdt

(2.54)

for all test-functions ϕ ∈ C∞(I × TN ) with ϕ(T ) = 0. Moreover, the equation of continuity

−
∫

I

∫

TN

(

̺∂tψ + ̺u · ∇ψ
)

dxdt =

∫

TN

̺0ψ(0) dxdt(2.55)

+

∫

I

∫

TN

̺Q · ∇xψ ∂tW dxdt(2.56)

hold for all ψ ∈ C∞(I × TN ) with ψ(T ) = 0.

It remains to show strong convergence of ̺(δ). We define the L∞-truncation

Tk(z) := k T
(z

k

)

z ∈ R, k ∈ N.(2.57)

Here T is a smooth concave function on R such that T (z) = z for z ≤ 1 and T (z) = 2 for z ≥ 3. we
clearly have

Tk(̺δ)⇀ T 1,k in Cw(I;L
p(TN )) ∀p ∈ [1,∞),(2.58)

(

T ′
k(̺δ)̺δ − Tk(̺δ)

)

divuδ ⇀ T 2,k in L2(I × TN ),(2.59)
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for some limit functions T 1,k and T 2,k. Now we have to show that
∫

I×TN

(

pδ(̺δ)− (λ+ 2µ) divuδ

)

Tk(̺δ) dxdt

−→
∫

I×TN

(

p− (λ+ 2µ) divu
)

T 1,k dxdt.

(2.60)

In order to prove (2.60) we test (2.19) by ∆−1
x ∇xTk(̺δ), while (2.54) is tested by ∆−1

x ∇xT
1,k. The crucial

point here, which makes the difference to known theory, is the prove the convergence of the terms relating
to the noise: we have to show justify that

∫

I

∫

TN

[

∆−1
x ∇x[Tk(̺δ)] · div(̺δuδ ⊗Q) + ̺δuδ ·∆−1

x ∇x div(Tk(̺δ)Q)
]

∂tW dxdσ

→
∫

I

∫

TN

[

∆−1
x ∇x[T

1,k] · div(̺u⊗Q) + ̺u ·∆−1
x ∇x div(T

1,kQ)
]

∂tW dxdσ

(2.61)

as δ → 0. As in (2.51) we can rewrite the term in question as

=

∫

I

∫

TN

[

uiδ

(

̺δ∂xj
∆−1

x ∂xi
[Tk(̺δ)Qj,k]− ̺δQj,k∂xj

∆−1
x ∂xi

[Tk(̺δ)]
)]

∂tWk dxdσ

such that the convergence in (2.61) follows from from (2.46), (2.47) and (2.58) using the div-curl lemma
(in the version of [17, Lemma 3.4]). The next aim is to prove that ̺ is a renormalized solution. Using
(2.38) with θ = Tk and passing to the limit δ → 0 we arrive at

∂tT
1,k + div

(

T 1,ku
)

+ T 2,k = div
(

T 1,kQ
)

∂tW(2.62)

in the sense of distributions in I ×TN . Note that we extended ̺ by zero to Rn. The next step is to show
for some q > 0

lim sup
δ→0

∫

I×TN

|Tk(̺δ)− Tk(̺)|q dxdt ≤ C,(2.63)

where C does not depend on k. The proof of (2.63) follows exactly the arguments from the classical setting
(see [17]) using (2.60) and the uniform bounds on uδ. Applying a smoothing procedure (as outlined in
the proof of (2.38)) to (2.62) we have

∂tθ(T
1,k) + div

(

θ(T 1,k)u
)

+ θ′(T 1,k)T 2,k = div
(

θ(T 1,k)Q
)

∂tW(2.64)

in the sense of distributions for all θ ∈ C1([0,∞)) with θ′(z) = 0 for all z ≥ Mθ. Based on (2.63) one
can now prove that T 1,k → ̺ and θ′(T 1,k)T 2,k → 0 as k → ∞. One can now use the argument from [17,
Section 7.3] to conclude the proof of strong convergence of the density. This is not affected by the noise
as it disappears after integrating (2.64) in space.

3. Rough noise

The purpose of this section is to prove an existence result for the compressible Navier–Stokes system
(1.2)–(1.2) driven by a rough transport noise. Here, we assume that the vector fields Q are independent
of the spatial variable, i.e. Q = (Qk)

K
k=1 ⊂ RN . Before we give a rigorous definition of a solution in

Section 3.2 we introduce the set-up concerning rough paths.
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3.1. Rough paths. In this section we introduce the notion of a rough path. For an introduction to the
theory of rough paths, we refer the reader to the monographs [31, 23, 22].

For a given interval I, we define ∆I := {(s, t) ∈ I2 : s ≤ t} and ∆
(2)
I := {(s, θ, t) ∈ I3 : s ≤ θ ≤ t}.

For a given T > 0, we let ∆T := ∆[0,T ] and ∆
(2)
T = ∆

(2)
[0,T ]. Let P(I) denote the set of all partitions of an

interval I and let E be a Banach space with norm ‖ · ‖E . A two-index map g : ∆I → E is said to have
finite p-variation for some p > 0 on I if

‖g‖p−var;I;E := sup
(ti)∈P(I)

(

∑

i

‖gtiti+1‖pE

)
1
p

<∞.

We denote by Cp−var
2 (I;E) the set of all two-index maps with finite p-variation on I equipped with the

seminorm ‖·‖p−var;I;E. In this section, we drop the dependence of norms on the space E when convenient.

We denote by Cp−var(I;E) the set of all paths z : I → E such that δz ∈ Cp−var
2 (I;E), where δzst := zt−zs.

For a given interval I, a two-index map ω : ∆I → [0,∞) is called superadditive if for all (s, θ, t) ∈ ∆
(2)
I ,

ω(s, θ) + ω(θ, t) ≤ ω(s, t).

A two-index map ω : ∆I → [0,∞) is called a control if it is superadditive, continuous on ∆I and for all
s ∈ I, ω(s, s) = 0.

If for a given p > 0, g ∈ Cp−var
2 (I;E), then it can be shown that the two-index map ωg : ∆I → [0,∞)

defined by
ωg(s, t) = ‖g‖pp−var;[s,t]

is a control (see, e.g., Proposition 5.8 in [23]).
We shall need a local version of the p-variation spaces, for which we restrict the mesh size of the

partition by a control.

Definition 3.1. Given an interval I = [a, b], a control ̟ and real number L > 0, we denote by

Cp−var
2,̟,L (I;E) the space of continuous two-index maps g : ∆I → E for which there exists at least one

control ω such that for every (s, t) ∈ ∆I with ̟(s, t) ≤ L, it holds that |gst|E ≤ ω(s, t)
1
p . We define a

semi-norm on this space by

|g|p−var,̟,L;I = inf
{

ω(a, b)
1
p : ω is a control s.t. |gst| ≤ ω(s, t)

1
p , ∀(s, t) ∈ ∆I with ̟(s, t) ≤ L

}

.

For a two-index map g : ∆I → R, we define the second order increment operator

δgsθt = gst − gθt − gsθ, ∀(s, θ, t) ∈ ∆
(2)
I .

Definition 3.2. Let K be natural and p ∈ [2, 3). A continuous p-rough path is a pair

(3.1) Z = (Z,Z) ∈ Cp−var
2 ([0, T ];RK)× C

p
2
−var

2 ([0, T ];RK×K)

that satisfies the Chen’s relation

δZsθt = Zsθ ⊗ Zθt, ∀(s, θ, t) ∈ ∆
(2)
[0,T ].

A rough path Z = (Z,Z) is said to be geometric if it can be obtained as the limit in the product topology

Cp−var
2 ([0, T ];RK)×C

p
2
−var

2 ([0, T ];RK×K) of a sequence of rough paths {(Zn,Zn)}∞n=1 such that for each
n = 1, 2, . . . ,

Zn
st := δznst and Zn

st :=

∫ t

s
δznsθ ⊗ dznθ ,
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for some smooth paths zn : [0, T ] → RK , where the iterated integral is a Riemann integral. We denote

by Cp−var
g ([0, T ];RK) the set of geometric p-rough paths and endow it with the product topology.

We will only consider geometric rough paths. Thus, in case of a Brownian motion, a Stratonovich
integral should be used for the construction of the iterated integral if one wishes to lift it to a geometric
rough path. Now we define unbounded rough drivers, which can be regarded as operator valued rough
paths with values in a suitable space of unbounded operators. In what follows, we call a scale any family
(En, ‖ · ‖n)0≤n≤3 of Banach spaces such that En is continuously embedded into Em for n ≥ m. For
n ∈ {0, 1, 2, 3} we denote by E−n the topological dual of En, and note that, in general, E−0 6= E0. On
the scale (En)0≤n≤3 we require the existence of a family of smoothing operators (Jη)η∈(0,1) acting on En

(for n = 1, 2) in such a way that the two following conditions are satisfied:

(3.2) ‖Jη − id‖L(Em,En) . ηm−n for (n,m) ∈ {(0, 1), (0, 2), (1, 2)} ,

(3.3) ‖Jη‖L(En,Em) . η−(m−n) for (n,m) ∈ {(1, 1), (1, 2), (2, 2), (1, 3), (2, 3)} .

Definition 3.3. Let p ∈ [2, 3) and T > 0 be given. A continuous unbounded p-rough driver with respect
to the scale (En, ‖ · ‖n)0≤n≤3, is a pair A = (A1, A2) of 2-index maps such that there exists a control ωA

on [0, T ] such that for every (s, t) ∈ ∆T ,

(3.4) ‖A1
st‖pL(E−n,E−(n+1))

≤ ωA(s, t) for n ∈ {0, 1, 2}, ‖A2
st‖

p
2

L(E−n,E−(n+2))
≤ ωA(s, t) for n ∈ {0, 1},

and Chen’s relation holds true,

(3.5) δA1
sθt = 0, δA2

sθt = A1
θtA

1
sθ, ∀(s, θ, t) ∈ ∆

(2)
T .

Now we consider the rough PDE

(3.6) dgt = µ(dt) +A(dt)gt,

whereA = (A1, A2) is an unbounded p-rough driver on a scale (En)0≤n≤3 and the drift µ ∈ C1−var(I;E−3),
which possibly also depends on the solution, is continuous and of finite variation. A path g : I → E−0 is

called a solution (on I) of the equation (3.6) provided there exists q < 3 and g♮ ∈ C
q
3
−var

2 (I,E−3) such
that for every s, t ∈ I, s < t, and ϕ ∈ E3,

(3.7) (δg)st(ϕ) = (δµ)st(ϕ) + gs({A1,∗
st +A2,∗

st }ϕ) + g♮st(ϕ).

The following a priori estimate is given in [14, Cor. 2.11].

Proposition 3.4. Let p ∈ [2, 3) and fix an interval I ⊆ [0, T ]. Let A = (A1, A2) be a continuous

unbounded p-rough driver with respect to a scale (En)0≤n≤3, endowed with a family of smoothing operators

(Jη)η∈(0,1) satisfying (3.2) and (3.3), and let ωA be a control satisfying (3.4). Consider a path µ ∈
C1−var(I;E−3) for which there exists a control ωµ such that for all s < t ∈ I and ϕ ∈ E3,

(3.8) |(δµ)st(ϕ)| ≤ ωµ(s, t) ‖ϕ‖E2 .

Besides, let g be a solution on I of the equation (3.6) such that g♮ ∈ C
p
3
−var

2 (I;E−3). Then there exists a

constant L = L(p) > 0 such that if ωA(I) ≤ L, one has, for all s, t ∈ I, s < t,

‖g♮st‖E−3 .q ‖g‖L∞(I;E−0) ωA(s, t)
3
p + ωµ(s, t)ωA(s, t)

3−p
p .(3.9)
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3.2. Navier–Stokes equations driven by rough paths. We are now aiming to formulate the system
under consideration (1.2)–(1.3) as a rough equation in the spirit of (3.6) driven by a rough path Z. Indeed,
the system can be rewritten as

∂tV + µ = Q · ∇xVŻ,

where V = (̺, ̺u) and µ contains all the drift part, that is

µ =

(

div(̺u)
div(̺u⊗ u) +∇xp(̺)− div S(Dxu)

)

to be interpreted as an object in W−1,1(TN ;RN+1). As in Hofmanová, Leahy, Nilssen [24, Section 2.5]
we rewrite the equation in the rough path form

(3.10) δVst + δµst = A1
stVs +A2

stVs +V
♮
st,

where

A1
stϕ = Q · ∇xϕZst, A2

stϕ = Q · ∇x(Q · ∇xϕ)Zst.

The remainder V♮
st = (v♮st, V

♮
st) is defined impicitly through the equation, that is

(3.11) V
♮
st := δVst + δµst −A1

stVs −A2
stVs.

It is a two-index map, not an increment, i.e., it depends on two parameters here denoted by s, t. It is
required to be sufficiently small so that A1

stVs + A2
stVs in (3.10) is a local approximation of the rough

integral
∫

Q · ∇xVdZ. The scale of function spaces is given by the dual spaces E−n =W−n,1(TN ;RN+1)
and En being the corresponding pre-duals. The smoothing operators Jη as required in (3.2) and (3.3) are
given e.g. by projections in Fourier space. We are now in the position to give a rigorous formulation of a
weak solution (u, ̺):

• The momentum equation holds in the sense that the remainder V ♮
st given by

∫

TN

V ♮
st · ϕdx =

∫

TN

(

(̺u)(t)− (̺u)(s)
)

· ϕdx−
∫ t

s

∫

TN

̺u⊗ u : ∇xϕdxdσ

+

∫ t

s

∫

TN

S(∇xu) : ∇xϕdxdt−
∫ t

s

∫

TN

p(̺) divϕdxdσ

−
∫

TN

(̺u)(s)⊗Q : ∇xϕZst dx

+

∫

TN

(̺u)(s)⊗Q : ∇x(Q · ∇xϕ)Zst dx

(3.12)

for ϕ ∈ C∞(TN ;RN ) satisfies V ♮ ∈ C
q
3
−var

2 (I,W−3,1(TN ;RN )) for some q < 3. Moreover we have
̺u(0) = q0.

• The continuity equation holds in the sense that the remainder v♮st given by
∫

TN

v♮st · ψ dx =

∫

TN

(

̺(t)− ̺(s)
)

· ψ dx−
∫ t

s

∫

TN

̺u · ∇xψ dxdσ

−
∫

TN

̺(s)Q · ∇xψ Zst dx

+

∫

TN

̺(s)Q · ∇x(Q · ∇xψ)Zst dx

(3.13)
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for all ψ ∈ C∞(TN ) satisfies v♮ ∈ C
q
3
−var

2 (I,W−3,1(TN )) for some q < 3. Moreover, we have
̺(0) = ̺0.

• The energy inequality is satisfied in the sense that

−
∫

I
∂tψ E dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdt ≤ ψ(0)E (0)(3.14)

holds for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

E (t) =

∫

TN

(1

2
̺(t)|u(t)|2 + P (̺(t))

)

dx

and the pressure potential is given by P (̺) = a
γ−1̺

γ .

The main result of this section reads as follows.

Theorem 3.5. Assume that we have

|q0|2
̺0

∈ L1(TN ), ̺0 ∈ Lγ(TN ).

Furthermore, suppose that Q = (Qk)
K
k=1 with Qk ∈ RN×N and that Z is a geometric p-rough path with K

natural and p ∈ [2, 3). There is a solution

(u, ̺) ∈ L2(I;W 1,2(TN ))× Cw(I;L
γ(TN ))

to (3.12)–(3.14).

Before proving this result, we note that the equation of continuity holds also in a renormalized sense.

Lemma 3.6. Under the assumptions of Theorem 3.5 the continuity equation holds in the renormalized

sense, that is, for θ ∈ C1([0,∞)) with θ′(z) ∈ Cc[0,∞), the remainder vθ,♮st given by
∫

TN

vθ,♮st · ψ dx =

∫

TN

(

θ(̺(t))− θ(̺(s))
)

· ψ dx−
∫ t

s

∫

TN

θ(̺)u · ∇xψ dxdσ

+

∫ t

s

∫

TN

(

θ(̺)− θ′(̺)̺
)

divuψ dxdσ −
∫

TN

θ(̺(s))Q · ∇xψZst dx

+

∫

TN

θ(̺(s))Q · ∇x(Q · ∇xψ)Zst dx

(3.15)

for all ψ ∈ C∞(TN ) satisfies vθ,♮ ∈ C
q
3
−var

2 (I,W−3,1(TN )) for some q < 3.

Proof of Theorem 3.5 and Lemma 3.6. Applying Definition 3.2 there is {(Zn,Zn)}∞n=1 such that for each
n = 1, 2, . . . ,

Zn
st := δznst and Zn

st :=

∫ t

s
δznsθ ⊗ dznθ

for some smooth zn : [0, T ] → RK . For a given n we gain a weak solution (un, ̺n) to (2.3)–(2.6) with this
data by Theorem 2.1. Exactly as in Section 2.5 we deduce the following convergences from the energy
inequality (which is independent of Q and Zn):

un ⇀ u in L2(I;W 1,2(TN )),(3.16)

̺n ⇀
∗ ̺ in L∞(I;Lγ(TN )),(3.17)

̺nun ⇀ ̺u in L2(I, Lq(TN )),(3.18)
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̺nun ⊗ un → ̺u⊗ u in L1(I;L1(TN )),(3.19)

where q ∈ (1, 6γ
γ+6) is arbitrary. Also we have higher integrability of the density in the sense that for

0 < Θ ≤ 2
N γ − 1

(3.20)

∫

I×TN

p(̺n)̺
Θ
n dxdt ≤ c

with a constant independent of n, cf. Theorem 2.1. This yields the existence of a function p such that
(for a subsequence)

pn(̺n)⇀ p in L1(I × TN ).(3.21)

In order to pass to the limit in equations (2.3) and (2.4) we aim at applying Proposition 3.4 to control
the reminder. As a consequence of (3.16)–(3.19) we can control all terms in the drift µ and it follows that

‖δµnst‖W−1,1 ≤ cωµ(s, t), ‖(̺nun, ̺n)‖L∞(I;W 0,1) ≤ c.

uniformly in n for some control ωµ. Since Q is constant and Z a p-rough path we have

(3.22) ‖An,1
st ‖L(W−k,1,W−k−1,1) 6 c|t− s|α for k ∈ {0, 1, 2},

(3.23) ‖An,2
st ‖L(W−k,1,W−k−2,1) 6 c|t− s|2α for k ∈ {0, 1},

where α = 1/p. Consequently, we can apply Proposition 3.4 to infer that

Vn,♮ ∈ C
p
3
−var

2 (I;W−3,1(TN ;RN+1))(3.24)

uniformly in n. Here Vn,♮ = (V n,♮, vn,♮) is the reminder associated to the approximate equation given by
∫

TN

V n,♮
st · ϕdx =

∫

TN

(

(̺nun)(t)− (̺nun)(s)
)

·ϕdx−
∫ t

s

∫

TN

̺nun ⊗ un : ∇xϕdxdσ

+

∫ t

s

∫

TN

S(∇xun) : ∇xϕdxdt−
∫ t

s

∫

TN

p(̺n) divϕdxdσ

−
∫

TN

(̺nun)(s)⊗Q : ∇xϕZ
n
st dx

+

∫

TN

(̺nun)(s)⊗Q : ∇x(Q · ∇xϕ)Z
n
st dx

(3.25)

for ϕ ∈ C∞(TN ;R3) and
∫

TN

vn,♮st · ψ dx =

∫

TN

(

̺n(t)− ̺n(s)
)

· ψ dx−
∫ t

s

∫

TN

̺nun · ∇xψ dxdσ

−
∫

TN

̺n(s)Q · ∇xψZ
n
st dx

+

∫

TN

̺n(s)Q · ∇x(Q · ∇xψ)Z
n
st dx

(3.26)

for ψ ∈ C∞(TN ).
Due to the convergences (3.16)–(3.19) and the reminder estimate (3.24) we can pass to the limit in the

equations. In particular, the passage to the limit in the deterministic terms on the right hand sides follows
by classical arguments. Noting that the rough terms are evaluated pointwise in time, their convergence
is obtained from the convergence of ̺n and ̺nun in a space of weakly continuous functions and the
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convergence of the canonical rough path (Zn,Zn) to (Z,Z). Since the right hand sides converge, we
obtain the convergence of the associated left hand sides, i.e., of the remainders V n,♮ and vn,♮. From the

uniform bounds for these remainders in C
p
3
−var

2 (I;W−3,1(TN ;RN+1)), we deduce that the limit is also a
remainder, i.e. it possesses finite p

3 -variation.
In particular, we obtain the following.

• The momentum equation holds in the sense that the remainder V ♮
st given by

∫

TN

V ♮
st · ϕdx =

∫

TN

(

(̺u)(t)− (̺u)(s)
)

· ϕdx−
∫ t

s

∫

TN

̺u⊗ u : ∇xϕdxdσ

+

∫ t

s

∫

TN

S(∇xu) : ∇xϕdxdt−
∫ t

s

∫

TN

p divϕdxdσ

−
∫

TN

(̺u)(s)⊗Q : ∇xϕZst dx

+

∫

TN

(̺u)(s)⊗Q : ∇x(Q · ∇xϕ)Zst dx

(3.27)

for ϕ ∈ C∞(TN ;R3) satisfies V ♮ ∈ C
p
3
−var

2 (I,W−3,1(TN ;R3)).

• The continuity equation holds in the sense that the remainder v♮st given by
∫

TN

v♮st · ψ dx =

∫

TN

(

̺(t)− ̺(s)
)

· ψ dx−
∫ t

s

∫

TN

̺u · ∇xψ dxdσ

−
∫

TN

̺(s)Q · ∇xψ Zst dx

+

∫

TN

̺(s)Q · ∇x(Q · ∇xψ)Zst dx

(3.28)

for all ψ ∈ C∞(TN ) satisfies v♮ ∈ C
p
3
−var

2 (I,W−3,1(TN )).

We are left with the task of proving strong convergence of the density. Using again the L∞-truncation
introduced in (2.57) it holds

Tk(̺n)⇀ T 1,k in Cw(I ;L
p(TN )) ∀p ∈ [1,∞),(3.29)

(

T ′
k(̺n)̺n − Tk(̺n)

)

divun ⇀ T 2,k in L2(I × TN ),(3.30)

for some limit functions T 1,k and T 2,k and we have again
∫

I×TN

(

p(̺n)− (λ+ 2µ) divun

)

Tk(̺n) dxdt

−→
∫

I×TN

(

p− (λ+ 2µ) divu
)

T 1,k dxdt.

(3.31)

The equality (3.31) is not effected by the noise as we work under the additional assumption that Q =
(αkIN×N )Kk=1 with αk ∈ R. In fact we have now

∫

I

∫

TN

[

uin

(

̺n∂xj
∆−1

x ∂xi
[Tk(̺n)Qj,k]− ̺nQj,k∂xj

∆−1
x ∂xi

[Tk(̺n)]
)]

∂tz
n
k dxdσ

=

∫

I

∫

TN

Qj,k

[

uin

(

̺n∂xj
∆−1

x ∂xi
[Tk(̺n)]− ̺n∂xj

∆−1
x ∂xi

[Tk(̺n)]
)]

∂tz
n
k dxdσ = 0
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and the same for the quantities in the limit. In order to compute the right-hand side of (3.31) we have
to apply the product rule as in Section 4.2 [24] in order to compute the equation for t 7→

∫

TN ̺u ·
∆−1∇xJ

η(T 1,k) dx with the mollification Jη. This leads to the terms
∫

I

∫

TN

[

uin

(

̺n∂xj
∆−1

x ∂xi
[Jη(T 1,k)Qj,k]− ̺nQj,k∂xj

∆−1
x ∂xi

[Jη(T 1,k)]
)]

dxdZk

=

∫

I

∫

TN

Qj,k

[

uin

(

̺n∂xj
∆−1

x ∂xi
[Jη(T 1,k)]− ̺n∂xj

∆−1
x ∂xi

[Jη(T 1,k)]
)]

dxdZk = 0,

which vanish again. Passing with η → 0 and dealing with the deterministic terms as in the known theory
yields (3.31).

Now, we shall prove that ̺ is a renormalized solution as stated in Lemma 3.6. Reformulating (2.5)
with θ = Tk in the rough path sense, we observe that the corresponding remainders are again bounded
uniformly in n as a consequence of Proposition 3.4 and the uniform energy estimates. Hence we may pass
to the limit n→ ∞ and we arrive at

∂tT
1,k + div

(

T 1,ku
)

+ T 2,k = div
(

T 1,kQ
)

Ż(3.32)

in the sense of distributions in I × TN . This equation has to interpreted in the sense that vT,♮st given by
∫

TN

vT,♮st · ψ dx =

∫

TN

(

T 1,k(t)− T 1,k(s)
)

· ψ dx−
∫ t

s

∫

TN

T 1,ku · ∇xψ dxdσ

+

∫ t

s

∫

TN

T 2,k ψ dxdσ −
∫

TN

T 1,k(s)Q · ∇xψZst dx

+

∫

TN

T 1,k(s)Q · ∇x(Q · ∇xψ)Zst dx

(3.33)

for all ψ ∈ C∞(TN ) satisfies vT,♮ ∈ C
p
3
−var

2 (I,W−3,1(TN )). Now, we need to apply smoothing in space to
obtain the renormalized formulation

∂tθ(T
1,k) + div

(

θ(T 1,k)u
)

+ θ′(T 1,k)T 2,k = div
(

θ(T 1,k)Q
)

Ż(3.34)

in the sense of distributions for all θ ∈ C1([0,∞)) with θ′(z) = 0 for all z ≥ Mθ. It has to be interpreted

in the sense that the remainder vT,θ,♮st given by
∫

TN

vT,θ,♮st · ψ dx =

∫

TN

(

θ(T 1,k(t))− θ(T 1,k(s))
)

· ψ dx−
∫ t

s

∫

TN

θ(T 1,k)u · ∇xψ dxdσ

+

∫ t

s

∫

TN

(

θ(T 1,k)− θ′(T 1,k)T 1,k
)

divuψ dxdσ

+

∫ t

s

∫

TN

θ′(T 1,k)T 2,kψ dxdσ −
∫

TN

θ(T 1,k(s))Q · ∇xψ Zst dx

+

∫

TN

θ(T 1,k(s))Q · ∇x(Q · ∇xψ)Zst dx

(3.35)

for all ψ ∈ C∞(TN ) satisfies vT,θ,♮ ∈ C
p
3
−var

2 (I,W−3,1(TN )). More precisely, we shall mollify the rough
formulation of the continuity equation, then apply the Itô formula [22, Proposition 7.6] pointwise in x
and pass to the limit to remove the mollification. As usual for this step, we need a uniform estimate for
the associated remainders. This is a consequence of Proposition 3.4 and the boundedness of Tk.
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We can now prove a counterpart of (2.63) which is again not effected by the noise and conclude T 1,k → ̺
and θ′(T 1,k)T 2,k → 0 as k → ∞. Using this in (3.35) proves Lemma 3.6 – the renormalized equation of
continuity. The proof of the strong convergence of ̺n follows again [17, Section 7.3] and is not effected
by the noise. �

4. Stratonovich noise

In this section we study the compressible Navier–Stokes system subject to transport noise of Stratonovich-
type.

d̺+ div(̺u) dt = div(̺Q) ◦ dW(4.1)

d(̺u) + div(̺u⊗ u) dt+∇xp(̺) dt = div S(Dxu) dt+ div(̺u⊗Q) ◦ dW,(4.2)

whereW = (Wk)
K
k=1 is a collection of standard Wiener processes and Q = (Qk)

K
k=1 ⊂ RN .2 The stochastic

integrals in (4.1) and (4.2) are understood in the Stratonovich sense. In the next subsection we give a
rigorous meaning to that and define a weak martingale solution to (4.1)–(4.2). Eventually, we prove its
existence by a Wong–Zakai type argument.

4.1. Stratonovich integration. Let (Ω,F , (Ft),P) be a filtered probability space and let W = (Wk)
K
k=1

be a collection of standard (Ft)-Wiener processes. We define the Stratonovich integrals in (4.1) and (4.2)
by means of the Itô-Stratonovich correction. First of all we can define the stochastic integrals

∫ t

0
div(̺Q) dW =

K
∑

k=1

∫ t

0
div(̺Qk) dWk,

∫ t

0
div(q⊗Q) dW =

K
∑

k=1

∫ t

0
div(q⊗Qk) dWk,

as Itô-integrals on the Hilbert spacesW−1,2(TN , RN ) andW−1,2(TN ). Indeed, if ̺ and q are (Ft) stochas-

tic process taking values in Cw([0, T ];L
2N/(N+2)(TN )) and Cw([0, T ];L

2N/(N+2)(TN ;RN )) respectively, the
Itô-integrals

∫ t

0
〈div(̺Q), ψ〉dW = −

K
∑

k=1

∫ t

0

∫

TN

̺Qk · ∇ψ dxdWk, ψ ∈W 1,2(TN )

∫ t

0
〈div(q⊗Q),ϕ〉dW = −

K
∑

k=1

∫ t

0

∫

TN

q⊗Qk : ∇∇xϕdxdWk, ϕ ∈W 1,2(TN , RN ),

are well-defined. The corresponding Stratonovich integrals are now defined via the Itô-Stratonovich
correction, that is
∫ t

0

∫

TN

̺Qk · ∇xψ dx ◦ dWk =

∫ t

0

∫

TN

̺Qk · ∇xψ dxdWk +
1

2

〈〈

∫

TN

̺Qk · ∇xψ dx,Wk

〉〉

t
,

∫ t

0

∫

TN

q⊗Qk : ∇xϕdx ◦ dWk =

∫ t

0

∫

TN

q⊗Qk : ∇xϕdxdWk +
1

2

〈〈

∫

TN

q⊗Qk : ∇xϕdx,Wk

〉〉

t
,

2Our theory would also allow to consider a cylindrical Wiener process provided the sequence Qk converges to zero rapidly
enough.
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Here 〈〈·, ·〉〉t denotes the cross variation. We compute now the cross variations by means of (4.1) and
(4.2). We have

∫

TN

̺Qk · ∇xψ dx = · · · −
∑

ℓ

∫ t

0

∫

TN

̺Qℓ · ∇x(Qk · ∇xψ) dxdWℓ, ψ ∈W 2,2(TN ),

∫

TN

q⊗Qk : ∇xϕ dx = · · · −
∑

ℓ

∫ t

0

∫

TN

q · (Qℓ · ∇x(Qk · ∇xϕ)) dxdWℓ, ϕ ∈W 2,2(TN , RN ),

where the deterministic terms of the equations with quadratic variation zero are hidden in . . . . Plugging
the previous considerations together we set

∫ t

0
div(̺Q) ◦ dW =

K
∑

k=1

∫ t

0
div(̺Qk) dWk +

1

2

K
∑

k=1

∫ t

0
div(Qk ⊗Qk∇x̺) dσ,

∫ t

0
div(q⊗Q) ◦ dW =

K
∑

k=1

∫ t

0
div(q⊗Qk) dWk +

1

2

K
∑

k=1

∫ t

0
div(Qk ⊗Qk∇xq) dσ,

to be understood in W−2,2(TN ) and W−2,2(TN , RN ) respectively.

Now we can define the objects of interest properly. Given initial data q0 ∈ L2γ/(γ+2)(TN ;RN ) and
̺0 ∈ Lγ(TN ),3 a weak martingale solution to (4.1)–(4.2) is a multiplet

((Ω,F , (Ft),P),u, ̺,W)

with a filtered probability space (Ω,F , (Ft),P), an (Ft)-Wiener process W and (u, ̺) are (Ft)−adapted4

and satisfy the following:

• The momentum equation holds in the sense that

∫

TN

̺u · ϕdx−
∫ t

0

∫

TN

̺u⊗ u : ∇xϕdxdσ

+

∫ t

0

∫

TN

S(∇xu) : ∇xϕdxdσ −
∫ t

0

∫

TN

p(̺) divϕdxdσ

=

∫

TN

q0 ·ϕdx−
∫ t

0

∫

TN

̺u⊗Q : ∇xϕW dx

+
K
∑

k=1

∫ t

0

∫

TN

̺u · div(Qk ⊗Qk∇xϕ) dxdσ

(4.3)

P-a.s. for all ϕ ∈ C∞(TN ;RN ) and we have ̺u(0) = q0.

3We could also allow random initial data in form of an initial law with suitable moments.
4The velocity field is not a stochastic process in the classical sense and we understand its adaptedness in the sense of

random distributions as introduced in [6, Chap. 2.2].
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• The continuity equation holds in the sense that
∫

TN

̺ψ dx−
∫ t

0

∫

TN

̺u · ∇xψ dxdσ =

∫

TN

̺0ψ dxdt

−
∫ t

0

∫

TN

̺Q · ∇xψ dW dx

+
1

2

K
∑

k=1

∫ t

0

∫

TN

̺div(Qk ⊗Qk∇xψ) dxdσ

(4.4)

P-a.s. for all ψ ∈ C∞(TN ) and we have ̺(0) = ̺0.
• The energy inequality is satisfied in the sense that

−
∫

I
∂tψ E dt+

∫

I
ψ

∫

TN

S(∇xu) : ∇xudxdt ≤ ψ(0)E (0)(4.5)

holds P-a.s. for any ψ ∈ C∞
c ([0, T )). Here, we abbreviated

E (t) =

∫

Ω(t)

(1

2
̺(t)|u(t)|2 + P (̺(t))

)

dx

and the pressure potential is given by P (̺) = a
γ−1̺

γ .

4.2. Convergence à la Wong–Zakai. In the previous section we showed the existence of a weak solution
(u, ̺) to the system (1.2)–(1.3) driven by a general rough path Z. This in particular includes the case of
Z being a realization of the Stratonovich lift (W,W) of a K-dimensional Brownian motion W on some
probability space (Ω,F ,P). Namely, for 0 6 s 6 t 6 T let

Wst = δWst := Wt −Ws, Wst :=

∫ t

s
δWsr ⊗ ◦dWr =

(
∫ t

s
(Wi,r −Wi,s) ◦ dWj,r

)

i,j=1,...,K

.

Here we denoted by ◦ the Stratonovich stochastic integration. Then (W,W) is a random rough path, in
the sense that a.s. (W,W)(ω) is a geometric p-rough path with p ∈ [2, 3).

In other words, the second component of the rough path, i.e. W is obtained by using probability theory.
But once this is done, we can fix ω from the set of full probability where the Stratonovich integral is defined
and apply the results of Section 3 pathwise, i.e. to the rough path (W,W)(ω). As the proof made use
of compactness and relied on taking subsequences which generally depend on ω, the resulting solution is
not a stochastic process. The goal of this section is to overcome this issue and to construct an honest
probabilistically weak solution, adapted to the joint canonical filtration generated by the solution and the
Brownian motion. This is achieved by combining the rough path analysis from Section 3 with stochastic
compactness arguments based on Skorokhod–Jakubowski’s representation theorem. The combination of
the rough path theory with the stochastic compactness was done in [19].

In the first step, we observe that from the uniform energy and pressure estimates we obtain tightness
by taking expectation. This is permitted due to the following control of the approximate drivers, obtained
e.g. via mollifications Wn of W. It holds

(4.6) ‖An,1
st ‖L(W−k,1,W−k−1,1) 6 CAn |t− s|α for k ∈ {0, 1, 2},

(4.7) ‖An,2
st ‖L(W−k,1,W−k−2,1) 6 C2

An |t− s|2α for k ∈ {0, 1},
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where the constant CAn is random. By [22, Exercise 10.14] we know that for all q ∈ [1,∞)

sup
n∈N

E[Cq
An ] <∞,

and there exists a random constant C(ω) such that

sup
n∈N

CAn(ω) 6 C(ω).

As in the proof of Proposition 15 in [19], the rough driver needs to be included in the compactness
argument by enlarging the path space from [6, Section 4.5] to

X = X̺ × X̺u × Xu × XW × Xν ,

where

X̺ =
(

Lγ+Θ(0, T ;Lγ+Θ(TN )), w
)

∩ C
(

[0,∞);
(

Lγ(TN ), w
))

∩ C([0, T ];W−k,2(TN )),

X̺u = C
(

[0, T ];
(

L
2γ
γ+1 (TN ;RN ), w

))

∩C([0, T ];W−k,2(TN ;RN )),

Xu =
(

L2(0, T ;W 1,2(TN , RN )), w
)

,

XW = Cp−var
2 ([0, T ];RK)× C

p/2−var
2 ([0, T ];RK×K),

Xν = (L∞((0, T ) × TN ; Prob(RN2+N+1)), w∗).

With a slight abuse of notation, in the definition of XW we employ the separable versions of the spaces

Cp−var
2 ([0, T ];RK), C

p/2−var
2 ([0, T ];RK×K), i.e. the spaces obtained as closure of smooth functions in the

p-variation and p/2-variation norm, respectively.
Let (̺n,un) be a solution corresponding to the driver (Wn,Wn) obtained in Section 2. As in [6,

Section 4.5] we can show that the family of joint laws
{

L
[

̺n, ̺nun,un, (W
n,Wn), δ[̺n,un,∇un]

]

; n ∈ N
}

is tight on X . By the Jakubowski-Skorokhod theorem [29] we obtain new a new probability space (Ω̃, F̃ , P̃)
and a sequence of new random variables

[

˜̺m, ˜̺nũn, ũn, (W̃n, W̃n), ν̃n

]

, n ∈ N,

with values in X with the same law as the original ones converging P-a.s. in the topology of X to
[

˜̺, ˜̺ũ, ũ, (W̃, W̃), ν̃
]

.

Hence it is clear that equations (2.3)–(2.6) continue to hold on the new probability space. Moreover, the
passage to the limit in the deterministic as well as in the rough terms in the equations proceeds as in
Section 3.2 above. Finally, the identification of the limit driver as the lift of a Brownian motion on the
new probability space can be done as in Proposition 15 in [19]. As a consequence of this together with
adaptedness with respect to the joint filtration

F̃t = σ
(

σ
(

rt ˜̺, rtũ, rtW̃
)

∪
{

N ∈ F̃ ; P̃(N ) = 0
}

)

, t ≥ 0,

we conclude that the system is solved in the sense of Stratonovich stochastic integration as specified in
(4.3)–(4.5). In conclusion, we deduce the following result.
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Theorem 4.1. Assume that we have

|q0|2
̺0

∈ L1(TN ), ̺0 ∈ Lγ(TN ).

Furthermore, suppose that Q = (Qk)
K
k=1 with Qk ∈ RN . There is a weak martingale solution

((Ω,F , (Ft),P),u, ̺,W)

to (4.1)–(4.2) in the sense of (4.3)–(4.5).
Furthermore, the solution is obtained as a limit of solutions to (1.2)–(1.3) driven by smooth approxi-

mations Wn of the Brownian motion W.
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