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Abstract

Three algebraically stabilized finite element schemes for discretizing convection-diffusion-reaction
equations are studied on adaptively refined grids. These schemes are the algebraic flux correction (AFC)
scheme with Kuzmin limiter, the AFC scheme with BJK limiter, and the recently proposed Monotone
Upwind-type Algebraically Stabilized (MUAS) method. Both, conforming closure of the refined grids and
grids with hanging vertices are considered. A non-standard algorithmic step becomes necessary before
these schemes can be applied on grids with hanging vertices. The assessment of the schemes is performed
with respect to the satisfaction of the global discrete maximum principle (DMP), the accuracy, e.g.,
smearing of layers, and the efficiency in solving the corresponding nonlinear problems.
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1 Introduction

The physical behavior of scalar quantities, like temperature (energy) or concentrations, in fluids is modeled
by scalar convection-diffusion-reaction equations. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with a
Lipschitz-continuous boundary ∂Ω. In this paper, we consider the steady-state equations, which are given,
already in non-dimensional form, as follows:

−ε∆u+ b · ∇u+ cu = f in Ω

u = ub on ΓD, (1)

ε∇u · n = g on ΓN .

Here, ε > 0 is the diffusion coefficient, b ∈W 1,∞(Ω)d is the convective field, c ∈ L∞(Ω) is the reaction field,
f ∈ L2(Ω) is the source or the sink term, ub ∈ H1/2(ΓD) and g ∈ L2(ΓN ) specify the boundary conditions,
n is the unit outward normal to ∂Ω, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓD is the Dirichlet boundary and ΓN
is the Neumann boundary. Under appropriate assumptions on the data, it is well known that problem (1)
possesses a unique weak solution.

In practice, the convective transport usually dominates the diffusive transport. One speaks of the
convection-dominated regime, given if ε� L‖b‖L∞(Ω), where L is a characteristic length scale of the prob-
lem. Then, a characteristic feature of solutions of (1) are layers, which are thin regions with a steep gradient.
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In general, computational grids cannot resolve layers. It is well known that one has to apply so-called sta-
bilized discretizations in this situation, e.g., see [27]. There are many proposals of such discretizations for
convection-diffusion-reaction equations in the literature.

For appropriate data, the solution of (1) takes only certain physical values, e.g., concentrations are non-
negative. The mathematical formulation of this physical feature is called maximum principle, see [11]. For
numerical simulations in practice, it is often of utmost importance that also the discrete solution possesses
only physically consistent values, i.e., it satisfies a discrete maximum principle (DMP). However, there are
only very few among the stabilized discretizations with this property. The currently most promising class of
methods seems to be the class of algebraically stabilized schemes.

Algebraically stabilized discretizations have been becoming quite popular for a couple of years. Their con-
struction relies (mainly) on the algebraic system of equations from the Galerkin finite element discretization
of (1) with conforming piecewise linear finite elements. Then, an algebraic stabilization term is introduced
and certain coefficients (limiters) are computed that depend on the concrete discrete solution. Hence, these
methods are nonlinear. The first comprehensive numerical analysis for the so-called algebraic flux correction
(AFC) scheme with Kuzmin limiter, from [25], was presented in [4]. The AFC scheme with BJK limiter was
proposed and analyzed in [5]. Recently, a new algebraically stabilized method was proposed in [20], which
is called Monotone Upwind-type Algebraically Stabilized (MUAS) method. For all these methods, DMPs
could be proved, sometimes under appropriate assumptions. For a detailed presentation of the methods and
a discussion of the DMPs, we refer to Section 3.

Because of the presence of layers, where discrete solutions usually possess large errors, it is very attractive
to use adaptively refined grids for the numerical solution of convection-diffusion-reaction equations. The
control of adaptive grid refinement relies on an a posteriori error estimator or indicator. The first error
estimator for the AFC schemes with Kuzmin and with BJK limiter has been proposed recently in [16]. On the
basis of the error estimator or indicator, certain mesh cells are marked for refinement. Some of the common
strategies to refine a grid can be found in [26, 3, 24]. The first step of refining a grid, i.e., the refinement
of the marked cells, leads to the formation of hanging vertices. In the framework of discontinuous finite
elements, the handling of grids with hanging vertices is rather easy to understand, see [1]. For continuous
finite elements, the framework becomes more involved. A commonly used way around this issue is to use
conforming closure or red-green refinements, see [3], but this approach leads to the deterioration of angles.
Also, while using hexahedral mesh cells in 3d, the green completion leads to the formation of pyramids or
prisms, which are not easy to handle by many finite element codes. Hence, using grids with hanging vertices
is attractive from the geometric point of view, because one can perform a simple grid refinement.

This paper explores the behavior of the three above-mentioned algebraically stabilized methods in sim-
ulations on adaptive grids in two dimensions. An initial comparison of the AFC schemes was performed in
[16], with the emphasis on studying the performance of two a posteriori error estimators in terms of their
effectivity indices and their control of the adaptive refinement process. Concerning the MUAS method, some
of its properties are illustrated numerically with simulations on uniform grids in [20]. In the current paper,
first studies of this method on adaptively refined grids will be presented. The goal of the numerical studies
consists in comparing the methods with respect to accuracy, to the satisfaction of the global DMP, and to
efficiency in solving the nonlinear problems. A particular attention will be paid to the study of algebraic
stabilizations on grids with hanging vertices. To the best of our knowledge, there is no such study in the
literature so far. We could find the use of an algebraic stabilization on grids with hanging nodes only for the
linear transport equation in [6]. From the algorithmic point of view, it will be shown that compared with
the standard approach of modifying a linear system of equations for discretizations on grids with hanging
nodes, an additional step becomes necessary for algebraically stabilized schemes, namely the transform to
conforming ansatz functions. Such a step is not reported in [6].

The paper is organized as follows. Section 2 introduces concepts of triangulations, in particular with
hanging vertices, and corresponding finite element spaces. The algebraically stabilized methods are described
in Section 3. Some information concerning the implementation of these discretizations on grids with hanging
vertices are provided in Section 4. The numerical studies are presented in Section 5. Section 6 summarizes
the findings of this paper.
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2 Triangulations and Finite Element Spaces

This section introduces notations and recalls concepts with respect to triangulations and finite element
spaces. A special emphasis is paid to triangulations with hanging vertices. Some work concerning this topic
can be found in [12], where results are provided for the lowest order Lagrange elements in the framework
of multigrid methods. Recently, in [15] the theory has been extended for higher order Lagrange elements.
Most of the definitions in this section follow standard texts, e. g., see [8, 7].

Let Ω ⊂ Rd, d ∈ {2, 3}, be a polygonal resp. polyhedral domain that is decomposed into simplices (i.e.,
triangles resp. tetrahedra). This decomposition is referred to as triangulation and is denoted by Th. As
usual, it is assumed that the interiors of any two different elements of Th are disjoint and that Ω = ∪K∈ThK.
A triangulation Th of Ω is called conforming if, for any K1,K2 ∈ Th with K1 6= K2, the intersection K1 ∩K2

is either empty or a vertex or an edge or, in 3d, a face of both K1 and K2. It is assumed that any edge or
face lying on ∂Ω is a subset of either ΓD or ΓN .

For a given triangulation Th, we denote by Nh the set of all vertices, by Eh the set of all edges, and by
Fh the set of all facets (i.e., all edges resp. faces). Thus, in 2d, it holds that Eh = Fh. The set of facets can
be decomposed into Fh = Fh,Ω ∪ Fh,D ∪ Fh,N , where Fh,Ω,Fh,D, and Fh,N are the interior, Dirichlet, and
Neumann facets, respectively. We denote the diameter of a mesh cell K by hK and the diameter of an edge
E and a facet F by hE and hF , respectively.

Definition 1 (Refinement, [12], Def. 3.3) Let T1 and T2 be triangulations of Ω. Then, T2 is called a
refinement of T1 if for all K ∈ T1 the set {K ′ ∈ T2 : K ′ ∩ intK 6= ∅} is a triangulation of K, where intK is
the interior of K.

Definition 2 (Grid hierarchy, [12], Def. 3.4) A family {Ti}ji=0 is called a grid hierarchy on Ω if T0 is
a conforming triangulation of Ω and if each Ti, i = 1, . . . , j, is a refinement of Ti−1.

Definition 3 (Hanging vertex, [12], Def. 3.6) Let Th be a triangulation of Ω. Then, a vertex p ∈ Nh
is called a hanging vertex if there is an element K ∈ Th with p ∈ ∂K but p is not a vertex of K. The set of
all hanging vertices is denoted by Hh.

In this work, we will consider first order Lagrange finite element spaces

S(Th) :=
{
v ∈ C(Ω) : v|K ∈ P1(K) ∀ K ∈ Th

}
consisting of continuous functions on Ω such that the restrictions to all cells K ∈ Th are polynomials of
degree at most 1. It is well known that S(Th) ⊂ H1(Ω). Degrees of freedom which determine functions from
S(Th) are values at vertices. Therefore, vertices are also called nodes. Due to the continuity requirement,
values at hanging nodes depend on the values at non-hanging nodes as it is stated in the following lemma.

Lemma 4 ([12, Lemma 3.2]) Let {T0, · · · , Tj} be a grid hierarchy on Ω. Let us denote Th = Tj, i.e., the
final refinement level. Then, for all q ∈ Hh there are coefficients aqp with p ∈ Nh\Hh such that all v ∈ S(Th)
can be represented as

v(q) =
∑

p∈Nh\Hh

aqpv(p). (2)

For conforming triangulations, a basis of S(Th) is given by the well-known nodal basis functions. To
construct basis functions of S(Th) for a non-conforming triangulation, we first introduce non-conforming
nodal basis functions that are generally not in S(Th).

Definition 5 (Non-conforming nodal basis functions) Let Th be a triangulation of Ω. Then, the non-
conforming nodal basis function ϕnc

p ∈ L2(Ω) associated with p ∈ Nh is defined as follows: For all K ∈ Th
there is a representative ϕnc

p |K = µp,K ∈ P1(K) with µp,K(q) = δpq for all vertices q of K.
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For a conforming mesh Th this definition reduces to ϕnc
p ∈ S(Th) and ϕnc

p (q) = δpq for all p, q ∈ Nh, i.e.,
the set {ϕnc

p }p∈Nh
is the conforming nodal basis of S(Th). For a non-conforming triangulation, S(Th) is in

general only a subspace of the non-conforming finite element space

Snc(Th) := span
{
ϕnc
p : p ∈ Nh

}
.

However, it is possible to construct a basis of S(Th) from the non-conforming nodal basis of Snc(Th).

Theorem 6 ([12, Theorem 3.1]) Let {T0, · · · , Tj} be a grid hierarchy on Ω. Let us denote Th = Tj, i.e., the
final refinement level. Then, a basis of S(Th) is given byϕp = ϕnc

p +
∑
q∈Hh

aqpϕ
nc
q : p ∈ Nh \ Hh

 ,

where the coefficients aqp are the same as in Lemma 4.

3 Algebraically Stabilized Schemes

As already mentioned, algebraic stabilizations are currently the most promising finite element discretizations
for computing numerical solutions of steady-state convection-diffusion-reaction equations that satisfy DMPs.
This section presents the methods that will be studied.

The first step of algebraically stabilized schemes consists in applying the standard Galerkin finite element
method to the weak form of (1). Then, the discrete solution can be represented as a vector U ∈ RN , with the
last N −M components corresponding to the Dirichlet boundary conditions. The algebraic representation
of the method is given by

AU = b,

where A = (aij)
N
i,j=1 is the corresponding stiffness matrix and b ∈ RN is the assembled right-hand side. In

an algebraically stabilized method, an additional nonlinear stabilization term is added such that it takes the
form

(A+B(U))U = b, (3)

with B(U) = (bij(U))Ni,j=1. For preserving conservation of the discrete solution, the stabilization has to be
symmetric: bij(U) = bji(U), i, j = 1, . . . ,M .

3.1 AFC Scheme with Kuzmin Limiter

AFC schemes consider in the first step the Galerkin finite element discretization in the case that Neumann
boundary conditions are applied, i.e., it is M = N . The stabilization term in (3) is of the form

bij(U) = (1− αij(U))dij ∀ i 6= j, bii(U) = −
∑
j 6=i

bij(U), (4)

where D = (dij)
N
i,j=1 is an artificial diffusion matrix with entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j, dii = −
∑
j 6=i

dij , (5)

and (αij(U))Ni,j=1 is the limiter matrix with 0 ≤ αij(U) ≤ 1. After having computed the limiters, Dirichlet
boundary conditions are imposed in the usual way.

In subregions where no layers appear, the standard Galerkin discretization can be applied. In this case,
the corresponding limiters should be close to 1. In a vicinity of layers, a stabilization is necessary, which is
achieved by using values of the limiter that are much smaller than 1.
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The Kuzmin limiter, proposed in [25], is a monolithic upwind-type limiter and it is applicable to P1 and
Q1 elements. For P1 elements, the existence of a solution is proved in [4]. For a real number a, denote
a+ = max{a, 0} and a− = min{a, 0}. Then, the limiters are computed as follows:

1. Compute

P+
i =

N∑
j=1,aji≤aij

(dij(uj − ui))+
, P−i =

N∑
j=1,aji≤aij

(dij(uj − ui))− .

2. Compute

Q+
i = −

N∑
j=1

(dij(uj − ui))− , Q−i = −
N∑
j=1

(dij(uj − ui))+
.

3. Compute

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M.

If P+
i or P−i is zero, one sets R+

i = 1 or R−i = 1, respectively. The values of R+
i and R−i are set to 1

for Dirichlet nodes as well.

4. If aji ≤ aij , then set

αij =


R+
i if dij(uj − ui) > 0,

1 if dij(uj − ui) = 0,

R−i if dij(uj − ui) < 0,

αji := αij ,

for i, j = 1, . . . , N . Note that the symmetry of the stabilization term follows from the symmetries of D and
the limiters. For the Kuzmin limiter, the local DMP is satisfied if the off-diagonal entries of A possess a
certain property, see [23] for details. It is also shown in this paper that this property and also the local
DMP may be violated for certain types of triangulations, e.g., in two dimensions if the triangulation is not
of Delaunay type

3.2 AFC Scheme with BJK Limiter

This method, proposed in [5], starts in the same way as the previous method and the stabilization term has
the form (4). It was derived for P1 elements. For this method, the existence of a solution of the nonlinear
problem and the satisfaction of a local and global DMP on arbitrary conforming simplicial grids can be
proved. Moreover, it was shown in [5] that it is linearity preserving, i.e., the stabilization term vanishes for
any vector that represents a linear function.

The computation of the limiter starts with a pre-processing step, compare [5, Eq. (2.4)]. Then, the
computation proceeds as follows:

1. Compute

P+
i =

N∑
j=1

(dij(uj − ui))+
, P−i =

N∑
j=1

(dij(uj − ui))− .

2. Compute
Q+
i = qi (ui − umax

i ) , Q−i = qi
(
ui − umin

i

)
,

with
umax
i = max

j∈Ni∪{i}
uj , umin

i = min
j∈Ni∪{i}

uj , qi =
∑
j∈Ni

γidij ,

where Ni = {j ∈ {1, . . . , N}\{i} : aij 6= 0 or aji > 0} and γi is a positive constant which guanrantees
the linearity preservation, see Section 4 for details.
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3. Compute

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M.

If P+
i or P−i is zero, one sets R+

i = 1 or R−i = 1, respectively. The values for R+
i and R−i are set to 1

also for Dirichlet nodes.

4. Compute

αij =


R+
i if dij(uj − ui) > 0,

1 if dij(uj − ui) = 0,

R−i if dij(uj − ui) < 0,

i, j = 1, . . . , N.

Finally, one sets
αij = min {αij , αji} , i, j = 1, . . . , N.

Again, the symmetry of the stabilization term follows from the symmetries of D and of the limiters.

3.3 Monotone Upwind-type Algebraically Stabilized (MUAS) Method

The MUAS method was recently proposed and analyzed in [20], where the solvability of the nonlinear discrete
problem and the satisfaction of local and global DMPs on arbitrary conforming simplicial grids are proved.

Also in this method, the matrix obtained for Neumann boundary conditions is considered in the first
step. The stabilization term in (3) is given by

bij(U) = −max{(1− αij(U))aij , 0, (1− αji(U))aji}, i, j = 1, . . . , N, i 6= j,

bii(U) = −
N∑

j=1,j 6=i

bij(U), i = 1, . . . , N,

which is clearly symmetric. The limiters αij(U) are computed as follows:

1. Compute

P+
i =

N∑
j=1,aij>0

aij(ui − uj)+, P−i =

N∑
j=1,aij>0

aij(ui − uj)−.

2. Compute

Q+
i =

N∑
j=1

max {|aij |, aji} (uj − ui)+, Q−i =

N∑
j=1

max {|aij |, aji} (uj − ui)−.

3. Compute

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M.

If P+
i or P−i is zero, one sets R+

i = 1 or R−i = 1, respectively. The values of R+
i and R−i are set to 1

for Dirichlet nodes as well.

4. Define

αij =


R+
i if ui > uj ,

1 if ui = uj ,

R−i if ui < uj ,

i, j = 1, . . . , N.
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i1(0, 0) i2(1, 0)

i3(1, 1)i4(0, 1)

i0(0.5, 0.5)

K1

K2

K3

Figure 1: Patch considered in Examples 7 and 8.

4 Hanging Nodes and Algebraically Stabilized Schemes

For discretizations on grids with hanging nodes, first a linear system of equations for the non-conforming
basis functions ϕnc

p , see Definition 5, is assembled. The next step consists in transforming this system to
a system corresponding to conforming test functions ϕp, introduced in Theorem 6. Constraints are set for
the values at the hanging nodes such that the finite element solution becomes continuous. An example will
illustrate this approach.

Example 7 (System corresponding to non-conforming ansatz and conforming test functions) Consider
a patch as defined in Figure 1. The non-conforming space Snc(Th) is spanned from the following basis func-
tions:

ϕnc
i0 (x, y) =


0 in K1,

2− 2y in K2,

2x in K3,

ϕnc
i1 (x, y) =


1− x in K1,

0 in K2,

1− x− y in K3,

ϕnc
i2 (x, y) =


x− y in K1,

0 in K2,

0 in K3,

ϕnc
i3 (x, y) =


y in K1,

x+ y − 1 in K2,

0 in K3,

ϕnc
i4 (x, y) =


0 in K1,

−x+ y in K2,

−x+ y in K3.

The conforming space is S(Th) = span{ϕj | j ∈ {i1, . . . , i4}}, where the continuous basis functions are given
by ϕij = ϕnc

ij
for j ∈ {2, 4} and

ϕi1 = ϕnc
i1 +

1

2
ϕnc
i0 =


1− x in K1,

1− y in K2,

1− y in K3,

ϕi3 = ϕnc
i3 +

1

2
ϕnc
i0 =


y in K1,

x in K2,

x in K3.

This means, the coefficients aqp from Lemma 4 (with q = 0), given by aqp = ϕnc
ip

∣∣
K1

evaluated at (0.5, 0.5),

are zero for p ∈ {2, 4} and 1/2 for p ∈ {1, 3}.
In standard finite element methods, the matrix and right-hand side are typically assembled cell-wise. This
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approach can be performed also for the set of non-conforming basis functions ϕnc
ip

, p = 0, . . . , 4, leading to
a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

 ,


b0
b1
b2
b3
b4

 .

The pth equation of the corresponding linear system corresponds to the non-conforming test function ϕnc
ip

. In
view of the above relations between conforming and non-conforming basis functions, equations corresponding
to conforming test functions are obtained by adding 1

2 of the 0th equation to the 1st and 3rd equations. To
enforce continuity, the 0th equation is then replaced by the relation (2) with q = 0. This leads to the following
matrix and right-hand side

1 − 1
2 0 − 1

2 0
a10 + a00

2 a11 + a01
2 a12 + a02

2 a13 + a03
2 a14 + a04

2
a20 a21 a22 a23 a24

a30 + a00
2 a31 + a01

2 a32 + a02
2 a33 + a03

2 a34 + a04
2

a40 a41 a42 a43 a44

 ,


0

b1 + b0
2

b2
b3 + b0

2
b4

 . (6)

�

Usually, a system with matrix and right-hand side from (6) is used for computing the numerical solution
on grids with hanging nodes. But for algebraically stabilized schemes there is a new question: Which
matrix should be used for computing the limiters? The proofs of the DMP use the assumption that the
diagonal entries of the corresponding matrix are positive. However, this property cannot be guaranteed for
the matrix from (6). In fact, numerical studies, which are not reported here for the sake of brevity, that used
the limiters computed with this matrix led in several cases to unsatisfactory results, e.g., solutions obtained
with the Kuzmin limiter showed spurious oscillation. Consequently, an additional step has to be performed
for algebraically stabilized schemes, namely a transformation of the system to a form corresponding also to
conforming ansatz functions. This means, the constraints for the hanging nodes are inserted in the other
equations such that the corresponding matrix entries become zero.

Both steps, to the conforming test functions and to the conforming ansatz functions, extend the matrix
stencil by few entries in rows that belong to test functions for non-hanging nodes which are located in a
vicinity of hanging nodes.

Example 8 (System corresponding to conforming ansatz and test functions) Consider the matrix
and right-hand side from (6). Inserting the equation for the finite element coefficient of ϕnc

i0
, which is the

0th equation, into the other equations, yields a matrix of the following form
1 − 1

2 0 − 1
2 0

0 a11 + a01
2 + a10

2 + a00
4 a12 + a02

2 a13 + a03
2 + a10

2 + a00
4 a14 + a04

2
0 a21 + a20

2 a22 a23 + a20
2 a24

0 a31 + a01
2 + a30

2 + a00
4 a32 + a02

2 a33 + a03
2 + a30

2 + a00
4 a34 + a04

2
0 a41 + a40

2 a42 a43 + a40
2 a44

 . (7)

�

The computation of the limiters is performed for the submatrix from (7) that corresponds to the rows
and columns connected with non-hanging nodes. The Kuzmin and the MUAS limiter can be applied in a
straightforward way. The set Ni in Step 2 of the BJK limiter is computed by exploring the entries of the
ith row and taking all column indices of the corresponding sparsity pattern. Let ∆i = conv {xj : j ∈ Ni}
be the convex hull of the nodes belonging to Ni. Then, the same definition as given in [5] can be used:

γi =

max
xj∈∂∆i

|xi − xj |

dist(xi, ∂∆i)
, i = 1, . . . ,M.
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5 Numerical Studies

This section presents numerical studies of algebraically stabilized schemes on adaptively refined grids. Both,
grids with hanging nodes and grids with conforming closure will be considered and the results will be
compared. Given a grid with hanging nodes that should be closed in a conforming way, then the closure
might increase the largest angle or decrease the smallest angle of the triangles of the grid. The refinement
with hanging nodes was performed such that there is not more than one hanging node per edge.

Using adaptively refined grids requires some criterion for controlling the local refinement. Usually, a
posteriori error estimators or indicators are utilized. For the considered methods there is a residual-based a
posteriori error estimator for the AFC schemes with Kuzmin and BJK limiter on conforming grids, which
was proposed and analyzed in [16]. In this paper, actually two different techniques for calculating an upper
bound for the error in the energy norm of solutions computed with AFC schemes on conforming grids are
proposed. One of them uses a residual-based approach, which is referred to as AFC-energy technique, and
the other one utilizes the SUPG estimator from [22], which is referred to as AFC-SUPG-energy technique.
It was observed in [16] that the AFC-energy technique provides better results with respect to the refinement
of the grids and hence we decided to use it as basis for our numerical studies.

Denote by ‖ · ‖0,ω the norm of L2(ω) for some set ω. In the AFC-energy technique, the error u − uh in
the energy norm is bounded, i.e.,

‖u− uh‖2a ≤ η2 = η2
1 + η2

2 + η2
3 , (8)

where ‖u‖2a = ε‖∇u‖20,Ω + σ0‖u‖20,Ω, with −(∇ · b(x))/2 + c(x) ≥ σ0 > 0 being assumed in Ω, and

η2
1 :=

∑
K∈Th

min

{
4C2

I

σ0
,

4C2
Ih

2
K

ε

}
‖RK(uh)‖20,K ,

η2
2 :=

∑
F∈Fh

min

{
4C2

FhF
ε

,
4C2

F

σ
1/2
0 ε1/2

}
‖RF (uh)‖20,F ,

η2
3 :=

∑
E∈Eh

min

{
4κ1h

2
E

ε
,

4κ2

σ0

}
(1− αE)2|dE |2h1−d

E ‖∇uh · tE‖20,E ,

uh is the solution of the algebraically stabilized scheme, αE = αij and dE = dij for an edge E with endpoints
xi, xj , tE is the unit tangent vector along the edge E, RK(uh) and RF (uh) stand for the residuals on mesh
cell K and on the facet F given by

RK(uh) := (f + ε∆uh − b · ∇uh − cuh)|K ,

RF (uh) :=

 −ε[|∇uh · nF |]F if F ∈ Fh,Ω,
g − ε(∇uh · nF ) if F ∈ Fh,N ,
0 if F ∈ Fh,D,

nF is the unit normal on facet F , and [| · |]F denotes the jump across F .
The constants CI and CF appear from the interpolation and facet estimates and were set to unity in the

simulations. The constants κ1 and κ2 are given by

κ1 = CCedge,max

(
1 + (1 + CI)

2
)
, κ2 = CC2

invCedge,max

(
1 + (1 + CI)

2
)
,

where C is a general constant independent of h, Cinv is an inverse inequality constant, and Cedge,max is a
computable constant given by [16, Remark 9]. Likewise as the other constants, C and Cinv were set to unity
in our simulations. In [16], the error estimator η was applied to the two above-described AFC schemes on
conforming grids.

Remark 9 The expression η from (8) can be computed also for the MUAS method and for all methods on
grids with hanging nodes. Then, it is just an error indicator, i.e., there is no analysis. In practice, often
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error indicators are used for controlling the adaptive grid refinement, like the popular gradient indicator. In
preliminary studies, we could observe that for the AFC methods, the use of η on grids with hanging nodes led
to a quite similar adaptive refinement process as for grids with conforming closure, i.e., the refinement starts
at the strongest singularities (exponential layers) and regions with weaker singularities (parabolic layers)
are refined somewhat later. For this reason, we applied η also for the AFC methods on grids with hanging
nodes. In contrast, we detected that applying η for the MUAS method results in a simultaneous refinement
in all regions with singularities and considerably different adaptive grids compared with the AFC methods.
This situation made it difficult to compare the computational results. Neglecting the term η3 for the MUAS
method, which results in a standard residual-based error indicator, led to a similar behavior of the adaptive
grid refinement process as for the AFC schemes. For this reason, the adaptive grid refinement for the MUAS
method was controlled on all grids with (η2

1 + η2
2)1/2. �

A grid with conforming closure contains regularly refined cells and closure cells. Both types might be
marked for refinement by the error indicator. In the first step of the refinement process, parents of closure
cells are marked for refinement if one of its children is marked for refinement. Note that parents of closure
cells are regularly refined cells on a coarser grid. Then, all closure cells are removed and all marked cells are
refined regularly. Finally, the refined grid is closed. In the case of grids with hanging nodes, all marked cells
are refined regularly. Then, a procedure is applied that refines all cells regularly that have an edge with more
than one hanging node, until such cells are not contained any longer in the grid. The adaptive refinement
process for the first two examples was stopped after the first adaptively refined grid where the number of
degrees of freedom (#dof) was & 2.5 × 105. The given numbers #dof contain always the hanging and the
Dirichlet nodes.

Remark 10 Comparative studies for the solution of the nonlinear problem arising in the AFC schemes were
performed in [18, 17]. It was found that the simplest fixed point iteration scheme was the most efficient one.
A brief description of this scheme is as follows. The matrix form of the algebraic stabilization given in (3)
is reformulated as

(A+D)U = b+ (D −B(U))U,

with the artificial diffusion matrix D from (5). The matrix on the left-hand side is by construction an
M-matrix. Then, a fixed point iteration of the form

(A+D) Ũµ = b+ (D −B(Uµ))Uµ, Uµ+1 = ωŨµ + (1− ω)Uµ, (9)

is applied, where µ denotes the µth iterative step and ω ∈ R+ is a damping parameter, which is chosen
dynamically. Using a sparse direct solver for the linear systems of equations in (9) exploits that the matrix
on the left-hand side does not change during the iteration and hence its factorization needs to be computed
only once. Also for iterative solvers, method (9) is well suited, because they usually converge quickly since
the matrix is an M-matrix, compare [17]. A detailed description of this scheme, in particular of the dynamic
damping procedure, can be found in [17], where it is referred to as ‘fixed-point right-hand side’. The nonlinear
loops were stopped if 10, 000 iteration steps were reached or if res ≤ εthresh

√
#dof, where res is the Euclidean

norm of the residual vector and εthresh is the stopping threshold. If not mentioned otherwise, then εthresh =
10−10. �

All schemes were used with P1 finite elements. The matrices were assembled exactly and the arising
systems of linear equations were solved using the sparse direct solver UMFPACK, [9]. All simulations were
performed with the in-house code ParMooN, [28, 10].

The numerical results will be compared on the basis of the satisfaction of the global DMP, the accuracy
of solutions, e.g., measured by sharpness of layers, and efficiency, measured by the number of iterations
and rejections for the solver of the nonlinear problem. After having rejected a step, the damping factor is
decreased, but this step is computationally as expensive as an accepted step.
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Figure 2: Example 5.1: Solution computed with AFC scheme and Kuzmin limiter, level 7 with uniform
refinement.

5.1 Solution Becoming Locally Diffusion-Dominated under Adaptive Grid Re-
finement

This example, presented in [21], is given in Ω = (0, 1)2 with b = (2, 3)T , c = 1, and ∂Ω = ΓD. The solution

u(x, y) = xy2 − y2 exp

(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x− 1) + 3(y − 1)

ε

)
,

defines the right-hand side f and the Dirichlet boundary condition ub. It possesses boundary layers at x = 1
and y = 1, see Figure 2. We consider the case ε = 10−2, i.e., the discrete problem is convection-dominated
on coarse grids (the layers are not resolved) and it becomes diffusion-dominated on finer grids.

The initial mesh (level 0) was defined by dividing the domain into two triangles by joining the points
(0, 0) and (1, 1). The simulations were started with the level 2 grid obtained by uniform refinement (i.e.,
#dof = 25) and initially uniform refinement was applied until level 5 (i.e., #dof = 1089). After that,
adaptive refinement was performed.

Since the solution is known, errors of the discrete approximations computed with the algebraically sta-
bilized schemes can be computed. Figure 3 presents the errors in the L2(Ω) norm and in the L2(Ω) norm
of the gradient. It can be seen that the solutions computed with the AFC scheme with BJK limiter and
with the MUAS scheme are likewise accurate. On both types of grids, the optimal convergence order of
the error in the L2(Ω) norm of the gradient can be seen. It has to be noted that the error estimator is for
the error in the energy norm, which is dominated here by the L2(Ω) error of the gradient, and not for the
L2(Ω) norm, such that the adaptive grids might not be always suitable for an optimal error convergence in
the L2(Ω) norm. The solutions obtained with the AFC scheme and Kuzmin limiter seem not to converge
on grids with conforming closure and they converge slower on grids with hanging nodes. This behavior on
conforming grids was already observed for a similar example in [16]. In fact, the analysis from [4] predicts
that convergence can be expected for this method in the diffusion-dominated case only if the grid satisfies
certain conditions, e.g., if the grid is Delaunay.

Figure 4 presents results concerning the efficiency of the methods. It can be observed that the AFC
scheme with Kuzmin limiter needs usually the smallest number of iterations and the AFC scheme with BJK
limiter often the largest number. But altogether, no difficulties arose for solving the nonlinear problems.
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Figure 3: Example 5.1: L2(Ω) error (top) and L2(Ω) error of the gradient (bottom); grids with conforming
closure (left) and grids with hanging nodes (right).
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Figure 4: Example 5.1: Number of iterations and rejections on grids with conforming closure (left) and on
grids with hanging nodes (right).
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Figure 5: Example 5.2: Solution to the interior and boundary layer example, computed with the BJK
limiter, level 9.

5.2 A Convection-Dominated Problem with Interior and Boundary Layers

This standard example was proposed in [14]. It is given in Ω = (0, 1)2 with b = (cos(−π/3), sin(−π/3))T ,
c = f = 0, and the Dirichlet boundary condition

ub =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.7),

0 else.

Here, the convection-dominated case ε = 10−6 is considered. The solution exhibits an interior layer in the
direction of the convection starting from the jump of the boundary condition at the left boundary and two
exponential layers at the right and the lower boundary, see Figure 5. An analytic solution to this problem
is not available, but the solution satisfies the global maximum principle, i.e., u ∈ [0, 1]. In the numerical
studies, the satisfaction of the global DMP, the accuracy by considering the width of the interior layer along
a cut line, and the efficiency will be studied. In addition, the impact of relaxing the stopping criterion of the
iteration on the quantities of interest will be investigated.

The initial grid (level 0) was constructed by dividing the unit square with the diagonal from (0, 1) to
(1, 0), as advised in [19]. The simulations were started on level 2 and uniform refinement was performed
until level 5.

The satisfaction of the global DMP is studied by evaluating the quantity

oscmax(uh) := max
(x,y)∈Ω

uh(x, y)− 1− min
(x,y)∈Ω

uh(x, y). (10)

It turned out that these values were for all schemes and all grids at most of the order of round-off errors.
Hence, the corresponding numerical solutions satisfy the global DMP.

To check the thickness of the interior layer, we follow the idea described in [19, Eq. (48)] and define

smearint = x2 − x1, (11)

where x1 is the x-coordinate on the cut line (x, 0.25) with uh(x1, 0.25) = 0.1 and x2 is the x−coordinate
with uh(x2, 0.25) = 0.9. The cut line was discretized with 100,000 equidistant intervals, where the discrete
solutions were evaluated at the nodes. Then, the values for x1 and x2 were computed by linear interpolation.
The results, presented in Figure 6, show that there are only minor differences between the solutions obtained
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Figure 6: Example 5.2: Thickness of interior layer, smearint.

with the different methods. On grids with hanging nodes, the AFC method with BJK limiter and the MUAS
method computed usually a little bit sharper layers than the AFC method with Kuzmin limiter.

Figure 7 presents the number of iterations and rejections. It can be observed that the AFC method
with BJK limiter sometimes stopped because the maximal number was reached, in particular on fine grids.
The other two methods needed usually a similar and much smaller number of iterations. The rationale for
choosing the hard stopping criterion with εthresh = 10−10 is that analytic results, like the satisfaction of
DMPs, can be proved only for the solution of the nonlinear discrete problem and thus an accurate solution
seems to be advisable.

The number of iterations and rejections for the weaker stopping criteria with εthresh = 10−6 and εthresh =
10−8 are depicted also in Figure 7. It can be seen that in all situations the stopping criterion with respect to
the residual could be satisfied now. The AFC scheme with Kuzmin limiter and the MUAS method require
generally notably less iterations than the AFC scheme with BJK limiter.

Figure 8 provides information on the impact of the weaker stopping criteria on the satisfaction of the
global DMP. Only for the weakest stopping criterion εthresh = 10−6 and on fine grids there are notable
spurious oscillations.

Concerning the width of the interior layer, we usually could not observe visible differences between
the results from Figure 6 and the results for εthresh = 10−8. Often, also the layer width of the solutions
computed with εthresh = 10−6 is similar. Only on very fine grids, we could see more smearing with this
stopping criterion. For the sake of brevity, the results with respect to the layer width are not presented in
detail.

Remark 11 Continuing the adaptive refinement in this example creates very small mesh cells. We could
observe that the sparse direct solver failed, giving nan, if cells with a diameter of around 10−6 occurred. In
contrast, a standard iterative solver, GMRES with SSOR preconditioner, still worked well in this situation.
�

5.3 Hemker Problem

The Hemker problem is a standard benchmark problem defined in [13]. The domain is given by Ω =
{(−3, 9) × (−3, 3)} \ {(x, y) : x2 + y2 ≤ 1}, the convection field by b = (1, 0)T , and the reaction field and
right-hand side in Eq. (1) vanish: c = f = 0. Dirichlet boundary conditions are set at x = −3, with ub = 0
and at the circular boundary with ub = 1. On all other boundaries, homogeneous Neumann conditions are
prescribed. This problem was studied comprehensively for ε = 10−4 in [2] and reference values are available
for some quantities of interest. This diffusion parameter was used also in our studies, see Figure 9 for an
illustration of the solution, which takes values in [0, 1].
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Figure 7: Example 5.2 Number of iterations and rejections on grids with conforming closure (left) and on
grids with hanging nodes (right), εthresh = 10−10 (top), εthresh = 10−8 (middle), εthresh = 10−6 (bottom).

Figure 9 presents the initial grid with #dof = 151. The adaptive refinement was started after having
computed the solution on the initial grid. It was stopped when #dof & 5 × 105. During refinement, the
approximation of the circular boundary was improved. Based on the experience from the previous example,
the threshold for stopping the iterative solution of the nonlinear problem was set to be εthresh = 10−8.

The satisfaction of the global DMP was measured again by oscmax(uh) defined in (10). As in the previous
example, for the AFC scheme with BJK limiter and the MUAS method, only unphysical values of the order
of the stopping criterion for solving the nonlinear problems could be observed. Hence, these methods satisfy
the global DMP. In contrast, there are small but notable spurious oscillations for the AFC scheme with
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Figure 8: Example 5.2: Dependency of the spurious oscillations on the stopping criterion in the solver for
the nonlinear problem: AFC scheme with BJK limiter (top), with Kuzmin limiter (middle), and MUAS

method (bottom).

Kuzmin limiter on fine conforming grids, compare Figure 10. We think that the reason is the appearance of
non-Delaunay closure cells in combination with the fact that the discrete problem becomes locally diffusion-
dominated in strongly refined regions.

For assessing the accuracy of the solutions in [2], the width of the internal layer at y = 1 on the cut
line at x = 4 was considered. The definition of the layer width is similar like for the quantity smearint from
(11). In [2], the reference value 0.0723 is provided. The results obtained with the considered schemes are
presented in Figure 11. In general, the sharpest layer was computed with AFC scheme with BJK limiter.
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Figure 9: Example 5.3: Solution for ε = 10−4 (left), computed with the BJK limiter, level 6; initial grid
(right), level 0.
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Figure 10: Example 5.3: Spurious oscillations for different grids with conforming closure and hanging nodes
for the AFC scheme with Kuzmin limiter. There are no spurious oscillations for the solutions computed

with the two other schemes.
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Figure 11: Example 5.3: Thickness of the internal layer at x = 4 , smearint.

On sufficiently fine grids, the results for all methods are very close to the reference value. Up to around
100,000 #dof, the results for the MUAS method are notably less accurate than for the other two methods.
The reason is that the adaptive grid refinement occurred for this method in a somewhat different way, see
Figure 12 for a representative example. For the AFC methods, the region of this cut line is already much
stronger refined. This situation shows that there is the need of an improved mechanism for controlling the
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Figure 12: Example 5.3: Adaptively refined conforming grids with ≈ 25, 000 #dof, left with AFC method
and Kuzmin limiter, right with MUAS method.
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Figure 13: Example 5.3: Number of iterations and rejections.

adaptive grid refinement for the MUAS method, i.e., the need of developing an a posteriori error estimator.
Concerning the efficiency, the situation is similar as in Example 5.2. The simulations with the AFC

scheme with Kuzmin limiter and the MUAS method needed generally a similar number of iterations, see
Figure 13. They were often considerably more efficient than the simulations with the AFC scheme with BJK
limiter.

5.4 Summary of the Numerical Studies

Here, the most important findings of the numerical studies are summarized.

• The global DMP was satisfied for all methods on all grids with hanging nodes. On grids with conforming
closure, it was always satisfied for the AFC scheme with BJK limiter and the MUAS method.

• The AFC method with Kuzmin limiter did not always satisfy the DMP on conforming grids with locally
very small mesh cells, where the discrete problem is locally diffusion-dominated.

• The AFC scheme with BJK limiter and the MUAS method converge if the discrete solution becomes
(locally) diffusion-dominated, both on adaptive grids with conforming closure and with hanging nodes.

• If the discrete solution becomes (locally) diffusion-dominated, then the AFC method with Kuzmin limiter
does not convergence on adaptively refined grids with conforming closure.

• The nonlinear problems could be solved often most efficiently for the AFC scheme with Kuzmin limiter
and the MUAS method.
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6 Summary

This paper studied the behavior of algebraic stabilizations for discretizing steady-state convection-diffusion-
reaction equations in simulations on adaptively refined grids, both with conforming closure and with hanging
nodes. The AFC scheme with BJK limiter and the MUAS method satisfied always the global DMP. It could
be demonstrated that the failure of the AFC method with Kuzmin limiter to satisfy the DMP on some
grids with conforming closure could be removed by using grids with hanging nodes. The crucial algorithmic
component for a successful application of algebraically stabilized schemes on grids with hanging nodes is
that the linear system of equations is transformed to conforming test and conforming ansatz functions for
computing the limiters. In summary, taking all the aspects of accuracy, satisfaction of the global DMP, and
efficiency into account, the MUAS method seems to be the most promising of the three approaches studied
in this paper.
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