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Abstract. Conformal and quasi-conformal mappings have widespread applications in imaging science, computer
vision and computer graphics, such as surface registration, segmentation, remeshing, and texture map
compression. While various conformal and quasi-conformal parameterization methods for simply-
connected surfaces have been proposed, efficient parameterization algorithms for multiply-connected
surfaces are less explored. In this paper, we propose a novel parallelizable algorithm for computing
the global conformal and quasi-conformal parameterization of multiply-connected surfaces onto a
2D circular domain using variants of the partial welding method and the Koebe’s iteration. The
main idea is to first partition a multiply-connected surface into several subdomains and compute the
free-boundary conformal or quasi-conformal parameterizations of them respectively, and then apply a
variant of the partial welding algorithm to reconstruct the global mapping. We apply the Koebe’s
iteration together with the geodesic algorithm to the boundary points and welding paths before and
after the global welding to transform all the boundaries to circles conformally. After getting all
the updated boundary conditions, we obtain the global parameterization of the multiply-connected
surface by solving the Laplace equation for each subdomain. Using this divide-and-conquer approach,
the global conformal and quasi-conformal parameterization of surfaces can be efficiently computed.
Experimental results are presented to demonstrate the effectiveness of our proposed algorithm. More
broadly, the proposed shift in perspective from solving a global quasi-conformal mapping problem
to solving multiple local mapping problems paves a new way for computational quasi-conformal
geometry.

Key words. Conformal parameterization, Quasi-conformal parameterization, Partial welding, Multiply-connected
surface, Koebe’s iteration
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1. Introduction. In modern applied mathematics and computer science, three-dimensional
(3D) surfaces play an important role in many fields, such as brain mapping in medical imaging,
3D model reconstruction in computer graphics, and 3D object detection and classification in
computer vision. One important technique for processing 3D models is surface parameterization,
which refers to the process of mapping a 3D surface to a two-dimensional (2D) domain based
on certain criteria. With the aid of surface parameterization, one can work on the 2D domain
instead of on the original 3D surface. For example, to solve a partial differential equation
(PDE) on a complicated 3D domain, one can map the domain to a 2D parameter domain
and then solve the PDE on it instead. Moreover, with the advancement of 3D scanning and
rendering technologies, 3D surfaces with super large size and high resolution can be easily
obtained nowadays. Therefore, fast and accurate algorithms for the parameterization of large
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meshes arise in need.
Among all the surface parameterization methods, conformal parameterizations are a very

special class. Conformality preserves the angular structure at the infinitesimal level, and thus
preserves the local geometry. This property is advantageous in many tasks that rely on the
preservation of local geometry, such as 3D surface remeshing and image registration. Quasi-
conformal (QC) maps are a generalization of conformal maps associated with a complex-valued
function defined at each point of the source domain called the Beltrami coefficient. Unlike
conformal maps, quasi-conformal maps do not preserve local geometry in general. In particular,
the Beltrami coefficient defined at each point of the source domain determines the angular
distortion at the infinitesimal level at these points. Also, the bijectivity of quasi-conformal
maps can be ensured by enforcing the sup-norm of the Beltrami coefficient to be strictly less
than 1. Since conformality is a very strict condition that cannot be ensured in many situations
with the presence of other constraints, quasi-conformal maps are often utilized. For instance,
in image and surface registration, quasi-conformal maps can be used for achieving a balance
between the local geometric distortion and the mismatch in prescribed landmark or intensity
information of the registered images and surfaces. In recent years, various algorithms have
been proposed for computing conformal and quasi-conformal maps. However, most of them
are not designed for large meshes, especially those with more complicated topology such as
multiply-connected meshes.

In this paper, we propose a novel parallelizable method for the computation of quasi-
conformal parameterization of multiply-connected surfaces onto a 2D circular domain, which
refers to a connected domain whose complements are several circular disks. As a special case of
quasi-conformal maps, conformal maps can also be efficiently computed by our method. Fig. 1
gives an overview of our proposed method. Given a multiply-connected open surface S and a
prescribed Beltrami coefficient µ, we first partition S into several smaller subdomains. Then,
we compute the free-boundary conformal maps from them to R2 in parallel. We then compose
a free-boundary quasi-conformal map with the given Beltrami coefficient for each subdomain
in parallel. As computing quasi-conformal maps on several small subdomains in a parallel way
is much more efficient than computing the global quasi-conformal map directly, our algorithm
is more efficient than many existing global parameterization methods. After computing the
initial maps, we utilize an idea called partial welding [10] to glue the boundaries of the flattened
subdomains along their common arcs. In particular, since S is a multiply-connected surface,
we propose a variant of the original partial welding algorithm in [10] to achieve this task.
Moreover, in order to transform the boundaries to circles, we propose a parallel version of
the Koebe’s iteration [37] that is highly compatible with our algorithm. By the composition
formula of Beltrami coefficients in quasi-conformal theory [25], the partial welding procedure
and the Koebe’s iteration will not induce any change in the prescribed Beltrami coefficient µ
as every function involved in these steps is conformal. The computation of partial welding
and the parallel Koebe’s iteration relies on a method called the geodesic algorithm [54], whose
convergence is theoretically guaranteed under certain mild conditions. All the computations
in these two steps only involve the boundary points and welding paths and hence are highly
efficient. Finally, using the new boundary conditions generated by the above procedures, we
obtain the global quasi-conformal parameterization by solving the Laplace equation on each
subdomain in parallel.
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Figure 1: An illustration of our proposed method for the global quasi-conformal parameteri-
zation of multiply-connected surfaces. Given a multiply-connected surface partitioned into
several subdomains, we first compute the free-boundary quasi-conformal parameterization
for each of them in parallel. Then, we apply our proposed variants of the partial welding
method [10] and the Koebe’s iteration [37] to find a global conformal mapping of the bound-
aries of the submeshes to a circular domain with circular holes. Finally, we obtain the global
parameterization of the entire surface by solving the Laplace equation on each subdomain in a
parallel manner. Note that most of the steps for different subdomains are independent of the
other subdomains and hence the method is highly parallelizable.

The rest of this paper is organized as follows. In Section 2, we review the previous
works on surface parameterization, with an emphasis on conformal and quasi-conformal
parameterizations. In Section 3, we introduce the mathematical concepts related to this work.
In Section 4, we describe our proposed method for the global conformal and quasi-conformal
parameterizations of multiply-connected surfaces. In Section 5, we present experimental results
and comparisons with other methods to demonstrate the effectiveness of our method. In
Section 6, we show several applications of our proposed method in different fields. In Section 7,
we discuss the limitations of our method and outline possible future research directions.



4 ZHIPENG ZHU, GARY P. T. CHOI, AND LOK MING LUI

2. Related works. In the past few decades, surface parameterization has attracted tremen-
dous research attention in the area of geometry processing, graphics and vision. Detailed
surveys and reviews on the topic can be found in [23,33,69]. In particular, since it is in general
impossible to achieve isometric (both area-preserving and angle-preserving) parameterizations
except for surfaces with zero Gaussian curvature, two major types of surface parameterization
methods are the area-preserving parameterizations and the angle-preserving parameterizations.

Existing area-preserving parameterization methods include the locally authalic map [22], Lie
advection [85], optimal mass transport (OMT) [21, 26, 84], density-equaling map (DEM) [8, 15]
and stretch energy minimization (SEM) [77]. Although the area structure of the input
surface can be well-preserved by these methods, the angle structure is usually significantly
distorted. Since the angle structure is closely related to the local geometry of the surface,
the distortion in the angle structure may induce obstacles for some applications. In these
situations, angle-preserving parameterizations may be more preferable.

Existing conformal parameterization methods for simply-connected open surfaces in-
clude least-squares conformal map (LSCM) [46], discrete natural conformal parameterization
(DNCP) [22], angle-based flattening (ABF) [67, 68, 79], holomorphic 1-form [29], discrete
Yamabe flow [51,70], discrete Ricci flow [35,74,83], fast disk conformal map [17], boundary
first flattening [64], linear disk conformal map [12], conformal energy minimization [76], par-
allelizable global conformal parameterization (PGCP) [10, 11] and spherical cap conformal
map [65]. For simply-connected closed surfaces, existing spherical conformal parameterization
methods include harmonic energy minimization [28,42] and its linearizations [2, 9, 16,30] and
parallelizable global conformal parameterization (PGCP) [10]. While many surfaces in real
applications may be multiply-connected, the conformal mapping of multiply-connected surfaces
is less studied. Existing conformal mapping methods between multiply-connected planar
domains include conformal welding [52], Schwarz–Christoffel map [18,19], slit map [20], and
PlgCirMap [56]. For the conformal parameterization of multiply-connected surfaces, existing
methods include the generalized Koebe’s iteration [82], Laurent series [40], discrete conformal
equivalence [4], and poly-annulus conformal map (PACM) [6].

Quasi-conformal maps are a generalization of conformal maps with bounded local geometric
distortion. As they are less restrictive than conformal maps, there has been an increasing
interest in quasi-conformal surface parameterization methods in recent years. Existing methods
for computing quasi-conformal parameterization include auxiliary metric [81], quasi-Yamabe
flow [80], linear Beltrami solver (LBS) [13,43,48], Beltrami holomorphic flow (BHF) [50,57], QC
iteration [49,55], extremal quasiconformal map [71], bounded distortion map [5,47], discrete
Beltrami flow [72,73], quasi-conformal energy minimization (QCMC) [32], and least-squares
quasi-conformal map (LSQC) [62]. In recent years, quasi-conformal maps have been used in
various applications such as image and surface registration [43,63,78] and shape analysis [7,14].

3. Mathematical background.

3.1. Quasi-conformal theory. In this subsection, we briefly introduce quasi-conformal
maps on the complex plane and on Riemann surfaces. For details, readers are referred to [3,25].

Quasi-conformal maps are a generalization of conformal maps and can be understood
as maps with bounded conformality distortion. An orientation-preserving homeomorphism
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Figure 2: An illustration of how the Beltrami coefficient determines the conformality distortion
at the infinitesimal level, i.e. the differential map at a point associated with Beltrami coefficient
µ.

f : Ω ⊂ C→ Ω′ ⊂ C is said to be a quasi-conformal map if it satisfies the Beltrami equation:

(3.1)
∂f

∂z̄
= µf (z)

∂f

∂z
,

where µf (z) is a complex-valued Lebesgue-measurable function satisfying ‖µf (z)‖∞ < 1 called
the Beltrami coefficient of f . µf (z) encodes the information about the conformality distortion
of f . If µf (z) = 0 for all z, then Equation (3.1) becomes the Cauchy–Riemann equation and
hence f is conformal. Geometrically, a quasi-conformal mapping maps infinitesimal circles to
infinitesimal ellipses with eccentricity determined by the Beltrami coefficient (see Fig. 2).

The following theorem by Ahlfors and Lars, called the Measurable Riemann Mapping
Theorem [1], is a generalization of the Riemann Mapping Theorem for conformal maps to the
case of quasi-conformal maps.

Theorem 3.1. (Measurable Riemann Mapping Theorem) Suppose µ : C → C is Lebesgue
measurable and satisfies ‖µ‖∞ < 1. Then there is a quasi-conformal homeomorphism φ from
C onto itself, which is in the Sobolev space W 1,2(C) and satisfies the Beltrami equation (3.1)
in the distribution sense. Furthermore, by fixing 0, 1, and ∞, the associated quasi-conformal
homeomorphism φ is uniquely determined.

Conversely, given an orientation-preserving homeomorphism φ, we can compute its Beltrami
coefficient µf using the Beltrami equation (3.1):

(3.2) µφ(z) =
∂φ

∂z̄
/
∂φ

∂z
.

This gives the following relation between the Jacobian Jφ and the Beltrami coefficient µφ:

(3.3) Jφ(z) =

∣∣∣∣∂φ∂z
∣∣∣∣2(1− µφ(z)

)2

.
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Note that Jφ(z) > 0 everywhere as φ is an orientation-preserving homeomorphism, and hence
we must have

∣∣µφ(z)
∣∣ < 1 for all z. By the measurable Riemann mapping theorem and the

above observation, we conclude that there is a one-one correspondence between quasi-conformal
homeomorphisms and Beltrami coefficients strictly less than 1.

Moreover, we have the following composition formula for the Beltrami coefficient of a
composition of two quasi-conformal maps. Suppose f, g : C → C are quasi-conformal maps
with Beltrami coefficients µf and µg respectively. Then, the Beltrami coefficient of g ◦ f is

(3.4) µg◦f =
µf + (µg ◦ f)τ

1 + µ̄f (µg ◦ f)τ
, τ =

f̄z
fz
.

In particular, if g is a conformal map, we have µg◦f = µf . In other words, given a quasi-
conformal map f with Beltrami coefficient µ, the Beltrami coefficient of g ◦ f is always µ for
any conformal map g. This observation plays an important role in our proposed algorithm for
multiply-connected quasi-conformal parameterization.

The following theorem relates the regularity of a quasi-conformal map with its Beltrami
coefficient [3]:

Theorem 3.2. Suppose f ∈W 1,2
loc (C,C) is the solution to the Beltrami equation (3.1), where

the Beltrami coefficient µ(z) ∈ C l,αloc (C,C), ‖µ‖∞ < 1. Then, f ∈ C l+1,α
loc (C,C).

For quasi-conformal maps of Riemann surfaces, one can generalize the concept of Beltrami
coefficients to Beltrami differentials via the local charts of the surfaces. More specifically, the

Beltrami differential µ(z)
dz̄

dz
on a Riemann surface S is an assignment to each chart (Uα, φα)

of an L∞ complex-valued function µα, defined on local parameters zα, such that

(3.5) µα(zα)
dz̄α
dzα

= µβ(zβ)
dz̄β
dzβ

on the domain which is also covered by another chart (Uβ, φβ), where
dzβ
dzα

=
d

dzα
φαβ and

φαβ = φβ ◦ φ−1
α . In particular, if a surface can be covered by a single chart, we can use the

Beltrami coefficient defined on that chart to represent the Beltrami differential of the surface.
As our work focuses on multiply-connected open surfaces, we can simply find a free boundary
conformal map from the given surface onto C and use that as the global chart to represent the
Beltrami differential. Therefore, the Beltrami coefficient and the Beltrami differential are used
interchangeably in our method.

3.2. Variational formulation of quasi-conformal map. Here we introduce a variational
approach called the least-squares quasi-conformal map (LSQC), developed by Qiu et al. [62],
for solving the Beltrami equation (3.1) to get free-boundary quasi-conformal maps. The
formulation is an analog of the DNCP/LSCM formulation [22, 46] for free-boundary conformal
maps of 2D domains. Suppose f : Ω ⊂ C → Ω′ ⊂ C is a quasi-conformal map. We write
f = u+ iv and µf = ρ+ iτ , where u, v, ρ and τ are real-valued functions. Also, let

(3.6) A =
1

1−|µ|2

(
(ρ− 1)2 + τ2 −2τ
−2τ (1 + ρ)2 + τ2

)
.
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From the above, we can transform the Beltrami equation (3.1) into

(3.7)

(
ux
uy

)
=

(
0 1
−1 0

)
A

(
vx
vy

)
.

Then, using the relation uxy = uyx, we obtain the following equation

(3.8) ∇ · (A∇v(z)) = 0.

Similarly, we can express vx, vy in terms of ux, uy and get

(3.9) ∇ · (A∇u(z)) = 0.

It can be observed that the two equations above are the Euler–Lagrange equations of the
following two Dirichlet type energies respectively:

(3.10) EA(u) =
1

2

∫
Ω

∥∥∥A1/2∇u
∥∥∥2
dxdy, EA(v) =

1

2

∫
Ω

∥∥∥A1/2∇v
∥∥∥2
dxdy.

Note that Equations (3.8) and (3.9) are necessary conditions of u and v derived from the
Beltrami equation (3.1). One can also define the following least-squares quasi-conformal energy
using the Beltrami equation (3.1) directly:

(3.11) EµQC(u, v) =
1

2

∫
Ω
‖P∇u+ JP∇v‖2 dxdy,

where

(3.12) P =
1√

1−|µ|2

(
1− ρ −τ
−τ 1 + ρ

)
and J =

(
0 −1
1 0

)
.

Since P TP = A, the Beltrami equation (3.1) holds if and only if EµQC(u, v) = 0. The following

equation relates the three energies EA(u), EA(v) and EµQC(u, v):

(3.13) EA(u) + EA(v)− EµQC(u, v) = A(u, v) =

∫
Ω

(uxvy − vxuy)dxdy.

Since f is an orientation-preserving homeomorphism, A(u, v) is the area of Ω′ = f(Ω). For
this reason, A(u, v) is called the area functional. Now, since EµQC(u, v) is always positive, we
have the following inequality:

(3.14) EA(u) + EA(v) ≥ A(u, v).

The equality holds if and only if EµQC(u, v) = 0, i.e. the Beltrami coefficient of f = u+ iv is
equal to µ.

Later on, we will see that EA(u), EA(v) and A(u, v) can all be efficiently computed
numerically, which allows us to compute free-boundary quasi-conformal maps efficiently.
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On the other hand, if we want to compute a map from a domain to some specific domain
such as a disk or a rectangle, we need to specify the boundary conditions. Suppose we want to
compute a conformal map f from a simply-connected domain Ω to the unit disk D. By the
measurable Riemann mapping theorem, f is unique up to a Möbius transformation. Therefore,
the boundary condition F (∂Ω) should be carefully set; otherwise, such a quasi-conformal map
may not exist. To get the admissible boundary condition, we are going to use the geodesic
algorithm developed by Marshall [54], which will be introduced later in this paper. By the
elliptic PDE theory, with the admissible boundary condition, Equations (3.8) and (3.9) have a
unique solution and yield the desired quasi-conformal map.

Finally, we remark that since conformal maps are a special case of quasi-conformal maps
with µ ≡ 0, and the above results also hold for conformal maps and are consistent with the
results in the conformal mapping literature [34,61].

3.3. Conformal welding. There are several equivalent ways to describe the conformal
welding problem. Here, we adopt the version in [52, 66]. Let C̄ := C ∪ {∞} denote the
extended complex plane and D denote the unit disk {z ∈ C : |z| ≤ 1}. Given an increasing
homeomorphism h of ∂D, the conformal welding problem is to find a Jordan curve J and
two conformal maps f, g such that f and g map D and C̄\int(D) to J ∪ int(J) and J ∪ ext(J)
respectively, where int(J) and ext(J) are the interior and exterior of J respectively, and
f(h(x)) = g(x) on ∂D. Since there exists a conformal map between the unit disk and the
upper half plane, we can also formulate the problem for the upper and lower half planes with
an increasing homeomorphism on the real axis.

The conformal welding problem may not have a solution for a general homeomorphism h.
However, the existence of conformal welding can be proved if h satisfies certain conditions.
Here, we introduce the notion of quasi-symmetric functions. Let h be a continuous, strictly
increasing function defined on an interval I of the x-axis. We call h k-quasi-symmetric on
I [45] if there exists a positive constant k such that

(3.15)
1

k
≤ h(x+ t)− h(x)

h(x)− h(x− t)
≤ k,

for all x, x− t ∈ I with t > 0.
The following theorem shows the solvability of the conformal welding problem when h is a

quasi-symmetric homeomorphism of the real axis.

Theorem 3.3. (Sewing theorem [45]). Let h be a quasi-symmetric function on the real axis.
Then the upper and lower half-planes can be mapped conformally onto disjoint Jordan domains
D,Ω by two maps φ, φ∗, such that φ(x) = φ∗(h(x)) for all x ∈ R.

The proof of the above theorem is based on approximation techniques of quasi-symmetric
functions. The solvability of the conformal welding problem can also be proved using the
existence of solutions to the Beltrami equation as shown by Pfluger [60].

3.4. Geodesic algorithm. The Riemann mapping theorem guarantees the existence of
a conformal map from a simply-connected open subset of C to the unit disk, unique up
to a Möbius transformation. However, this theorem does not provide a way to compute
such a conformal map explicitly. In the 1980s, Kühnau [41], and Marshall and Morrow [53]
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Figure 3: The basic conformal map fz1 of the geodesic algorithm in [54].

independently proposed the zipper algorithm for computing conformal maps from a simply-
connected open set to the unit disk. Later, Marshall and Rohde [54] proved the convergence in
different cases for a variant of the zipper algorithm called geodesic algorithm. As described by
Marshall and Rohde [54], the geodesic algorithm can be viewed as an approximate solution to
a conformal welding problem or as a discretization of the Loewner differential equation. The
details, variants and convergence of the geodesic algorithm can be found in [54]. Below, we
briefly introduce the geodesic algorithm.

The key ingredient of the geodesic algorithm is the two-fold map shown in Fig. 3, which
is a composition of a Möbius transformation, a square map, and a square root map. In one
direction, it maps a hyperbolic geodesic to the real axis. Given z1 on the upper half plane, we
denote by the red line γ the circular arc from 0 to z1, which is a hyperbolic geodesic. The
map fz1 conformally maps γ to [0, z3] or [−z3, 0] depending on the choice of the branch for the
square root map. The rest of the upper half plane H\γ is conformally mapped to H. In the
reverse direction, note that two line segments [−z3, 0] and [0, z3] are both mapped to [0, z2

3 ]
by a square map, and eventually mapped to the curve γ. Hence, this direction allows us to
conformally align two different lines, which can then be used to compute conformal welding.

In order to compute a Riemann mapping from some Jordan domain Ω to H by the
geodesic algorithm, we only need a sequence of boundary points {z0, z1, . . . , zn} of ∂Ω that are
sufficiently dense on ∂Ω. The starting map is given by

(3.16) g1(z) = i

√
z − z1

z − z0
,
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with g1(z1) = 0 and g1(z0) =∞. Let ξ2 = g1(z2) and g2 = fξ2 , where fξ2 is the map defined in
Fig. 3. We repeat this process for all the boundary points to get

(3.17) ξk = gk−1 ◦ gk−2 ◦ · · · ◦ g1(zk)

and

(3.18) gk = fξk

for k = 2, . . . , n. We then compute a final map by defining

(3.19) ξn+1 = gn ◦ · · · ◦ g1(z0) ∈ R

and

(3.20) gn+1 = ±
(

z

1− z/ξn+1

)2

,

where the positive sign is chosen when the data points are in anti-clockwise orientation, and
the negative sign otherwise. The composition mapping g = gn+1 ◦ gn ◦ · · · g1 gives a conformal
map from Ω to H. Although originally invented to be in this form, as indicated by Marshall
in [54], the computation of the mapping is more reliable when we perform it on the right
half plane instead of the upper half plane due to the default choice of branching in scientific
computing software. In our algorithm, we perform all the computation on the right half plane.

The convergence of the geodesic algorithm was proved in [54]. In particular, under different
assumptions on the regularity of the region Ω, different convergence results can be established.

3.5. Riemann mapping theorem for multiply-connected domains. While the Riemann
mapping theorem focuses on the conformal equivalence between any simply-connected region
in the complex plane and the open unit disk, there is also a generalization of this result to
multiply-connected domains. Here, we present a result given in Chapter 17 of [31], which
shows that any region R of connectivity n ≥ 2 can be conformally mapped to the complement
of n closed circular disks. Such a region is called a circular region of connectivity n.

Theorem 3.4. Let R be a region of connectivity n ≥ 2 in the extended complex plane with
∞ ∈ R. Then, there exists a unique circular region of connectivity n and a unique one-to-one

analytic function f satisfying f(z) = z +O(
1

z
) such that f(R) = C.

The book [31] gives a constructive proof of this theorem, which was originally due to Koebe
and hence called the Koebe’s iteration [37]. We explain the Koebe’s iteration in detail here
as it is closely related to our proposed algorithm in this paper. Suppose the components of
complements of R are K1,K2, . . . ,Kn. Let R0 := R,D0,i := Ki, i = 1, 2, . . . , n. Suppose in the
(k − 1)-th iteration, we have obtained a region Rk−1 of connectivity n, whose complements are
Dk−1,i, i = 1, 2, . . . , n. Then, in the k-th iteration, let j = k mod n, 1 ≤ j ≤ n. We find the
unique conformal map hk, normalized at ∞, from Rk−1\Dk−1,j to the exterior of a disk. Let
Dk,j be that disk, and

(3.21) Rk := hk(Rk−1), Dk,i := hk(Dk,i−1), i = 1, 2, . . . , n, i 6= j.
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Clearly, Rk is a region of connectivity n and the components of complements of it are
Dk,i, i = 1, 2, . . . , n. The Koebe’s algorithm goes cyclically on i = 1, 2, . . . , n, each time
mapping one boundary component to a circle until the result converges.

Let f denote the desired Riemann mapping, fk := hk ◦ hk−1 ◦ · · · ◦ h1 and gk := fk ◦ f−1.
We have the following estimate of the convergence rate [31]:

Theorem 3.5. There exists constants γ > 0 and 0 < µ < 1 such that for k = 1, 2, . . . and
for all w ∈ C,

(3.22)
∣∣gk(w)− w

∣∣ ≤ γµ4[k/n].

Numerically, in each iteration, we apply the geodesic algorithm to transform one of the
boundaries to a circle and also update the coordinates of other boundaries [52]. In practice,
we find that the algorithm exhibits fast convergence, and usually we can already obtain a
satisfactory result after performing only one iteration for each boundary. One example can be
found in Fig. 4. As we shall see later, that is part of the reason why our proposed parallel
Koebe’s iteration method works.

Below, we also state the extension of the Riemann mapping theorem for multiply-connected
domains to quasi-conformal maps presented in the book [44].

Theorem 3.6. Let D be the closure of a domain bounded by n disjoint Jordan curves.
Suppose µ is a measurable function defined in D and ‖µ‖∞ < 1. Then, there exists a closed
canonical circular domain D′ of connectivity n and a solution f to the Beltrami equation (3.1),
which represents a quasi-conformal homeomorphism of D onto D′, determined uniquely up to
conformal maps of D′ onto itself.

In practice, given a multiply-connected domain D with a prescribed Beltrami coefficient µ,
we can first compute a free-boundary quasi-conformal parameterization of it onto a domain
D1. After that, we compute the conformal map from D1 to a circular domain D2 using the
Koebe’s iteration. The composition of these two maps gives the desired result.

4. Proposed method.

4.1. An overview of our proposed method. Let S be a multiply-connected surface in R3

represented by a triangle mesh (V,F), where V denotes the set of vertices and F denotes the set
of faces. Given a target Beltrami coefficient µ, we aim to compute the global quasi-conformal
parameterization of S onto the unit disk with circular holes efficiently and accurately.

First, we partition the entire mesh S into multiple submeshes Si, i = 1, . . . ,m such that each
submesh is either simply-connected or multiply-connected with 1 inner hole of S. Note that we
may further partition the submeshes with 1 hole into more smaller simply-connected submeshes
if necessary. Then, we compute a free-boundary conformal parameterization ϕci : Si → R2 of
each submesh onto the plane respectively. Here, we compute the conformal parameterization
first because the Beltrami differentials on the surface depend on the choice of isothermal local
charts, and the computed free-boundary conformal parameterization serves well in this role for
the submeshes. The next step is to compute a free-boundary quasi-conformal map of each
flattened submesh ϕqci : ϕci(Si) → R2 based on the prescribed Beltrami coefficient, so that
the composition ϕi = ϕqci ◦ ϕci gives the free-boundary quasi-conformal parameterization for
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(a) The given boundary curves (b) First iteration

(c) Second iteration (d) Third iteration

Figure 4: An example illustrating the fast convergence of the Koebe’s iteration method, with
each map computed using the geodesic algorithm.

every submesh. Note that both the conformal parameterization and quasi-conformal mapping
steps are highly parallelizable as the computations for different submeshes are independent.
Since all the remaining steps only involve conformal transformations, by the composition
formula (3.4), the Beltrami coefficient will be preserved by the remaining steps. We apply
the geodesic algorithm to transform all the inner holes of the submeshes into circles. This
step can be understood as a parallelizable version of the Koebe’s iteration. We then apply
the welding algorithm to obtain the desired boundary conditions of all submeshes. Note that
the inner boundaries after welding are highly circular, as will be illustrated both theoretically
and experimentally in the following sections. Finally, we solve the Laplace equation with the
updated boundary conditions to obtain the quasi-conformal parameterization for each submesh,
all of which together form the desired global quasi-conformal parameterization seamlessly (see
Fig. 1 for an illustration).

4.2. Surface partition. We first partition the given multiply-connected surface S into
multiple submeshes Si, i = 1, . . . ,m, which can be done by existing mesh partitioning algorithms
or manually prescribing some edges as the partition cuts. Suppose S contains an outer
boundary γ0 and k disjoint inner boundaries {γi}ki=1, where each γi is represented by a
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set of boundary edges, our partition procedure consists of the following two steps. In the
first step, we choose a set of cutting edges denoted by Ecut such that Ecut does not contain
any boundary edges. The reason is that if we remove Ecut

⋃
γ0 from S, we may obtain

several subdomains that are disconnected from each other. Hence, we choose the partition
S =

⋃m
i=1 Si by assigning Si to be each of the components. In other words, we obtain

S1 = (V1,F1),S2 = (V2,F2), . . . ,Sm = (Vm,Fm). Mathematically, the following conditions
should be satisfied:

(4.1) Ecut
⋂
γi = ∅ for all i = 1, . . . , k,

and

(4.2) Si
⋂
Sj ⊂ Ecut or Si

⋂
Sj = ∅ for all i, j = 1, . . . ,m.

Here, we restrict all Si to be simply-connected or multiply-connected with only 1 inner hole.
Such a restriction reduces the difficulty of computing partial welding for multiply-connected
meshes and performing the parallel Koebe’s iteration, as will be explained later. In the second
step, we can further partition the submeshes into smaller meshes if necessary and possible.
For example, if a submesh Si with 1 hole is still a large mesh, we can partition it into several
simply-connected meshes.

4.3. Free-boundary quasi-conformal parameterization of the submeshes. After getting
the submeshes Si, i = 1, . . . ,m, we compute a free-boundary conformal parameterization of
each of them onto the plane followed by a free-boundary quasi-conformal map using the
variational formulation in Section 3.2 by a finite element approach.

The numerical computation of the quasi-conformal mapping follows the implementa-
tion described in [62]. Given a flattened triangle mesh Ω represented by a set of vertices
{w1, w2, . . . , wn} and a set of triangle faces, we discretize the prescribed Beltrami coefficient
µ on Ω by assuming that µ is piecewise constant on each triangle face, i.e., µ = µT for some
constant µT on each triangle face T of Ω. We aim to compute a map f = u + iv : Ω → Ω̃
where Ω̃ is a triangle mesh with same connectivity as Ω such that f satisfies the Beltrami
equation (3.1) in the sense that f is piecewise linear on each face T and µf |T = µT for each face
T . We denote the vertices of Ω̃ by {f(w1), f(w2), . . . , f(wn)} = {u1+iv1, u2+iv2, . . . , un+ivn}.
Let u =

(
u1 u2 · · · un

)T
and v =

(
v1 v2 · · · vn

)T
.

We then discretize the energies EA(u) =
∫

Ω

∥∥∥A1/2∇u
∥∥∥2

and EA(v) =
∫

Ω

∥∥∥A1/2∇v
∥∥∥2

in

Equation (3.10) in the following way. Let T be an arbitrary triangle with vertices [wT0 , w
T
1 , w

T
2 ].

Suppose the image of T under f is [f(wT0 ), f(wT1 ), f(wT2 )] = [uT0 + ivT0 , u
T
1 + ivT1 , u

T
2 + ivT2 ].

Since f is linear on T , we can express the gradient of f as

(4.3) ∇u|T =
1

2Area(T )

(
0 −1
1 0

)
2∑
i=0

ui(w
T
2+i − wT1+i),

and

(4.4) ∇v|T =
1

2Area(T )

(
0 −1
1 0

)
2∑
i=0

vi(w
T
2+i − wT1+i).
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Since µ is piecewise constant on each face T , the matrix A given by Equation (3.6) is a constant

matrix determined by µT on each T . We can then discretize
∫

Ω

∥∥∥A1/2∇u
∥∥∥2

and
∫

Ω

∥∥∥A1/2∇v
∥∥∥2

by summing over all faces. We then obtain two quadratic forms

(4.5) EA(u) = uTLµu and EA(v) = vTLµv,

where Lµ is a symmetric matrix called the generalized Laplacian matrix. Furthermore, using
Equations (4.3) and (4.4), we can discretize the area matrix A(u, v) =

∫
Ω uxvy − vxuy in

Equation (3.14) as another quadratic form

(4.6) A(u, v) =
(
uT vT

)( 0 U
−U 0

)(
u
v

)
for some skew-symmetric matrix U . Let

(4.7) M =

(
Lµ 0
0 Lµ

)
−

(
0 U
−U 0

)
.

Note that M is symmetric. By Equation (3.13), to obtain the desired free-boundary quasi-
conformal map, it suffices to solve the equation

(4.8) EµQC(u, v) =
(
uT vT

)
M

(
u
v

)
= 0.

We have the following theorem:

Theorem 4.1. The solution of Equation (4.8) is unique under scaling, rotation, and trans-
lation.

Proof. Since M is symmetric, it suffices to solve the equation

(4.9) M

(
u
v

)
= 0.

Suppose we fix two arbitrary points from {f(w1), f(w2), . . . , f(wn)}. Then, we need to solve

(4.10) B

(
u
v

)
= b,

for some matrix B and vector b. A direct consequence of Proposition 2.13 in [62] is that the
matrix B is of full rank. Hence, we obtain a unique solution if two arbitrary points are fixed.

On the other hand, suppose

(
u0

v0

)
is one solution to Equation (4.8). Then, it is easy to

check for any k ∈ R, we have

(4.11) M

(
ku0

kv0

)
= 0.
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Also, for any θ ∈ [0, 2π], let u1 = cos θu0 − sin θv0 and v1 = sin θu0 + cos θv0. We have

(4.12) M

(
u1

v1

)
= 0.

Further, notice that if we let f(wi) = (x0, y0) for some x0, y0 for all i = 1, . . . , n, then clearly
EA(u), EA(v), and A(u, v) are all zero. As a result, for any x, y ∈ R,

(4.13) M

(
u0 + x
v0 + y

)
= 0.

Suppose the unique solution we obtain by fixing f(wi) and f(wj) to (xi, yi) and (xj , yj)

respectively is

(
u0

v0

)
. We can transform

(
u0

v0

)
by scaling, rotation, and translation so

that f(ws) = (xs, ys) and f(wt) = (xt, yt) for arbitrary s, t, (xs, ys), (xt, yt). We denote the

transformed data points by

(
u0

v0

)
. Notice that this is exactly the unique solution we can obtain

by fixing f(ws) and f(wt) to (xs, ys) and (xt, yt) respectively. This completes the proof.

As for the boundary conditions for solving the linear system, we usually set the target
positions of two boundary vertices that are far away from each other in M as (0, 0) and (1, 0)
to control the scale of the free-boundary mapping result.

Since the Beltrami differential on a surface in R3 depends on the choice of local chart (see
Section 3.1), we cannot directly apply this method to compute a quasi-conformal flattening
of a surface. Instead, we need to first compute a free-boundary conformal flattening ϕc of a
surface S onto R2 and then apply the above method to get a free-boundary quasi-conformal
map ϕqc in R2. For the conformal flattening map ϕc = (u, v) : S → Ω̃, the Dirichlet energy
can be discretized as

(4.14) E(u) + E(v) =
1

2

∫
S

(‖∇u‖2 +‖∇v‖2) =
(
uT vT

)(L 0
0 L

)(
u
v

)
,

where L is the cotangent Laplacian matrix [61]. The DNCP method [22] discretizes the area
using an approach different from Equation (4.6). Specifically, by Green’s theorem,

(4.15) A(ϕc) =

∫
Ω̃
dx dy =

1

2

∮
∂Ω̃
−y dx+ x dy,

Therefore, in the simply-connected case which [22] focuses on, the area is discretized as

(4.16) A(ϕc) =
1

2

∑
[wi,wj ]∈∂S

(uivj − ujvi) =
(
uT vT

)
Q

(
u
v

)

for some symmetric matrix Q. The free-boundary conformal parameterization ϕc is then
obtained by solving

(4.17)

((
L 0
0 L

)
−Q

)(
u
v

)
= 0.
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In our case, some submeshes obtained from the partition step may be multiply-connected.
To apply the DNCP formulation for parameterizing them, a nature extension of Equation (4.16)
for multiply-connected meshes is presented below. Let S be a multiply-connected mesh. Denote
the outer boundary of it as γ0 and the inner boundaries as γ1, . . . , γp, where p ≥ 1. The area
A(ϕc) can then be discretized as

(4.18) A(ϕc) = A0 −A1 − · · · − Ap,

where A0, . . . ,Ap are the areas of the regions enclosed by γ0, . . . , γp respectively. Each of them
can be computed using the formula in Equation (4.16). Since all terms are expressed using
the corresponding boundary vertices in S, the area A(ϕ) can again be written in the form(
uT vT

)
Q̃

(
u
v

)
for some matrix Q̃. We can then replace Q with Q̃ in Equation (4.17) and

solve it to obtain the free-boundary conformal parameterization ϕc.

Remark 4.2. Careful checking reveals that the two approaches for discretizing the area
functional in Equation (4.6) and Equation (4.18) in fact give us the same quadratic form for
mappings in the plane and hence either of them can be used for the computation of the 2D
quasi-conformal map ϕqc. In practice, Equation (4.6) is a direct summation of energies over
all faces, while Equation (4.18) only involves the boundary vertices but requires the boundary
edges to be extracted and in correct orientations.

We summarize the procedure for the free-boundary quasi-conformal parameterization in
Algorithm 1.

Algorithm 1: Free-boundary quasi-conformal parameterization of simply-connected
and multiply-connected open surfaces

Input: An open surface Si with p ≥ 0 inner holes and a Beltrami coefficient µ.
Output: A free-boundary quasi-conformal parameterization ϕi : Si → R2.

1 Initial conformal parameterization step:
2 Compute the cotangent Laplacian matrix L of Si;
3 Compute the area of Si using Equation (4.16) (if p = 0) or Equation (4.18) (if

p ≥ 1);
4 Compute a free-boundary conformal parameterization ϕci : Si → R2 by solving

Equation (4.17);

5 Quasi-conformal mapping step (if µ 6= 0):
6 Compute the generalized Laplacian matrix Lµ;
7 Compute the area matrix using Equation (4.6) or Equation (4.18);
8 Compute a free-boundary quasi-conformal map ϕqci : ϕci (Si)→ R2 by solving

Equation (4.8);

9 The desired free-boundary quasi-conformal parameterization is given by ϕi = ϕqci ◦ ϕci ;

4.4. Partial welding. In the closed conformal welding problem introduced in Section 3.3,
we are given a homeomorphism between the boundaries of two shapes and we need to glue
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the entire boundaries consistently. By contrast, in our problem we partition a mesh into
several submeshes and compute the free-boundary quasi-conformal maps for them respectively,
and hence we only need to conformally glue these submeshes along the partition paths to
obtain the global quasi-conformal parameterization. Since the outer boundary edges are never
contained in the partition paths, the gluing paths are just continuous subsets of the boundary
of the submeshes. Therefore, we need to conformally glue two submeshes with respect to
a homeomorphism between two partial arcs of their boundaries. To solve this problem, we
extend the partial welding method developed in [10, 11], which is a variant of the geodesic
algorithm designed for handling simply-connected surfaces. Below, we first briefly introduce
the method for the simply-connected case and then describe how we can extend it for meshes
with holes.

4.4.1. The simply-connected case. The geodesic algorithm solves the closed welding
problem by aligning the corresponding boundary points one-by-one. For the partial welding
method, the key idea is to stop the welding process after we have exactly aligned the corre-
sponding partial set of boundary points. Suppose we are given two sets of consecutive boundary
points ∂A = {a0, . . . , ak, . . . , am} and ∂B = {b0, . . . , bk, . . . , bn}, where ai corresponds to bi for
i = 0, . . . , k. This gives rise to a correspondence function f : γA ⊂ ∂A→ γB ⊂ ∂B, where γA
and γB are the circular arcs formed by {a0, . . . , ak} and {b0, . . . , bk} respectively, such that
f(ai) = bi for i = 0, . . . , k. Now, the objective is to find two conformal maps ΦA,ΦB such that
ΦA(γA) = ΦB(f(γA)). Similar to the closed welding problem, we first find mappings ΨA and
ΨB to map γA and γB to the upper and lower imaginary axis respectively, and then weld the
boundary points one-by-one. The maps ΨA and ΨB can be realized by a half-way geodesic
algorithm. The images of γA and γB under them are called intermediate forms. We summarize
this process in Algorithm 2 as in [10].

Algorithm 2: Intermediate form transformation

Input: A sequence of boundary points {z0, . . . , zk, . . . , zn} constituting a closed curve
and a choice of branching.

Output: A sequence of transformed boundary points {Z0, . . . , Zk, . . . , Zn},where
Z0, . . . , Zk are on the imaginary axis according to the choice of branching.

1 Let g1(z) =

√
z − z1

z − z0
with the choice of branching;

2 for j = 2, . . . , k do
3 Compute ξj = (gj−1 ◦ · · · ◦ g1)(zj);

4 Let gj(z) =
√
Lξj (z)

2 − 1 with the choice of branching, where

Lξj (z) :=

Re(ξj)

|ξj|2
z

1 +
Im(ξj)

|ξj|2
zi

;

5 Set gk+1(z) =
z

1− z
gk◦gk−1◦···◦g1(z0)

;

6 Compute Zl = (gk+1 ◦ · · · ◦ g1)(zl) for l = 0, . . . , k, . . . , n;
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After performing the intermediate form transformation with respect to two different
branches (−1)1/2 = i and (−1)1/2 = −i, we obtain two set of boundary points {A0, . . . , Ak,
. . . , Am} and {B0, . . . , Bk, . . . , Bn}, all of which are in the region {z ∈ C : Re(z) ≥ 0}. In
particular, {A0, . . . , Ak} are on the upper imaginary axis, while the corresponding {B0, . . . , Bk}
are on the lower imaginary axis. Next, we perform the welding step of the geodesic algorithm
to weld the corresponding boundary points one-by-one conformally. The crucial point is
the construction of the following Möbius transformation. Suppose α = ai and β = bi are
two corresponding points to be conformally aligned, where a > 0 > b. The unique Möbius
transformation that maps (α, 0, β) to (i, 0,−i) is explicitly given by

(4.19) T βα (z) =
z

−2ab
a−b −

a+b
a−bzi

.

Consider the conformal map z 7→
√
z2 + 1, which maps both i and −i to 0. The composition

of this map and T βα will map both α and β to 0. Now, we apply such transformations to
{A0, . . . , Ak} and {B0, . . . , Bk} iteratively. In the j-th step, suppose we have obtained

(4.20) αj = (hAj−1 ◦ · · · ◦ hA0 )(Aj)

and

(4.21) βj = (hBj−1 ◦ · · · ◦ hB0 )(Bj).

Then, we define

(4.22) hAj (z) :=
√
T
αj

βj
(z)2 + 1,with branching (−1)1/2 = i,

and

(4.23) hBj (z) :=
√
T
αj

βj
(z)2 + 1,with branching (−1)1/2 = −i.

Both hAj and hBj are conformal as they are compositions of Möbius transformations, square

maps, and square root maps, and the only difference between hAj and hBj is the choice of the
branching. We apply these two maps to align Aj and Bj . The images of all other points under
hAj and hBj should also be updated in this iteration. After aligning all the corresponding points,
we consider a conformal closing map h0 similar to that in the geodesic algorithm:

(4.24) h0(z) :=

(
z

1− z
(hA1 ◦···◦hAk )(∞)

)2

.

We may also use auxiliary points Am+1 = Bn+1 = 0 and Am+2 = Bn+2 =∞ to help us perform
some normalization maps to obtain more regular results as proposed in [54]. The detailed
algorithm is summarized in Algorithm 3 as in [10].
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Algorithm 3: Partial welding

Input: Two sequences of boundary points {a0, . . . , ak, . . . , am} and
{b0, . . . , bk, . . . , bn}, where aj should be aligned with bj for j = 0, . . . , k.

Output: Transformed data points {ã0, . . . , ãk, . . . , ãm} and {b̃0, . . . , b̃k, . . . , b̃n} such
that ãi = ΦA(ai), i = 1, . . . ,m and b̃i = ΦB(bi), i = 1, . . . , n for some
conformal ΦA and ΦB, and ãj = b̃j , j = 0, . . . , k.

1 Define auxiliary points am+1 = bn+1 = 0, am+2 = bn+2 =∞;

2 Apply Algorithm 2 on {a0, . . . , ak, . . . , am, am+1, am+2} with branching (−1)1/2 = i to
obtain {A0, . . . , Ak, . . . , Am, Am+1, Am+2}. Denote the transformation by ΨA;

3 Apply Algorithm 2 on {b0, . . . , bk, . . . , bn, bn+1, bn+2} with branching (−1)1/2 = −i to
obtain {B0, . . . , Bk, . . . , Bn, Bn+1, Bn+2}. Denote the transformation by ΨB;

4 Set hAk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1 with branching (−1)1/2 = i, and

hBk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1 with branching (−1)1/2 = −i;

5 for j = k − 2, . . . , 1 do
6 Compute αj = (hAj+1 ◦ · · · ◦ hAk−1)(Aj);

7 Compute βj = (hBj+1 ◦ · · · ◦ hBk−1)(Bj);

8 Set hAj (z) :=
√
T
αj

βj
(z)2 + 1 with branching (−1)1/2 = i and

hBj (z) :=
√
T
αj

βj
(z)2 + 1 with branching (−1)1/2 = −i;

9 Set h0(z) :=

(
z

1− z
(hA1 ◦···◦hAk )(∞)

)2

;

10 Compute ãl = (h0 ◦ · · · ◦ hAk−1)(Al) for l = 0, . . . ,m+ 2;

11 Compute b̃l = (h0 ◦ · · · ◦ hBk−1)(Bl) for l = 0, . . . , n+ 2;

12 Apply a Möbius transformation T that maps (ãm+1, b̃n+1,
1
2(ãm+2 + ãn+2)) to

(−1, 1,∞) for all points to obtain the final result.

4.4.2. The multiply-connected case. In the simply-connected case, when we partition
the given mesh, we can ensure that the partition path is continuous. Therefore, when we apply
partial welding to retrieve the entire mesh, the welding path is a continuous curve. However,
this condition cannot be guaranteed for multiply-connected surfaces. On one hand, in many
situations, it is natural to partition the entire mesh into several simply-connected submeshes,
which could reduce the computational cost and increase the stability of the algorithm. On
the other hand, imposing too many restrictions on the mesh partition step could increase the
difficulty and complexity of it. As a result, dealing with situations where the welding path is
discontinuous, as shown in Fig. 5, is inevitable.

More specifically, in Fig. 5(a), we partition the given mesh into two simply-connected
submeshes (the blue one and the green one). It can be observed that the common boundary
components of the two submeshes are two disjoint continuous arcs instead of one continuous
arc. Since the inner hole is large, if we partition the surface in a way such that the inner hole
is totally contained in one submesh, the welding path will contain relatively more points than
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(a) Two submeshes (b) More submeshes

Figure 5: Partitioning a multiply-connected mesh.

the case shown in the figure, which increases the computational cost of the welding process.
Also, if the inner hole is irregular in shape, imposing the requirement that it is contained in
one submesh may cause the partition method to generate a highly irregular submesh, which is
undesirable. Therefore, it is important to develop a welding method for handling the situation
in Fig. 5(a). In case the partition consists of more submeshes like Fig. 5(b), we can weld the
submeshes that share continuous boundary arcs and eventually reach the state in Fig. 5(a). For
example, we can first weld the yellow, green, and cyan submeshes in Fig. 5(b) to obtain a large
submesh, and weld the red and blue ones to obtain another large submesh. This simplifies the
problem to the situation in Fig. 5(a). Besides, in case the given mesh contains multiple holes,
one can further partition it so that each of the submeshes contains exactly one hole like the
mesh shown in Fig. 5(a). Therefore, it suffices to focus on the case shown in Fig. 5(a) and
develop a partial welding method for it.

We now formulate the problem described above mathematically. Suppose A,B ⊂ C̄ are
two Jordan domains with given orientations. Let γ1

A, γ
2
A ⊂ ∂A be two disjoint arcs with the

same orientation on ∂A and γ1
B, γ

2
B ⊂ ∂B be two disjoint arcs with the same orientation on

∂B. Suppose we are given two orientation-preserving homeomorphisms f1 : γ1
A → γ1

B and
f2 : γ2

A → γ2
B. The partial welding problem aims to find two conformal maps ΦA : A→ Ω and

ΦB : B → C\Ω̄ for some domain Ω, with homeomorphic extensions to the closures, such that

(4.25) ΦA = ΦB ◦ f1 on γ1
A and ΦA = ΦB ◦ f2 on γ2

A.

Recall that by Theorem 3.3, the closed welding problem is solvable if the given homeomorphism
is quasi-symmetric on the real axis. To make use of this theorem, we extend the domain A
and B to transform the problem to a closed welding problem. We have the following result:

Theorem 4.3. The above partial welding problem for multiply-connected domains can be
solved by solving a closed welding problem with a suitable extension. In particular, one can
extend A and B to two larger domains Â and B̂ and construct the maps ΦA and ΦB via Â
and B̂.
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Figure 6: The theoretical construction for partial welding for multiply-connected domains.

Proof. An illustration of the construction is given in Fig. 6. Suppose the starting and
ending points of γ1

A, γ
2
A, γ

1
B, γ

2
B are a1

1, a
2
1, b

1
1, b

2
1 and a1

2, a
2
2, b

1
2, b

2
2 respectively. Since C\A is

multiply-connected with 1 hole, we can find a curve γ3
A ⊂ C\A connecting a1

2 and a2
1 and a

curve γ4
A ⊂ C\A connecting a1

1 and a2
2 such that γ3

A is not homotopic to γ4
A and γ3

A

⋂
γ4
A = ∅.

We then take Â to be the interior of γA = γ1
A

⋃
γ2
A

⋃
γ3
A

⋃
γ4
A. Clearly, A ⊂ Â. Similarly, we

extend B to a larger domain B̂. We also extend f1 and f2 to a homeomorphism f : ∂Â→ ∂B̂

such that f
∣∣∣
γ1A

= f1 and f
∣∣∣
γ2A

= f2.

We then find two conformal maps ψÂ : Â → H and ψB̂ : B̂ → C\H̄, which extend
continuously to homeomorphisms on the boundaries. Now, the composition map ψB̂ ◦ f ◦ ψ

−1

Â

is a homeomorphism from R to R. By Theorem 3.3, if ψB̂ ◦ f ◦ ψ
−1

Â
is quasi-symmetric, we

can find conformal maps φÂ : H→ Ω and φB̂ : C\H̄→ C\Ω̄ for some Jordan domain Ω such

that φÂ = φB̂ ◦ f on R. Finally, we take ΦA = ψÂ ◦ φÂ
∣∣∣
A

and ΦB = ψB̂ ◦ φB̂
∣∣∣
B

. It is easy to

see that ΦA and ΦB give the desired partial welding maps.

In the discrete case, suppose we are given two set of consecutive boundary points ∂A =
{a0, . . . , ar, . . . , as, . . . , at, . . . , am} and ∂B = {b0, . . . , br, . . . , bs, . . . , bt, . . . , bn}, where ai cor-
responds to bi for i = 1, . . . , r, s, . . . , t, and {ar, . . . , as} and {br, . . . , bs} correspond to the inner
boundary of the original mesh. This gives the correspondence functions f1 : γ1

A → γ1
B and f2 :

γ2
A → γ2

B, where γ1
A, γ

2
A, γ

1
B, γ

2
B are formed by {a0, . . . , ar}, {as, . . . , at}, {b0, . . . , br}, {bs, . . . , bt}

respectively. Let A and B denote the polygons enclosed by ∂A = {a0, . . . , ar, . . . , as, . . . , at,
. . . , am} and ∂B = {b0, . . . , br, . . . , bs, . . . , bt, . . . , bn} respectively. Our goal is to find con-
formal maps ΦA and ΦB such that ΦA(γ1

A) = (ΦB ◦ f1)(γ1
A) and ΦA(γ2

A) = (ΦB ◦ f2)(γ2
A).

To compute the partial welding maps, we follow the idea of the theoretical construction.
More specifically, we find auxiliary points {ā1, . . . , āk} and {b̄1, . . . , b̄k} such that none of
{ā1, . . . , āk} are contained in the polygon A, none of {b̄1, . . . , b̄k} are contained in the polygon
B, and {a0, . . . , ar, ā1, . . . , āk, as, . . . , at, . . . , am} and {b0, . . . , br, b̄1, . . . , b̄k, bs, . . . , bt, . . . , bn}
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form two larger polygons with the length of each edge sufficiently small, respectively. We
require that the length of edges of the new polygon are sufficiently small because it ensures
a good approximation of the desired conformal map computed by the geodesic algorithm as
described in [54]. We then compute the desired partial welding maps ΦA and ΦB with the path
correspondence between {a0, . . . , ar, ā1, . . . , āk, as, . . . , at} and {b0, . . . , br, b̄1, . . . , b̄k, bs, . . . , bt}.
After that, we discard the polygon enclosed by ΦA(ā1), . . . ,ΦA(āk), ΦB(b̄1),ΦB(b̄k)} to obtain
the desired multiply-connected mesh.

Note that there are various ways to find the auxiliary points. In most cases, we can choose
them to be points on the straight lines between ar and as and between br and bs, i.e.,

(4.26) āi =
i

k + 1
ar + (1− i

k + 1
)as,

and

(4.27) b̄i =
i

k + 1
br + (1− i

k + 1
)bs,

for i = 1, . . . , k. Another possible choice is the circular arc connecting ar−1, ar, and as. Note
that the straight lines between ar and as and between br and bs generally work well for the
partial welding method. More specifically, suppose the original mesh is partitioned into two
submeshes as shown in Fig. 7(a). The line connecting the starting and ending points ar and as
is in the inner hole of the mesh in most cases. As conformal maps and quasi-conformal maps
with small |µ| tend to preserve the local geometry of the mesh, the line connecting ar and as
should lie outside the transformed submeshes if the distortion is small enough as shown in
Fig. 7(b)–(c). The partial welding method can then be applied to weld the two submeshes
as shown in Fig. 7(d). For some extreme cases where the straight lines do not lie outside the
submeshes, we may apply some other path-finding algorithms such as [24,75] for getting the
auxiliary points. The proposed partial welding method is summarized in Algorithm 4.

Algorithm 4: Partial welding for multiply-connected meshes

Input: Two sequences of boundary points ∂A = {a0, . . . , ar, . . . , as, . . . , at, . . . , am}
and ∂B = {b0, . . . , br, . . . , bs, . . . , bt, . . . , bn}, where ai are to be aligned with bi
for i = 0, . . . , r, s, . . . , t, and ar, . . . , as, br, . . . , bs are taken from the inner
boundaries.

Output: Conformally transformed points {Ã0, . . . , Ãr, . . . , Ãs, . . . , Ãt, . . . , Ãm} and
{B̃0, . . . , B̃r, . . . , B̃s, . . . , B̃t, . . . , B̃m} such that Ãi = B̃i for i = 0, . . . , r, s,
. . . , t, and the transformed points form a multiply-connected polygon.

1 Find auxiliary points ā1, . . . , āk and b̄1, . . . , b̄k such that they are not in the polygons
A and B respectively. Also, {a0, . . . , ar, ā1, . . . , āk, as, . . . , at, . . . , am} and
{b0, . . . , br, b̄1, . . . , b̄k, bs, . . . , bt, . . . , bn} form two larger polygons;

2 Apply the partial welding algorithm (Algorithm 3) with path correspondence {a0, . . . ,
ar, ā1, . . . , āk, as, . . . , at} and {b0, . . . , br, b̄1, . . . , b̄k, bs, . . . , bt} to update ∂A and ∂B;

3 The new coordinates of ∂A and ∂B give the desired map.
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(a) The given mesh partitioned into 2 submeshes (b) Transformed blue submesh with auxiliary path

(c) Transformed red submesh with auxiliary path (d) The welded mesh

Figure 7: An illustration of the proposed partial welding method for multiply-connected
meshes.

4.5. Parallel Koebe’s iteration. As introduced in Section 3.5, when we perform the
Koebe’s iteration for a domain R whose complements are K1,K2, . . . ,Kn, in each iteration, we
normalize the iteration map fj at ∞ such that fj(z) = z +O(1

z ). This plays an essential role
for ensuring the convergence of the Koebe’s iteration. Intuitively, with fj normalized at ∞, it
only changes the region near Kj while being close to the identity map (possibly with a rotation)
locally for points far away from Kj . Moreover, suppose in the (j − 1)-th iteration we have
transformed the inner boundary of Kj−1 to a circle. Then, in the j-th iteration, the transformed
inner boundary will still be similar to a circle if Kj−1 is far away from Kj . Computationally,
the normalization step is incorporated as the last step of the geodesic algorithm as in [54].
Fig. 8 shows an example of the effect, from which it can be observed that the region near the
curve is significantly changed under the map while the region far away from it is only rotated
but not distorted locally. This motivates us to design a parallelizable version of the Koebe’s
iteration method for our parallel quasi-conformal parameterization problem.

Let S be the input multiply-connected mesh with exactly k inner holes. Suppose S is
partitioned into m submeshes S1, . . . ,Sm, where each of them is either simply-connected or
multiply-connected with one inner hole, and the free-boundary quasi-conformal parameteri-
zations of them obtained using Algorithm 1 are ϕ1, . . . , ϕm. Instead of merging all flattened
submeshes and performing the traditional Koebe’s iteration on the entire mesh directly, we
apply the geodesic algorithm to weld some of the submeshes so that each of the k holes
is contained in one of ϕj(Sj) or a welded larger subdomain. We then transform the inner
boundary Hj of each subdomain ϕj(Sj) (or a welded larger subdomain) to a circle in parallel.
More explicitly, we find a normalized conformal map Φj : C\Hj → C\B(0, 1) satisfying
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(a) The original curve and its exterior (b) The computed conformal map

(c) Zoom-in of the region near the circle (d) The map causes a rotation far away from the
circle

Figure 8: The conformal map from the exterior of a curve to the exterior of a circle computed
using the geodesic algorithm.

Φj(∂Hj) = S(0, 1),Φj(∞) = ∞ and Φj(a0) = 0 for some point a0 on ∂Hj , where B(0, 1)
denotes the unit ball and S(0, 1) denotes the unit circle. All the boundary points and welding
paths related to ϕj(Sj) should be updated. Fig. 9 shows an example of the transformation.
Since the transformations of all Hj to circles are independent, in practice they can be computed
by different processors in a parallel manner. After computing all transformations, we obtain
the updated boundaries of the submeshes S̃1, . . . , S̃k, . . . , which are either simply-connected or
multiply-connected with 1 circular hole. We can then perform the remaining welding steps
for getting the entire boundaries. Fig. 10 shows an example of the computation, in which
we handle the two submeshes with 1 hole in (a) and (b) in parallel to get the results in (c)
and (d), and then weld them to get the result in (e). Note that the normalization step of
partial welding tends to preserve the circular shapes of all inner boundaries. As for the outer
boundary of the entire mesh, we can apply the geodesic algorithm to transform it to a circle
after all the welding steps. This completes our parallel Koebe’s iteration method. We remark
that the interior of the submeshes does not need to be updated throughout the process as we
will only utilize the boundary points of them for computing the desired parameterization later.

To see the advantage of the proposed parallel Koebe’s iteration, note that the complexity of
the geodesic algorithm is O(nbnt), where nb is the number of boundary points that determine
the map and nt is the total number of points we want to update using the map. We now
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(a) Before the transformation (b) After the transformation

Figure 9: Transforming the inner boundary of a one-hole submesh Sj to a circle using the
geodesic algorithm under normalization.

consider the computational cost of the traditional (non-parallel) Koebe’s iteration method and
our proposed parallel Koebe’s iteration. To transform the inner boundary of each subdomain
with 1 hole to a circle using the geodesic algorithm, the number nb is the number of boundary
points of such subdomain in both versions of the Koebe’s iteration. As for the number nt, if
we perform the traditional Koebe’s iteration on the entire welded shape, nt will be the total
number of boundary points of the submeshes. By contrast, in the parallel Koebe’s iteration, we
only need to update the new coordinates of the boundary points of each submesh in parallel,
hence nt is just the number of boundary points of each submesh for computing each map.
Therefore, the computational cost can be greatly reduced in the parallel Koebe’s iteration by
utilizing multiple processors, especially if the mesh S has many inner boundaries.

We remark that the parallel Koebe’s iteration method is developed based on the observation
that the transformed circles remain close to circles under the subsequent welding maps, and
hence the result obtained by the algorithm is only an approximation of the desired Riemann
mapping in theory. To ensure that all boundaries are perfectly circular, one needs to repeat
the Koebe’s iteration for infinitely many times so that the result will converge to the desired
Riemann mapping as guaranteed by Theorem 3.5. Nevertheless, in practice we find that the
results produced by the proposed parallel Koebe’s iteration algorithm without repeating the
iterations are already satisfactory, with all holes being very close to perfect circles. In case the
precision of the circularity of the holes is required to be particularly high, one can repeat the
iterations for several times to further improve the circularity.

4.6. Obtaining the global quasi-conformal parameterization. After getting the updated
boundary conditions for all submeshes from the above procedures, we compute the desired
free-boundary quasi-conformal parameterization of each of them. Suppose the boundary of
each initially flattened submesh ϕi(Si) is Bi, where i = 1, . . . ,m. After the steps of partial
welding and parallel Koebe’s iteration, we obtain the updated boundary B̃i for each submesh.
Now, we use the updated boundary to obtain the desired quasi-conformal parameterization for
each submesh. Since a conformal map is harmonic, we can solve the Laplace equation for each
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(a) The first multiply-connected submesh (b) The second multiply-connected submesh

(c) Transforming the inner boundary of (a) to a
circle

(d) Transforming the inner boundary of (b) to a
circle

(e) The inner boundaries remain close to circles after partial welding

Figure 10: An illustration of the parallel Koebe’s iteration.

flattened subdomain ϕi(Si) to obtain a conformal map Φi : ϕi(Si)→ R2:

(4.28) ∆Φi = 0, Φi|Bi = B̃i.

Note that since the computation for each submesh is independent, this step is highly par-
allelizable. We can further reduce the quasi-conformal distortion of each Φi by composing
Φi with a quasi-conformal map with Beltrami coefficient computed using the composition
formula 3.4 as suggested by [17]. Note that since Φi is conformal, the Beltrami coefficient of
the composition map Φi ◦ ϕi : Si → R2 is the same as that of ϕi, which is obtained based on
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the input Beltrami coefficient µ. In other words, this step of solving the Laplace equation for
each submesh ensures the consistency of the boundaries of all submeshes without affecting
their quasi-conformality. Finally, all mapping results Φi ◦ ϕi, i = 1, . . . ,m together form the
desired global quasi-conformal parameterization Φ : S → R2, with the Beltrami coefficient of Φ
being µ and all k holes of Φ(S) very close to circles. Our parallelizable global quasi-conformal
mapping (PGQCM) method for multiply-connected surfaces is summarized in Algorithm 5.

Algorithm 5: Parallelizable global quasi-conformal mapping for multiply-connected
surfaces (PGQCM)

Input: A multiply-connected surface mesh S = (V,F) with k inner holes, and a
prescribed Beltrami coefficient µ, and a partition of S into m submeshes
Si = (Vi,Fi), i = 1, . . . ,m.

Output: A global quasi-conformal parameterization Φ : S → R2.
1 for i = 1, . . . ,m do
2 Apply Algorithm 1 to obtain the free-boundary parameterization ϕi : Si → R2;

3 Perform partial welding on ϕi(Si) using Algorithm 4 to get S̃j , j = 1, . . . , k, . . . , such
that each of them is simply-connected or with only one hole and each of the k holes is
contained in one of S̃j ;

4 Apply the geodesic algorithm to transform the inner boundaries of all 1-hole
submeshes to circles;

5 Perform partial welding to ensure the consistency of all boundaries of the submeshes;
6 Apply the geodesic algorithm to transform the outer boundary to a circle;
7 (Optional) Further perform the Koebe’s iteration to improve the circularity of the

inner holes;
8 for i = 1, . . . ,m do
9 Solve the Laplace equation ∆Φi = 0 with the updated boundary conditions for

ϕi(Si);
10 (Optional) Compose the map with a quasi-conformal map to further reduce the

quasi-conformal distortion;

11 The maps Φi ◦ ϕi : Si → R2, i = 1, . . . ,m together form the desired map Φ : S → R2;

The convergence of the PGQCM algorithm is guaranteed by the following theorem:

Theorem 4.4. Let S be a multiply-connected open surface and µ be a prescribed Beltrami
coefficient. If the Koebe’s iteration is repeated for infinitely many times, the map Φ : S → R2

obtained by the PGQCM algorithm converges to the quasi-conformal Riemann mapping in
Theorem 3.6, where all boundaries of Φ(S) circular and the Beltrami coefficient of Φ is µ.

Proof. Note that the circularity of the holes is ensured by the convergence of the Koebe’s
iteration in Theorem 3.5. Also, the error in the Beltrami coefficient of the map can be corrected
by composing a quasi-conformal map using the composition formula as introduced in [17] and
hence one can ensure that the Beltrami coefficient of Φ is equal to the prescribed µ.

Altogether, the novel combination of the free-boundary local parameterization of the sub-
meshes, the partial welding method, and the parallel Koebe’s iteration significantly improves the
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computational efficiency of the global quasi-conformal parameterization of multiply-connected
surfaces. Furthermore, for some very dense meshes, traditional global parameterization meth-
ods may fail due to insufficient memory size of the computing machines for solving extremely
large systems of equations. By contrast, our proposed PGQCM algorithm can effectively handle
any dense mesh as it does not require solving any equations for the global mesh. Instead, we
can partition the input mesh into multiple submeshes such that each of them is small enough
for the computing machine to compute the free-boundary quasi-conformal parameterization.
After that, we can perform the partial welding and the parallel Koebe’s iteration to weld
and update the boundaries, and finally solve the Laplace equation for each submesh with the
updated boundary conditions to get the desired mapping for each of them, thereby yielding the
desired global quasi-conformal parameterization of the dense mesh. Note that the accuracy of
the welding maps is theoretically ensured as described in [54]. In the experiments presented in
the following section, one can see that the proposed PGQCM method is not only more efficient
but also more accurate than the existing methods, especially for dense meshes.

5. Experiments. Our proposed algorithm is implemented in MATLAB, with the MATLAB
Parallel Computing Toolbox used for performing the parallel computation in our algorithm. The
sparse linear systems are solved using the backslash operator (\) in MATLAB. The numerical
calculations are done using the default 16-digit precision in MATLAB. All experiments are
performed on a MacBook Pro with 2.3 GHz 8-Core Intel Core i9 CPU and 16 GB RAM.
Various synthetic and real multiply-connected mesh models from [6,27] are used for assessing
the performance of our proposed algorithm.

5.1. Error estimate. For a given multiply-connected surface S = (V,F) and a prescribed
piecewise constant Beltrami coefficient µ defined on each face of S, let Φ : S → C be the
computed quasi-conformal parameterization. We first measure the error eT between the
Beltrami coefficient µΦ of the resulting map Φ and the ground truth Beltrami coefficient µ on
each face T ∈ F :

(5.1) eT = (µΦ − µ)|T ,

where µΦ|T is the Beltrami coefficient of the linear map from T = [vi, vj , vk] to Φ(T ) =
[Φ(vi),Φ(vj),Φ(vk)]. We can then compute the mean absolute error

(5.2) e = mean
T∈F

|eT | .

Note that we do not adopt the relative error |eT |
|µ|T | or |eT |

mean(|µ|) here because if the ground
truth µ is identically zero, i.e., the desired parameterization is conformal, then the relative
error will be ∞ no matter how small eT is and hence is not a good measure. Since the
Beltrami coefficient effectively captures the local geometric distortion of the parameterization,
a small mean absolute error e indicates that the conformality distortion between the desired
parameterization and the computed parameterization is very small. Mathematically, this can
be seen from the composition formula of Beltrami coefficients in Equation (3.4). If we denote
the ground truth quasi-conformal map as Ψ : S → C, then we have

(5.3) µΨ−1(Ψ(z0)) = −µΨ(z0)
Ψz(z0)

Ψ̄z(z0)
,
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and

(5.4) µΦ◦Ψ−1(Ψ(z0)) =
µΨ−1 + (µΦ ◦Ψ−1) Ψ̄−1

z

Ψ−1
z

1 + µ̄Ψ−1(µΦ ◦Ψ−1) Ψ̄−1
z

Ψ−1
z

(
Ψ(z0)

)
=

Ψz(z0)(µΦ(z0)− µΨ(z0))

Ψ̄z(z0)
(
1− µ̄Ψ(z0)µΦ(z0)

) .
Consequently, we have

(5.5)
∣∣µΦ◦Ψ−1(Ψ(z0))

∣∣ ≤ C∣∣µΦ(z0)− µΨ(z0)
∣∣ ,

where C is a constant depending on Φ and Ψ. This shows that when µΦ and µΨ are close
enough, the composition map Φ ◦Ψ−1 is close to conformal, and hence the errors eT and e we
adopt are good measurements of the error in the Beltrami coefficients.

5.2. Example 1: A multiply-connected face mesh with 2 inner holes. We first test our
proposed PGQCM algorithm on a multiply-connected face mesh with 2 inner holes as shown
in Fig. 11. Fig. 11(a) show the face mesh partitioned into four submeshes. We compute the
free-boundary quasi-conformal parameterization for each mesh and then perform the partial
welding and Koebe’s iteration. Specifically, by welding the boundaries of the red submesh and
the blue submesh together based on their partial correspondence and then transforming the
inner boundary of the welded mesh to a circle, we obtain the updated boundary conditions
as shown in Fig. 11(b). Similarly, we obtain the updated boundary conditions of the green
submesh and the magenta submesh as shown in Fig. 11(c) by welding them together and
transforming the inner boundary to a circle. After that, we weld the two welded shapes in
Fig. 11(b)–(c) according to their boundary correspondence and obtain the updated boundary
conditions in Fig. 11(d). It can be observed that the two inner holes remain close to circles,
which demonstrates the efficacy of our parallel Koebe’s iteration. Now, since the outer boundary
of the updated shape is not circular, we perform the geodesic algorithm to transform it to
a circle with other points lying inside it as shown in Fig. 11(e). Finally, with the updated
boundary conditions, we can compute the quasi-conformal parameterization for each submesh
and obtain the global parameterization as shown in Fig. 11(f). Table 1 records the mean
absolute error between the prescribed Beltrami coefficient and the Beltrami coefficient of the
parameterization result for each submesh, from which we see that the error is very small for
all submeshes.

5.3. Example 2: A multiply-connected face mesh with 3 inner holes. We then test our
algorithm on another multiply-connected face mesh with 3 inner holes as shown in Fig. 12.
Fig. 12(a) shows the face mesh partitioned into 6 submeshes. We first compute the free-
boundary quasi-conformal parameterization of each submesh respectively. Then, as shown in
Fig. 12(b)–(d), we weld three pairs of submesh boundaries and transform the inner boundaries
of the results into circles. After that, we continue to perform welding to obtain the global
mapping of the boundaries as shown in Fig. 12(e)–(f). It can be observed that the inner
boundaries remain very close to circles under the map. We then apply the geodesic algorithm to
transform the outer boundary to a circle as shown in Fig. 12(g). Finally, we solve the Laplace
equation for each submesh with the updated boundary condition to obtain the global quasi-
conformal parameterization as shown in Fig. 12(h). The mean absolute error in the Beltrami
coefficients is recorded in Table 2, from which we can again see that the parameterization is
very accurate.
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Figure 11: Parameterizing a multiply-connected mesh with 2 holes using our PGQCM algorithm.

Submesh Error e

Submesh 1 0.0130
Submesh 2 0.0106
Submesh 3 0.0074
Submesh 4 0.0088

Table 1: Mean absolute error in Beltrami coefficients µ for each submesh in Fig. 11.

5.4. Example 3: A synthetic mesh with 4 inner holes. We now consider parameterizing
a synthetic multiply-connected mesh with 4 inner holes as shown in Fig. 13. Fig. 13(a) shows
the original mesh partitioned into 8 submeshes. After computing the free-boundary quasi-
conformal parameterization for each submesh, we weld 4 pairs of submesh boundaries and
transform the inner boundary of each of them into a circle as shown in Fig. 13(b)–(e). Then,
we weld the results of Fig. 13(b)–(c) into Fig. 13(f) and those of Fig. 13(d)–(e) into Fig. 13(g).
It can be observed that the inner boundaries are still very close to circles after the welding
step. In Fig. 13(h), we show the global boundary condition obtained by welding the results
of Fig. 13(f)–(g). We then transform the outer boundary into a circle to obtain the result
in Fig. 13(i). Finally, we solve that Laplace equation for each submesh with the updated
boundary condition to obtain the global parameterization in Fig. 13(j). As shown in Table 3,



PARALLELIZABLE GLOBAL QC PARAMETERIZATION OF MULTIPLY-CONNECTED SURFACES 31

Figure 12: Parameterizing a multiply-connected mesh with 3 holes using our PGQCM algorithm.

the mean absolute error in the Beltrami coefficients is very small for all submeshes.

Submesh Error e

Submesh 1 0.0213
Submesh 2 0.0107
Submesh 3 0.0139
Submesh 4 0.0118
Submesh 5 0.0131
Submesh 6 0.0087

Table 2: Mean absolute error in Beltrami coefficients µ for each submesh in Fig. 12.

5.5. Comparison between our proposed method and other parameterization methods.
After demonstrating the effectiveness of our proposed PGQCM method using various examples,
we compare our method with other existing conformal and quasi-conformal parameterization
methods in terms of the accuracy and efficiency.

We first compare our proposed method with the QCMC iterative method for quasi-conformal
parameterization [32]. As shown in Table 4, our method is significantly faster than the QCMC
method by over 95% on average for coarse and moderately dense meshes. For dense meshes,
either our method is nearly 100 times faster or the QCMC method even fails to compute the
desired mapping. This can be explained by the use of the divide-and-conquer strategy with
parallelization in our algorithm. Also, the mean absolute error in the Beltrami coefficients
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Figure 13: Parameterizing a multiply-connected mesh with 4 holes using our PGQCM algorithm.

Submesh Error e

Submesh 1 0.0064
Submesh 2 0.0071
Submesh 3 0.0089
Submesh 4 0.0135
Submesh 5 0.0054
Submesh 6 0.0117
Submesh 7 0.0056
Submesh 8 0.0038

Table 3: Mean absolute error in Beltrami coefficients µ for each submesh in Fig. 13.

of our method is generally much smaller than that of QCMC, especially for moderate and
dense meshes. The experiments show that our method is more advantageous for computing
quasi-conformal parameterization of multiply-connected surfaces.

Next, we compare our proposed method with the recently developed PACM algorithm [6].
In particular, since the PACM method only works for the conformal parameterizations of
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Mesh # vertices
PGQCM QCMC

Time (s) Error e Time (s) Error e

Amoeba 1 7322 0.1980 0.0389 7.8300 0.0420
Amoeba 2 27755 1.0229 0.0082 35.5800 0.0281

Alex 13969 0.6515 0.0129 14.5116 0.0255
David 1 47550 0.9883 0.0108 28.4376 0.0234
David 2 48853 0.8251 0.0083 28.8781 0.0225

Face 518890 14.5266 0.0014 1233.2295 0.0139
Stripe 720150 21.6211 0.0024 Failed N/A

Catenary 1113041 37.8381 0.0015 Failed N/A

Table 4: Comparison between PGQCM and QCMC [32] for quasi-conformal parameterization
of multiply-connected open surfaces in terms of the computational time and the mean absolute
error in the Beltrami coefficients.

Mesh # vertices
PGQCM PACM

Time (s) Error e Time (s) Error e

Amoeba 1 7322 0.1899 0.0173 0.5232 0.0106
Amoeba 2 27755 1.0185 0.0078 5.1781 0.0044

Alex 13969 0.6559 0.0127 2.5095 0.0218
David 1 47550 0.8107 0.0106 3.9559 0.0213
David 2 48853 0.7783 0.0079 3.3490 0.0086

Face 518890 11.6979 0.0013 100.2848 0.0041
Stripe 720150 17.7237 0.0029 214.6671 0.0198

Catenary 1113041 31.8079 0.0014 349.2447 0.0186

Table 5: Comparison between PGQCM and PACM [6] for conformal parameterization of
multiply-connected open surfaces in terms of the computational time and the mean absolute
error in the Beltrami coefficients.

multiply-connected surfaces, here we set the target Beltrami coefficient in our algorithm to be
µ ≡ 0 and compute conformal parameterizations for the comparison. As shown in Table 5, our
method is faster than the PACM method by over 80% on average. Also, the mean absolute error
in the Beltrami coefficients of our method is generally much smaller than that of PACM for
moderate and dense meshes. This shows that our method is not only useful for quasi-conformal
parameterization but also for conformal parameterization of multiply-connected surfaces.

To further explain the significant improvement in the computational efficiency achieved
by our method, note that computing a free-boundary quasi-conformal map for a global mesh
requires solving a large sparse linear system. More specifically, for the global mapping of a
triangle mesh with N vertices, one needs to solve a linear system of size 2N × 2N . However,
if we partition the mesh into k submeshes of the same size, we only need to solve k much
smaller linear systems of size 2N

k ×
2N
k . Suppose the original computation cost is C. By
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partitioning the mesh into submeshes, we reduce the cost to C
k1/2

. Since partitioning the surface
enables us to apply parallel computing to compute the parameterization, the computational
time can be further reduced by a large extent. Also, when the mesh size is extremely large,
other existing global mapping methods may fail due to the extremely large linear systems
involved. By contrast, by partitioning the surface, in our method we only need to handle
smaller linear systems, which are much easier to solve. Note that we also need to take the
additional computation cost of welding into account when analyzing the total computational
cost. However, since the welding step only involves the boundary points and the complexity of
the geodesic algorithm is O(mn), where m is the number of points that determine the map
and n is the number of points we want to update, the computational cost of the welding
step is considerably less than that of the quasi-conformal parameterization step. Besides, as
discussed in detail in Section 4.5, partitioning the mesh allows us to perform the parallel
Koebe’s iteration, which also help reduce the total computational cost. Altogether, our method
greatly accelerates the computation of conformal and quasi-conformal parameterizations for
multiply-connected surfaces.

6. Applications.

6.1. Texture mapping. Our multiply-connected quasi-conformal parameterization method
can be used for texture mapping on multiply-connected open surfaces. More specifically, after
mapping a given multiply-connected 3D surface to a 2D circular domain, we can design the
texture on the 2D circular domain freely, and then map the texture onto the mesh using the
inverse mapping of the parameterization.

Since conformal parameterizations preserve local geometry, they are commonly used for
texture mapping so that the local distortion of the designed texture is small. Similar to [6],
we can set the prescribed Beltrami coefficient as 0 in our proposed algorithm and compute a
conformal parameterization for texture mapping. An example is given in the top row of Fig. 14.
Here, we first parameterize a multiply-connected human face mesh onto the 2D circular domain
conformally using our method. Then, we design a checkerboard texture on the 2D circular
domain and map the texture back onto the mesh via the parameterization. It can be observed
that the right angles in the checkerboard pattern are well-preserved on the human face, which
indicates that the local geometry is not distorted.

Moreover, since our method is capable of computing quasi-conformal parameterizations, it
grants us more flexibility in the texture mapping design. Specifically, we can prescribe the level
of local geometric distortion at any point freely using the input Beltrami coefficient, which allows
us to design textures with different visual effects via the quasi-conformal parameterization. An
example is given in the bottom row of Fig. 14. Note that the orthogonality of the checkerboard
texture is well-preserved at the nose of the human face, while an angular distortion in the
checkerboard pattern can be clearly observed at the chin and the forehead. This demonstrates
the possibility of achieving different texture mapping effects using our proposed method.

6.2. Remeshing. Similar to [6], our algorithm can be used to perform surface remeshing.
Given a 3D multiply-connected open surface, we first parameterize it onto a standard 2D
circular domain using our proposed method. Then, we can design a new mesh structure in the
circular domain, and finally obtain the remeshed 3D surface with the new mesh structure using
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Figure 14: Texture mapping using the conformal and quasi-conformal parameterizations
obtained by our proposed algorithm.

Figure 15: Remeshing a 3D multiply-connected open surface using our proposed algorithm.

the inverse mapping. Two examples are given in Fig. 15. In both examples, the remeshing in the
circular domain is done using the ddiff and dcircle functions in the DistMesh toolbox [59].
We remark that analogous to the texture mapping application described above, here we can
achieve different remeshing effects by using different choices of the Beltrami coefficient in
computing the quasi-conformal parameterization.
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7. Discussion. In this paper, we have developed a novel parallelizable method for com-
puting the global quasi-conformal parameterization of multiply-connected surfaces. Given
any multiply-connected open surface and any prescribed Beltrami coefficient µ, our method
computes a quasi-conformal parameterization onto a 2D circular domain in a parallelizable
manner. In particular, with the prescribed Beltrami coefficient being µ = 0, conformal
parameterizations can be efficiently obtained. When compared to other existing conformal
and quasi-conformal parameterization methods for multiply-connected surfaces, our proposed
method is more advantageous in both the efficiency and accuracy.

Below, we discuss two possible future research directions on further improving the perfor-
mance of our method.

7.1. Area distortion. One known issue of conformal mapping is that the area distortion
may be significant [36], and this also happens in the quasi-conformal case [63]. Therefore, it is
natural to ask how we can reduce the area distortion of the quasi-conformal parameterization
without altering the Beltrami coefficient µ. Given a multiply-connected mesh S = (V,F) and
the global quasi-conformal parameterization Φ : S → R2 obtained by our PGQCM algorithm,
we define the area distortion of Φ on a triangle face T ∈ F as follows [8, 10]:

(7.1) darea(T ) = log
Area(Φ(T ))/(ΣT ′∈FArea(Φ(T ′)))

Area(T )/(ΣT ′∈FArea(T ′))
.

Specifically, the numerator of dArea(T ) measures the ratio of the area of T to the surface area
of S, the denominator measures the ratio of the area of Φ(T ) to the total area of Φ(S), and
dArea(T ) is the logged area ratio. Note that dArea(T ) ≈ 0 indicates that the area distortion is
small, while a large dArea(T ) indicates that the area distortion is large. If the surface area of S
and Φ(S) is not equal, we can simply compose a normalization map cz for some constant c to
make them equal.

Similar to [6, 10], we can consider reducing the area distortion of our parameterization by
composing an automorphism of the unit disk after obtaining the global parameterization in
the last step in Algorithm 5. Note that the Beltrami coefficient will not be changed by an
automorphism of the unit disk as suggested by the composition formula in Equation (3.4).
Also, note that Möbius transformations always map circles to circles or straight lines, and
in our case we compose an automorphism of the unit circle and so we will only have the
former case. Therefore, the circular inner boundaries will be mapped to circles under the

automorphism. We can search for an optimal automorphism f(z) =
z − α
1− ᾱz

, where α ∈ C
satisfies |α| < 1, such that f ◦ Φ minimizes the area distortion

∑
T∈F dArea(T ). The map f ◦ Φ

will then be the desired global quasi-conformal parameterization with area distortion reduced.
However, note that this approach involves handling the global mesh and hence may not be
computationally efficient or feasible if the input mesh is dense. In our future work, we plan to
develop methods for reducing the area distortion in a parallelizable manner. We also plan to
explore other possible measures of the area distortion and optimization methods for improving
the performance of the area correction.

7.2. Acceleration of our algorithm. In recent decades, parallel computing has been
widely studied and applied for high-performance computing on large datasets. While we have
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demonstrated the efficiency of our parallelizable algorithm for computing quasi-conformal
parameterizations of meshes, especially for large meshes, there is still room to further speed
up the computation as outlined below.

In our experiments, for simplicity we perform the computation using the Parallel Computing
Toolbox in MATLAB. Although we can already achieve a significant improvement in the
performance when compared to the prior methods, the Parallel Computing Toolbox in MATLAB
may not be the best choice for our proposed method. For instance, as mentioned by [10],
some of the MATLAB built-in functions such as fminunc are not parallelizable under the
parallel computing framework of MATLAB, and so MATLAB may not allow us to fully exploit
parallelization in some steps of our proposed method. Therefore, we plan to consider other
scientific computing software and platforms more specialized in parallel computing in our
future work and evaluate the performance of our proposed method.

In our algorithm, we adopt a finite element approach to compute the quasi-conformal
parameterizations, which requires us to solve large sparse linear systems accurately and
efficiently. In our implementation, the backslash operator (\) in MATLAB is used to solve linear
systems. Besides this convenient built-in function in MATLAB, there are some alternatives
that we may consider for solving the linear systems. One notable example is the combinatorial
multigrid (CMG) method in [39], which is a hybrid graph-theoretic algebraic multigrid solver.
Also, parallel sparse linear system solvers, such as the solvers by Peng and Spielman [58] and
by Koutis and Miller [38], may be considered and incorporated to our algorithm for further
improving the computational efficiency.
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