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THE BOUSSINESQ SYSTEM WITH NON-SMOOTH BOUNDARY
CONDITIONS : EXISTENCE, RELAXATION AND TOPOLOGY

OPTIMIZATION. ∗

ALEXANDRE VIEIRA† AND PIERRE-HENRI COCQUET∗‡

Abstract. In this paper, we tackle a topology optimization problem which consists in finding
the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion
of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes
equation coupled to a heat equation. In order to cover several models presented in the literature, we
choose a non-smooth formulation for the outlet boundary conditions. This paper aims at proving
existence of solutions to the resulting equations, along with the study of a relaxation scheme of the
non-smooth conditions. A second part covers the topology optimization problem itself for which
we proved the existence of optimal solutions and provides the definition of first order necessary
optimality conditions.

Key words. Non-smooth boundary conditions, topology optimization, relaxation scheme, di-
rectional do-nothing boundary conditions

AMS subject classifications. 49K20, 49Q10, 76D03, 76D55

1. Introduction.
Directional do-nothing conditions. For many engineering applications, simula-

tions of flows coupled with the temperature are useful for predicting the behaviour
of physical designs before their manufacture, reducing the cost of the development
of new products. The relevance of the model and the adequacy with the experiment
therefore become important [20, 47, 53]. In this paper, we choose to model the flow
with the Boussinesq system which involves the Navier-Stokes equations coupled with
an energy equation. In most mathematical papers analyzing this model [12, 32, 54],
homogeneous Dirichlet boundary conditions are considered on the whole boundary.
This simplifies the mathematical analysis of the incompressible Navier-Stokes equa-
tion since the non-linear term vanishes after integrating by part hence simplifying the
derivation of a priori estimates [11, 25, 31, 54].

However, several applications use different boundary conditions that model in-
let, no-slip and outlet conditions [1]. Unlike the inlet and the no-slip conditions, the
outlet conditions are more subject to modelling choices. A popular one consists in
using a do-nothing outlet condition (see e.g. [8, 29, 30, 40, 52, 55]) which naturally
comes from integration by parts when defining a weak formulation of the Navier-
Stokes equations. However, since this outlet condition does not deal with re-entering
flows, several papers use a non-smooth outlet boundary conditions for their numerical
simulations (see e.g. [5, 27]). A focus on non-smooth outflow conditions when the
temperature appears can be found in [16, 27, 48, 50].
We emphasize that such non-smooth boundary conditions can be used to solve prob-
lems involving reversal flows (or re-entering flows) which appear when modeling heat
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transfer and fluid flows driven by natural or mixed convection in open channels [27].
Among the potential applications, we can find the so-called mur Trombe [56], the wall
solar chimney [7] or even the cooling of electronic equipment [39].

In particular, directional do-nothing (DDN) boundary conditions are non-smooth
conditions that become popular. The idea is originally described in [17], and several
other mathematical studies followed [5, 13, 15]. These conditions were considered
especially for turbulent flows. In this situation, the flow may alternatively exit and
re-enter the domain. These directional boundary conditions tries to capture this
phenomenon, while limiting the reflection. It is worth noting that other boundary
conditions can be used, namely the so-called local/global Bernouilli boundary condi-
tions [16, 27, 50]. The latter implies the do-nothing boundary condition is satisfied for
exiting fluid and that both the normal velocity gradient and the total pressure vanish
for re-entering fluid. Nevertheless, in this paper, we are going to use non-smooth DDN
boundary condition since they are easier to impose though a variational formulation.

Concerning the mathematical study of Boussinesq system with directional do-
nothing conditions, the literature is rather scarce. To the best of our knowledge, we
only found [6, 19], where the steady case is studied in depth, but the unsteady case only
presents limited results. Indeed, while [19, p. 16, Theorem 3.2] gives existence and
uniqueness of a weak solution with additional regularity to the steady-state Boussinesq
system involving non-smooth boundary conditions at the inlet, it requires the source
terms and the physical constants like for example the Reynolds number to be small
enough. We emphasize that these limitations comes from the proof which relies on a
fixed-point strategy. The first aim of this paper will then be to fill that gap by proving
existence and, in a two-dimensional setting, uniqueness of solutions for the unsteady
Boussinesq system with non-smooth DDN boundary condition at the outlet.

Topology optimization. On top of the previous considerations, this paper aims at
using these equations in a topology optimization (TO) framework. In fluid mechanics,
the term topology optimization refers to the problem of finding the shape of a solid
located inside a fluid that optimizes a given physical effect. There exist various
mathematical methods to deal with such problems that fall into the class of PDE-
constrained optimization, such as the topological asymptotic expansion [3, 18, 46] or
the shape optimization method [28, 44, 45]. In this paper, we choose to locate the
solid thanks to a penalization term added in the unsteady Navier-Stokes equations,
as exposed in [4]. However, the binary function introduced in [4] is usually replaced
by a smooth approximation, referred as interpolation function [50], in order to be
used in gradient-based optimization algorithms. We refer to the review papers [1,
26] for many references that deal with numerical resolution of TO problems applied
to several different physical settings. However, as noted in [1, Section 4.7], most
problems tackling topology optimization for flows only focus on steady flows, and
time-dependant approaches are still rare. Furthermore, to the best of our knowledge,
no paper is dedicated to the mathematical study of unsteady TO problems involving
DDN boundary conditions, even though they are already used in numerical studies
[16, 27, 48, 50]. Therefore, the second goal of this paper will be to prove existence
of optimal solution to a TO problem involving Boussinesq system with non-smooth
DDN boundary conditions at the outlet.

First order optimality conditions. As hinted above, a gradient based method is
often used in order to compute an optimal solution of a TO problem. However, the
introduction of the non-smooth DDN boundary conditions implies that the control-to-
state mapping is no longer differentiable. The literature presents several ways to deal
with such PDE-constrained optimization problems. Most focus on elliptic equations,
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using subdifferential calculus [21, 35, 23] or as the limit of relaxation schemes [9, 22,
41, 51]. We may also cite [43] for a semilinear parabolic case, [57] which involves
the Maxwell equations, and [10] which analyzes the optimal control of an optical
flow model. In the last reference, it should be noted that the relaxation is made
on the nonsmooth initial condition, which is different from the nonsmoothness we
have in our problem. We emphasize that using directly a subdifferential approach
presents several drawbacks: the subdifferential of composite functions may be hardly
computed, and the result may be hardly enlightening nor used [21]. We will therefore
use a differentiable relaxation approach, as studied in [51]. First, we will be able to
use standard first order necessary optimality conditions since the relaxed control-to-
state mapping will be smooth. A convergence analysis will let us design necessary
optimality condition for the non-smooth problem. Secondly, we find this approach
more advantageous, as the approximated problem may be used as a numerical scheme
for solving the TO problem.

1.1. Problem settings. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded open set with
Lipschitz boundary whose outward unitary normal is n. We assume the fluid occupies
a region Ωf ⊂ Ω and that a solid fills a region Ωs such that Ω = Ωf∪Ωs. The penalized
Boussinesq approximation (see e.g. [50] for the steady case) of the Navier-Stokes
equations coupled to convective heat transfer reads:

(1.1)

∇ · u = 0,

∂tθ +∇ · (uθ)−∇ · (Ck(α)∇θ) = 0, a.e. in Ω

∂tu+ (u · ∇)u−A∆u+∇p−Bθey + h(α)u = f,

u(0) = u0(α), θ(0) = θ0(α),

where u denotes the velocity of the fluid, p the pressure and θ the temperature (all
dimensionless), u0(α), θ0(α) are initial conditions. In (1.1), A = Re−1 with Re being
the Reynolds number, B = Ri is the Richardson number and C = (RePr)−1 where
Pr is the Prandtl number, −ey is the direction in which the gravity acts on the flow.
In a topology optimization problem, it is classical to introduce a function α : x ∈
Ω 7→ α(x) ∈ R+ as optimization parameter (see e.g. [1, 26]). The function h(α) then
penalizes the flow in order to mimic the presence of a solid:

• if h ≡ 0, then one retrieves the classical Boussinesq approximation.
• if, for some large enough αmax > 0, h : s ∈ [0, αmax] 7→ h(s) ∈ [0, αmax] is a
smooth function such that h(0) = 0 and h(αmax) = αmax, one retrieves the
formulations used in topology optimization [1, 12, 50]. In the sequel, we work
in this setting since we wish to study a TO problem.

Since the classical Boussinesq problem is retrieved when h(α) = 0, the fluid zones
Ωf ⊂ Ω and the solid ones Ωs ⊂ Ω can be defined as Ωs := {x ∈ Ω | α(x) < s0} , Ωf :=
{x ∈ Ω | α(x) > s0} , for some s0 ∈ (0, αmax) and where αmax is large enough to ensure
the velocity u is small enough for the Ωs above to be considered as a solid (see [4,
Corollary 4.1]). Several examples of the function h can be found in the literature (see
e.g. [1, 49]) such as

h(s) = αmax

(
s

αmax

)p

or h(s) = αmax

(
1

1 + e−p(s−s0)
− 1

1 + eps0

)
for some parameter p ≥ 1 which is usually chosen large enough. The function k(α) :
x ∈ Ω 7→ k(α(x)) is the dimensionless diffusivity defined as k(α)|Ωf

= 1 and k(α)|Ωs
=

ks/kf with ks and kf are respectively the diffusivities of the solid and the fluid. We
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also assume that k is a smooth regularization of (ks/kf )1Ωs
+1Ωf

. In this framework,
α is thus defined as a parameter function, which will let us control the distribution of
the solid in Ω.

Let us now specify the boundary conditions. Assume ∂Ω = Γ is Lipschitz and is
split into three disjoint parts: Γ = Γw ∪ Γin ∪ Γout. Here, Γw are the walls, Γin the
inlet/entrance and Γout is the exit/outlet of the computational domain.

Γw

Γout

Γw

Γin

Ωs

Ωf

Fig. 1: Sketch of Ω

Let β be a function defined on Γout and define: ∀x ∈
R : x+ = pos(x) = max(0, x), x− = neg(x) =
max(0,−x), x = x+ − x−. Inspired by [17], we supple-
ment (1.1) with the following boundary conditions:
(1.2)

On Γin : u = uin, θ = 0,

On Γw : u = 0, Ck∂nθ = ϕ,

On Γout : A∂nu− np = A∂nu
ref − npref

− 1

2
(u · n)−(u− uref),

Ck∂nθ + β(u · n)−θ = 0,

with ϕ ∈ L2(0, T ;L2(Γw)), f ∈ L2(0, T ; (H1(Ω))′),

uin ∈ L2(0, T ;H
1/2
00 (Γin)), ∂n = n · ∇ and (uref, pref)

denotes a reference solution.

As stated in [34], this nonlinear condition is physically meaningful: if the flow is
outward, we impose the constraint coming from the selected reference flow ; if it is
inward, we need to control the increase of energy, so, according to Bernoulli’s principle,
we add a term that is quadratic with respect to velocity.

Weak formulation. To define a weak formulation of (1.1)-(1.2), we introduce
V u = {u ∈ H1(Ω)d; ∇ · u = 0, u Γin∪Γw = 0}, and define Hu as the closure of V u

in (L2(Ω))d. Similarly, we define V θ = {θ ∈ H1(Ω); θ Γin = 0}, and Hθ = L2(Ω).
We identify Hu and Hθ with their dual, and denote by (V u)′ (resp. (V θ)′) the dual
of V u (resp. V θ). Multiplying (1.1)-(1.2) with φ ∈ V θ and integrating by parts, the
result reads as:∫

Ω

∂tθφ−
∫
Ω

θu · ∇φ+

∫
Ω

Ck∇θ · ∇φ+

∫
Γ

(θ(u · n)− Ck∂nθ)φ = 0,

for all φ ∈ V θ. From (1.2), the boundary term reduces to:∫
Γ

(θ(u · n)− Ck∂nθ)φ = −
∫
Γw

ϕφ+

∫
Γout

(
(u · n) + β(u · n)−

)
θφ

−
∫
Γout

(
βθ(u · n)− + Ck∂nθ

)
φ

= −
∫
Γw

ϕφ+

∫
Γout

(
(u · n) + β(u · n)−

)
θφ,

and the weak form of the heat transfer equation is then

(WF.1)

∫
Ω

∂tθφ−
∫
Ω

θu · ∇φ+

∫
Ω

Ck∇θ · ∇φ+

∫
Γout

(
(u · n) + β(u · n)−

)
θφ

=

∫
Γw

ϕφ, ∀φ ∈ V θ.
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For the Navier-Stokes equations, we are going to use the next formula to replace the
inertial term (u · ∇)u) by a symmetric one which helps to get a priori estimates (see
also [14, 17]). For all Ψ ∈ V u, the latter is given as∫

Ω

((u · ∇)u) ·Ψ =
1

2

∫
Ω

((u · ∇)u) ·Ψ− ((u · ∇)Ψ) · u+
1

2

∫
∂Ω

(u · n)(u ·Ψ).

Multiplying (1.1) by Ψ ∈ V u, integrating by parts and using the boundary conditions,
the weak formulation of the Navier-Stokes system is then defined as

(WF)

(WF.2)

∫
Ω

∂tu ·Ψ+
1

2
{((u · ∇)u) ·Ψ− ((u · ∇)Ψ) · u}+A∇u : ∇Ψ+ h(α)u ·Ψ

−
∫
Ω

Bθ · ey ·Ψ+
1

2

∫
Γout

(u · n)+(u ·Ψ)

=

∫
Ω

f ·Ψ+

∫
Γout

(A∂nu
ref − npref) ·Ψ+

1

2

∫
Γout

(u · n)−(uref ·Ψ)

for allΨ ∈ V u. A weak solution to (1.1)-(1.2) is then defined as (u, θ) ∈ L2(0, T ;V u)×
L2(0, T ;V θ) such that (∂tu, ∂tθ) ∈ (V u)′×(V θ)′ and satisfying the weak formulations
(WF) in the sense of D′(]0, T [).

1.2. The topology optimization problem. A goal of this paper is to analyze
the next topology optimization problem

(OPT)

min J (α,u, θ)

s.t.

{
(u, θ) solution of (WF) parametrized by α,

α ∈ Uad,

where J is a given cost function. For some κ > 0, we set Uad = {α ∈ BV(Ω)
: 0 ≤ α(x) ≤ αmax a.e. on Ω, |Dα|(Ω) ≤ κ} where BV(Ω) stands for functions of
bounded variations, and |Dα| is the total variation ofDα, the distributional derivative
of α which is a finite Radon measure in Ω. As shown in [2], the weak-* convergence in
BV(Ω) is defined as follows: (αε)ε ⊂ BV(Ω) weakly-* converges to α ∈ BV(Ω) if (αε)
strongly converges to α in L1(Ω) and (Dαε) weakly-* converges to Dα in Ω, meaning:

lim
ε→0

∫
Ω

ν dDαε =

∫
Ω

ν dDα, ∀ν ∈ C0(Ω),

where C0(Ω) denotes the closure, in the sup norm, of the set of real continuous
functions with compact support over Ω. We choose Uad as a subset of BV(Ω) since
it is a nice way to approximate piecewise constant functions, which is close to the
desired solid distribution.

Remark 1.1. The set Uad has been used for instance in [24, 55] and have the
property that any sequence (αn)n ⊂ Uad is bounded in BV(Ω) and thus have a subse-
quence that converges strongly in L1(Ω) toward some α ∈ Uad. It then has a further
subsequence that converges almost everywhere in Ω toward α and thus h(αn) and k(αn)
converge almost everywhere respectively toward h(α) and k(α). The last statement is
going to be useful to prove some smoothness result on the control-to-state mapping
α 7→ (u(α), θ(α)). In addition, we emphasize we may actually replace the above Uad

by any Banach space Bad for which any (αn)n ⊂ Bad has a subsequence that converges
toward some α ∈ Bad strongly in Lp(Ω) for p ≥ 1.
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It is classical for these problems to compute first order optimality conditions (see
e.g. [38, 49]). This approach needs smoothness of the control-to-state mapping. How-
ever, the presence of the non-differentiable function neg(x) = x− makes this approach
hardly used in practice. Therefore, we adopt a smoothing approach, as studied in
[41, 51], and we approximate the neg function with a C1 positive approximation,
denoted negε. We suppose this approximation satisfies the following assumptions:
(A1) ∀s ∈ R, negε (s) ≥ neg(s).
(A2) ∀s ∈ R, −1 ≤ neg′ε(s) ≤ 0.
(A3) negε converges to neg uniformly over R.
(A4) for every δ > 0, the sequence (neg′ε)ε>0 converges uniformly to 0 on [δ,+∞)

and uniformly to -1 on (−∞,−δ] as ε → 0.
As presented in [51], we may choose:

(1.3) negε (s) =

{
s− if |s| ≥ ε

2 ,
1
2

(
1
2 − s

ε

)3 ( 3ε
2 + s

)
if |s| < ε

2 .

We also introduce the notation posε (s) = s+negε (s). Note that the function posε is
non-negative, since for any s ∈ R, posε (s) = s+ negε (s) ≥ s+ neg(s) = pos(s) ≥ 0.

Remark that, owing to the mean value theorem, (A2)-(A3) imply that, for all
x ∈ R and for ε small enough

(1.4) |negε (x) | ≤ |x|+O(ε).

We redefine (WF) with an approximation of s− and s+, which gives:

(WFe.1)

∫
Ω

∂tθεφ−
∫
Ω

θεuε · ∇φ+

∫
Γout

((uε · n) + βnegε (uε · n)) θεφ

+

∫
Ω

Ck∇θε · ∇φ =

∫
Γw

ϕφ.

(WFe.2)

∫
Ω

∂tuε ·Ψ+
1

2
{((uε · ∇)uε) ·Ψ− ((uε · ∇)Ψ) · uε}+A∇uε : ∇Ψ

+

∫
Ω

h(α)uε ·Ψ−Bθε · ey ·Ψ+
1

2

∫
Γout

posε (uε · n) (uε ·Ψ)

=

∫
Ω

f ·Ψ+

∫
Γout

(A∂nu
ref − npref) ·Ψ+

1

2

∫
Γout

negε (uε · n) (uref ·Ψ)

for all (Ψ, φ) ∈ V u × V θ.
We then define the approximate optimal control problem:

(OPTe)

min J (αε,uε, θε)

s.t.

{
(uε, θε) solution of (WFe.1)− (WFe.2) parametrized by αε,

αε ∈ Uad.

As it will be made clear later, the control-to-state mapping in (WFe.1)-(WFe.2) is
smooth, which will let us derive first order conditions.

1.3. Summary of the paper. The rest of this introduction is dedicated to
the presentation of some notations used in this article and some important results
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of the literature. The core of this paper is organized in two sections. First, we will
prove, in Theorem 2.4, the existence of solutions to (WFe), which will let us prove,
with a compactness argument, the existence of solutions to (WF). This latter result
is proved in Theorem 2.5. We then focus on the two dimensional case, where we
prove uniqueness of the solutions in Proposition 2.7. This will let us prove stronger
convergence results in the corollaries 2.9 and 2.10, which will be useful for the analysis
of the optimization problem. This is an extension of the work done by [17], where only
the pressure and the velocity were considered, and to [6, 19], where the steady case was
studied in depth, but the results concerning the unsteady case were obtained using
restrictive assumptions. We then study the approximate optimal control problem
(OPTe), for which we will derive first order conditions in the Theorem 3.7. We
conclude this paper with the convergence of the optimality conditions of (OPTe) in
Lemma 3.9, which let us design first order conditions of (OPT).

Notations. We set a ≲ b if there exists a constant C(Ω) > 0 depending only on
Ω such that a ≤ C(Ω)b. Denote:

• A : V u → (V u)′ defined by ⟨Au,v⟩(V u)′,V u = A
∫
Ω
∇u : ∇v,

• B : V u × V u → (V u)′ defined by ⟨B(u,v),w⟩(V u)′,V u = 1
2

∫
Ω
(u · ∇)v · w −

(u · ∇)w · v,
• T : V θ → (V u)′ defined by ⟨T θ,v⟩(V u)′,V u =

∫
Ω
Bθey · v,

• P : V u×V u → (V u)′ defined by ⟨P(u,v),w⟩(V u)′,V u =
∫
Γout

pos(u ·n)(v ·w),

• Pε : V
u ×V u → (V u)′ given by ⟨Pε(u,v)),w⟩(V u)′,V u =

∫
Γout

posε (u · n) (v ·
w).

• N : V u×V u → (V u)′ defined by ⟨N (u,v),w⟩(V u)′,V u =
∫
Γout

neg(u·n)(v·w),

• Nε : V
u×V u → (V u)′ given by ⟨Nε(u,v)),w⟩(V u)′,V u =

∫
Γout

negε (u · n) (v ·
w).

• C(α) : V θ → (V θ)′ defined by ⟨C(α)θ, φ⟩(V θ)′,V θ =
∫
Ω
Ck(α)∇θ · ∇φ,

• D : V u × V θ → (V θ)′ defined by ⟨D(u, θ), φ⟩(V θ)′,V θ =
∫
Ω
θu · ∇φ,

• M : V u × V θ → (V θ)′ defined by ⟨M(u, θ), φ⟩(V θ)′,V θ =
∫
Γout

((u · n)+
βneg(u · n))θφ,

• Mε : V u × V θ → (V θ)′ defined by ⟨M(u, θ), φ⟩(V θ)′,V θ =
∫
Γout

((u · n)+
βnegε (u · n))θφ.

We will also denote by σref the element of (V u)′ defined by ⟨σref,w⟩(V u)′,V u =∫
Γout

(A∂nu
ref−prefn)·w, h(α) : V u → (V u)′ the function defined by ⟨h(α)u,v⟩(V u)′,V u

=
∫
Ω
h(α)u · v, and ϕ the element of (V θ)′ defined by ⟨ϕ, φ⟩(V θ)′,V θ =

∫
Γout

ϕφ.
Results from the literature. We now recall two results that will be heavily used

throughout this paper.

Proposition 1.2. ([14, Proposition III.2.35]) Let Ω be a Lipschitz domain of
Rd with compact boundary. Let p ∈ [1,+∞] and q ∈ [p, p∗], where p∗ is the critical
exponent associated with p, defined as:

1
p∗ = 1

p − 1
d for p < d,

p∗ ∈ [1,+∞[ for p = d,

p∗ = +∞ for p > d.

Then, there exists a positive constant C such that, for any u ∈ W 1,p(Ω):

∥u∥Lq(Ω) ≤ C∥u∥1+
d
q−

d
p

Lp(Ω) ∥u∥
d
p−

d
q

W 1,p(Ω).
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Proposition 1.3. ([14, Theorem III.2.36]) Let Ω be a Lipschitz domain of Rd

with compact boundary, and 1 < p < d. Then for any r ∈
[
p, p(d−1)

d−p

]
, there exists a

positive constant C such that, for any u ∈ W 1,p(Ω):

∥u ∂Ω∥Lr(∂Ω) ≤ C∥u∥1−
d
p+

d−1
r

Lp(Ω) ∥u∥
d
p−

d−1
r

W 1,p(Ω).

In the case p = d, the previous result holds true for any r ∈ [p,+∞[.

2. Existence of solutions. In this section, we will focus on proving the exis-
tence of solutions to (WFe) and prove their convergence toward the ones of (WF).

We make the following assumptions throughout this paper:

Assumptions 2.1.
• The source term f ∈ L2(0, T ; (H1(Ω))′).
• (uref, pref) are such that:

uref ∈ Lr(0, T ; (H1(Ω))d) ∩ L∞(0, T ; (L2(Ω))d)

with r = 2 if d = 2 and r = 4 if d = 3,

∇ · uref = 0,

∂tu
ref ∈ L2(0, T ; (L2(Ω))d),

uref = 0 on Γw

uref = uin on Γin.

and A∂nu
ref − prefn ∈ L2(0, T ;H− 1

2 (∂Ω)).
• There exists kmin such that k(x) ≥ kmin > 0 and h(x) ≥ 0 for a.e. x ∈ Ω.
• The initial condition u0 (resp. θ0) is a Fréchet-differentiable function from
Uad to V u (resp. V θ). Furthermore, for all α ∈ Uad, u0(α) Γin

= uin(0),
u0(α) Γw

= 0, and θ0(α) Γin
= 0.

• β ∈ L∞(0, T ;L∞(Γout)) such that β(t, x) ≥ 1
2 , for a.e. (t, x) ∈ [0, T ]× Γout.

2.1. Existence in dimension 2 or 3. In this part, we work with a fixed ε > 0
and a given αε in Uad.

To prove the existence of solutions to (WFe), we follow the classical Fadeo-
Galerkin method as used in [17, 42, 54]. By construction, V u and V θ are separable.
Therefore, both admit a countable Hilbert basis (wu

k )k and (wθ
k)k. Let us construct

an approximate problem, which will converge to a solution of the original problem
(WFe). Denote by V u

n (resp. V θ
n ) the space spanned by (wu

k )k≤n (resp. (wθ
k)k≤n).

We consider the following Galerkin approximated problem:
find t 7→ vn(t) ∈ V u

n and t 7→ θn(t) ∈ V θ
n such that, defining un = vn + uref, (un, θn)

satisfy (WFe) for all t ∈ [0, T ] and for all (Ψ, φ) ∈ V u
n × V θ

n .
With a similar pattern of proof as in [54, p.283], such (un, θn) exist. We now

prove that these solutions are bounded uniformly with respect to n and ε:

Proposition 2.2. There exist positive constants cθ1, c
θ
2, c

v
1 and cv2 , independent

of ε and n, such that:

(2.1) sup
[0,T ]

∥θn∥L2(Ω) ≤ cθ1,

(2.2)

∫ T

0

∥∇θn∥2L2(Ω) ≤ cθ2,
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(2.3) sup
[0,T ]

∥vn∥L2(Ω) ≤ cv1 , (2.4)

∫ T

0

∥∇vn∥2L2(Ω) ≤ cv2 .

Proof. Taking φn = θn in (WFe.1) and integrating by part give:

d

dt
∥θn∥2L2(Ω) −

1

2

∫
Γout

θ2n(un · n) +
∫
Ω

Ck|∇θn|2

+

∫
Γout

((un · n) + βnegε (un · n)) θ2n =

∫
Γw

ϕθn.

Since β ≥ 1
2 and using assumption (A1), one has on Γout:

((un · n) + βnegε (un · n)) θ2n − 1

2
(un · n)θ2n ≥1

2
((un · n) + negε (un · n)) θ2n

≥1

2
posε (un · n) θ2n ≥ 0.

Therefore: d
dt∥θn∥

2
L2(Ω) + Ckmin∥∇θn∥2L2(Ω) ≤ ∥ϕ∥L2(Γw)∥θn∥L2(Γw). Using the con-

tinuity of the trace operator and Young’s inequality, one proves that there exists a
positive constant C(Ω) such that, for any ν > 0:

d

dt
∥θn∥2L2(Ω) + Ckmin∥∇θn∥2L2(Ω) ≤

1

2ν
∥ϕ∥2L2(Γw) +

C(Ω)ν

2
(∥θn∥2L2(Ω) + ∥∇θn∥2L2(Ω)).

Taking ν small enough, we are left with:

d

dt
∥θn∥2L2(Ω) ≤

1

2ν
∥ϕ∥2L2(Γw) +

C(Ω)ν

2
∥θn∥2L2(Ω).

Integrating this equation and using Gronwall’s lemma then give (2.1) and (2.2).
Now, take Ψn = vn in (WFe.2). After some calculations, one gets:

d

dt
|vn|2 +A|∇vn|2 +

1

2

∫
Γout

posε (un · n) |vn|2 +
∫
Ω

h|vn|2

=

∫
Ω

fθ · vn −
∫
Ω

∂tu
ref · vn −A

∫
Ω

∇uref : ∇vn −
∫
Ω

huref · vn

−
∫
Ω

(un · ∇)uref · vn +

∫
Γout

(A∂nu
ref − npref)vn

where fθ = f + Bθney. First, using (2.2), one has ∥fθ∥(Hu)′ ≤ ∥f∥(Hu)′ + Bcθ1. Sec-

ondly, (A1) gives that
∫
Γout

negε (un · n) |vn|2 ≥ 0. Following then the same pattern

of proof as in [17, Proposition 2], one proves (2.3) and (2.4).

Following [14, 54], we need to bound the fractional derivatives of the solution in
order to prove some convergence results. For any real-valued function f defined on
[0, T ], define by f̃ the extension by 0 of f to the whole real line R, and by F (f̃)
the Fourier transform of f̃ , which we define as: F (f̃)(τ) =

∫
R f̃(t)e−itτdt. Using the

Hausdorff-Young inequality [14, Theorem II.5.20] we can prove the

Proposition 2.3. For all σ ∈ [0, 1
6 ), there exists a constant C(σ) > 0 indepen-

dent of ε and n such that:

(2.5)

∫
R
|τ |2σ

∥∥∥F (
θ̃n

)∥∥∥2
(L2(Ω))d

≤ C(σ),

(2.6)

∫
R
|τ |2σ∥F (ũn)∥2L2(Ω) ≤ C(σ).
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Proof. We emphasize that (2.6) is proved if (2.5) holds by using [14, Proposition
VII.1.3] by replacing f by fθ = f +Bθey. The proof of (2.5) consists in adapting the
one of [14, Proposition VII.1.3] and is thus omitted.

Combining the two previous results, we now have the following existence theorem
for (WFe).

Theorem 2.4. For all (v0, θ0) ∈ Hu × Hθ and all T > 0, there exists vε ∈
L∞(0, T ;Hu)∩L2(0, T ;V u), θε ∈ L∞(0, T,Hθ)∩L2(0, T ;V θ) solution of (WFe) such
that, defining u0 = v0+uref(0) and uε = vε+uref, one has for all (Ψ, φ) ∈ V u×V θ:(∫

Ω
uε ·Ψ

)
(0) =

∫
Ω
u0 · Ψ,

(∫
Ω
θεφ
)
(0) =

∫
Ω
θ0φ. Moreover, one has v′

ε = dvε

dt ∈
L

4
3 (0, T ; (V u)′) and θ′ε ∈ L

4
3 (0, T ; (V θ)′).

Proof. The proof of existence is similar to part (iv) of the proof of [54, Theorem
3.1] and the proof of [14, Proposition VII.1.4], where estimates (2.1)-(2.4) and (2.5)-
(2.6) are used in a compactness argument.

We only add the proof that (un, θn) converges to a solution of (WFe.1). Using
(2.1), (2.2), (2.5) and [54, Theorem 2.2], one shows that, up to a subsequence, θn
strongly converges to an element θε of L2(0, T ;Hθ), weakly converges in L2(0, T ;V θ),
and weak-⋆ converges in L∞(0, T ;L2(Ω)). These results imply that θn strongly con-
verges to θε in L2(0, T ;L2(Γ)) thanks to Proposition 1.3. The only technical points
which need more details are the non-linear terms in (WFe.1). Using the strong con-
vergence of un to uε in L2(0, T ;Hu) proved in [54, Eq (3.41)], one proves that (θnun)
strongly converges to θεuε in L1(0, T ;L2(Ω)). Furthermore, notice that:∫ T

0

∥(un · n)θn∥
4
3

L
4
3 (Γ)

≤
∫ T

0

∥un∥
4
3

L
8
3 (Γ)

∥θn∥
4
3

L
8
3 (Γ)

≤C

∫ T

0

∥un∥
1
3

L2(Ω)∥θn∥
1
3

L2(Ω)∥un∥H1(Ω)∥θn∥H1(Ω)

≤C∥un∥
1
3

L∞(0,T ;L2(Ω))∥θn∥
1
3

L∞(0,T ;L2(Ω))

∥un∥L2(0,T ;H1(Ω))∥θn∥L2(0,T ;H1(Ω)).

This inequality together with (2.1)-(2.4) proves that ((un · n)θn)n is bounded in

L
4
3 (0, T ;L

4
3 (Γ)), which is reflexive. Therefore, it proves that, up to a subsequence,

there exists a weak limit κ1 in L
4
3 (0, T ;L

4
3 (Γ)) of ((un · n)θn)n. A simple adapta-

tion of the above reasoning proves that (negε (un · n) θn)n weakly converges to some

κ2 in L
4
3 (0, T ;L

4
3 (Γ)). Using the strong convergence of θn in L2(0, T ;L2(Γ)), [14,

Proposition II.2.12] implies that:

((un · n) + βnegε (un · n))θn ⇀ ((uε · n) + βnegε (uε · n))θε in L
4
3 (0, T ;L1(Γ))

obtained using the uniform Lipschitz continuity with respect to ε of s ∈ R 7→ negε (s).
By uniqueness of the limit in the sense of distribution, we can identify κ1 + βκ2 with
((uε · n) + βnegε (uε · n))θε. Therefore, (uε, θε) is a solution of (WF.1).

The convergence of the weak derivative with respect to time of vε in L
4
3 (0, T ;

(V u)′) is proved in [14, Proposition V.1.3]. Concerning the weak derivative with
respect to time of θε, remark that, for all φ ∈ V θ with φ ̸= 0:

⟨∂tθn, φ⟩(V θ)′,V θ

∥φ∥V θ

=
1

∥φ∥V θ

(⟨D(un, θn), φ⟩(V θ)′,V θ − ⟨C(αε)θn, φ⟩(V θ)′,V θ

− ⟨Mε(un, θn), φ⟩(V θ)′,V θ + ⟨ϕ, φ⟩(V θ)′,V θ ).
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Using Proposition 1.2 we prove the following inequalities:

⟨D(un, θn), φ⟩(V θ)′,V θ

∥φ∥V θ

=

∫
Ω
θu · ∇φ

∥φ∥V θ

≲ ∥θn∥L4(Ω)∥un∥L4(Ω)∥∇φ∥L2(Ω)∥φ∥−1
V θ

≲
(
∥θn∥L2(Ω)∥un∥L2(Ω)

) 1
4
(
∥θn∥H1(Ω)∥un∥H1(Ω)

) 3
4 ,

⟨C(αε)θn, φ⟩(V θ)′,V θ

∥φ∥V θ

=

∫
Ω
Ck(αε)∇θ · ∇φ

∥φ∥V θ

≲ ∥∇θn∥L2(Ω) ≲ ∥θn∥H1(Ω).

Using now Proposition 1.3, we obtain∫
Γout

negε (un · n) θnφ≲ ∥un∥L2(Γ)∥θn∥L4(Γ)∥φ∥L4(Γ)

≲ ∥un∥
1
2

L2(Ω)∥un∥
1
2

H1(Ω)∥θn∥H1(Ω)∥φ∥H1(Ω),

which helps to get the inequality:

⟨Mε(un, θn), φ⟩(V θ)′,V θ

∥φ∥V θ

≲ ∥un∥
1
2

L2(Ω)∥un∥
1
2

H1(Ω)∥θn∥H1(Ω).

Since (un) is bounded in L2(0, T ;H1(Ω)d)∩L∞(0, T ;L2(Ω)d) (the same goes for (θn)),

these inequalities prove that (∂tθn)n is bounded in L
4
3 (0, T ; (V θ)′). Therefore, (∂tθn)n

weakly converges in L
4
3 (0, T ; (V θ)′). By continuity of the weak derivative with respect

to time, this weak limit needs to be ∂tθε.

We now use the existence of solutions to the approximate problem (WFe) to prove
existence of solutions to the limit problem (WF), along with the convergence of the
approximate solutions to those of (WF).

Theorem 2.5. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α in BV(Ω). Define

by (vε, θε) a solution of (WFe) parametrized by αε, and define uε = vε +uref. Then,
there exists (v, θ) ∈ L∞(0, T ;Hu) ∩ L2(0, T ;V u) × L∞(0, T,Hθ) ∩ L2(0, T ;V θ) such
that, defining u = v + uref, up to a subsequence, we have

• uε
∗
⇀ u in L∞(0, T ;Hu)

• θε
∗
⇀ θ in L∞(0, T ;Hθ),

• uε ⇀ u in L2(0, T ;V u) and in L2(0, T ; (L6(Ω))d),
• θε ⇀ θ in L2(0, T ;V θ) and in L2(0, T ;L6(Ω)),
• uε ⇀ u in L4(0, T ; (L2(Γ))d)
• θε ⇀ θ in L4(0, T ;L2(Γ)),
• uε −−−→

ε→0
u in L2(0, T ; (L2(Ω))d)

• θε −−−→
ε→0

θ in L2(0, T ;L2(Ω)),

• uε −−−→
ε→0

u in L2(0, T ; (L2(Γ))d)

• θε −−−→
ε→0

θ in L2(0, T ;L2(Γ)),

• ∂tuε ⇀ ∂tu in L
4
3 (0, T ; (V u)′)

• ∂tθε ⇀ ∂tθ in L
4
3 (0, T ; (V θ)′).

Furthermore, (v, θ) is a solution to (WF) parametrized by α.
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Proof. Using (2.1)-(2.4) and (2.5)-(2.6), we prove that there exists u and θ such
that all the convergences above are verified in the same manner as in [14, Proposition
VII.1.4].

Let us prove first that u is a solution of (WF.2) parametrized by α and θ.
• With the same pattern of proof as in Theorem 2.4, one proves immediately
that (uε · ∇)uε ⇀ (u · ∇)u in L1(0, T ; (L1(Ω))d), and (uε · n)uref ⇀ (u ·
n)uref in L4(0, T ; (L

4
3 (Γ))d).

• Regarding the penalization term:

∥h(αε)uε − h(α)u∥2L2(0,T ;L2(Ω)d) ≲∥h∥2∞∥uε − u∥2L2(0,T ;L2(Ω)d)

+

∫ T

0

∫
Ω

(h(αε)− h(α))2|u|2.

Since αε → α strongly in L1(Ω), h(αε) → h(α) pointwise in Ω up to a
subsequence (not relabeled). Lebesgue dominated convergence theorem then
implies: h(αε)uε −−−→

ε→0
h(α)u in L2(0, T ; (L2(Ω))d).

• Concerning the boundary terms, we only consider the term with the approx-
imation of the pos function. First, we claim that there exists γ such that
posε (uε · n)uε ⇀ γ in L

4
3 (0, T ;L

4
3 (Γ)d). Notice that, for ε large enough and

using (1.4), we have:

(2.7)

∫ T

0

∥posε (uε · n)uε∥
4
3

L
4
3 (Γ)

≲
∫ T

0

(
∥uε∥

4
3

L
8
3 (Γ)

+ C

)
∥uε∥

4
3

L
8
3 (Γ)

≲
∫ T

0

∥uε∥
8
3

L
8
3 (Γ)

+

(∫ T

0

∥uε∥
8
3

L
8
3 (Γ)

) 1
2

.

In addition, from Proposition 1.3, we have

∥uε∥
8
3

L
8
3 (Γ)

≲ ∥uε∥
2
3

L2(Ω)∥uε∥2H1(Ω).

Since uε is bounded in L∞(0, T ; (L2(Ω))d) and L2(0, T ; (H1(Ω))d) as proved

in Proposition 2.2, we see that posε (uε · n)uε is bounded in L
4
3 (0, T ; L

4
3 (Γ)d)

uniformly in ε. Since this Banach space is reflexive, it proves the claimed weak
convergence.

• Let us now prove that γ can be identified with (u ·n)+u. First, since uε → u
strongly in L2(0, T ;L2(Γ)d), posε (·) → (·)+ uniformly and |neg′ε (·) | ≤ 1, one
proves that posε (uε · n) − posε (u · n) → 0 and posε (u · n) → (u · n)+ in
L2(0, T ;L2(Γ)). Therefore, posε (uε · n) → (u ·n)+ in L2(0, T ;L2(Γ)). Then,
the weak convergence of uε in L4(0, T ;L2(Γ)d) and [14, Proposition II.2.12]

implies that posε (uε · n)uε ⇀ (u · n)+u weakly in L
4
3 (0, T ;L1(Γ)d). Using

[14, Proposition II.2.9], we argue that γ = (u · n)+u.
• Regarding ∂tuε, remark that:

∥∂tuε∥(V u)′ ≲ ∥B(uε,uε)∥(V u)′ + ∥Auε∥(V u)′ + ∥h(α)uε∥(V u)′ + ∥T θε∥(V u)′

+ ∥Pε(uε,uε)∥(V u)′ + ∥Nε(uε,u
ref)∥(V u)′ + ∥f + σref∥(V u)′ .

We now bound each term depending on ε:
– Since the Stokes operator is continuous, ∥Auε∥(V u)′ ≲ ∥uε∥H1(Ω) and

therefore, Auε is bounded in L2(0, T ; (V u)′).
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– Obviously, ∥h(α)uε∥(V u)′ ≤ ∥h∥∞∥uε∥L2(Ω) and therefore, h(α)uε is
bounded in L∞(0, T ; (V u)′).

– ∥Nε(uε,u
ref)∥(V u)′ ≲ ∥uε∥H1(Ω) and therefore, Nε(uε,u

ref) is bounded
in L2(0, T ; (V u)′).

We are left with the boundary term Pε and the non linear term B. Concerning
B, remark that :

∀Ψ ∈ V u, ⟨B(uε,uε),Ψ⟩(V u)′,V u = −
∫
Ω

(uε · ∇)Ψ ·uε +
1

2

∫
Γ

(uε ·n)(uε ·Ψ).

The first term can be treated as in [54, Lemma 3.1] while the second one on
the boundary needs more details.
Let 0 ̸= Ψ ∈ V u. Since the proof is similar in dimension 2, we will only focus
on the dimension d = 3. Using Hölder’s inequality and Proposition 1.3, we
obtain: ∫

Γout
|(uε · n)(uε ·Ψ)|
∥Ψ∥V u

≲ ∥uε∥
1
2

L2(Ω)∥uε∥
3
2

H1(Ω).

Therefore:∫ T

0

(
sup

Ψ∈V u\{0}

∫
Γout

|(uε · n)(uε) ·Ψ|
∥Ψ∥V u

) 4
3

≲ ∥uε∥
2
3

L∞(0,T ;L2(Ω))∥uε∥L2(0,T ;H1(Ω)).

This proves that (B(uε,uε))ε is bounded in L
4
3 (0, T ; (V u)′). We prove analo-

gously that (Pε(uε,uε))ε is bounded in L
4
3 (0, T ; (V u)′). These bounds prove

that (∂tuε) is bounded in L
4
3 (0, T ; (V u)′), and by continuity of the time de-

rivative, we argue that (∂tuε) weakly converges to ∂tu in L
4
3 (0, T ; (V u)′).

Concerning θ, the convergence is largely proved in the same way as in Theorem 2.4.
The only difference concerns the convergence of negε (uε · n) θε to (u · n)−θ, which
is proved in the same manner as (2.7). All these convergence results let us say that
(u, θ) is a solution to (WF) in the distribution sense.

2.2. Further results in dimension 2. It is notably known that the solution
of the Navier-Stokes equations with homogeneous Dirichlet boundary conditions are
unique in dimension 2. We prove here that uniqueness still holds with the boundary
conditions (1.2). Denote Xu = L2(0, T ;V u) ∩ L∞(0, T ;Hu) and Xθ = L2(0, T ;V θ) ∩
L∞(0, T ;Hθ). These space are endowed with the norm:

∥u∥Xu = max{∥u∥L2(0,T ;V u), ∥u∥L∞(0,T ;Hu)},

and the same definition follows for ∥ · ∥Xθ .

Lemma 2.6. Assume d = 2. Then the solution (vε, θε) of (WFe) is such that:

∂tvε ∈ (Xu)′, ∂tθε ∈ (Xθ)′.

Proof. The proof being similar, we will only focus on ∂tuε. First, remark that:

∂tuε = −B(uε,uε)−Auε − h(α)uε + T θε − Pε(uε,uε) +Nε(uε,u
ref) + f + σref.

Due to the fact that uε ∈ Xu and θε ∈ Xθ, it is straightforward to prove that Auε,
h(α)uε, T θε, Nε(uε,u

ref) and f + σref are in (Xu)′. Concerning B, we use once again
the identity:

∀Ψ ∈ V u, ⟨B(uε,uε),Ψ⟩(V u)′,V u = −
∫
Ω

(uε · ∇)Ψ · uε +
1

2

∫
Γ

(uε · n)(uε ·Ψ),
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and only focus on the boundary part.
Let Ψ ∈ Xu. Notice that, using Proposition 1.3:∫ T

0

∫
Γ

(uε · n)(uε ·Ψ) ≲
∫ T

0

∥uε∥L2(Γ)∥uε∥L4(Γ)∥Ψ∥L4(Γ)

≲
∫ T

0

∥uε∥
3
4

L2(Ω)∥Ψ∥
1
4

L2(Ω)∥uε∥
5
4

H1(Ω)∥Ψ∥
3
4

H1(Ω)

≲ ∥uε∥
3
4

L∞(0,T ;L2(Ω))∥uε∥
5
4

L2(0,T ;H1(Ω))∥Ψ∥
1
4

L∞(0,T ;L2(Ω))∥Ψ∥
3
4

L2(0,T ;H1(Ω))

≲ ∥uε∥
3
4

L∞(0,T ;L2(Ω))∥uε∥
5
4

L2(0,T ;H1(Ω))∥Ψ∥Xu

This proves that B(uε,uε) is in (Xu)′. Similar computations for Pε(uε,uε) show that
∂tuε ∈ (Xu)′.

We may now prove uniqueness of the solution. We only sketch the proof.

Proposition 2.7. Let d = 2. Then, the solution (uε, θε) of (WFe) is unique.

Sketch of proof Let (uε1, θε1) and (uε2, θε2) be two solutions of (WF.1)-(WF.2).
Define u = v = uε1 − uε2 and θ = θε1 − θε2. Slightly adapting the proof in [14,
Section VII.1.2.5], one proves that:

(2.8)
d

dt
|v|2L2(Ω) +A|∇v|2L2(Ω) ≲ gv(t)|v|2L2(Ω) +B|θ|2L2(Ω) + νv|∇v|2L2(Ω)

where νv is a positive constant and gv is a function in L1([0, T ]).
Testing the differential equation (WFe.1) with θ and using Lemma A.2, it proves

that:

d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 +
∫
Γout

θ2
(
1

2
(uε1 · n) + βnegε (uε1 · n)

)
= −

∫
Γout

(
β (negε (uε1 · n)− negε (uε2 · n)) +

1

2
(u · n)

)
θε2θ.

With a similar proof as the one of Proposition 2.2, we can prove that, on Γout,
θ2
(
1
2 (u1 · n) + βnegε (u1 · n)

)
≥ 0. Therefore, using (A3), one has:

(2.9)
d

dt
|θ|2L2(Ω) + 2C

∫
Ω

k|∇θ|2 ≲

(
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout).

Using Sobolev embeddings and Young inequality, we prove:(
|β|L∞(Γout) +

1

2

)
|u · n|L3(Γout)|θε2|L3(Γout)|θ|L3(Γout)

≲

(
|β|L∞(Γout) +

1

2

)3 |θε2|L2(Ω)|∇θε2|2L2(Ω)

2(νθ)3
(|u|2L2(Ω) + |θ|2L2(Ω))

+
(νθ)

3
2

2

(
|∇u|2L2(Ω) + |∇θ|2L2(Ω)

)
,

where νθ is a positive constant. Therefore, summing (2.8) and (2.9) gives d
dt (|u|

2
L2(Ω)+

|θ|2L2(Ω)) ≲ max(gv1 , g
θ)(|u|2L2(Ω) + |θ|2L2(Ω)), with gv1 and gθ integrable. Therefore,
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applying Gronwall’s lemma and noticing that |u(0)|2L2(Ω)+ |θ(0)|2L2(Ω) = 0, one shows
that u = 0 and θ = 0.

Note that we may also prove that, for d = 2, the solution (u, θ) of (WF) is unique,
and that ∂tu ∈ (Xu)′, ∂tθ ∈ (Xθ)′. We can also state stronger convergence (compared
to the ones stated in Theorem 2.5) in dimension 2. These results will be useful in the
analysis of the optimisation problems.

Denote ū = u− uε and θ̄ = θ− θε. The variational formulation verified by (ū, θ̄)
reads as: for all (Ψ, φ) ∈ V u × V θ:
(2.10a)

0 =⟨∂tū+Aū+ h(α)ū,Ψ⟩(V u)′,V u + ⟨(h(α)− h(αε))uε,Ψ⟩(V u)′,V u+

1

2
⟨P(u, ū) + P(u,uε)− Pε(uε,uε),Ψ⟩(V u)′,V u + ⟨T θ̄,Ψ⟩(V u)′,V u

− 1

2
⟨N (u,uref)−Nε(uε,u

ref),Ψ⟩(V u)′,V u + ⟨B(u, ū) + B(ū,uε),Ψ⟩(V u)′,V u ,

(2.10b)

0 =⟨∂tθ̄, φ⟩(V θ)′,V θ − ⟨D(u, θ̄) +D(ū, θε), φ⟩(V θ)′,V θ

+ ⟨(C(α)− C(αε))θ + C(αε)θ̄, φ⟩(V θ)′,V θ

+ ⟨M(u, θ) +Mε(uε, θε), φ⟩(V θ)′,V θ .

We now bound some of the terms above in the following lemma. The proof is
omitted since it mainly relies on Proposition 1.2, Theorem 1.3 and Hölder’s inequality.

Lemma 2.8. Suppose d = 2. Denote ū = u − uε and θ̄ = θ − θε. Let Cε =
sups∈R |negε (s)−s−|. Owning to (A1), one has Cε −−−→

ε→0
0. The following inequalities

are then valid:
1.

(2.11)
⟨B(ū,uε), ū⟩(V u)′,V u ≲∥ū∥L2(Ω)∥∇ū∥L2(Ω)∥∇uε∥L2(Ω)

+
(
∥ū∥L2(Ω)∥∇ū∥3L2(Ω)∥uε∥L2(Ω)∥∇uε∥L2(Ω)

) 1
2

.

2.

(2.12) neg(u · n)− negε (uε · n) ≤ |ū · n|+ Cε

(2.13a)

∫
Γout

(pos(u · n)− posε (uε · n))uε · ū

≲
(
∥ū∥

1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω) + Cε

)
∥uε∥

1
2

L2(Ω)∥uε∥
1
2

H1(Ω)

× ∥ū∥
1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω).

(2.13b)

∫
Γout

(neg(u · n)− negε (uε · n))uref · ū

≲
(
∥ū∥

1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω) + Cε

)
∥uref∥

1
2

L2(Ω)∥u
ref∥

1
2

H1(Ω)

× ∥ū∥
1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω).
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3.

(2.14)

∫
Ω

θεū · ∇θ̄ ≲ ∥θε∥
1
2

L2(Ω)∥θε∥
1
2

H1(Ω)∥ū∥
1
2

L2(Ω)∥∇ū∥
1
2

L2(Ω)∥∇θ̄∥L2(Ω).

4.
(2.15a)∫

Γout

(ū ·n)θεθ̄ ≲ ∥ū∥
1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω)∥θε∥
1
2

L2(Ω)∥∇θε∥
1
2

L2(Ω)∥θ̄∥
1
4

L2(Ω)∥∇θ̄∥
3
4

L2(Ω).

(2.15b)∫
Γout

(neg(u · n)− negε (uε · n)) θεθ̄ ≲
(
∥ū∥

1
4

L2(Ω)∥∇ū∥
3
4

L2(Ω) + Cε

)
∥θε∥

1
2

L2(Ω)

∥∇θε∥
1
2

L2(Ω)∥θ̄∥
1
4

L2(Ω)∥∇θ̄∥
3
4

L2(Ω).

Corollary 2.9. Suppose d = 2. Under the assumptions of Theorem 2.5, uε → u
strongly in L∞(0, T ;L2(Ω)2) and θε → θ strongly in L∞(0, T ;L2(Ω)).

Proof. Since d = 2, one has ∂tū ∈ (Xu)′ and we may choose Ψ = ū(t) for fixed t
in (2.10a). After rearranging the terms, and using Lemma A.2, we obtain:

d

dt
∥ū∥2L2(Ω) + 2A∥∇ū∥2L2(Ω) + 2

∫
Ω

h(α)|ū|2 +
∫
Γout

pos(u · n)|ū|2 =

− 2⟨(h(α)− h(αε))uε, ū⟩(V u)′,V u −
∫
Ω

Bθ̄ey · ū

− ⟨B(ū,uε), ū⟩(V u)′,V u +

∫
Γout

(neg(u · n)− negε (uε · n))uref · ū

−
∫
Γout

(pos(u · n)− posε (uε · n))uε · ū.

Therefore, (2.11), (2.13), Proposition 1.3 and Young’s inequality imply there exists
C1 > 0 independent of ε such that:

d

dt
∥ū∥2L2(Ω) + C1∥∇ū∥2L2(Ω) ≲ ∥θ̄∥2L2(Ω) + 2

∫
Ω

|h(α)− h(αε)|2 |uε|2

+ gu1 ∥ū∥2L2(Ω) + (gu2 )
4
5 ∥ū∥

2
5

L2(Ω),

where gu1 = ∥uε∥2H1(Ω) + ∥uε∥2L2(Ω)∥uε∥2H1(Ω) + ∥uref∥2L2(Ω)∥u
ref∥2H1(Ω) and gu2 =

C2
ε

(
∥uε∥L2(Ω)∥uε∥H1(Ω) + ∥uref∥L2(Ω)∥uref∥H1(Ω)

)
. Using once again Young’s inequal-

ity, one has:

(2.16)

d

dt
∥ū∥2L2(Ω) + C1∥∇ū∥2L2(Ω) ≲∥θ̄∥2L2(Ω) + (1 + gu1 )∥ū∥2L2(Ω)

+ 2

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 .

We now move back to (2.10b) and choose φ = θ̄, which gives, after some manip-
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ulation:

1

2

d

dt
∥θ̄∥2L2(Ω) + C

∫
Ω

k(αε)|∇θ̄|2 +
∫
Γout

(
1

2
(u · n) + βneg(u · n)

)
θ̄2

=

∫
Ω

θεū · ∇θ̄ − C

∫
Ω

(k(α)− k(αε))∇θ · ∇θ̄

−
∫
Γout

[((ū · n) + β (neg(u · n)− negε (uε · n))] θεθ̄.

Since β ≥ 1
2 ,

1
2 (u·n)+βneg(u·n) ≥ 1

2pos(u·n) ≥ 0. Thus,
∫
Γout

( 12 (u·n)+βneg(u·n))θ̄2
is positive. Therefore, using (2.15), Proposition 1.3 and Young’s inequality, one proves
that there exist C3 > 0, C4 > 0, such that:

(2.17)

d

dt
∥θ̄∥2L2(Ω) + C3∥∇θ̄∥2L2(Ω) ≲ ∥θε∥2L2(Ω)∥∇θε∥2L2(Ω)∥ū∥

2
L2(Ω) + C4∥∇ū∥2L2(Ω)

+

(
C

∫
Ω

(k(α)− k(αε))
2|∇θ|2

)
+ gθ1∥θ̄∥2L2(Ω) + gθ2 ,

where gθ1 = 1 + ∥θε∥2L2(Ω)∥θε∥
2
H1(Ω), g

θ
2 = C2

ε∥θε∥L2(Ω)∥θε∥H1(Ω).

Summing (2.16) and (2.17) and choosing C4 small enough, there exists C∗ > 0
such that:

(2.18)

d

dt
(∥ū∥2L2(Ω) + ∥θ̄∥2L2(Ω)) + C∗(∥∇ū∥2L2(Ω) + ∥∇θ̄∥2L2(Ω)) ≲ gu2 + gθ2

+ (1 + ∥θε∥2L2(Ω)∥∇θε∥2L2(Ω) + gu1 )∥ū∥2L2(Ω) + (gθ1 + 1)∥θ̄∥2L2(Ω)

+

∫
Ω

(k(α)− k(αε))
2|∇θ|2 +

∫
Ω

|h(α)− h(αε)|2 |uε|2.

We now introduce the following functions

auε = (1 + ∥θε∥2L2(Ω)∥∇θε∥2L2(Ω) + gu1 ), buε =

∫
Ω

|h(α)− h(αε)|2 |uε|2 + gu2 ,

aθε = (1 + gθ1), bθε =

∫
Ω

(k(α)− k(αε))
2|∇θ|2 + gθ2 .

Since u and uε both belong to L2(0, T ;H1(Ω)2) ∩ L∞(0, T ;L2(Ω)2) (the same holds
for θ and θε), a

u
ε , b

u
ε , a

θ
ε and bθε are integrable, and so are aε = max(auε , a

θ
ε) and bε =

buε + bθε. Grönwall’s lemma proves that for all t ∈ [0, T ], ∥ū(t)∥2L2(Ω) + ∥θ̄(t)∥2L2(Ω) ≤(∫ t

0
bε(s)ds

)
exp

(∫ t

0
aε(s)ds

)
. Since aε ≥ 0 and bε ≥ 0, t 7→

(∫ t

0
bε(s)ds

)
and t 7→

exp
(∫ t

0
aε(s)ds

)
are non-decreasing and we have

(2.19) sup
t∈[0,T ]

(
∥ū(t)∥L2(Ω) + ∥θ̄(t)∥L2(Ω)

)
≤

(∫ T

0

bε(s)ds

) 1
2

exp

(
1

2

∫ T

0

aε(s)ds

)
.

Since, on one hand, αε → α in L1(Ω) and αε is independent of time, and on the other
hand, uε → u strongly in L2(0, T ;L2(Ω)), Lebesgue’s dominated convergence gives a
subsequence (εk) such that:
(2.20)∫ T

0

∫
Ω

|h(α)− h(αεk)|
2 |uεk |2 −−−−−→

k→+∞
0,

∫ T

0

∫
Ω

|k(α)− k(αεk)|
2 |∇θ|2 −−−−−→

k→+∞
0.
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Notice that, owning to the convergence of uε and θε, ∥uε∥L2(Ω)∥uε∥H1(Ω) and
∥θε∥L2(Ω)∥∇uε∥L2(Ω) are bounded w.r.t ε in L1([0, T ]). Therefore, since Cε −−−→

ε→0
0, it

proves that
∫ T

0
(gu2 + g2θ) −−−−−→εk→+∞

0. Gathering the previous convergence results then

ensure that
∫ T

0
bεk(s)ds −−−−−→

k→+∞
0. In addition, thanks to Theorem 2.5, we show that∫ T

0
aε(s)ds is bounded w.r.t. ε. Therefore, it proves that ∥u − uεk∥L∞(0,T,L2(Ω)) +

∥θ − θεk∥L∞(0,T,L2(Ω)) −−−−−→
k→+∞

0.

Corollary 2.10. Suppose d = 2. Under the assumptions of Theorem 2.5, ∇uε

→ ∇u strongly in L2(0, T ;L2(Ω)2) and ∇θε → ∇θ strongly in L2(0, T ;L2(Ω)).

Proof. Move back to (2.18). We integrate each side of the inequality:

∫ T

0

∥∇ū∥2L2(Ω) + ∥∇θ̄∥2L2(Ω) ≲Fu,θ
ε +

∫ T

0

(gu1 + ∥θε∥2L2(Ω)∥∇θε∥2L2(Ω) + 1)∥ū∥2L2(Ω)

+

∫ T

0

(gθ1 + 1)∥θ̄∥2L2(Ω),

with

Fu,θ
ε = ∥u0(αε)− u0(α)∥2L2(Ω) + ∥θ0(αε)− θ0(α)∥2L2(Ω) +

∫ T

0

(gu2 + gθ2)

+

∫ T

0

∫
Ω

|k(α)− k(αε)|2 |∇θ|2 +
∫ T

0

∫
Ω

|h(α)− h(αε)|2 |uε|2.

• From Assumptions 2.1, the initial conditions are continuous with respect to
α and thus the two first terms in Fu,θ

ε goes to 0 as ε → 0.
• The third, forth and fifth terms in Fu,θ

ε have been already treated (see (2.20)).
• We now prove convergence for the term gu1 ∥ū∥2L2(Ω). The main problem con-

cerns the term
∫ T

0
(1+∥uε∥2L2(Ω))∥uε∥2H1(Ω)∥ū∥

2
L2(Ω). First, remark that (uε)ε

is bounded in L∞(0, T ;L2(Ω)2) Secondly, as proved in Theorem 2.5, up to
a subsequence, uε weakly converges to u in L2(0, T,H1(Ω)) and ū → 0 in
L∞(0, T ;L2(Ω)). Therefore, the whole term converges to 0.

• Concerning the other terms in gu1 , they are all independent of ε, and we
mainly use the fact that ∥ū∥L2(Ω) → 0 in L∞([0, T ]).

• We may do the same proof concerning
∫ T

0
∥θε∥L2(Ω)∥∇θε∥2L2(Ω)∥ū∥

2
L2(Ω) and∫ T

0
∥θε∥L2(Ω)∥θε∥2H1(Ω)∥θ̄∥

2
L2(Ω).

Therefore,
∫ T

0
(1 + ∥θεk∥L2(Ω)∥∇θεk∥2L2(Ω) + g1)∥ū∥2L2(Ω)) −−−→εk→0

0 and∫ T

0
(gθ1 + 1)∥θ̄∥2L2(Ω) −−−→

εk→0
0. It eventually proves that ∥∇(u − uεk)∥L2(0,T ;L2(Ω)) +

∥∇(θ − θεk)∥L2(0,T ;L2(Ω)) −−−−−→
k→+∞

0.

Owing to Urysohn’s subsequence principle and the uniqueness of the solution to
(WF), we actually obtain that the whole sequence (uε, θε) strongly converges toward
(u, θ).
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Remark 2.11. If αε = α, then the next estimate holds

sup
t∈[0,T ]

(
∥u(t)− uε(t)∥L2(Ω) + ∥θ(t)− θε(t)∥L2(Ω)

)

+

(∫ T

0

∥∇ū(t)−∇uε(t)∥2L2(Ω) + ∥∇θ(t)−∇θε(t)∥2L2(Ω)

)1/2

= O(Cε).

The convergence of (uε, θε) toward (u, θ) as ε → 0 thus has the same rate as the one
of negε toward neg.

3. First order necessary conditions for the non-smooth optimization
problem. We now begin the analysis of the optimization problems (OPT) and
(OPTe). Let us detail first some assumptions made on the objective functional:

Assumptions 3.1.
• We assume that there are no terminal costs, i.e. there is no term in the cost
functional concentrated on the terminal time T .

• For d = 2, J is lower semi-continuous with respect to the (weak-*, strong,
strong, strong) topology of Uad × L2(0, T ;V u)× L2(0, T ; V θ).

• In dimension 3, J is either lower semi-continuous with respect to the (weak-
*, strong, strong) topology of Uad × L2(0, T ;Hu) × L2(0, T ;Hθ), or lower
semi-continuous with respect to the (weak-*, weak, weak) topology of Uad ×
L2(0, T ;V u)× L2(0, T ;V θ).

The existence of solutions to (OPTe) and (OPT) is rather classical and we refer
for instance to [24, 36, 38]. We state a first result that let us see that a solution of
(OPT) can be approximated by (OPTe).

Theorem 3.2. Assume Assumptions 3.1 are verified. Let (α∗
ε ,uε, θε) be a globally

optimal solution of (OPTe). Then (α∗
ε) ⊂ Uad is a bounded sequence. Furthermore,

there exists (α∗,u∗, θ∗) ∈ Uad × L2(0, T ;V u) × L2(0, T ;V θ) such that a subsequence
of (α∗

ε ,uε, , θε) converges to (α∗,u∗, θ∗) in the topology of Assumptions 3.1, and for
all (α,u, θ) in Uad × L2(0, T ;V u) × L2(0, T ;V θ): J (α∗,u∗, θ∗) ≤ J (α,u, θ). Hence,
any accumulation point of (α∗

ε ,uε, θε) is a globally optimal solution of (OPT).

Proof. The proof can be adapted from [24, Theorem 15] or [36, Theorem 3].

However, the fact that this only concerns global solutions may appear restrictive.
Under an additional assumption, we can state a slightly stronger result.

Corollary 3.3. Assume Assumptions 3.1 hold. Let α∗ be a local strict solution
of (OPT), meaning that there exists ρ > 0 such that J (α∗,u∗, θ∗) < J (α,u, θ) for
all α ̸= α∗ such that ∥α∗ − α∥BV < ρ. Then, there exists a family of local solution
(α∗

ε) of (OPTe) such that (α∗
ε) converges weak-* to α∗.

Proof. Similar to [41, Theorem 3.14].

3.1. First order necessary conditions for (OPTe). From now on, we set
d = 2 in order to have uniqueness of solution of (WFe). We make the following
assumption on the cost function:

Assumptions 3.4. Assume d = 2 and J is Fréchet-differentiable.

We define the sets Wu(0, T ) = {u ∈ Xu; ∂tu ∈ (Xu)′}, and W θ(0, T ) = {θ ∈
Xθ; ∂tθ ∈ (Xθ)′}. Write, in (Xu)′ × (Xθ)′, the equation (WFe) as e(uε, θε, αε) = 0,
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where e : Wu(0, T )×W θ(0, T )× Uad → (Xu)′ × (Xθ)′ ×Hu ×Hθ is defined as:

e(uε, θε, αε) =


∂tuε +Auε + B(uε,uε) + h(αε)uε

+ 1
2Pε(uε,uε)− 1

2Nε(uε,u
ref)− f − σref

∂tθε −D(uε, θε) + C(αε)θε +Mε(uε, θε)− ϕ
uε(0, ·)− u0(αε)
θε(0, ·)− θ0(αε)

 .

The operators Pε, Nε and Mε are Fréchet differentiable with the same smoothness
as the approximation negε. Their derivatives with respect to uε are denoted by
duPε : Wu(0, T )2 → L(Wu(0, T ), (Xu)′), N ′

ε : Wu(0, T )2 → L(Wu(0, T ), (Xu)′),
duMε : W

u(0, T )×W θ(0, T ) → L(Wu(0, T ), (Xθ)′), defined by:

duPε(u,u)v = Pε(u,v) + P ′
ε(u,u)v,

⟨N ′
ε(u,w)v,Ψ⟩(V u)′,V u =

∫
Γout

neg′ε (u · n) (v · n)w ·Ψ.

⟨duMε(u, θ)v, φ⟩(V θ)′,V θ =

∫
Γout

(1 + βneg′ε (u · n)) (v · n)θφ,

where P ′
ε(u,w) is defined by:

⟨P ′
ε(u,w)v,Ψ⟩(V u)′,V u =

∫
Γout

pos′ε (u · n) (v · n)w ·Ψ.

Furthermore, these operators are bounded, as proved in the following lemma:

Lemma 3.5. Given (uε, θε) solution of (WFe):

∥duPε(uε,uε)v∥(Xu)′ ≲(∥uε∥
1
4

L∞(0,T ;L2(Ω))∥uε∥
3
4

L2(0,T ;H1(Ω)) + Cε)

∥v∥
1
2

L∞(0,T ;L2(Ω))∥v∥
1
2

L2(0,T ;H1(Ω)),

∥N ′
ε(uε,u

ref)v∥(Xu)′ ≲∥uε∥
1
4

L∞(0,T ;L2(Ω))∥v∥
1
2

L∞(0,T ;L2(Ω))

∥uε∥
3
4

L2(0,T ;H1(Ω))∥v∥
1
2

L2(0,T ;H1(Ω)),

∥duMε(uε, θε)v∥(Xθ)′ ≲∥θε∥
1
4

L∞(0,T ;L2(Ω))∥v∥
1
2

L∞(0,T ;L2(Ω))

∥θε∥
3
4

L2(0,T ;H1(Ω))∥v∥
1
2

L2(0,T ;H1(Ω)).

Proof. The proof is similar to the proof of Lemma 2.6. Thanks to (A2), we obtain
also:

⟨P ′
ε(u,u)v,Ψ⟩(V u)′,V u ≲∥uε∥

1
4

L∞(0,T ;L2(Ω))∥v∥
1
2

L∞(0,T ;L2(Ω))

∥uε∥
3
4

L2(0,T ;H1(Ω))∥v∥
1
2

L2(0,T ;H1(Ω))∥Ψ∥Xu .

Analogously, using (A4), ones proves that there exists Cε > 0 such that:∫ T

0

⟨Pε(uε,v),Ψ⟩(V u)′,V u ≲(∥uε∥
1
4

L∞(0,T ;L2(Ω))∥uε∥
3
4

L2(0,T ;H1(Ω)) + Cε)

∥v∥
1
2

L∞(0,T ;L2(Ω))∥v∥
1
2

L2(0,T ;H1(Ω))∥Ψ∥Xu .

Adding the two inequalities and dividing by ∥Ψ∥H1(Ω) concludes the proof. The proof
of the second and third inequalities being similar, they are thus omitted.
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Using the results of [38, Section 1.8.2], one shows easily that e is Fréchet differ-
entiable w.r.t. (uε, θε), with derivative given by:

e′uε,θε(αε)

(
v
ℓ

)
=


∂tv +Av + B(v,uε) + B(uε,v) + h(αε)v + T ℓ

+ 1
2duPε(uε,uε)v − 1

2N
′
ε(uε,u

ref)v
∂tℓ−D(uε, ℓ)−D(v, θε) + C(αε)ℓ+Mε(uε, ℓ)

+duMε(uε, θε)v
v(0, ·)
ℓ(0, ·)

 .

For defining first order conditions (see [38]), a question of interest is to determine
if, for all g = (gu, gθ,v0, ℓ0) ∈ (Xu)′ × (Xθ)′ × Hu × Hθ, the following linearized
equation

(3.1) e′uε,θε(αε)

(
v
ℓ

)
= g

admits a solution (v, ℓ) ∈ Wu(0, T )×W θ(0, T ).

Theorem 3.6. For all αε ∈ Uad, Eq. (3.1) admits a unique solution. Therefore,
e′uε,θε

(αε) is invertible.

Sketch of proof. Using Lemma 3.5, the proof can be adapted from Theorem 2.5
and [37, Appendix A2]. Uniqueness is proved as for Proposition 2.7 (see also [37,
Appendix A2]).

A consequence of Theorem 3.6 is that for all G = (g1, g2) ∈ Wu(0, T )′×W θ(0, T )′,
the following adjoint equation admits a unique solution Λε = (λu

ε , λ
θ
ε, λ

u0
ε , λθ0

ε ) ∈
Xu × Xθ ×Hu ×Hθ:

(3.2) (e′uε,θε(αε))
∗Λε = G,

where (e′uε,θε
(αε))

∗ denotes the adjoint operator of e′uε,θε
(αε).

After some calculations, equation (3.2) is equivalent to solve, for all (v, ℓ) ∈
Wu(0, T )×W θ(0, T ), the following variational problem:
(3.3)

⟨−∂tλ
u
ε +Aλu

ε +
1

2
((∇uε)

⊺λu
ε − (∇λu

ε )
⊺uε)− B(uε, λ

u
ε ) + h(αε)λ

u
ε −D1(θε)λ

θ
ε

+
1

2
Pε(uε, λ

u
ε ) +

1

2
(P ′

ε(uε,uε)−N ′
ε(uε,u

ref))∗λu
ε

+ (duMε(uε, θε))
∗
λθ
ε,v⟩Wu(0,T )′,Wu(0,T )

+ ⟨v(0, ·), λu0
ε ⟩H

= ⟨g1,v⟩Wu(0,T )′,Wu(0,T ),

⟨−∂tλ
θ
ε + T ∗λu

ε + C(αε)λ
θ
ε −D2(uε)λ

θ
ε +Mε(uε)

∗λθ
ε, ℓ⟩W θ(0,T )′,W θ(0,T )

= ⟨g2, ℓ⟩W θ(0,T )′,W θ(0,T )

where ⟨D(θ,u), φ⟩ = ⟨D1(θ)φ,u⟩ = ⟨D2(u)φ, θ⟩, ⟨Mε(u)θ, φ⟩ = ⟨Mε(u)φ, θ⟩
=
∫
Γout

((u · n) + βnegε (u · n)) θφ. This equation, in turn, is the weak formulation
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of:

(3.4a)

− ∂tλ
u
ε −A∆λu

ε + h(αε)λ
u
ε + (∇uε)

⊺λu
ε − (uε · ∇)λu

ε − θε∇λθ
ε = g1

∇ · λu
ε = 0,

− ∂tλ
θ
ε +Bλu

ε · ey −∇ · (Ck(αε)∇λθ
ε)−∇ · (uελ

θ
ε) = g2

λu
ε Γw∪Γin

= 0,

λθ
ε Γin

= 0,

∂nλ
θ
ε Γw

= 0,

A∂nλ
u
ε Γout

=
1

2
(posε (uε · n) + (uε · n))λu

ε + (1 + βµε)θελ
θ
εn

+
1

2
µε

(
(uε − uref) · λu

ε

)
n,

Ck(αε)∂nλ
θ
ε + βλθ

εnegε (uε · n) Γout
= 0

λu
ε (T ) = 0, λθ

ε(T ) = 0,

(3.4b) µε = neg′ε (uε · n)

and, as shown in a similar fashion in [37], λu0
ε = λu

ε (0, ·), λθ0
ε = λθ

ε(0, ·). Further-
more, we can argue that the weak solution (λu

ε , λ
θ
ε) of (3.4) are in L∞(0, T ;L2(Ω)2)×

L∞(0, T ;L2(Ω)), as done in Theorem 2.4.
An other consequence of Theorem 3.6 is that we can apply [38, Corollary 1.3]

which states that at any local solution (α∗
ε ,u

∗
ε, θ

∗
ε) of (OPTe), the following optimality

conditions hold:

Theorem 3.7. Let α∗
ε be an optimal solution of (OPTe) with associated states

(u∗
ε, θ

∗
ε). Then there exist adjoint states (λu

ε , λ
θ
ε) ∈ Xu × Xθ such that, denoting

(λu0
ε , λθ0

ε ) = (λu
ε (0, ·), λθ

ε(0, ·)) and Λε = (λu
ε , λ

θ
ε, λ

u0
ε , λθ0

ε ):

(3.5)

e(α∗
ε ,u

∗
ε, θ

∗
ε) = 0,

J ′
u∗

ε ,θ
∗
ε
(α∗

ε) + (eu∗
ε ,θ

∗
ε
(α∗

ε)
′)∗Λε = 0,〈

J ′
α∗

ε
(u∗

ε, θ
∗
ε) + (eα∗

ε
(u∗

ε, θ
∗
ε)

′)∗Λε, α− α∗
ε

〉
U ′

ad,Uad

≥ 0, ∀α ∈ Uad,

αε ∈ Uad.

Remark 3.8. As stated in [38, Eq. (1.89)], since e and J are Fréchet dif-
ferentiable, the mapping αε 7→ Ĵ (αε) = J (αε,uε) is Fréchet differentiable, and
Ĵ ′(αε) = J ′

α∗
ε
(u∗

ε, θ
∗
ε) + (eα∗

ε
(u∗

ε, θ
∗
ε))

∗Λε, which reads as:

(eα∗
ε
(u∗

ε, θ
∗
ε))

∗Λε =

∫ T

0

(
h′(αε)uε · λu

ε + Ck′(αε)∇θε · ∇λθ
ε

)
+ u′

0(αε) · λu0
ε + θ′0(αε)λ

θ0
ε .

3.2. Limit adjoint system. To conclude this paper, we will now study the
convergence, as ε → 0, of the adjoint states (λu

ε , λ
θ
ε) to functions (λu, λθ). The main

difficulty concerns the multiplier µε defined in (3.4b). We will prove that at the limit,
µ is defined thanks to the convex-hull of the Heaviside function H : R ⊸ [0, 1], given
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by:

(3.6) H(u) =


{0} if u < 0,

{1} if u > 0,

[0, 1] if u = 0.

As we will prove in this section, these limit adjoint states (λu, λθ) let us define neces-
sary conditions of optimality for the unrelaxed problem (OPT).

Lemma 3.9. Let (αε) ⊂ Uad and α ∈ Uad such that αε
∗
⇀ α. Define by (λu

ε , λ
θ
ε) a

weak solution of (3.4) parametrized by αε. Then, there exists λu ∈ L∞(0, T ; Hu) ∩
L2(0, T ;V u), λθ ∈ L∞(0, T,Hθ) ∩ L2(0, T ;V θ) such that, up to a subsequence:

• λu
ε → λu in L∞(0, T ; (L2(Ω))2) and λθ

ε → λθ in L∞(0, T ;L2(Ω)),
• λu

ε −−−→
ε→0

λu in L2(0, T ; (H1(Ω))2) and λθ
ε −−−→

ε→0
λθ in L2(0, T ; (H1(Ω))),

• λu
ε −−−→

ε→0
λu in L2(0, T ; (L2(Γ))2) and λθ

ε −−−→
ε→0

λθ in L2(0, T ; (L2(Γ))).

Furthermore, there exists µ ∈ L∞([0, T ]×Γout) defined by −µ ∈ H(−u·n) a.e. in Γout

such that (λu, λθ) is a weak solution to (3.4a) parametrized by α and µ, replacing
negε (·) (resp. posε (·)) by neg(·) (resp. pos(·)).

Proof. The proof is very similar to the ones presented in section 2.
• In a similar manner as for Proposition 2.2 and Proposition 2.3, one shows
that, for all σ ∈ [0, 1

6 ), there exist constants cθλ(σ) and cuλ(σ), independent of
ε, such that:

sup
[0,T ]

∥λu
ε ∥L2(Ω) +

∫ T

0

∥∇λu
ε ∥L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃u
ε

)∥∥∥
L2(Ω)

dτ ≤ cuλ(σ),

sup
[0,T ]

∥λθ
ε∥L2(Ω) +

∫ T

0

∥∇λθ
ε∥L2(Ω) +

∫
R
|τ |2σ

∥∥∥F (
λ̃θ
ε

)∥∥∥
L2(Ω)

dτ ≤ cθλ(σ).

• These bounds prove a weaker set of convergence in the same manner as in
Theorem 2.5. Since once again, we set d = 2, one proves the strong conver-
gence stated above as in Corollary 2.9.

We only need to prove that (λu, λθ) is a weak solution to (3.4a). The terms ⟨(P ′
ε(uε,

uε))
∗λu

ε ⟩Wu(0,T )′,Wu(0,T ) and ⟨(duMε(uε, θε))
∗
λθ
ε,v⟩Wu(0,T )′,Wu(0,T ) need a more

thorough examination. We start with the first term for which we have

⟨(P ′
ε(uε,uε))

∗λu
ε ,v⟩Wu =

∫ T

0

∫
Γout

pos′ε (uε · n) (uε · λu
ε )n · v.

In the same spirit as in [21, Proof of Lemma 4.3], we prove that up to a subsequence

(not relabeled) one has neg′ε (uε · n)
∗
⇀ µ in L∞([0, T ] × Γout), and such that −1 ≤

µ ≤ 0 a.e. in Γout and

µ = −1 a.e. in {u · n < 0}, µ = 0 a.e. in {u · n > 0}.

Furthermore, due to the convergence presented above, uε · λu
ε → u · λu in L1(0, T ;

L1(Γout)). Therefore, it proves that:

⟨(P ′
ε(uε,uε)

∗λu
ε ,v⟩Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

(1 + µ) (u · λu)n · v.
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Similarly, we have that:

⟨(duMε(uε, θε))
∗
λθ
ε,v⟩Wu(0,T )′,Wu(0,T ) →

∫ T

0

∫
Γout

(1 + βµ) (v · n)θλθ.

All other terms in (3.3) can be dealt with as in the proof of Theorem 2.5. Therefore,
(λu, λθ) is a weak solution to (3.4a) parametrized by α and µ.

We may now prove the final result of this paper ; namely the necessary optimality
conditions of (OPT).

Theorem 3.10. Let α∗ be an optimal solution of (OPT) with associated state
u∗, θ∗. Then there exist a multiplier µ ∈ L∞([0, T ]×Γout) and adjoint states (λu, λθ) ∈
Xu × Xθ solution of (3.4a) such that, denoting (λu0 , λθ0) =
(λu(0, ·), λθ(0, ·)) and Λ = (λu, λθ, λu0 , λθ0):

⟨J ′
α∗(u∗, θ∗) + (eα∗(u∗, θ∗)′)∗Λ, α− α∗⟩U ′

ad,Uad
≥ 0, ∀α ∈ Uad.

Proof. The proof follows the lines of [21, Theorem 4.4]. Denote by Sε the solution
operator which associates to α the solution of the relaxed equations (WFe) and by S
the solution operator which to α associates the solution of (WF). For some ρ > 0,
consider the auxiliary optimal control problem:

(3.7)

min Fε(αε) = J (αε,uε, θε) +
1

2
∥α∗ − αε∥2L2(Ω)

s.t.


(uε, θε) = Sε(αε),

αε ∈ Uad,

∥αε − α∗∥L2(Ω) ≤ ρ.

Since αε and α∗ are both in Uad, they are both bounded in L∞(Ω) and therefore,
∥α∗ − αε∥L2(Ω) is well defined. It is classical to show that (3.7) admits a global
minimizer α∗

ε ∈ Uad.
Using (2.19) (but with αε ≡ α), one proves that (in the norm of the topology

given in Assumptions 3.1 with d = 2):

(3.8) ∥S(α)− Sε(α)∥ ≲ Cε, ∀α ∈ Uad,

where Cε has been defined in (2.12).
Note that due to the Fréchet-differentiability of J supposed in Assumptions 3.4

and (3.8), it holds, for ε small enough:

|J (α, S(α))− J (α, Sε(α))| ≲ Cε, ∀α ∈ Uad, ∥α− α∗∥ ≤ ρ.

We obtain as a consequence that Fε(α
∗) ≲ Cε + J (α∗, S(α∗)), and:

Fε(α) ≳ −Cε + J (α∗, S(α∗)) +
1

2
∥α− α∗∥2L2(Ω), ∀α ∈ Uad, ∥α− α∗∥L2(Ω) ≤ ρ.

Therefore, for all α ∈ Uad such that ∥α− α∗∥L2(Ω) ≤ ρ:

Fε(α
∗) ≲ Cε + J (α∗, S(α∗)) ≲ Cε + J (α, S(α)) ≲ 2Cε + Fε(α).

Hence, for some constant C ′, and denoting C ′
ε = C ′Cε, one has the implication:

∀α ∈ Uad, 2C ′
ε <

1

2
∥α− α∗∥2L2(Ω) ≤

1

2
ρ2 =⇒ Fε(α

∗) < Fε(α).
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One has therefore the following necessary condition of optimality:

(3.9) ∥α∗
ε − α∗∥L2(Ω) ≤

√
4C ′

ε.

Hence, for ε small enough, α∗
ε is in the ρ-ball around α∗ ; therefore, α∗

ε is a local
solution of (OPTe). Using Theorem 3.7, one then proves that there exists adjoint
states (λu

ε , λ
θ
ε) solution of (3.4a) such that, for all α ∈ Uad:

(3.10)
〈
J ′
α∗

ε
(u∗

ε, θ
∗
ε) + (eα∗

ε
(u∗

ε, θ
∗
ε)

′)∗Λε, α− α∗
ε

〉
U ′

ad,Uad

+⟨α∗
ε−α∗, α−α∗

ε⟩L2(Ω) ≥ 0.

From (3.9), one has α∗
ε → α∗ strongly in L2(Ω), and therefore, in L1(Ω). Since

(α∗
ε − α∗)ε ⊂ Uad, one has also (α∗

ε − α∗)ε bounded in BV (Ω). Hence, α∗
ε

∗
⇀ α∗ in

Uad. Using then Corollary 2.9, Assumptions 3.1 and Lemma 3.9, we can pass to the
limit in (3.10), which concludes this proof.

4. Conclusions and perspectives. In this paper, we obtained a set of theoret-
ical results (existence, uniqueness in 2d, relaxation and definition of first order neces-
sary optimality conditions) for a topology optimization problem involving Boussinesq
system with non-smooth boundary conditions.

As a perspective, we must now consider how these results can help design a nu-
merical method. It should be noted that these non-smooth outlet conditions have
already been studied outside of an optimization context [5, 13, 15]. Also, the use of
smooth first order conditions for a topology optimization problem is not new [16, 48],
and the smooth approximation found in Theorem 3.7 can straightforwardly be used
in this context for a fixed ε. Finally, we emphasize that the numerical use of the
nonsmooth first order conditions as given in Theorem 3.10 needs more research. This
could be inspired by the approaches used in nonsmooth optimization with subdifferen-
tials [33]. A continuity approach, as experimented in [51] together with Remark 2.11
may also provide a good basis to get error estimates between the optimized solution
of the relaxed optimization problem and the non-smooth ones.

Appendix A. Technical lemma. Let X = L2(0, T ;H1(Ω)) ∩ L4(0, T ;L2(Ω)),
and denote by X′ the dual of X with the following dual pairing: ⟨f, g⟩X′,X =∫ T

0
⟨f(t), g(t)⟩L2(Ω). Denote EX = {u ∈ X|u′ = du

dt ∈ X′}. We endow EX with the
norm: ∥u∥EX = ∥u∥X + ∥u′∥X′ , where ∥u∥X = max{∥u∥L2(0,T ;H1(Ω)),
∥u∥L∞(0,T ;L2(Ω))}. Finally, denote D(0, T ;X) the set of infinitely differentiable func-
tions from [0, T ] to X with compact support in [0, T ].

Lemma A.1. Let u ∈ EX. There exists (un)n ⊂ D(0, T ;H1(Ω)) such that:

un → u in L2(0, T ;H1(Ω)), u′
n ⇀ u′ in X′.

Proof. From [14, Theorem II.2.26], one proves directly that there exists (un)n ⊂
D(0, T ;H1(Ω)) such that un → u strongly in L2(0, T ;H1(Ω)).

For all φ ∈ D(0, T ;H1(Ω)), one has:

⟨u′
n, φ⟩X′,X = −⟨un, φ

′⟩X′,X −−−−−→
n→+∞

−⟨u, φ′⟩X′,X = ⟨u′, φ⟩X′,X.

By the density result [14, Theorem II.2.26], we prove that:

∀φ ∈ X, ⟨u′
n, φ⟩X′,X −−−−−→

n→+∞
⟨u′, φ⟩X′,X.

25



Lemma A.2. Let u,v ∈ EX. Then, t 7→ ⟨u(t),v(t)⟩L2(Ω) is in W 1,1([0, T ]) and
for all t ∈ [0, T ]:

d

dt
⟨u(t),v(t)⟩L2(Ω) =

〈
du

dt
(t),v(t)

〉
L2(Ω)

+

〈
dv

dt
(t),u(t)

〉
L2(Ω)

.

Proof. Using Lemma A.1, the proof is a simple adaptation of [14, Theorem
II.5.12].
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