
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Dualities for Non-Euclidean Smoothness and
Strong Convexity under the Light of Generalized
Conjugacy

Laude, Emanuel
Department of Electrical Engineering (ESAT-STADIUS), KU Leuven

Themelis, Andreas
Faculty of Information Science and Electrical Engineering (ISEE), Kyushu University

Patrinos, Panagiotis
Department of Electrical Engineering (ESAT-STADIUS), KU Leuve

https://hdl.handle.net/2324/7151986

出版情報：SIAM Journal on Optimization. 33 (4), pp.2721-2749, 2023-12-31. Society for
Industrial and Applied Mathematics
バージョン：
権利関係：© 2022 Society for Industrial and Applied Mathematics



\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 2721--2749

DUALITIES FOR NON-EUCLIDEAN SMOOTHNESS AND STRONG
CONVEXITY UNDER THE LIGHT OF GENERALIZED

CONJUGACY\ast 

EMANUEL LAUDE\dagger , ANDREAS THEMELIS\ddagger , AND PANAGIOTIS PATRINOS\dagger 

Abstract. Relative smoothness and strong convexity have recently gained considerable attention
in optimization. These notions are generalizations of the classical Euclidean notions of smoothness
and strong convexity that are known to be dual to each other. However, conjugate dualities for non-
Euclidean relative smoothness and strong convexity remain an open problem, as noted earlier by
Lu, Freund, and Nesterov [SIAM J. Optim., 28 (2018), pp. 333--354]. In this paper, we address this
question by introducing the notions of anisotropic strong convexity and smoothness as the respective
dual counterparts. The dualities are developed under the light of generalized conjugacy, which leads
us to embed the anticipated dual notions within the superclasses of certain upper and lower envelopes.
In contrast to the Euclidean case, these inclusions are proper in general, as showcased by means of
counterexamples.
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1. Introduction.

1.1. Motivation. An important duality result in optimization is that a convex
function is differentiable with Lipschitz continuous (in the Euclidean sense) gradi-
ent mapping if and only if its convex conjugate is strongly convex, i.e., it remains
convex after the subtraction of a positive multiple of the squared Euclidean norm;
see Figure 1 (upper row). The notions of Euclidean smoothness and strong convex-
ity can be generalized to relative smoothness [15, 5, 31] and relative strong convexity
[31, 4], which have recently received considerable attention in the optimization liter-
ature [15, 5, 31, 22, 4, 1, 36, 16, 24]. However, it remains an open problem whether
the known conjugate duality between Euclidean Lipschitz smoothness and Euclidean
strong convexity can be generalized to the non-Euclidean case, as noted earlier in [31,
section 3.4].

The goal of this paper is to close this gap by developing a full1 conjugate duality
for non-Euclidean smoothness and strong convexity. Following [37], we examine the
duality under the light of \Phi -convexity [35], which typically appears in the context
of eliminating duality gaps [40, 37, 3, 18] in nonconvex and nonsmooth optimization
and optimal transport theory; see, e.g., [42]. We shall see that the sought duality
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f L-Lipschitz smooth
[41, Prop. 12.60]

⇐⇒ f∗ 1
L -strongly convex

[41, Prop. 12.60]

⇐
⇒

⇐
⇒ [19, Thm. 7.2(b)]

f = h� L
2 ‖ · ‖

2 ⇐⇒ f∗ = (−g) ♦ 1
2L‖ · ‖

2

Fig. 1. Euclidean conjugate dualities for proper, lsc, convex functions f with L > 0. Here,
h� L

2
‖ · ‖2 := infy∈Rn h(y) + L

2
‖ · − y‖2 and (−g) ♦ 1

2L
‖ · ‖2 := supy∈Rn

1
2L
‖ · − y‖2 − g(y) denote

infimal and supremal convolutions of h : Rn → R resp. −g for g : Rn → R and a positive multiple
of the squared Euclidean norm, respectively.

Fig. 1. Euclidean conjugate dualities for proper, l.s.c., convex functions f with L > 0. Here,
h \square L

2
\| \cdot \| 2 := infy\in \BbbR nh(y) + L

2
\| \cdot  - y\| 2 and ( - g)\lozenge 1

2L
\| \cdot \| 2 := supy\in \BbbR n

1
2L

\| \cdot  - y\| 2  - g(y) denote

infimal and supremal convolutions of h : \BbbR n \rightarrow \BbbR (resp.,  - g) for g : \BbbR n \rightarrow \BbbR and a positive multiple
of the squared Euclidean norm, respectively.

relation is not found between relative smoothness and relative strong convexity. In-
stead, it involves different notions of relative smoothness and strong convexity which
are developed in this paper.

Overall, our contribution is twofold:
(i) We furnish the dual counterparts of relative smoothness and relative strong

convexity in terms of lower and upper (sub)gradient inequalities that we refer
to, respectively, as anisotropic strong convexity and anisotropic smoothness.
The latter is closely related to anisotropic prox-regularity introduced in [28,
Definition 2.13]. Restricting to convex functions, we prove conjugate duali-
ties between relative smoothness and anisotropic strong convexity as well as
relative strong convexity and anisotropic smoothness.

(ii) Following [37], the duality correspondences are developed under the light
of generalized conjugacy. This leads us to study certain superclasses of the
anticipated non-Euclidean notions of smoothness and strong convexity, ex-
amining the properness of these inclusions. In the primal, these superclasses
correspond to the Bregman--Moreau [10, 9, 12, 27, 21, 29] and Bregman--Klee
envelopes [11, 13] and in the dual to infimal and supremal convolutions, aka
Klee envelopes [19, 26, 20]. The known equivalence between the notion of
Euclidean weak convexity (aka paraconvexity, semiconvexity, or hypoconvex-
ity) and the representation in terms of a negative Moreau envelope (see, e.g.,
[44]) also motivates the study of non-Euclidean generalizations of the class of
weakly convex functions.

In the convex case, the aforementioned equivalences and implications are synopsized
in Figure 2. Further restricting to the Euclidean setting, the relations simplify into
the ones depicted in Figure 1.

1.2. Paper organization. The remainder of the paper is organized as follows.
Section 2 offers an overview of basic notions of generalized conjugacy and convexity
and lists some related results which will be used in what follows. Section 3 will then
revise the classes of relatively smooth and relatively strongly convex functions under
the lens of generalized conjugacy and introduce their anisotropic counterparts, which
in the subsequent section 4 will be shown to be the sought dual classes. The shortcom-
ings of \Phi -convexity in the duality picture will be ultimately showcased in section 5 by
means of counterexamples. Section 6 concludes the paper.

1.3. Preliminaries and notation. With \BbbR and \BbbR :=\BbbR \cup \{ \infty , - \infty \} , we denote
the real and the extended real line, respectively. We denote by \langle \cdot , \cdot \rangle the standard
Euclidean inner product on \BbbR n and by \| x\| :=

\sqrt{} 
\langle x,x\rangle for any x \in \BbbR n the standard

Euclidean norm on \BbbR n. The closed ball of radius r > 0 centered at x \in \BbbR n is denoted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2723

Fig. 2. Schematics of the interrelations between smoothness, strong convexity, and certain
pointwise min/max representations for proper, lower semicontinuous (l.s.c.), convex functions. B\phi -
and B\phi \ast - are short for relative to \phi , as in Assumptions (A1)--(A3), and to its conjugate \phi \ast , re-
spectively, in the classical Bregman sense; see Definition 3.1. Similarly, a\phi - and a\phi \ast - refer to the

anisotropic counterparts defined in Definition 3.8. Here,  - \rightarrow env\phi g := infx\in \BbbR n D\phi (x, \cdot ) + g(x) and
 -  - \rightarrow 
klee\phi g := supx\in \BbbR nD\phi (x, \cdot )  - g(x) are (right) Bregman--Moreau and Bregman--Klee envelopes of

g : \BbbR n \rightarrow \BbbR , respectively, and D\phi (x, y) := \phi (x)  - \phi (y)  - \langle \nabla \phi (y), x - y\rangle is the Bregman distance
generated by \phi .

as B(x; r). For a set S \subseteq \BbbR n, intS \subseteq S denotes its interior, conS \supseteq S its convex hull,
and \delta S :\BbbR n\rightarrow \BbbR its indicator function, namely, \delta S(x) = 0 if x\in S and \infty otherwise.

The notation T :\BbbR n \rightrightarrows \BbbR n indicates a set-valued mapping, whose domain, graph,
and range are defined as domT = \{ x\in \BbbR n : T (x) \not = \emptyset \} , gph T = \{ (x, y) : y \in T (x)\} , and
rangeT =

\bigcup 
x\in \BbbR n T (x), respectively. We say that T is locally bounded at \=x if there

exists a neighborhood \scrN \=x of \=x such that
\bigcup 

x\in \scrN \=x
T (x) is bounded.

The effective domain of an extended real-valued function f : \BbbR n\rightarrow \BbbR is denoted
by domf := \{ x\in \BbbR n : f(x)<\infty \} , and we say that f is proper if f(x) >  - \infty for all
x \in \BbbR n and domf \not = \emptyset , lower semicontinuous (l.s.c.) if f(\=x) \leq lim infx\rightarrow \=x f(x) for all
\=x \in \BbbR n, and supercoercive if f(x)/\| x\| \rightarrow \infty as \| x\| \rightarrow \infty . The convex conjugate of f
is denoted as f\ast := supy\in \BbbR n \{ \langle \cdot , y\rangle  - f(y)\} . We say that f is strictly continuous at a

point \=x where f is finite if limsupx,x\prime \rightarrow \=x
x \not =x\prime 

| f(x) - f(x\prime )| 
\| x - x\prime \| <\infty . With \scrC k(\BbbR n), we indicate

the set of functions from \BbbR n to \BbbR which are k times continuously differentiable while
with \Gamma 0(\BbbR n) the extended real-valued ones which are proper, l.s.c., and convex. The
identity function x \mapsto \rightarrow x on \BbbR n is denoted by id.

The set-valued mappings \widehat \partial f,\partial f : \BbbR n \rightrightarrows \BbbR n are the regular and the limiting
subdifferential of f , where \=v \in \widehat \partial f(\=x) if lim infx\rightarrow \=x

x\not =\=x

f(x) - f(\=x) - \langle \=v,x - \=x\rangle 
\| x - \=x\| \geq 0, while \=v \in 

\partial f(\=x) if \=x \in domf and there exists a sequence gph \widehat \partial f \ni (xk, vk)\rightarrow (\=x, \=v) such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2724 E. LAUDE, A. THEMELIS, AND P. PATRINOS

f(xk)\rightarrow f(\=x). If g \in \scrC 1(\BbbR n), then \widehat \partial (f + g) = \widehat \partial f +\nabla g and \partial (f + g) = \partial f +\nabla g [41,
Exercise 8.8(c)]. The inclusion 0\in \widehat \partial f(\=x) is necessary for local minimality of f at \=x [41,
Theorem 10.1]. We define \varepsilon -argminf := \{ x : f(x)\leq inf f + \varepsilon \} . We adopt the notions of
essential smoothness, essential strict convexity, and Legendre-type functions from [39,
section 26]. We say that a function f \in \Gamma 0(\BbbR n) is essentially smooth if int(domf) \not = \emptyset ,
f is differentiable on int(domf) and \| \nabla f(x\nu )\| \rightarrow \infty whenever int(domf)\ni x\nu \rightarrow x\in 
bdrydomf , essentially strictly convex if f is strictly convex on every convex subset of
dom\partial f , and Legendre if f is both essentially smooth and essentially strictly convex.

2. Generalized conjugacy. In this section, we recapitulate the notions of \Phi -
convexity and \Phi -conjugacy [35, 2, 23, 41, 43], which will prove valuable tools in what
follows. Throughout this section, X and Y are nonempty sets, and \Phi : X \times Y \rightarrow \BbbR 
is a real-valued function called pairing (or coupling). Although this setting is general
enough for our purposes, we emphasize that all the results are true even for extended
real-valued couplings, up to the adoption of suitable extended arithmetics to account
for indeterminate forms; see, e.g., [34, 41].

Definition 2.1 (\Phi -convexity). We say that f :X\rightarrow \BbbR is (left) \Phi -convex if there
is

\bigl\{ 
(yi, \beta i)\in Y \times \BbbR : i\in \scrI 

\bigr\} 
for some index set \scrI such that

f(x) = sup
i\in \scrI 

\Phi (x, yi) - \beta i \forall x\in X.(2.1)

When \scrI = \emptyset , we define f \equiv  - \infty . Likewise, we say that g : Y \rightarrow \BbbR is (right) \Phi -convex
if there is

\bigl\{ 
(xj , \alpha j)\in X \times \BbbR : j \in \scrJ 

\bigr\} 
for some index set \scrJ such that for all y \in Y ,

g(y) = sup
j\in \scrJ 

\Phi (xj , y) - \alpha j \forall y \in Y.(2.2)

When \scrJ = \emptyset , we define g\equiv  - \infty .

Sometimes \Phi -convex functions are also referred to as \Phi -envelopes. Note that if
X = Y = \BbbR n and \Phi = \langle \cdot , \cdot \rangle is the Euclidean inner product, one recovers the class
of proper convex l.s.c. functions. This condition, however, differs from the classical
secant line definition of convexity, which also includes functions which are not l.s.c.
More generally, a typical choice for the coupling is the negative squared Euclidean
norm \Phi (x, y) = - 1

2\lambda \| x - y\| 2 for \lambda > 0, which leads to the proximal hull [41, Example
1.44]. Another interesting choice is \Phi (x, y) := \langle v,x\rangle  - r

2\| x\| 
2 for y = (v, r). Under

this coupling, all proper l.s.c. and prox-bounded functions are \Phi -convex [41, Example
11.66]. Further examples can be found in [2, 23, 43].

Definition 2.2 (\Phi -conjugate functions). The (left) \Phi -conjugate of f :X\rightarrow \BbbR on
Y is f\Phi : Y \rightarrow \BbbR , defined by

f\Phi (y) := sup
x\in X

\Phi (x, y) - f(x),(2.3)

and the (left) \Phi -biconjugate of f back on X is f\Phi \Phi :X\rightarrow \BbbR , defined by

f\Phi \Phi (x) := sup
y\in Y

\Phi (x, y) - f\Phi (y).(2.4)

Likewise, the (right) \Phi -conjugate of g : Y \rightarrow \BbbR on X is defined by

g\Phi (x) := sup
y\in Y

\Phi (x, y) - g(y),(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2725

and the (right) \Phi -biconjugate of g back on Y is given by

g\Phi \Phi (y) := sup
x\in X

\Phi (x, y) - g\Phi (x).(2.6)

Once again specializing the definition toX = Y =\BbbR n and \Phi = \langle \cdot , \cdot \rangle , one recovers
the familiar convex conjugate and biconjugate operations. If \Phi (x, y) =  - 1

2\lambda \| x - y\| 2
for \lambda > 0 is the negative squared Euclidean norm, \Phi -conjugacy yields the proximal
transform [41, Example 11.64]. Another choice for \Phi is  - \| x - y\| , which leads to the
negative Pasch--Hausdorff envelopes; see, e.g., [41, Example 9.11]. The corresponding
class of \Phi -conjugates is the class of globally Lipschitz functions and plays an important
role in the Kantorovich--Rubinstein duality in optimal transport theory; see, e.g., [42,
Remark 6.5]. Convex subgradients can similarly be captured as a special case of \Phi -
subgradients, defined next; see, e.g., [2, Remark 3.3].

Definition 2.3 (\Phi -subgradients and \Phi -subdifferential). We say that \=y \in Y is
a (right) \Phi -subgradient of f : X \rightarrow \BbbR at \=x \in domf , denoted by \=y \in \partial \Phi f(\=x), if the
generalized subgradient inequality

f(x)\geq f(\=x) +\Phi (x, \=y) - \Phi (\=x, \=y) \forall x\in X(2.7)

holds or, equivalently, if \=x \in argmaxx\in X \{ \Phi (x, \=y) - f(x)\} . We call the set \partial \Phi f(\=x) of
all subgradients \=y of f at \=x the (right) \Phi -subdifferential of f at \=x.

For g : Y \rightarrow \BbbR , the definition of a (left) \Phi -subgradient and (left) \Phi -subdifferential
is parallel.

The remainder of this section collects a list of useful properties of generalized
convexity which will be invoked later in the manuscript. Although quite standard
(see, e.g., [2, 23, 41, 43]), these results are instrumental in our analysis, and for com-
pleteness, we will thus detail the simple proofs. We confine the discussion to ``left""
functions f :X\rightarrow \BbbR ; the results for ``right"" functions g : Y \rightarrow \BbbR are parallel.

The following result can be regarded as a generalization of the Fenchel--Moreau
theorem (see, e.g., [33, Theorem 2.78]).

Lemma 2.4. For any f :X\rightarrow \BbbR , the following properties hold:
(i) f\Phi : Y \rightarrow \BbbR is right \Phi -convex.
(ii) f\Phi \Phi :X\rightarrow \BbbR is the largest left \Phi -convex function majorized by f ; namely, for

\scrA f :=
\bigl\{ 
(y,\beta )\in Y \times \BbbR : \Phi (x, y) - \beta \leq f(x) \forall x\in X

\bigr\} 
,

we have

f(\=x)\geq f\Phi \Phi (\=x) = sup
(y,\beta )\in \scrA f

\{ \Phi (\=x, y) - \beta \} \forall \=x\in X,

where the inequality holds with equality if, in addition, f is \Phi -convex.
(iii) (f\Phi \Phi )\Phi = f\Phi .
(iv) (\Phi -Fenchel--Young inequality) f(x)+f\Phi (y)\geq \Phi (x, y) for every (x, y)\in X\times Y .

Proof.
2.4(i) Trivial (compare (2.3) and (2.2)).
2.4(ii) f\Phi \Phi is left \Phi -convex by assertion 2.4(i), its being the right \Phi -conjugate of

f\Phi . Moreover, for \=x\in X, one has

f\Phi \Phi (\=x)
(def)
= sup

y\in Y

\bigl\{ 
\Phi (\=x, y) - f\Phi (y)

\bigr\} 
= sup

(y,\beta )\in Y\times \BbbR 

\bigl\{ 
\Phi (\=x, y) - \beta : f\Phi (y)\leq \beta 

\bigr\} 
= sup

(y,\beta )\in \scrA f

\{ \Phi (\=x, y) - \beta \} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2726 E. LAUDE, A. THEMELIS, AND P. PATRINOS

where the last identity holds since f\Phi (y)
(def)
= supx\in X\Phi (x, y) - f(x)\leq \beta if and only if

(y,\beta ) \in \scrA f . In particular, this implies the inequality f(\=x) \geq f\Phi \Phi (\=x). If, in addition,
f is \Phi -convex, there is

\bigl\{ 
(yi, \beta i)\in Y \times \BbbR : i\in \scrI 

\bigr\} 
for some index set \scrI such that f =

supi\in \scrI \Phi ( \cdot , yi) - \beta i. Therefore, for any i\in \scrI , we have f(x)\geq \Phi (x, yi) - \beta i for all x\in X
and thus \scrI \subseteq \scrA f . This implies that f(\=x) \leq sup(y,\beta )\in \scrA f

\{ \Phi (\=x, y) - \beta \} = f\Phi \Phi (\=x) and

thus f(\=x) = f\Phi \Phi (\=x) as claimed.
2.4(iii) By definition, f\Phi \Phi = (f\Phi )\Phi . Thus, we have (f\Phi )\Phi \Phi = ((f\Phi )\Phi )\Phi = (f\Phi \Phi )\Phi ,

and the claim follows from assertions 2.4(i) and 2.4(ii) since f\Phi is right \Phi -convex and
as such coincides with its biconjugate.

2.4(iv) Follows from the definition of the left \Phi -conjugate; cf. (2.3).

Lemma 2.5. For any f :X\rightarrow \BbbR , the following are equivalent:
(i) f is left \Phi -convex.
(ii) f\Phi \Phi = f .
(iii) f = g\Phi for some g : Y \rightarrow \BbbR .

Proof.
2.5(i) \Rightarrow 2.5(ii) Follows from Lemma 2.4(ii).
2.5(ii) \Rightarrow 2.5(iii) Holds with g= f\Phi .
2.5(iii) \Rightarrow 2.5(i) Trivial since g\Phi is left \Phi -convex by Lemma 2.4(i).

Lemma 2.6 (Fenchel \Phi -duality). Let f : X \rightarrow \BbbR be proper. For any \=x \in X and
\=y \in Y , the following statements are equivalent:

(i) \=y \in \partial \Phi f(\=x).
(ii) f(\=x) + f\Phi (\=y) =\Phi (\=x, \=y)\in \BbbR .
(iii) \=x\in argminx\in X \{ f(x) - \Phi (x, \=y)\} .
(iv) \=x\in \partial \Phi f\Phi (\=y)\cap dom\partial \Phi f .

Any one of these equivalent conditions implies that f(\=x) = f\Phi \Phi (\=x) \in \BbbR and \=y \in 
\partial \Phi f

\Phi \Phi (\=x). Moreover, when f is left \Phi -convex, the intersection with dom\partial \Phi f is su-
perfluous in the last condition.

Proof. The equivalence of the first three assertions follows from the definitions of
\Phi -conjugate and \Phi -subdifferential (cf. (2.3) and (2.7)), and in particular, each implies
the inclusion \=x\in dom\partial \Phi f . Suppose now that 2.6(ii) holds. Then we have

f(\=x)\geq f\Phi \Phi (\=x)
(def)
= sup

y\in Y
\Phi (\=x, y) - f\Phi (y)\geq \Phi (\=x, \=y) - f\Phi (\=y) = f(\=x),

where the first inequality holds due to Lemma 2.4(ii) and the last equality is assertion
2.6(ii). All inequalities thus hold as equalities showing that f(\=x) = f\Phi \Phi (\=x) and \=y \in 
argmax\Phi (\=x, \cdot ) - f\Phi , which means by definition that \=x \in \partial \Phi f

\Phi (\=y). This concludes
the proof of implications 2.6(i) \leftrightarrow 2.6(ii) \leftrightarrow 2.6(iii) \Rightarrow 2.6(iv).

Suppose now that assertion 2.6(iv) holds. Since \=x \in dom\partial \Phi f , there exists \eta \in 
\partial \Phi f(\=x), which by the equivalence of the first two assertions implies that f(\=x) =
\Phi (\=x, \eta ) - f\Phi (\eta ) \in \BbbR . Similarly, the inclusion \=x \in \partial \Phi f

\Phi (\=y) implies, through the same
equivalence applied to f\Phi : Y \rightarrow \BbbR , that f\Phi (\=y) + f\Phi \Phi (\=x) =\Phi (\=x, \=y). Then,

f(\=x) =\Phi (\=x, \eta ) - f\Phi (\eta )\leq sup
\bigl\{ 
\Phi (\=x, \cdot ) - f\Phi 

\bigr\} (def)
= f\Phi \Phi (\=x)

2.4(ii)

\leq f(\=x),

Therefore, \Phi (\=x, \=y) - f\Phi (\=y) = f\Phi \Phi (\=x) = f(\=x)\in \BbbR , which is assertion 2.6(ii).
To conclude, observe that \=y \in \partial \Phi f(\=x)\Rightarrow \=x \in \partial \Phi f\Phi (\=y)\Rightarrow \=y \in \partial \Phi f\Phi \Phi (\=x) due to the

shown equivalence of the first and last assertions, applied first to f :X\rightarrow \BbbR and then
to f\Phi : Y \rightarrow \BbbR . If f is left \Phi -convex, then f = f\Phi \Phi by Lemma 2.5, and the above
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2727

chain of implications then reduces to \=y \in \partial \Phi f(\=x) \leftrightarrow \=x \in \partial \Phi f
\Phi (\=y), without domain

inclusion.

3. Bregman and anisotropic convexity and smoothness.

3.1. Standing assumptions. The notions considered in the remainder of this
manuscript involve a reference function \phi , which complies with the following standing
requirements and will be henceforth assumed without further mention:

(A1) \phi \in \Gamma 0(\BbbR m) is Legendre.
(A2) dom\phi =\BbbR n.
(A3) \phi is supercoercive.
Assumptions (A2) and (A3) are made for simplicity so as to avoid treatment of

complicating boundary cases and extended arithmetics. In view of [6, Proposition
2.16], the convex conjugate \phi \ast of \phi also complies with the same requirements, and
the gradients \nabla \phi ,\nabla \phi \ast : \BbbR n \rightarrow \BbbR n are mutually inverse bijections: (\nabla \phi ) - 1 = \nabla \phi \ast .
In particular, Assumptions (A1)--(A3) are equivalent to \phi and \phi \ast both being strictly
convex and differentiable (and supercoercive) with full domain.

3.2. Bregman convexity and smoothness. In this subsection, we revisit the
existing notions of relative strong/weak convexity [21, 31, 4] and relative smooth-
ness [15, 5, 31] and collect some basic properties. In addition, we provide alternative
characterizations in terms of \Phi -convexity. To begin with, we introduce the Bregman
distance [17] D\phi generated by the reference function \phi , which, thanks to the full
domain property of \phi , is defined as

D\phi (x, y) := \phi (x) - \phi (y) - \langle \nabla \phi (y), x - y\rangle 

for any x, y \in \BbbR n. Next, we recall the definitions of relative weak convexity [21],
relative strong convexity [31, 4], and a two-sided version [16] of relative smoothness
[15, 5, 31]. Since our dual notions involve a reference function as well, we will refine
the existing terminology and henceforth refer to relative weak/strong convexity and
smoothness as Bregman weak/strong convexity and smoothness (B\phi -weak/B\phi -strong
convexity and B\phi -smoothness).

Definition 3.1 (Bregman weak/strong convexity and smoothness). A function
f :\BbbR n\rightarrow \BbbR is said to be

(i) B\phi -weakly convex if f + \phi is convex;
(ii) B\phi -strongly convex if f  - \phi is convex;
(iii) B\phi -smooth if both f and  - f are proper and B\phi -weakly convex.

A source of practical examples for B\phi -weakly convex functions is the class of
compositions c \circ F : \BbbR n\rightarrow \BbbR for a convex and globally Lipschitz function c : \BbbR m\rightarrow \BbbR 
and a mapping F :\BbbR n\rightarrow \BbbR m whose component functions Fi :\BbbR n\rightarrow \BbbR are B\phi -smooth;
see, e.g., [29, 36].

Next we provide basic equivalent characterizations of B\phi -weak/strong convexity
and B\phi -smoothness in terms of lower and upper (sub)gradient inequalities. The char-
acterization of B\phi -smoothness is a specialization of the two-sided full extended descent
lemma [16, Lemma 2.1] to \phi with full domain; see [5, 31] for the one-sided version.
For a joint treatment, we introduce a flag r \in \{ \pm 1\} such that convexity of f  - r\phi 
means either B\phi -weak (r= - 1) or B\phi -strong (r=+1) convexity.

Proposition 3.2. Let f : \BbbR n \rightarrow \BbbR be proper and l.s.c., and let r =  - 1 (resp.,
r=+1). The following are equivalent:

(i) f is B\phi -weakly convex (resp., B\phi -strongly convex); that is, f  - r\phi is convex.
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2728 E. LAUDE, A. THEMELIS, AND P. PATRINOS

(ii) For every (\=x, \=v)\in gph\partial f , it holds that

f(x)\geq f(\=x) + \langle \=v,x - \=x\rangle + rD\phi (x, \=x) \forall x\in \BbbR n.(3.1)

(iii) \langle x - x\prime , v - v\prime \rangle \geq r \langle x - x\prime ,\nabla \phi (x) - \nabla \phi (x\prime )\rangle holds for all (x, v), (x\prime , v\prime )\in gph\partial f .
Moreover, f is B\phi -smooth if and only if it is continuously differentiable and satisfies

| f(x) - f(\=x) - \langle \nabla f(\=x), x - \=x\rangle | \leq D\phi (x, \=x) \forall x\in \BbbR n.(3.2)

Proof. We start by observing that since \phi is smooth, \partial (f  - r\phi ) = \partial f  - r\nabla \phi .
3.2(i) \Rightarrow 3.2(ii) For (\=x, \=v)\in gph\partial f , convexity of f  - r\phi yields

(f  - r\phi )(x)\geq (f  - r\phi )(\=x) + \langle \=v - r\nabla \phi (\=x), x - \=x\rangle \forall x\in \BbbR n,

which after reordering is (3.1).
3.2(ii) \Rightarrow 3.2(iii) For (x, v), (x\prime , v\prime )\in gph\partial f , (3.1) yields

f(x\prime )\geq f(x) + \langle v,x\prime  - x\rangle + rD\phi (x
\prime , x) and f(x)\geq f(x\prime ) + \langle v\prime , x - x\prime \rangle + rD\phi (x,x

\prime ).

By summing the two inequalities and reordering, assertion 3.2(iii) is obtained.
3.2(iii) \Rightarrow 3.2(i) By assumption, for all (x, v), (x\prime , v\prime ) \in gph\partial f , it holds that

\langle x - x\prime , v - v\prime \rangle \geq r \langle x - x\prime ,\nabla \phi (x) - \nabla \phi (x\prime )\rangle . By suitably rearranging, this can equiv-
alently be written as \langle x - x\prime , v - r\nabla \phi (x) - (v\prime  - r\nabla \phi (x\prime ))\rangle \geq 0. Let now two pairs
(x, y), (x\prime , y\prime ) \in gph\partial (f  - r\phi ) be fixed. Since \partial (f  - r\phi ) = \partial f  - r\nabla \phi , this means that
y= v - r\nabla \phi (x) for some v \in \partial f(x) and y\prime = v\prime  - r\nabla \phi (x) for some v\prime \in \partial f(x\prime ). In light
of the previous inequality, we obtain \langle x - x\prime , y - y\prime \rangle \geq 0. This implies that \partial (f  - r\phi )
is monotone, and convexity of f  - r\phi then follows from [41, Theorem 12.17].

We now prove the final claim. If f is B\phi -smooth, since both f and  - f are proper,
f must be finite-valued. It then follows from [1, Proposition 2.5] that f is continuously
differentiable. Since, by definition, f and  - f are both B\phi -weakly convex, in light of
the shown equivalence among assertions 3.2(i) and 3.2(ii), (3.1) holds for both f and
 - f with r =  - 1. By combining the two resulting inequalities and using the fact
that \partial f = \nabla f , (3.2) is obtained. Conversely, if (3.2) holds and f is continuously
differentiable, then both f and  - f satisfy (3.1) with r =  - 1. By invoking again the
shown equivalence of the first two assertions, we conclude that both f and  - f are
(proper and) B\phi -weakly convex, and hence B\phi -smooth by definition.

Note that, in contrast to [16, Lemma 2.1], we do not assume smoothness in Def-
inition 3.1(iii), as this is implied automatically; see also [1, Propostion 2.5]. Under
the restriction that f is finite-valued and locally Lipschitz, the equivalence between
Propositions 3.2(i) and 3.2(ii) in the B\phi -weakly convex case, i.e., for r= - 1, was pro-
vided in [22, Lemma 2.2] for more general Legendre functions \phi that possibly do not
have full domain.

In addition, we provide an alternative definition of B\phi -weak/strong convexity and
B\phi -smoothness involving an envelope representation that identifies a function as a hull
of supporting elementary functions. This observation naturally leads to framing these
notions within the scope of \Phi -convexity (cf. Definition 2.1), and in doing so, it enables
the possibility to employ its general yet very powerful tools. In this perspective, note
that with \Phi =  - D\phi , left and right \Phi -conjugates amount to left and right (negative)
Bregman--Moreau envelopes f\Phi = - \leftarrow  - env\phi f and g\Phi = -  - \rightarrow env\phi g, where

\leftarrow  - env\phi f(y) := inf \{ f +D\phi ( \cdot , y)\} and  - \rightarrow env\phi g(x) := inf \{ g+D\phi (x, \cdot )\} .(3.3)
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2729

Likewise, the attainment sets, which constitute the respective left and right Bregman
proximal mappings, are the inverse \Phi -subdifferentials. By changing the sign of the cou-
pling function, negative Bregman--Moreau envelopes are replaced by their Bregman--

Klee counterparts: For \Phi =D\phi , one has that f\Phi =
\leftarrow  -  - 
klee\phi f and g\Phi =

 -  - \rightarrow 
klee\phi g, where

\leftarrow  -  - 
klee\phi f(y) := sup\{ D\phi ( \cdot , y) - f\} and

 -  - \rightarrow 
klee\phi g(x) := sup\{ D\phi (x, \cdot ) - g\} ,(3.4)

and once again the attainment sets coincide with the inverse \Phi -subdifferentials.
First, we provide some useful formulas that express these Bregman envelopes

in terms of convex conjugates. To this end, we introduce the following convenient
notation for the reflection:

h - (x) := h( - x).

We point out that reflection and convex conjugation commute, namely,

(h - )
\ast = (h\ast ) - (3.5)

holds for any h :\BbbR n\rightarrow \BbbR ; see, e.g., [19, Lemma 7.1] or [8, Proposition 13.23(v)]. This
fact allows us to unambiguously omit the brackets in favor of a lighter notation h\ast 

 - .

Lemma 3.3. For any f, g :\BbbR n\rightarrow \BbbR , the following identities hold:
(i)  - \rightarrow env\phi g= \phi  - (g \circ \nabla \phi \ast + \phi \ast )\ast .
(ii) \leftarrow  - env\phi f \circ \nabla \phi \ast = \phi \ast  - (f + \phi )\ast .
(iii)  -  - \rightarrow env\phi ( - \leftarrow  - env\phi f) = (f + \phi )\ast \ast  - \phi .

(iv)
 -  - \rightarrow 
klee\phi g= \phi + (g \circ \nabla \phi \ast  - \phi \ast )\ast  - .

(v)
\leftarrow  -  - 
klee\phi f \circ \nabla \phi \ast = \phi \ast + (f  - \phi )\ast  - .

(vi)
 -  - \rightarrow 
klee\phi (

\leftarrow  -  - 
klee\phi f) = \phi + (f  - \phi )\ast \ast .

Proof. The first three identities follow by [10, Proposition 2.4(ii)], [27, Theo-
rem 2.4], and [45, Proposition 2.14], respectively. Thus, it suffices to show the iden-
tities involving the Klee envelopes. Thanks to the fact that \nabla \phi (\nabla \phi \ast (v)) = v and
\langle v,\nabla \phi \ast (v)\rangle = \phi \ast (v) + \phi (\nabla \phi \ast (v)), we have that

D\phi ( \cdot ,\nabla \phi \ast (v)) = \phi  - \phi (\nabla \phi \ast (v)) - \langle v, \cdot  - \nabla \phi \ast (v)\rangle = \phi + \phi \ast (v) - \langle v, \cdot \rangle (3.6)

holds for every v \in \BbbR n. By using the fact that \nabla \phi \ast :\BbbR n\rightarrow \BbbR n is surjective, for x\in \BbbR n,
we have

 -  - \rightarrow 
klee\phi g(x) = sup

v\in \BbbR n
\{ D\phi (x,\nabla \phi \ast (v)) - g(\nabla \phi \ast (v))\} 

(3.6)
= sup

v\in \BbbR n

\bigl\{ 
\phi (x) + \langle  - x, v\rangle  - 

\bigl( 
g(\nabla \phi \ast (v)) - \phi \ast (v)

\bigr) \bigr\} 
,

and assertion 3.3(iv) follows from the definition of the convex conjugate. Similarly,
for any v \in \BbbR n,

(
\leftarrow  -  - 
klee\phi f \circ \nabla \phi \ast )(v) = sup

x\in \BbbR n
\{ D\phi (x,\nabla \phi \ast (v)) - f(x)\} 

(3.6)
= sup

x\in \BbbR n

\bigl\{ 
\phi \ast (v) + \langle x, - v\rangle  - 

\bigl( 
f(x) - \phi (x)

\bigr) \bigr\} 
,
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2730 E. LAUDE, A. THEMELIS, AND P. PATRINOS

which yields assertion 3.3(v). As a consequence of 3.3(v), we have (f  - \phi )\ast  - =
\leftarrow  -  - 
klee\phi f \circ 

\nabla \phi \ast  - \phi \ast . Taking conjugates on both sides yields ((f  - \phi )\ast  - )
\ast = (

\leftarrow  -  - 
klee\phi f \circ \nabla \phi \ast  - \phi \ast )\ast .

Thus, we have the following equalities:

((f  - \phi )\ast  - )
\ast 
 - + \phi = (

\leftarrow  -  - 
klee\phi f \circ \nabla \phi \ast  - \phi \ast )\ast  - + \phi =

 -  - \rightarrow 
klee\phi (

\leftarrow  -  - 
klee\phi f),

where the last equality follows from 3.3(iv). In view of (3.5), we have ((f  - \phi )\ast  - )
\ast 
 - =

(f  - \phi )\ast \ast , and 3.3(vi) is obtained.

Acquainted with these preliminaries, we can detail the anticipated equivalent
formulation of Definition 3.1 in terms of \Phi -convexity.

Proposition 3.4 (\Phi - and hull characterization of B\phi -convexity). Let r =  - 1
(resp., r = +1), and let \Phi = rD\phi . For any proper f : \BbbR n \rightarrow \BbbR , the following are
equivalent:

(i) f is l.s.c. and B\phi -weakly convex (resp., B\phi -strongly convex).
(ii) f is \Phi -convex.

(iii) f = -  - \rightarrow env\phi ( - \leftarrow  - env\phi f) (resp., f =
 -  - \rightarrow 
klee\phi (

\leftarrow  -  - 
klee\phi f)).

(iv) There exists a function g :\BbbR n\rightarrow \BbbR such that f = -  - \rightarrow env\phi g (resp., f =
 -  - \rightarrow 
klee\phi g).

(v) f is the pointwise supremum over all functions of the form r\phi + \langle v, \cdot \rangle + \delta ,
with (v, \delta )\in \BbbR n \times \BbbR , that are majorized by f .

(vi) f is l.s.c. and \partial \Phi f =\nabla \phi \ast \circ (\nabla \phi  - r\partial f).

Proof.
3.4(iv) \Rightarrow 3.4(i) By assumption, there is a function g : \BbbR n \rightarrow \BbbR such that f =

 -  - \rightarrow env\phi g (resp., f =
 -  - \rightarrow 
klee\phi g). It follows from Lemma 3.3(i) (resp., Lemma 3.3(iv)) that

f =  -  - \rightarrow env\phi g = (g \circ \nabla \phi \ast + \phi \ast )\ast  - \phi (resp., f =
 -  - \rightarrow 
klee\phi g = \phi + (g \circ \nabla \phi \ast  - \phi \ast )\ast  - ). Since

convex conjugates, as pointwise suprema over affine functions, are convex l.s.c., and
since \phi is smooth, f is l.s.c. and B\phi -weakly convex (resp., B\phi -strongly convex).

3.4(i) \Rightarrow 3.4(iii) If f  - r\phi is proper l.s.c. and convex, then (f  - r\phi )\ast \ast = f  - r\phi ,
and the claim follows from Lemma 3.3(iii) (resp., Lemma 3.3(vi)).

3.4(iii) \Rightarrow 3.4(iv) Consider g= - \leftarrow  - env\phi f (resp., g=
\leftarrow  -  - 
klee\phi f).

3.4(ii) \leftrightarrow 3.4(iii) This follows from Lemma 2.5 via the choice \Phi := rD\phi , noting

that f\Phi \Phi (def)
=  -  - \rightarrow env\phi ( - \leftarrow  - env\phi f) (resp., f\Phi \Phi (def)

=
 -  - \rightarrow 
klee\phi (

\leftarrow  -  - 
klee\phi f)).

3.4(ii) \leftrightarrow 3.4(v) In light of Lemma 2.5, \Phi -convexity is equivalent to the identity
f = f\Phi \Phi . By using the surjectivity of the map v \mapsto \rightarrow \nabla \phi \ast ( - rv), we have (recall that
\Phi = rD\phi ), invoking Lemma 2.4(ii),

f\Phi \Phi = sup
(v,\beta )\in \BbbR n\times \BbbR 

\{ rD\phi ( \cdot ,\nabla \phi \ast ( - rv)) - \beta : rD\phi ( \cdot ,\nabla \phi \ast ( - rv)) - \beta \leq f\} .(3.7)

Since rD\phi ( \cdot ,\nabla \phi \ast ( - rv)) = r\phi + r\phi \ast ( - rv) + \langle v, \cdot \rangle by (3.6), the change of variable
\delta = r\phi \ast ( - rv) - \beta in (3.7) results in the supremum over the functions r\phi + \langle v, \cdot \rangle + \delta 
majorized by f , as in assertion 3.4(v).

3.4(i) \Rightarrow 3.4(vi) Let f be l.s.c. and B\phi -weakly convex, and for \=x \in dom(\nabla \phi \ast \circ 
(\nabla \phi  - r\partial f)), let \=y \in \nabla \phi \ast (\nabla \phi (\=x) - r\partial f(\=x)), so that there exists \=v \in \partial f(\=x) such that

\=y=\nabla \phi \ast (\nabla \phi (\=x) - r\=v).

From Proposition 3.2, we obtain (recall that \Phi := rD\phi )

f(x)\geq f(\=x) + \langle \=v,x - \=x\rangle + rD\phi (x, \=x)

= f(\=x) + r\phi (x) - r\phi (\=x) - r \langle \nabla \phi (\=x) - r\=v,x - \=x\rangle 
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(3.6)
= f(\=x) + rD\phi (x,\nabla \phi \ast (\nabla \phi (\=x) - r\=v)) - rD\phi (\=x,\nabla \phi \ast (\nabla \phi (\=x) - r\=v))

= f(\=x) +\Phi (x, \=y) - \Phi (\=x, \=y) \forall x\in \BbbR n,

and thus \=y \in \partial \Phi f(\=x) by definition. Now choose \=y \in \partial \Phi f(\=x). In view of Lemma 2.6, this
means that \=x \in argminx\in \BbbR n \{ f(x) - rD\phi (x, \=y)\} , and therefore 0 \in \partial f(\=x) - r\nabla \phi (\=x) +
r\nabla \phi (\=y). Reordering yields \=y \in \nabla \phi \ast (\nabla \phi (\=x) - r\partial f(\=x)).

3.4(vi) \Rightarrow 3.4(i) Conversely, let f be l.s.c., and assume that \partial \Phi f =\nabla \phi \ast \circ (\nabla \phi  - 
r\partial f). Let \=x \in dom\partial f , and for \=v \in \partial f(\=x) let \=y := \nabla \phi \ast (\nabla \phi (\=x)  - r\=v). Thus, we have
\=y \in \partial \Phi f(\=x), which means by definition (again recall that \Phi := rD\phi ) that

f(x)\geq f(\=x) + rD\phi (x, \=y) - rD\phi (\=x, \=y) \forall x\in \BbbR n.

Applying the calculation above using (3.6) we obtain (3.1), and thus, in view of
Proposition 3.2, f is B\phi -convex.

The result above can be seen as a generalization of [41, Example 11.26(d)] for the
Euclidean proximal hull. We remark that the equivalence among Propositions 3.4(i),
3.4(iii), and 3.4(v) was previously shown in [45, Proposition 2.14] for the weakly con-
vex case (i.e., r = - 1) for more general reference functions \phi that need not have full
domain.

In light of Proposition 3.4, we have the following result.

Corollary 3.5 (B\phi -smooth functions as pointwise infima). For any f \in \Gamma 0(\BbbR n),
the following are equivalent:

(i) f is B\phi -smooth.
(ii) f = - \rightarrow env\phi g for some function g :\BbbR n\rightarrow \BbbR .

Proof.
3.5(i)\Rightarrow 3.5(ii) Let f \in \Gamma 0(\BbbR n) be B\phi -smooth. This means that both  - f and f are

B\phi -weakly convex and proper. This implies that f is finite-valued and, by convexity,
continuous, implying that  - f is l.s.c. In light of Proposition 3.4, this means that there
is some g :\BbbR n\rightarrow \BbbR such that  - f = -  - \rightarrow env\phi g, implying that f = - \rightarrow env\phi g.

3.5(ii) \Rightarrow 3.5(i) Let f \in \Gamma 0(\BbbR n) be such that f =  - \rightarrow env\phi g for some function g :
\BbbR n \rightarrow \BbbR . By properness of f , we have that f >  - \infty , and there is some x \in \BbbR n such

that \infty > f(x)
(def)
= infy\in \BbbR n \{ g(y) +D\phi (x, y)\} , implying that \infty > g(y) for some y \in \BbbR n

and thus \infty > g(y) + D\phi ( \cdot , y) \geq f . This implies that f is finite-valued and thus
 - f =  -  - \rightarrow env\phi g is proper. Thanks to Proposition 3.4, we have that  - f is B\phi -weakly
convex and, due to convexity and properness of f , that f is B\phi -smooth.

3.3. Anisotropic convexity and smoothness. The motivation of this work
stems from the observation that a conjugate duality between B\phi -smoothness and B\phi \ast -
strong convexity in general does not hold, as the following counterexample reveals.

Example 3.6. Let \phi (x) = 1
3 | x| 

3. Choose f(x) = \phi (x) + x. Clearly, f is both
B\phi -strongly convex and B\phi -smooth. The convex conjugate f\ast amounts to f\ast (x) =
\phi \ast (x  - 1). A simple calculation shows that the second-order derivative (f\ast  - \phi \ast )\prime \prime (x)<
0 is not bounded from below for x near 0 and that (\phi \ast  - f\ast )\prime \prime (x)< 0 is not bounded
from below for x near 1. As a consequence, f\ast is neither B\phi \ast -smooth nor B\phi \ast -strongly
convex.

Instead, we shall introduce different notions of relative smoothness and strong
convexity which we call anisotropic smoothness and anisotropic strong convexity,
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2732 E. LAUDE, A. THEMELIS, AND P. PATRINOS

respectively. The characterization of \Phi -convexity in Proposition 3.4(v) and Corol-
lary 3.5 related the notions of B\phi -strong convexity and B\phi -smoothness to expressions
involving pointwise suprema and infima over a family of tilt-parametrized functions
qi := \phi + \langle yi, \cdot \rangle + \beta i for some (yi, \beta i) \in \BbbR n \times \BbbR and with i ranging over some index
set \scrI . The calculus of [41, Theorem 11.23(d)] reveals that convex conjugates of such
functions are to be found in the space of infima and suprema over shift-parametrized
families q\ast i = \phi \ast ( \cdot  - yi) - \beta i. This observation motivates the study of \Phi -convexity with
a coupling \Phi (x, y) = r\phi (x - y) for r \in \{ \pm 1\} .

Remark 3.7 (\Phi -convexity and infimal/supremal convolutions). As shown in Lemma
2.5, for any coupling \Phi it holds that a function is (left or right) \Phi -convex if and only
if it is a (right or left) \Phi -conjugate. When \Phi (x, y) = - \phi (x - y), the right conjugate of
a function g :\BbbR n\rightarrow \BbbR amounts to the negative infimal convolution of g and \phi ,

g\Phi (x) = sup
y\in \BbbR n

\{  - \phi (x - y) - g(y)\} = - inf
y\in \BbbR n

\{ \phi (x - y) + g(y)\} 

= - inf
\xi \in \BbbR n

\{ g(x - \xi ) + \phi (\xi )\} =: - (g \square \phi )(x),

and similarly the left conjugate of f :\BbbR n\rightarrow \BbbR amounts to the negative infimal convo-
lution of f and \phi  - ,

f\Phi (y) = sup
x\in \BbbR n

\{  - \phi (x - y) - f(x)\} = - inf
x\in \BbbR n

\{ \phi  - (y - x) + f(x)\} 

= - inf
\xi \in \BbbR n

\{ f(y - \xi ) + \phi  - (\xi )\} =: - (f \square \phi  - )(y).

When \Phi (x, y) = \phi (x - y), the right conjugate of a function g :\BbbR n\rightarrow \BbbR amounts to the
supremal convolution of  - g and \phi ,

g\Phi (x) = sup
y\in \BbbR n

\{ \phi (x - y) - g(y)\} = sup
\xi \in \BbbR n

\{ ( - g)(x - \xi ) + \phi (\xi )\} =: (( - g)\lozenge \phi )(x),

and similarly the left conjugate of f : \BbbR n \rightarrow \BbbR amounts to the supremal convolution
of  - f and \phi  - ,

f\Phi (y) = sup
x\in \BbbR n

\{ \phi (x - y) - f(x)\} = sup
x\in \BbbR n

\{ \phi  - (y - x) - f(x)\} 

= sup
\xi \in \BbbR n

\{ ( - f)(y - \xi ) + \phi  - (\xi )\} =: (( - f)\lozenge \phi  - )(y).

As we shall see, while the conjugate of a B\phi -smooth function is a supremal convo-
lution, the conjugate of a supremal convolution is not necessarily B\phi -smooth. Instead,
the anticipated duality of B\phi -smoothness and B\phi -strong convexity involves their an-
isotropic counterparts, defined next, which in general constitute proper subclasses of
the classes of \Phi -convex functions with \Phi (x, y) = \pm \phi (x - y), as will be demonstrated
in Example 5.4.

Definition 3.8 (anisotropic weak/strong convexity and smoothness). A proper
l.s.c. function f :\BbbR n\rightarrow \BbbR is said to be

(i) a\phi -weakly convex if for every (\=x, \=v)\in gph\partial f it holds that

f(x)\geq f(\=x) - \phi (x - \=x+\nabla \phi \ast ( - \=v)) + \phi (\nabla \phi \ast ( - \=v)) \forall x\in \BbbR n;(3.8)

(ii) a\phi -strongly convex if for every (\=x, \=v)\in gph\partial f it holds that

f(x)\geq f(\=x) + \phi (x - \=x+\nabla \phi \ast (\=v)) - \phi (\nabla \phi \ast (\=v)) \forall x\in \BbbR n;(3.9)

(iii) a\phi -smooth if f \in \scrC 1(\BbbR n) and both f and  - f are a\phi -weakly convex.
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2733

Note that a\phi -weak convexity is a globalized version of anisotropic prox-regularity
introduced in [28, Definition 2.13]. Geometrically, the a\phi -weak convexity inequal-
ity (3.8) (resp., the a\phi -strong convexity inequality (3.9)) ensures that every limit-
ing subgradient \=v \in \partial f(\=x) generates a lower approximation to f that supports the
graph of f at \=x and takes the form x \mapsto \rightarrow  - \phi (x  - \=y)  - \=\beta for \=y = \=x  - \nabla \phi \ast ( - \=v)
and \=\beta =  - \phi (\nabla \phi \ast ( - \=v))  - f(\=x) (resp., x \mapsto \rightarrow \phi (x  - \=y)  - \=\beta for \=y = \=x  - \nabla \phi \ast (\=v) and
\=\beta = \phi (\nabla \phi \ast (\=v)) - f(\=x)).

Examples will be presented in section 4 alongside the anticipated conjugate du-
alities. As will be shown in section 5, another source of examples in the univariate
case is the class of pointwise maxima/minima where the index sets in the definition
of \Phi -convexity are finite.

Remark 3.9. As in the case of B\phi -convexity and specifically in the characteri-
zation of Proposition 3.2(ii), the definition of a\phi -weak and a\phi -strong convexity can
be combined into a single inequality up to a sign difference. Namely, a proper and
l.s.c. function f :\BbbR n\rightarrow \BbbR is a\phi -weakly convex (resp., a\phi -strongly convex) if for every
(\=x, \=v)\in gph\partial f it holds that

f(x)\geq f(\=x) + r\phi (x - \=x+\nabla \phi \ast (r\=v)) - r\phi (\nabla \phi \ast (r\=v)) \forall x\in \BbbR n(3.10)

with r =  - 1 (resp., r = 1). In particular, if \phi = 1
2\lambda \| \cdot \| 

2 is a positive multiple of the
squared Euclidean norm with \lambda > 0, by expanding the square in (3.10), we obtain

f(x)\geq f(\=x) + \langle \=v,x - \=x\rangle + r

2\lambda 
\| x - \=x\| 2,

so that the inequalities specialize to the Euclidean weak (r= - 1) and strong (r=+1)
convexity inequalities, respectively, and thus also coincide with the Bregman version
(3.1) due to the identity r

2\lambda \| x - \=x\| 2 = rD\phi (x, \=x).

Remark 3.10 (anisotropic descent inequality and algorithmic implications). In the
same way that Euclidean weak convexity of  - f entails a quadratic upper bound in
the likes of the Euclidean descent lemma (see, e.g., [14, Propostion A.24]), a\phi -weak
convexity of  - f for f \in \scrC 1(\BbbR n) can be read as the anisotropic descent inequality

f(x)\leq f(\=x) + \phi (x - \=x+\nabla \phi \ast (\nabla f(\=x)) - \phi (\nabla \phi \ast (\nabla f(\=x))) \forall x\in \BbbR n,(3.11)

holding at any \=x\in \BbbR n. This bound is simplified if one considers \phi such that \phi (0) = 0
and \nabla \phi (0) = 0. Given a function f satisfying (3.11) and a current iterate xt \in \BbbR n,
by minimizing the upper bound (3.11) at \=x = xt, we recast a recent anisotropic
generalization of gradient descent, called dual space preconditioning [32],

xt+1 := argmin
x\in \BbbR n

f(xt) + \phi (x - xt +\nabla \phi \ast (\nabla f(xt)) - \phi (\nabla \phi \ast (\nabla f(xt)))

= xt  - \nabla \phi \ast (\nabla f(xt)),

where the second equality follows from the fact that \nabla \phi (0) = 0 together with the
first-order optimality condition 0 = \nabla \phi (xt+1  - xt +\nabla \phi \ast (\nabla f(xt)). Indeed, inserting
this recurrence into (3.11) generates a sufficient descent

f(xt+1) - f(xt)\leq \phi (0) - \phi (\nabla \phi \ast (\nabla f(xt))) = - \phi (\nabla \phi \ast (\nabla f(xt))) = - \phi (xt  - xt+1),

where the second equality holds since \phi (0) = 0. Note that this argument differs from
the one in [32], where the descent is obtained by using a different criterion (see [32,
Lemma 3.8]). In contrast to [32], which focuses on the convex case only, the anisotropic
descent inequality also holds for possibly nonconvex smooth functions.
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2734 E. LAUDE, A. THEMELIS, AND P. PATRINOS

Lemma 3.11. Let f :\BbbR n\rightarrow \BbbR , and consider the following statements:
(i) f is a\phi -strongly convex.
(ii) f is proper, l.s.c. and convex.
(iii) f is a\phi -weakly convex.

Then it holds that 3.11(i) \Rightarrow 3.11(ii) \Rightarrow 3.11(iii).

Proof. If f is a\phi -strongly convex, then it is proper and l.s.c. by definition. For
any (x, v), (x\prime , v\prime )\in gph\partial f , it follows from (3.9) that

f(x\prime )\geq f(x) + \phi (x\prime  - x+\nabla \phi \ast (v)) - \phi (\nabla \phi \ast (v))\geq f(x) + \langle v,x\prime  - x\rangle ,

where the second inequality is due to the convexity of \phi [41, Theorem 2.14] and the
fact that \nabla \phi (\nabla \phi \ast (v)) = v. Similarly,

f(x)\geq f(x\prime ) + \langle v\prime , x - x\prime \rangle .

By summing the two inequalities, it readily follows that the mapping \partial f is monotone,
and convexity of f then follows from [41, Theorem 12.17].

Suppose now that f is proper, l.s.c., and convex, and let (\=x, \=v)\in gph\partial f . Then

f(x)\geq f(\=x) + \langle \=v,x - \=x\rangle \geq f(\=x) - \phi (x - \=x+\nabla \phi \ast ( - \=v)) + \phi (\nabla \phi \ast ( - \=v)) \forall x\in \BbbR n,

where again we used convexity of \phi and the fact that \nabla \phi (\nabla \phi \ast ( - \=v)) = - \=v. This shows
that f is a\phi -weakly convex.

As explained above, the anisotropic subgradient inequality (3.10) ensures that
every classical subgradient \=v \in \partial f(\=x) generates a supporting lower approximation
x \mapsto \rightarrow r\phi (x - \=y) - \=\beta to f . This means that \=y= \=x - \nabla \phi \ast (r\=v)\in \partial \Phi f(\=x) is a \Phi -subgradient
of f at \=x. As we shall see, in this case the converse is also true; that is, every \Phi -
subgradient \=y \in \partial \Phi f(\=x) takes the form \=y \in (id - \nabla \phi \ast \circ r\partial f)(\=x).

Proposition 3.12. Let r = - 1 (resp., r =+1), and let \Phi (x, y) = r\phi (x - y). For
any proper l.s.c. f :\BbbR n\rightarrow \BbbR and \=x \in \BbbR n, it holds that \partial \Phi f(\=x)\subseteq \=x - \nabla \phi \ast (r\widehat \partial f(\=x)). In
addition, the following conditions are equivalent:

(i) f satisfies the a\phi -weak convexity inequality (3.8) (resp., the a\phi -strong convex-
ity inequality (3.9)) at \=x for every \=v \in \partial f(\=x).

(ii) \partial \Phi f(\=x) = \=x - \nabla \phi \ast (r\partial f(\=x)).
Under any of the above equivalent conditions, one has that \partial f(\=x) = \widehat \partial f(\=x). In par-
ticular, if f is either a\phi -weakly or a\phi -strongly convex, then \partial f = \widehat \partial f and dom\partial \Phi f =

dom \widehat \partial f .
Proof. Let a pair (\=x, \=y) \in gph\partial \Phi f be fixed. In view of Lemma 2.6, we know

that \=x \in argmin\{ f  - r\phi ( \cdot  - \=y)\} ; hence, 0 \in \widehat \partial f(\=x)  - r\nabla \phi (\=x  - \=y), and therefore
\=y \in \=x - \nabla \phi \ast (r\widehat \partial f(\=x))\subseteq \=x - \nabla \phi \ast (r\partial f(\=v)). In particular, if assertion 3.12(ii) holds, then

\=x - \nabla \phi \ast (r\partial f(\=x)) = \partial \Phi f(\=x)\subseteq \=x - \nabla \phi \ast (r\widehat \partial f(\=x))\subseteq \=x - \nabla \phi \ast (r\partial f(\=x)),

which by the injectivity of \nabla \phi \ast yields the claimed identity \widehat \partial f(\=x) = \partial f(\=x). In what
follows, fix (\=x, \=v)\in gph\partial f , and let \=y := \=x - \nabla \phi \ast (r\=v).

3.12(i)\Rightarrow 3.12(ii) Substituting \=y into the anisotropic subgradient inequality (3.10)
gives

f(x)\geq r\phi (x - \=y) - r\phi (\=x - \=y) + f(\=x) \forall x\in \BbbR n,
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2735

that is, \=y \in \partial \Phi f(\=x). In combination with \partial \Phi f(\=x) \subseteq \=x - \nabla \phi \ast (r\partial f(\=x)), we obtain the
desired result.

3.12(ii) \Rightarrow 3.12(i) By assumption, \=y \in \partial \Phi f(\=x), and therefore

f(x)\geq r\phi (x - \=y) - r\phi (\=x - \=y) + f(\=x) = r\phi (x - \=x+\nabla \phi \ast (r\=v)) - r\phi (\nabla \phi \ast (r\=v)) + f(\=x)

follows from the \Phi -subgradient inequality (2.7).

The relation \partial \Phi f = id - \nabla \phi \ast \circ r\partial f sets up a certain one-to-one correspondence be-
tween limiting subgradients \=v \in \partial f(\=x) and \Phi -subgradients \=y= \=x - \nabla \phi \ast (r\=v), and thus
the anisotropic subgradient inequality can be understood in terms of a \Phi -subgradient
inequality. The next result shows that for \Phi -convex f , the \Phi -subdifferential is nonempty
and compact at points at which f is finite and strictly continuous.

Proposition 3.13. Let r \in \{ \pm 1\} , and choose \Phi (x, y) = r\phi (x - y). Let f :\BbbR n\rightarrow \BbbR 
be \Phi -convex and strictly continuous at \=x\in \BbbR n, a point where f is finite. Then \partial \Phi f(\=x)
is nonempty and compact.

Proof. Since f is \Phi -convex, the identity f(\=x) = supy\in \BbbR n

\bigl\{ 
\Phi (\=x, y) - f\Phi (y)

\bigr\} 
follows

from Lemma 2.5. This means that for any \varepsilon > 0 there exists \=y\varepsilon such that

 - \infty < f(\=x) - \varepsilon \leq \Phi (\=x, \=y\varepsilon ) - f\Phi (\=y\varepsilon )\leq f(\=x)<+\infty .(3.12)

In addition, in view of Lemma 2.4(iv), for any x\in \BbbR n we have that

f(x)\geq \Phi (x, \=y\varepsilon ) - f\Phi (\=y\varepsilon ).(3.13)

Summing the inequalites (3.12) and (3.13) yields

f(\=x) - r\phi (\=x - \=y\varepsilon )\leq f(x) - r\phi (x - \=y\varepsilon ) + \varepsilon \forall x\in \BbbR n.(3.14)

Then \=x \in \varepsilon  - argminx\in \BbbR n \{ f(x) - r\phi (x - \=y\varepsilon )\} . Ekeland's variational principle with
\delta :=
\surd 
\varepsilon (see [41, Proposition 1.43]) yields the existence of \=x\varepsilon \in B(\=x;

\surd 
\varepsilon ) with f(\=x\varepsilon ) - 

r\phi (\=x\varepsilon  - \=y\varepsilon ) \leq f(\=x)  - r\phi (\=x  - \=y\varepsilon ) and \=x\varepsilon = argmin\{ f  - r\phi ( \cdot  - \=y\varepsilon ) +
\surd 
\varepsilon \| \cdot  - \=x\varepsilon \| \} .

Minimality of \=x\varepsilon implies that 0\in \partial f(\=x\varepsilon ) - r\nabla \phi (\=x\varepsilon  - \=y\varepsilon ) + B(0;
\surd 
\varepsilon ), and therefore

r\nabla \phi (\=x\varepsilon  - \=y\varepsilon ) - u\varepsilon =: \=v\varepsilon \in \partial f(\=x\varepsilon )(3.15)

holds for some u\varepsilon with \| u\varepsilon \| \leq 
\surd 
\varepsilon . Since f , as a pointwise supremum over continuous

functions, is l.s.c. and by assumption strictly continuous at \=x, in view of [41, Theorem
9.13], x \mapsto \rightarrow \partial f(x) is locally bounded at \=x. Without loss of generality, up to extracting
a subnet, \=v\varepsilon \rightarrow \=v for some \=v \in \BbbR n as \varepsilon \searrow 0. It follows from (3.15) that \=y\varepsilon = \=x\varepsilon  - 
\nabla \phi \ast (r\=v\varepsilon + ru\varepsilon ), and due to continuity of \nabla \phi \ast , we obtain that \=y\varepsilon \rightarrow \=y := \=x - \nabla \phi \ast (r\=v).
Passing to the limit in (3.14) yields

f(\=x) + r\phi (x - \=y) - r\phi (\=x - \=y)\leq f(x) \forall x\in \BbbR n,

and therefore \=y \in \partial \Phi f(\=x).
In view of Lemma 2.6, since f is \Phi -convex, we have \=y \in \partial \Phi f(\=x)\leftrightarrow \=x\in \partial \Phi f\Phi (\=y)\leftrightarrow 

\=y \in argmin\{ f\Phi  - r\phi (\=x - \cdot )\} and thus \partial \Phi f(\=x) = argmin\{ f\Phi  - r\phi (\=x - \cdot )\} . Since
f\Phi as a pointwise supremum over continuous functions is l.s.c., \partial \Phi f(\=x) is closed. By
Proposition 3.12, \partial \Phi f(\=x)\subseteq \=x - \nabla \phi \ast (r\partial f(\=x)). Since f is strictly continuous, \partial f(\=x) is
bounded, and thus so is \nabla \phi \ast (r\partial f(\=x)) due to continuity of \nabla \phi \ast . As a result, \partial \Phi f(\=x)
too is bounded.
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2736 E. LAUDE, A. THEMELIS, AND P. PATRINOS

4. Anisotropic and Bregman conjugate dualities.

4.1. B\bfitphi -smooth and a\bfitphi \ast -strongly convex conjugate duality. In this sub-
section, we will study the conjugate duality between a\phi -strong convexity as in Defi-
nition 3.8(ii) and B\phi \ast -smoothness for a convex function f \in \Gamma 0(\BbbR n); the main result
is Theorem 4.3. To begin with, we show that essential strict convexity is implied by
a\phi -strong convexity.

Proposition 4.1. Let f : \BbbR n \rightarrow \BbbR be a\phi -strongly convex. Then f is essentially
strictly convex.

Proof. Invoking Lemma 3.11, we know that f is convex, proper l.s.c. and in
particular has a convex domain. Fix a nonempty convex set K \subseteq dom\partial f . To avoid
trivialities, we may assume that K is not a singleton. Let x,x\prime \in K with x \not = x\prime be
fixed. Choose \tau \in (0,1). Since K is convex, x\tau := \tau x+ (1 - \tau )x\prime \in K. By a\phi -strong
convexity of f and Proposition 3.12,

dom\partial \Phi f =dom\partial f \supseteq K,(4.1)

and thus there exists y\tau \in \partial \Phi f(x\tau ). Lemma 2.6 implies that f(x\tau )+ f\Phi (y\tau ) = \phi (x\tau  - 
y\tau ). Since \phi is strictly convex and thus so is \phi ( \cdot  - y\tau ) - f\Phi (y\tau ), we have

f(\tau x+ (1 - \tau )x\prime ) = \phi (\tau x+ (1 - \tau )x\prime  - y\tau ) - f\Phi (y\tau )

< \tau (\phi (x - y\tau ) - f\Phi (y\tau )) + (1 - \tau )(\phi (x\prime  - y\tau ) - f\Phi (y\tau ))

\leq \tau sup
y\in \BbbR n

\bigl\{ 
\phi (x - y) - f\Phi (y)

\bigr\} 
+ (1 - \tau ) sup

y\in \BbbR n

\bigl\{ 
\phi (x\prime  - y) - f\Phi (y)

\bigr\} 
= \tau f(x) + (1 - \tau )f(x\prime ),

where the last equality follows by definition of f\Phi \Phi and the fact that f \equiv f\Phi \Phi on
dom\partial \Phi f \supseteq K; see Lemma 2.6. This proves that f is essentially strictly convex.

We state a generalization of Pshenichnyi's and Hiriart--Urruty's formula [38, 25]
specialized from [19, Theorem 7.1] to our simplified setting. We remind the reader
that h - := h( - \cdot ) and that (h - )

\ast = (h\ast ) - =: h\ast 
 - . In addition, we introduce upper

and lower subtraction, i.e., \infty \. - \infty :=\infty and \infty ⨪\infty := - \infty ; see also [19, section 2].

Lemma 4.2. Let g :\BbbR n\rightarrow \BbbR and h\in \Gamma 0(\BbbR n). Then the following identity holds:

sup
y\in \BbbR n

\{ h(x - y)⨪g - (y)\} = (h\ast \. - g\ast )\ast (x).(4.2)

Next we show the main result of this subsection: the anticipated duality between
the classes of a\phi -strongly convex and B\phi \ast -smooth functions. The inclusion of the
former in the superclass of \Phi -convex functions for \Phi (x, y) = \phi (x  - y) will also be
demonstrated. It will become apparent that the culprit of the properness of such
inclusion is to be found in a certain saddle-point property. Further investigation on
this property will be developed in subsection 5.2, where special cases guaranteeing
its validity will be presented and its sharpness in more general contexts ultimately
showcased with Example 5.4.

Theorem 4.3 (a\phi -strong and B\phi \ast -smooth duality). Let \Phi (x, y) := \phi (x - y). For
any proper f :\BbbR n\rightarrow \BbbR , the following conditions are equivalent:

(i) f is a\phi -strongly convex.
(ii) f is l.s.c. and convex, and f\ast is B\phi \ast -smooth (i.e., \phi \ast  - f\ast \in \Gamma 0(\BbbR n)).
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2737

(iii) f is \Phi -convex (equivalently, f = ( - h)\lozenge \phi for some h \in \Gamma 0(\BbbR n)), and for all
\=v \in \BbbR n, the following saddle-point property holds:

sup
x\in \BbbR n

inf
y\in \BbbR n

\bigl\{ 
\langle x, \=v\rangle  - \Phi (x, y) + f\Phi (y)

\bigr\} 
= inf

y\in \BbbR n
sup
x\in \BbbR n

\bigl\{ 
\langle x, \=v\rangle  - \Phi (x, y) + f\Phi (y)

\bigr\} 
.

(4.3)

If, in addition, f is essentially smooth, the saddle-point property in 4.3(iii) is super-
fluous.

Proof.
4.3(i) \Rightarrow 4.3(ii) Let f be a\phi -strongly convex. In view of Lemma 3.11, f \in \Gamma 0(\BbbR n).

Fix (\=x, \=v) \in gph\partial f , and define \=y := \=x - \nabla \phi \ast (\=v) \in \partial \Phi f(\=x), where the inclusion holds
by Proposition 3.12. Invoking Lemma 2.6, we have f(\=x) + f\Phi (\=y) = \phi (\=x  - \=y) and
\=x \in \partial \Phi f

\Phi (\=y), where the latter means by definition that \=y \in argmax\phi (\=x - \cdot ) - f\Phi .
Combined, these yield

sup
y\in \BbbR n

\bigl\{ 
\phi (\=x - y) - f\Phi (y)

\bigr\} 
= \phi (\=x - \=y) - f\Phi (\=y) = f(\=x).(4.4)

We have

\phi (\=x - y) = \phi \ast \ast (\=x - y) = sup
v\in \BbbR n

\{ \langle \=x - y, v\rangle  - \phi \ast (v)\} .

Define q(y) := supv\in \BbbR n h(y, v) for

h(y, v) := \langle \=x - y, v\rangle  - \phi \ast (v) - f\Phi (y).

Then we can rewrite the supremum in (4.4) in terms of the joint supremum

f(\=x) = sup
y\in \BbbR n

q(y),(4.5)

where \=y \in argmax q. Since \=y = \=x - \nabla \phi \ast (\=v), we have that \=v = \nabla \phi (\=x - \=y). Using the
fact that \=v \in \partial \phi (\=x - \=y)\leftrightarrow \=x - \=y \in \partial \phi \ast (\=v), this means that \=v \in argmax \langle \=x - \=y, \cdot \rangle  - \phi \ast ,
showing that \=v \in argmaxh(\=y, \cdot ). Let p(v) := supy\in \BbbR n h(y, v). Then [41, Proposition
1.35] yields that (\=y, \=v)\in argmaxh as well as

\=v \in argmaxp.(4.6)

Overall, this yields

f(\=x)
(4.5)
= sup

y\in \BbbR n
q(y) = sup

v\in \BbbR n
p(v)

(4.6)
= p(\=v)

(def)
= \langle \=x, \=v\rangle  - \phi \ast (\=v) + sup

y\in \BbbR n

\bigl\{ 
\langle y, - \=v\rangle  - f\Phi (y)

\bigr\} (def)
= \langle \=x, \=v\rangle  - \phi \ast (\=v) + (f\Phi )\ast ( - \=v),

which, combined with the fact that \=v \in \partial f(\=x), results in

f\ast (\=v) = \langle \=x, \=v\rangle  - f(\=x) = \phi \ast (\=v) - (f\Phi )\ast  - (\=v)\in \BbbR .

Since f \geq \phi ( \cdot  - \=y) - f\Phi (\=y) holds by Lemma 2.4(iv) and since \phi is supercoercive, f
too is supercoercive, and as such, domf\ast = \BbbR n = dom\partial f\ast in view of [6, Proposition
2.16]. Since \phi \ast (\=v) - f\ast (\=v) = (f\Phi )\ast  - (\=v) \in \BbbR holds for all \=v \in rge\partial f = dom\partial f\ast = \BbbR n,
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2738 E. LAUDE, A. THEMELIS, AND P. PATRINOS

we have that \phi \ast  - f\ast is finite-valued, convex, and l.s.c., and thus \phi \ast  - f\ast \in \Gamma 0(\BbbR n) as
claimed.

4.3(ii) \Rightarrow 4.3(i) By assumption,

g := \phi \ast  - f\ast \in \Gamma 0(\BbbR n).(4.7)

It follows from Proposition 3.2 that f\ast \in \scrC 1(\BbbR n), and as such, so does g. Fix (\=x, \=v) \in 
gph\partial f , and let \=y := \=x - \nabla \phi \ast (\=v), so that \nabla \phi (\=x - \=y) = \=v \in \partial f(\=x). Since f \in \Gamma 0(\BbbR n) by
assumption, by using the fact that \=v \in \partial f(\=x)\leftrightarrow \=x\in \partial f\ast (\=v) and the smoothness of f\ast ,
we obtain

\=x=\nabla f\ast (\=v) =\nabla f\ast (\nabla \phi (\=x - \=y)).(4.8)

We have

f(x) = f\ast \ast (x) = (\phi \ast  - g)\ast (x) = sup
y\in \BbbR n

\bigl\{ 
\phi (x - y) - g\ast  - (y)

\bigr\} 
\geq \phi (x - \=y) - g\ast  - (\=y),(4.9)

where the last equality follows from Lemma 4.2. Smoothness of g yields

\=x
(4.8)
= \nabla f\ast (\nabla \phi (\=x - \=y))

(4.7)
= \nabla (\phi \ast  - g)(\nabla \phi (\=x - \=y))

=\nabla \phi \ast (\nabla \phi (\=x - \=y)) - \nabla g(\nabla \phi (\=x - \=y))

= \=x - \=y - \nabla g(\nabla \phi (\=x - \=y)),

and therefore

\nabla g(\nabla \phi (\=x - \=y)) = - \=y.(4.10)

We thus have

f(\=x)
(4.8)
= \langle \nabla \phi (\=x - \=y), \=x\rangle  - f\ast (\nabla \phi (\=x - \=y))

(4.7)
= \langle \nabla \phi (\=x - \=y), \=x\rangle  - \phi \ast (\nabla \phi (\=x - \=y)) + g(\nabla \phi (\=x - \=y))

= \langle \nabla \phi (\=x - \=y), \=x - \=y\rangle  - \phi \ast (\nabla \phi (\=x - \=y)) - 
\bigl( 
\langle \nabla \phi (\=x - \=y), - \=y\rangle  - g(\nabla \phi (\=x - \=y))

\bigr) 
(4.10)
= \phi (\=x - \=y) - g\ast ( - \=y),

where the last equality uses the fact that g \in \Gamma 0(\BbbR n). By combining the above equality
with (4.9), we obtain via the definition of \=y= \=x - \nabla \phi \ast (\=v) that

f(x)\geq f(\=x) + \phi (x - \=y) - \phi (\=x - \=y) = f(\=x) + \phi (x - \=x+\nabla \phi \ast (\=v)) - \phi (\nabla \phi \ast (\=v)) \forall x\in \BbbR n,

which is the a\phi -strong convexity inequality (3.9).
4.3(iii) \Rightarrow 4.3(ii) Since f is \Phi -convex, due to Lemma 2.5 and Remark 3.7, f =

f\Phi \Phi = ( - f\Phi )\lozenge \phi . Thus, both f and h := f\Phi are pointwise suprema over convex, l.s.c.
functions and thus convex l.s.c. Since f is proper, h(y) = supx\in \BbbR n \{ \phi (x - y) - f(x)\} >
 - \infty for all y \in \BbbR n. Suppose that h \equiv +\infty . This means that for any x \in \BbbR n, we
have f(x) = f\Phi \Phi (x) = h\Phi (x) = supy\in \BbbR n \{ \phi (x - y) - h(y)\} =  - \infty , which contradicts
properness of f . Thus, h must be proper as well. For any \=v \in \BbbR n, it holds that

\phi \ast (\=v) - (f\Phi )\ast  - (\=v)
(def)
= inf

y\in \BbbR n

\bigl\{ 
\langle y, \=v\rangle + f\Phi (y)

\bigr\} 
+ sup

\xi \in \BbbR n
\{ \langle \xi , \=v\rangle  - \phi (\xi )\} 

= inf
y\in \BbbR n

\Biggl\{ 
sup
\xi \in \BbbR n

\{ \langle \xi + y, \=v\rangle  - \phi (\xi )\} + f\Phi (y)

\Biggr\} 
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2739

= inf
y\in \BbbR n

\Biggl\{ 
sup
\xi \in \BbbR n

\{ \langle \xi + y, \=v\rangle  - \phi (\xi )\} + f\Phi (y)

\Biggr\} 
x:=\xi +y
= inf

y\in \BbbR n

\biggl\{ 
sup
x\in \BbbR n

\{ \langle x, \=v\rangle  - \phi (x - y)\} + f\Phi (y)

\biggr\} 
= inf

y\in \BbbR n
sup
x\in \BbbR n

\bigl\{ 
\langle x, \=v\rangle  - \phi (x - y) + f\Phi (y)

\bigr\} 
(4.3)
= sup

x\in \BbbR n
inf

y\in \BbbR n

\bigl\{ 
\langle x, \=v\rangle  - \phi (x - y) + f\Phi (y)

\bigr\} 
= sup

x\in \BbbR n

\biggl\{ 
inf

y\in \BbbR n

\bigl\{ 
 - \phi (x - y) + f\Phi (y)

\bigr\} 
+ \langle x, \=v\rangle 

\biggr\} 
(def)
= sup

x\in \BbbR n

\bigl\{ 
\langle x, \=v\rangle  - f\Phi \Phi (x)

\bigr\} 
(def)
= (f\Phi \Phi )\ast (\=v) = f\ast (\=v),(4.11)

where the last equality is due to Lemma 2.5. Therefore, and since h \in \Gamma 0(\BbbR n), we
have \phi \ast  - f\ast = (f\Phi )\ast  - = h\ast 

 - \in \Gamma 0(\BbbR n).
4.3(ii) \Rightarrow 4.3(iii) Let g := \phi \ast  - f\ast \in \Gamma 0(\BbbR n). We have

f = f\ast \ast = (\phi \ast  - g)\ast = sup
y\in \BbbR n

\bigl\{ 
\phi ( \cdot  - y) - g\ast  - (y)

\bigr\} 
= ( - g\ast  - )\lozenge \phi ,

where the third equality follows from Lemma 4.2, and thus f is \Phi -convex. By applying
Lemma 4.2 again to g= \phi \ast  - f\ast , we also have

g\ast = (\phi \ast  - f\ast )\ast = sup
x\in \BbbR n

\{ \phi ( \cdot  - x) - f( - x)\} = sup
x\in \BbbR n

\biggl\{ 
\phi (x - ( - \cdot )) - f(x)

(def)
= (f\Phi ) - 

\biggr\} 
.

Since g \in \Gamma 0(\BbbR n), by taking conjugates on both sides, we obtain that g = (f\Phi )\ast  - . In
addition, it holds that

f\Phi \Phi (def)
= sup

y\in \BbbR n

\bigl\{ 
\phi ( \cdot  - y) - f\Phi (y)

\bigr\} 
= (\phi \ast  - (f\Phi )\ast  - )

\ast ,

where the second identity again uses Lemma 4.2. By taking conjugates on both sides,
since \phi \ast  - (f\Phi )\ast  - = \phi \ast  - g= f\ast is convex, proper, and l.s.c., we obtain that (f\Phi \Phi )\ast =
\phi \ast  - (f\Phi )\ast  - . As derived in (4.11), this is precisely the sought saddle-point identity
(4.3).

Suppose now that f is \Phi -convex and essentially smooth. Let \=x\in dom\partial f . Due to
the essential smoothness of f , in view of [39, Theorem 26.1], we have \=x\in int(domf) =
dom\partial f and f is differentiable at \=x. In particular, it is strictly continuous at \=x. Invoking
Proposition 3.13, we know that

\emptyset \not = \partial \Phi f(\=x)\subseteq \=x - \nabla \phi \ast (\partial f(\=x)),

where the inclusion follows from Proposition 3.12. Since \partial f(\=x) = \{ \nabla f(\=x)\} , the right-
hand side of the inclusion is single-valued. Since the left-hand side is nonempty, the
inclusion holds with equality. Proposition 3.12 then implies that the anisotropic strong
convexity inequality (3.9) holds at every (\=x, \=v) \in gph\partial f , and thus f is a\phi -strongly
convex.

Remark 4.4. Let \Phi (x, y) = \phi (x - y), and recall that the definition of the (left) \Phi -
conjugate f\Phi (y) = supx\in \BbbR n \{ \phi (x - y) - f(x)\} . If \phi = 1

2\| \cdot \| 
2 is quadratic. By expanding
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2740 E. LAUDE, A. THEMELIS, AND P. PATRINOS

the square, we obtain f\Phi (y) = 1
2\| y\| 

2 + supx\in \BbbR n

\bigl\{ 
\langle x, - y\rangle + 1

2\| x\| 
2  - f(x)

\bigr\} 
= 1

2\| y\| 
2 +

(f  - 1
2\| \cdot \| 

2)\ast  - (y), and hence f\Phi  - 1
2\| \cdot \| 

2 is convex. This shows that the saddle-point
problem (4.3) becomes convex-concave with a bilinear coupling:

f\ast (\=v) = sup
x\in \BbbR n

inf
y\in \BbbR n

\biggl\{ 
\langle x, \=v\rangle  - 1

2
\| x\| 2 + \langle x, y\rangle + f\Phi (y) - 1

2
\| y\| 2

\biggr\} 
.

As a consequence, the saddle-point property in Theorem 4.3(iii) is superfluous in the
Euclidean case.

In subsection 5.2, we will illustrate the sharpness of the saddle-point property in
the non-Euclidean case.

4.2. B\bfitphi -strongly convex and a\bfitphi \ast -smooth conjugate duality. The main
result of this subsection is Theorem 4.6, which, unlike the main result of the previous
subsection, is derived via an existing conjugate duality between infimal convolution
and pointwise addition [41, Theorem 11.23(a)]. We first prove the following result,
which shows that at least for smooth functions, \Phi -convexity for \Phi (x, y) = - \phi (x - y)
and a\phi -weak convexity are equivalent. As will be shown in Example 5.5, this equiva-
lence does not hold in general.

Proposition 4.5. Let \Phi (x, y) = - \phi (x - y), and let f \in \scrC 1(\BbbR n). Then the following
conditions are equivalent:

(i) f is a\phi -weakly convex.
(ii) f is \Phi -convex.

Proof.
4.5(i) \Rightarrow 4.5(ii) The a\phi -weak convexity bound (3.8) in combination with Proposi-

tion 3.12 implies that \partial \Phi f(\=x) \not = \emptyset for all \=x\in \BbbR n. It then follows from Lemma 2.6 that
f\Phi \Phi \equiv f on \BbbR n, and as such, f is \Phi -convex by Lemma 2.5.

4.5(ii) \Rightarrow 4.5(i) Let \=x\in \BbbR n. Invoking Proposition 3.13 for r= - 1, we have

\emptyset \not = \partial \Phi f(\=x)\subseteq \=x - \nabla \phi \ast ( - \partial f(\=x)) = \{ \=x - \nabla \phi \ast ( - \nabla f(\=x))\} ,

where the inclusion follows from Proposition 3.12. Since the right-hand side is single-
valued, the inclusion holds with equality. Proposition 3.12 then implies that f satisfies
the a\phi -weak convexity bound (3.8) at \=x for all \=v \in \partial f(\=x).

Further restricting to convex f , we can eventually deduce the conjugate duality
between a\phi -smooth and B\phi \ast -strongly convex functions invoking an existing conjugate
duality between infimal convolution and pointwise addition [41, Theorem 11.23(a)].

Theorem 4.6. Let \Phi (x, y) =  - \phi (x  - y). For any f \in \Gamma 0(\BbbR n), the following
conditions are equivalent:

(i) f is a\phi -smooth.
(ii)  - f is \Phi -convex.
(iii) f\ast is B\phi \ast -strongly convex.
(iv) f = g \square \phi for some g \in \Gamma 0(\BbbR n).
(v)  - f is a\phi -weakly convex.

Proof.
4.6(iv) \Rightarrow 4.6(iii) Assume that f = g \square \phi for some g \in \Gamma 0(\BbbR n). By taking the

convex conjugate, we obtain via [41, Theorem 11.23(a)] that f\ast = (g \square \phi )\ast = g\ast +\phi \ast ,
showing that f\ast  - \phi \ast = g\ast is convex.

4.6(iii) \Rightarrow 4.6(iv) Suppose that h := f\ast  - \phi \ast is convex. Since f\ast is proper l.s.c.
and \phi \ast is smooth, we deduce that h is also proper and l.s.c. Then, since f is proper,
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2741

convex, and l.s.c. and f\ast = h+ \phi \ast , we have that f = f\ast \ast = (h+ \phi \ast )\ast , and since \phi \ast 

has full domain, in view of [41, Theorem 11.23(a)], we obtain that (h+\phi \ast )\ast = h\ast \square \phi .
The claim follows by considering g= h\ast \in \Gamma 0(\BbbR n).

4.6(i)\Rightarrow 4.6(ii) Let f be a\phi -smooth. In particular, this means that  - f is a\phi -weakly
convex and f \in \scrC 1(\BbbR n). Invoking Proposition 4.5, this implies that  - f is \Phi -convex.

4.6(ii) \Rightarrow 4.6(iv) In view of Lemma 2.5, \Phi -convexity of  - f is equivalent to the
identity ( - f)\Phi \Phi = - f . Specialized to \Phi (x, y) = - \phi (x - y), we have in light of Remark
3.7 that

f = - ( - f)\Phi \Phi = ( - f)\Phi \square \phi .(4.12)

It remains to show that ( - f)\Phi \in \Gamma 0(\BbbR n). Thanks to Lemma 4.2, since f \in \Gamma 0(\BbbR n), we
have

( - f)\Phi (y)(def)= sup
x\in \BbbR n

\{  - \phi (x - y) + f(x)\} = sup
\xi \in \BbbR n

\{ f(y - \xi ) - \phi  - (\xi )\} = (f\ast  - \phi \ast )\ast (y),

and thus, in particular, ( - f)\Phi is convex, l.s.c. It is also proper since f is proper.
4.6(iv) \Rightarrow 4.6(ii) Follows by Lemma 2.5 using the identity (4.12).
4.6(iv) \Rightarrow 4.6(i) Let f = g \square \phi for some g \in \Gamma 0(\BbbR n). As shown above, this implies

that  - f is \Phi -convex. Since \phi \in \scrC 1(\BbbR n) is supercoercive, [8, Corollary 18.8] implies
that f \in \scrC 1(\BbbR n). Thanks to Proposition 4.5, we deduce that  - f is a\phi -weakly convex.
Since f \in \Gamma 0(\BbbR n), in view of Lemma 3.11, f is a\phi -weakly convex too. Overall, this
means that f is a\phi -smooth.

4.6(i) \Rightarrow 4.6(v) Follows by definition (cf. Definition 3.8(iii))
4.6(v) \Rightarrow 4.6(ii) Assume that  - f is a\phi -weakly convex. This implies that  - f is

proper by definition. Since f is proper convex, this means that f is finite-valued and
thus strictly continuous in view of [41, Example 9.14]. This implies that also  - f is
strictly continuous, and thus, in view of [41, Theorem 9.13] and [41, Corollary 8.10],
dom\partial ( - f) = \BbbR n. A\phi -weak convexity of  - f thus implies via Proposition 3.12 that
dom\partial \Phi ( - f) = \BbbR n. In view of Lemma 2.6, this means that  - f = ( - f)\Phi \Phi and hence
\Phi -convex by Lemma 2.5.

We remark that the equivalence between Theorems 4.6(iii) and 4.6(iv) was previ-
ously shown in [45, Lemma 4.2] for more general Legendre functions \phi that need not
be supercoercive.

4.3. Examples and a\bfitphi -smooth calculus. We conclude this section by provid-
ing examples of a\phi -smooth and a\phi -strongly convex functions and their calculus. By
exploiting the conjugate duality between B\phi -smooth and a\phi \ast -strongly convex func-
tions from Theorem 4.3, we provide an example for an a\phi \ast -strongly convex function
on \BbbR 2.

Example 4.7. Let A = [1  - 1] \in \BbbR 1\times 2 and b = 5. Consider f : \BbbR 2 \rightarrow \BbbR defined
by f(x) = 1

4 | Ax - b| 4. In view of [31, Proposition 2.1], f is B\phi -smooth with reference
function

\phi (x) =
L

4
\| x\| 42 +

L

2
\| x\| 22

for L = 3\| A\| 4 + 6\| A\| 3| b| + 3\| A\| 2| b| = 42 + 60
\surd 
2. Invoking [41, Theorem 11.23(b)],

we have

f\ast (y) = inf
\Bigl\{ 
(3/4)| x| 4/3 + bx :A\top x= y

\Bigr\} 
=

\Biggl\{ 
5y1 +

3
4 | y1| 

4/3 y1 + y2 = 0,

\infty otherwise.
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2742 E. LAUDE, A. THEMELIS, AND P. PATRINOS

In light of Theorem 4.3, f\ast is a\phi \ast -strongly convex, where

\phi \ast (y) =
3

4L1/3
\| y\| 4/32 \square 

1

2L
\| y\| 22.

Next we provide an example for a function which is a\phi -smooth but, due to the
lack of shift-invariance in Bregman distances, not B\phi -smooth. This complements Ex-
ample 3.6.

Example 4.8 (a\phi -smoothness versus B\phi -smoothness). Let \phi = 2
3 | \cdot | 

3/2, and let
f :\BbbR \rightarrow \BbbR be defined as f = \delta [ - 1,1] \square \phi , namely,

f(x) =

\left\{     
0 x\in [ - 1,1],
(2/3)| x+ 1| 3/2 x< - 1,
(2/3)| x - 1| 3/2 x> 1.

By Theorem 4.6, f is a\phi -smooth. The convex conjugate f\ast = | \cdot | + (1/3)| \cdot | 3 is
B\phi \ast -strongly convex, where \phi \ast = 1

3 | \cdot | 
3. We prove that f is not BL\phi -smooth for any

L> 0. Note that f \prime \prime (x) = 1/
\sqrt{} 

4(x - 1) for x> 1, while L\phi \prime \prime (x) =L/
\surd 
4x for x> 0. For

x\searrow 1, we have that L\phi \prime \prime (x)\searrow L/2, while f \prime \prime (x)\rightarrow \infty . This contradicts the convexity
of L\phi  - f , which would require L\phi \prime \prime  - f \prime \prime \geq 0 on (1,\infty ).

Moreover, f is not BL\phi (\cdot  - b)-smooth for any L > 0 and b \in \BbbR n since f has an
unbounded second-order derivative at the points x\in \{ \pm 1\} , i.e., f \prime \prime (x)\rightarrow \infty for x\nearrow  - 1
(resp., x\searrow +1).

By invoking Theorem 4.6, we can provide a simple rule of calculus for a\phi -smooth
functions. For a > 0 and some function f :\BbbR n\rightarrow \BbbR , the epi-scaling a  \star f is defined by
(a  \star f)(x) := af(a - 1x).

Corollary 4.9 (epi-calculus for a\phi -smoothness). Let f1, f2 \in \Gamma 0(\BbbR n) be a\phi -
smooth relative to \phi 1 and \phi 2, respectively, and let a1, a2 > 0. Assume that one function
among f1, f2 is lower bounded and the other is coercive or that one of the two functions
is supercoercive. Then a1  \star f1 \square a2  \star f2 is a\phi -smooth with reference function \phi :=
a1  \star \phi 1 \square a2  \star \phi 2.

Proof. In view of Theorem 4.6, there exist gi \in \Gamma 0(\BbbR n) such that fi = gi \square \phi i,
i= 1,2. By [8, Proposition 12.14], we have that a1  \star f1 \square a2  \star f2 \in \Gamma 0(\BbbR n) and thus

a1  \star f1 \square a2  \star f2 = (a1  \star f1 \square a2  \star f2)
\ast \ast = (a1f

\ast 
1 + a2f

\ast 
2 )

\ast 

= (a1g
\ast 
1 + a2g

\ast 
2 + a1\phi 

\ast 
1 + a2\phi 

\ast 
2)

\ast .

Since \phi i is Legendre and supercoercive and has full domain, this also holds for a1\phi 
\ast 
1+

a2\phi 
\ast 
2, which is thus compliant with Assumptions (A1)--(A3) and by [41, Theorem

11.23(a)] (a1\phi 
\ast 
1 +a2\phi 

\ast 
2)

\ast = a1  \star \phi 1 \square a2  \star \phi 2 = \phi . Therefore, a1g
\ast 
1 +a2g

\ast 
2 +a1\phi 

\ast 
1 +a2\phi 

\ast 
2

is B\phi \ast -strongly convex. Invoking Theorem 4.6, (a1g
\ast 
1 + a2g

\ast 
2 + a1\phi 

\ast 
1 + a2\phi 

\ast 
2)

\ast = a1  \star 
f1 \square a2  \star f2 is a\phi -smooth as claimed.

In contrast to B\phi -smoothness, the sum of a\phi -smooth functions may fail to be a\phi -
smooth. In fact, a\phi -smoothness is not even preserved by addition of a linear function.
In combination with Example 3.6, this illustrates that, in general, shift- and tilt-
invariance are mutually exclusive properties of a\phi - and B\phi -smoothness, respectively.

Example 4.10 (lack of tilt-invariance for a\phi -smooth functions). Let f = \phi = 1
3 | \cdot | 

3

and g(x) = 5x. Clearly, both f and g are a\phi -smooth since g\ast = \delta \{ 5\} is B\phi \ast -strongly
convex, where \phi \ast = 2

3 | \cdot | 
3/2. In view of [41, Theorem 11.23(a)], we have
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2743

f + g= (f + g)\ast \ast = (f\ast \square g\ast )\ast ,

where f\ast \square g\ast = 2
3 | \cdot | 

3/2 \square \delta \{ 5\} =
2
3 | \cdot  - 5| 3/2. For x\searrow 0, we have (f\ast \square g\ast )\prime \prime (x)\rightarrow 

1/
\surd 
20, while (\phi \ast )\prime \prime (x) = 1/

\surd 
4x \rightarrow \infty . Thus, f\ast \square g\ast is not B\phi \ast -strongly convex.

From Theorem 4.6, we infer that f + g is not a\phi -smooth.

If the conjugate reference function \phi \ast generates a jointly convex Bregman distance
D\phi \ast , a\phi -smoothness is closed under pointwise average as recently shown in the context
of the Bregman proximal average [45, Theorem 5.1(ii)]. Unfortunately, however, joint
convexity of D\phi \ast under Assumption (A3), i.e., full domain of \phi \ast , implies that \phi \ast is
quadratic [7, Remark 3.6]. The more general case has been recently explored in [30]
along with a practical algorithm and more practical examples complementing the ones
provided in [32].

5. Anisotropic and generalized convexity gap.

5.1. Univariate pointwise maxima and minima. In this subsection, we in-
vestigate whether \Phi -convexity implies anisotropic convexity, i.e., whether \Phi -convex
functions for \Phi (x, y) = r\phi (x  - y) with r \in \{ \pm 1\} satisfy the anisotropic subgradi-
ent inequality (3.10). We have already seen in Proposition 4.5 (resp., Theorem 4.3)
that \Phi -convexity is equivalent to a\phi -weak convexity (resp., a\phi -strong convexity) un-
der (essential) smoothness of f . Instead, in this subsection, our focus is on nonsmooth
\Phi -envelopes. To this end, we confine ourselves to \Phi -convex functions where the index
set \scrI as in Definition 2.1 is finite. This, in general, leads to functions which have
downward-pointing cusps at points at which multiple pieces intersect and the limiting
subdifferential is multivalued. We first show that at least in the univariate case, such
functions satisfy the anisotropic subgradient inequality. To this end, we first show
that this holds whenever the index set \scrI is a doubleton. The situation is depicted in
Figure 3 (upper row).

Lemma 5.1. Let n= 1. Let r=+1 (resp., r= - 1), and choose \Phi (x, y) = r\phi (x  - 
y). Let f : \BbbR \rightarrow \BbbR with f(x) = maxi\in \{ 1,2\} \{ \Phi (x, yi) - \beta i\} for some yi, \beta i \in \BbbR with
i\in \{ 1,2\} . Then f satisfies the a\phi -strong convexity inequality (3.9) (resp., the a\phi -weak
convexity inequality (3.8)) at any (\=x, \=v)\in gph\partial f .

Proof. Let \=x \in \BbbR be fixed, and define hi := r\phi ( \cdot  - yi)  - \beta i for i \in \{ 1,2\} . Fix
\=v \in \partial f(\=x) = con\{ h\prime 

i(\=x) : hi(\=x) = f(\=x), i\in \{ 1,2\} \} ; cf. [41, Exercise 8.31]. If \=v= h\prime 
j(\=x) =

r\phi \prime (\=x - yj) for some j \in \{ 1,2\} with r\phi (\=x - yj) - \beta j
(def)
= hj(\=x) = f(\=x), the anisotropic

subgradient inequality (3.10) holds at (\=x, yj) with yj = \=x - (\phi \ast )\prime (r\=v), having

f(x)
(def)
= max\{ r\phi (x - yi) - \beta i : i\in \{ 1,2\} \} \geq f(\=x) + r\phi (x - yj) - r\phi (\=x - yj)

in this case. Therefore, we may assume that h1(\=x) = h2(\=x) = f(\=x) and \=v = \tau h\prime 
1(\=x) +

(1 - \tau )h\prime 
2(\=x) for some \tau \in (0,1). Let \=y := \=x - (\phi \ast )\prime (r\=v). To arrive at a contradiction,

suppose that there exists \^x at which the anisotropic subgradient inequality (3.10) is
violated:

r\phi (\^x - yi) - \beta i < f(\=x) + r\phi (\^x - \=y) - r\phi (\=x - \=y), i\in \{ 1,2\} .

Since \beta i = r\phi (\=x - yi) - f(\=x), the above inequality can be equivalently rewritten as

q\=y(\^x+ (\=y - yi)) - q\=y(\^x)< q\=y(\=x+ (\=y - yi)) - q\=y(\=x), i\in \{ 1,2\} ,
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Fig. 3. Upper row: Illustration of aφ-strong convexity (left) and aφ-weak convexity (right) of
univariate pointwise maxima as in Lemma 5.1. Lower row: failure of aφ-strong convexity (left) and
aφ-weak convexity (right) of multivariate pointwise maxima plotted along the line t 7→ x̄+ t(x̂− x̄)
as described in Examples 5.4 and 5.5. The dashed lines correspond to the lower approximations
x 7→ rφ(x − ȳ) − β̄ with ȳ = x̄ − ∇φ∗(rv̄) and β̄ = rφ(∇φ∗(rv̄)) − f(x̄) as in the anisotropic
subgradient inequality (3.10) where v̄ ∈ ∂f(x̄) is an element of the multivalued subdifferential of f
at x̄, a point where the graph of f has a cusp. While in the upper row these approximations are
global lower bounds, in the lower row the dashed curves are not below the solid ones.

Fig. 3. Upper row: illustration of a\phi -strong convexity (left) and a\phi -weak convexity (right) of
univariate pointwise maxima as in Lemma 5.1. Lower row: failure of a\phi -strong convexity (left) and
a\phi -weak convexity (right) of multivariate pointwise maxima plotted along the line t \mapsto \rightarrow \=x + t(\^x - \=x)
as described in Examples 5.4 and 5.5. The dashed lines correspond to the lower approximations
x \mapsto \rightarrow r\phi (x  - \=y)  - \=\beta with \=y = \=x  - \nabla \phi \ast (r\=v) and \=\beta = r\phi (\nabla \phi \ast (r\=v))  - f(\=x) as in the anisotropic
subgradient inequality (3.10), where \=v \in \partial f(\=x) is an element of the multivalued subdifferential of f at
\=x, a point where the graph of f has a cusp. While in the upper row these approximations are global
lower bounds, in the lower row, the dashed curves are not below the solid ones.

where q\=y := r\phi ( \cdot  - \=y). Without loss of generality, assume that r= 1. Since q\=y \in \scrC 1(\BbbR n)
is strictly convex (strictly concave if r= - 1) and thus (q\prime \=y(x + (\=y  - yi))  - q\prime \=y(x))(\=y  - 
yi)> 0, the function x \mapsto \rightarrow q\=y(x+(\=y - yi)) - q\=y(x) is strictly monotone (either increasing
or decreasing depending on the sign of \=y - yi). The above inequality then implies that

q\=y(x+ (\=y - yi)) - q\=y(x)< q\=y(\=x+ (\=y - yi)) - q\=y(\=x), i\in \{ 1,2\} ,

holds for all x between \^x and \=x. This means that f(x)< r\phi (x - \=y) - r\phi (\=x - \=y)+ f(\=x)
for all such x and with equality holding for x= \=x. Without loss of generality, assume
that \^x > \=x. Let j \in \{ 1,2\} be such that h\prime 

j(\=x) > \=v (which exists since \=v lies strictly
between h\prime 

1(\=x) and h\prime 
2(\=x)). Since \=v = r\phi \prime (\=x - \=y), by linearizing r\phi ( \cdot  - \=y) at \=x, one

obtains

f(x)< r\phi (x - \=y) - r\phi (\=x - \=y) + f(\=x) = \=v(x - \=x) + o(| x - \=x| ) + f(\=x)
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DUALITIES FOR NON-EUCLIDEAN CONVEXITY 2745

for all x\in (\=x, \^x). Similarly, by linearizing r\phi ( \cdot  - yj) at \=x, we also have

f(x)\geq r\phi (x - yj) - r\phi (\=x - yj) + f(\=x) = h\prime 
j(\=x)(x - \=x) + o(| x - \=x| ) + f(\=x)

for all x\in (\=x, \^x). By combining the two inequalities, we arrive to

h\prime 
j(\=x)(x - \=x) + o(| x - \=x| )< \=v(x - \=x) + o(| x - \=x| ),

whence the contradiction h\prime 
j(\=x)< \=v.

Proposition 5.2. Let n = 1. Let r = +1 (resp., r =  - 1), and choose \Phi (x, y) =
r\phi (x  - y). Let f : \BbbR \rightarrow \BbbR with f(x) = maxi\in \scrI \Phi (x, yi)  - \beta i for some yi, \beta i \in \BbbR with
i\in \scrI finite. Then f is a\phi -strongly convex (resp., a\phi -weakly convex).

Proof. Let \=x\in \BbbR . Since \Phi ( \cdot , yi) - \beta i \in \scrC 1(\BbbR n) and \scrI is finite, [41, Exercise 8.31]
gives

\partial f(\=x) = con\{ r\phi \prime (\=x - yi) : r\phi (\=x - yi) - \beta i = f(\=x), i\in \scrI \} .

Let \=v \in \partial f(\=x) be fixed. Then there exist i1, i2 \in \scrI (not necessarily distinct) with
r\phi (\=x - yi1) - \beta i1 = r\phi (\=x - yi2) - \beta i2 = f(\=x) such that r\phi \prime (\=x - yi1)\leq \=v \leq r\phi \prime (\=x - yi2).
Define h := max\{ r\phi ( \cdot  - yij ) - \beta ij : j \in \{ 1,2\} \} . In view of [41, Exercise 8.31], \=v \in 
\partial h(\=x) = con

\bigl\{ 
r\phi \prime (\=x - yij ) : r\phi (\=x - yij ) - \beta ij = h(\=x), j \in \{ 1,2\} 

\bigr\} 
. Lemma 5.1 applied to

h then yields

h(x)\geq h(\=x) + r\phi (x - \=x+ (\phi \ast )\prime (r\=v)) - r\phi ((\phi \ast )\prime (r\=v)) \forall x\in \BbbR n.

By using the fact that h(\=x) = f(\=x), we have for \=y := \=x - (\phi \ast )\prime (r\=v)

f(x)
(def)
= max

i\in \scrI 
\Phi (x, yi) - \beta i \geq h(x)\geq f(\=x) + r\phi (x - \=y) - r\phi (\=x - \=y) \forall x\in \BbbR .

Since (\=x, \=v)\in gph\partial f was arbitrary, the claim follows.

5.2. Anisotropic strong convexity. In the univariate case, in light of Propo-
sition 5.2 for r = +1, \Phi -convexity with finite \scrI implies a\phi -strong convexity. The
situation is depicted in Figure 3 (upper left). Since finite-valued \Phi -convex functions
for r = +1 are in particular convex and thus strictly continuous, we can derive the
following refinement of Proposition 5.2 for \Phi -convex functions with \scrI not necessarily
being finite.

Proposition 5.3 (a\phi -strong convexity of supremal convolutions on \BbbR ). Let f :
\BbbR \rightarrow \BbbR be \Phi -convex for \Phi (x, y) = \phi (x  - y) (equivalently, f = ( - g)\lozenge \phi for some
g \in \Gamma 0(\BbbR )). Then f is a\phi -strongly convex.

Proof. Since f is finite-valued, in view of [41, Example 9.14], f is strictly contin-
uous on \BbbR . By Lemma 2.5, we have that

f(x) = f\Phi \Phi (x) = sup
y\in \BbbR 

\phi (x - y) - f\Phi (y)(5.1)

holds for any x \in \BbbR , and Lemma 2.6 yields the equivalences y \in \partial \Phi f(x) \leftrightarrow x \in 
\partial \Phi f

\Phi (y) \leftrightarrow y \in argmax\{ \phi (x - \cdot ) - f\Phi \} . In light of Propositions 3.12 and 3.13,
\emptyset \not = \partial \Phi f(x) \subseteq x  - (\phi \ast )\prime (\partial f(x)), and hence the supremum in (5.1) is attained on
\partial \Phi f(x) \subseteq x  - (\phi \ast )\prime (\partial f(x)). Let \=x \in \BbbR . Because of strict continuity, \partial f is locally
bounded at \=x, and as such, so is \partial \Phi f . Thus, there exists a compact set Y so that for
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2746 E. LAUDE, A. THEMELIS, AND P. PATRINOS

any x sufficiently near \=x, we can restrict the maximization over y in (5.1) to Y , i.e.,
f(x) = supy\in Y \phi (x - y) - f\Phi (y) for x near \=x. This implies that f is lower-\scrC 1 in the
sense of [41, Definition 10.29]. In light of [41, Theorem 10.31], we have that

\partial f(\=x)\subseteq con\{ \phi \prime (\=x - y) : y \in \partial \Phi f(\=x)\} .

Let \=v \in \partial f(\=x) be fixed. Then there exist y1, y2 \in \partial \Phi f(\=x) = argmax
\bigl\{ 
\phi (\=x - \cdot ) - f\Phi 

\bigr\} 
(not necessarily distinct) such that \phi \prime (\=x - y1)\leq \=v\leq \phi \prime (\=x - y2). In particular, we have
\phi (\=x  - yi)  - f\Phi (yi) = f(\=x) for i \in \{ 1,2\} . Define h := max\{ \phi ( \cdot  - yi) - f\Phi (yi) : i \in 
\{ 1,2\} \} . In view of [41, Exercise 8.31],

\=v \in \partial h(\=x) = con
\bigl\{ 
\phi \prime (\=x - yi) : \phi (\=x - yi) - f\Phi (yi) = h(\=x), i\in \{ 1,2\} 

\bigr\} 
.

Lemma 5.1 applied to h then yields

h(x)\geq h(\=x) + \phi (x - \=x+ (\phi \ast )\prime (\=v)) - \phi ((\phi \ast )\prime (\=v)) \forall x\in \BbbR n.

By using the fact that \phi (\=x - yi) - f\Phi (yi) = f(\=x) for i \in \{ 1,2\} and thus h(\=x) = f(\=x),
we have for \=y := \=x - (\phi \ast )\prime (\=v)

f(x) = f\Phi \Phi (x) = sup
y\in \BbbR 

\phi (x - y) - f\Phi (y)\geq h(x)\geq f(\=x) + \phi (x - \=y) - \phi (\=x - \=y) \forall x\in \BbbR .

Since (\=x, \=v)\in gph\partial f was arbitrary, the claim follows.

In light of Theorem 4.3, this shows that the saddle-point property (4.3) holds
automatically in the finite-valued univariate case. In the multivariate case, however,
the situation is different: \Phi -convex functions on \BbbR n in general fail to be a\phi -strongly
convex. This is verified by the following counterexample.

Example 5.4 (failure of a\phi -strong convexity in higher dimensions). Choose \phi :
\BbbR 2\rightarrow \BbbR as \phi (x) = x2

1 + x4
2, and for y= ( - 1,1), let

f(x) :=max\{ \phi (x), \phi (x - y)\} .

The graphs of the two pieces \phi ,\phi ( \cdot  - y) intersect at points x \in \BbbR 2 at which \phi (x) =
\phi (x  - y), i.e., which satisfy x1 = 2x3

2  - 3x2
2 + 2x2  - 1. At these points, the graph

of f has a downward-pointing cusp. We have \nabla \phi (x) = (2x1,4x
3
2) and \nabla \phi (x  - y) =

(2x1 + 2,4(x2  - 1)3). Take \=x= ( - 1,0), at which \phi (\=x) = \phi (\=x - y) holds in particular,
and

\=v :=

\biggl( 
 - 1
 - 2

\biggr) 
\in \partial f(\=x) = con

\biggl\{ \biggl( 
 - 2
0

\biggr) 
,

\biggl( 
0

 - 4

\biggr) \biggr\} 
,

so that \nabla \phi (\=x  - \=y) = \=v and \phi (\=x  - \=y)  - \=\beta = f(\=x) for \=y =
\bigl(  - 1/2
2 - 1/3

\bigr) 
and \=\beta = \phi (\=x  - \=y)

 - f(\=x) = 1
4 + 2 - 4/3  - 1. At \^x = ( - 8, - 1), we have f(\^x) = 65 and \phi (\^x  - \=y)  - \=\beta >

65 = f(\^x), and thus \phi ( \cdot  - \=y) - \=\beta is not a lower bound of f . As a consequence, f is
not a\phi -strongly convex. This is shown in Figure 3 (lower left): It can be seen that the
dashed line, the graph of \phi ( \cdot  - \=y) - \=\beta , is above the solid line, the graph of f , when
restricted to the line \=x+ t(\^x - \=x) and t is close to 1.

In light of Theorem 4.3, this shows that the saddle-point property (4.3) does not
hold in general.
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5.3. Anisotropic weak convexity. In light of Proposition 5.2, for r =  - 1,
univariate pointwise maxima over finite collections of functions \Phi ( \cdot , yi)  - \beta i are
a\phi -weakly convex.

The following example reveals that this is no longer true in the multivariate case.

Example 5.5 (failure of a\phi -weak convexity in higher dimensions). Choose \phi :\BbbR 2\rightarrow 
\BbbR as \phi (x) = x2

1 + x4
2, and for y= (1, - 1), let

f(x) :=max\{  - \phi (x), - \phi (x - y)\} =

\Biggl\{ 
 - \phi (x) x1 \leq 2x3

2 + 3x2
2 + 2x2 + 1,

 - \phi (x - y) otherwise.

The graphs of the two pieces  - \phi , - \phi ( \cdot  - y) intersect at points x \in \BbbR 2 at which
\phi (x) = \phi (x - y). Take \=x= (1,0), for which this holds in particular, and

\=v :=

\biggl( 
 - 1
 - 2

\biggr) 
\in \partial f(\=x) = con

\biggl\{ \biggl( 
 - 2
0

\biggr) 
,

\biggl( 
0

 - 4

\biggr) \biggr\} 
,

so that  - \nabla \phi (\=x - \=y) = \=v and  - \phi (\=x - \=y) - \=\beta = f(\=x) for

\=y=

\biggl( 
1/2

 - 2 - 1/3

\biggr) 
and \=\beta = \phi (\=x - \=y) - f(\=x) =

3 - 22/3

4
.

At \^x = (0, - 1), we have  - \phi (\^x  - \=y)  - \=\beta = 21/3(24/3  - 3) >  - 1 = f(\^x), and thus
 - \phi ( \cdot  - \=y) - \=\beta is not a lower bound of f . As a consequence, f is not a\phi -weakly convex.
This is shown in Figure 3 (lower right): It can be seen that the dashed line, the graph
of  - \phi ( \cdot  - \=y) - \=\beta , is above the solid line, the graph of f , when restricted to the line
\=x+ t(\^x - \=x) and t is close to 1.

6. Conclusion. In this paper, we provided the dual counterparts to relative
smoothness and strong convexity (B\phi -smoothness and B\phi -strong convexity), called
anisotropic smoothness and strong convexity (a\phi \ast -smoothness and a\phi \ast -strong convex-
ity). In the context of generalized convexity, both notions can be seen as \Phi -subgradient
inequalities or as anisotropic generalizations of the descent lemma and strong convex-
ity inequality which can be fruitful in the development of first-order algorithms. Unlike
the Euclidean case, we have shown a gap between the classes of functions that sat-
isfy the anisotropic strong convexity subgradient inequality and the class of supremal
convolutions, the latter being a proper subset of the former for which a certain saddle-
point property holds. In spite of the duality relation being limited to convex functions,
the viewpoint of \Phi -convexity naturally motivated the study of weak convexity coun-
terparts, which led to the discovery of yet another unexpected gap. While B\phi -weak
convexity can be characterized in terms of \Phi -convexity, there exist \Phi -convex (with the
corresponding \Phi ) functions that are not a\phi -weakly convex; whether a converse inclu-
sion holds is an open problem. It is also unclear whether differentiability follows from
a\phi -weak convexity of both f and  - f in the same way it does for the Bregman notions.
In general, we believe that a more detailed investigation of anisotropic weak convex-
ity is an interesting direction for future research. Algorithmic implications and more
practical examples of the newly introduced anisotropic notions are under investigation
in [30].
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