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Abstract

In this paper, we analyse a method for approximating the distribution function
and density of a random variable that depends in a non-trivial way on a possibly high
number of independent random variables, each with support on the whole real line.
Starting with the integral formulations of the distribution and density, the method
involves smoothing the original integrand by preintegration with respect to one suitably
chosen variable, and then applying a suitable quasi-Monte Carlo (QMC) method to
compute the integral of the resulting smoother function. Interpolation is then used to
reconstruct the distribution or density on an interval. The preintegration technique
is a special case of conditional sampling, a method that has previously been applied
to a wide range of problems in statistics and computational finance. In particular,
the pointwise approximation studied in this work is a specific case of the conditional
density estimator previously considered in L’Ecuyer et al., arXiv:1906.04607. Our
theory provides a rigorous regularity analysis of the preintegrated function, which is
then used to show that the errors of the pointwise and interpolated estimators can
both achieve nearly first-order convergence. Numerical results support the theory.

1 Introduction

In this paper, we analyse a numerical method for the computation of the cumulative
distribution function (cdf) or probability density function (pdf) of a continuous random
variable X, where X depends in a nontrivial way on many independent continuous random
variables Y0, Y1, . . . , Yd with known pdfs, each of which has support on the whole real
line. We write X = φ(Y0, . . . , Yd), where often the computation of φ requires significant
resources, for example, the solution of a partial differential equation.

Starting with the formulation of the cdf at a given point as an expected value (integral)
of an indicator function (see (1.2) below), the method consists of preintegration [15, 18] (a
process in which one well-chosen variable is first integrated out, with the aim of producing
a relatively smooth function of the remaining d variables), followed by a suitable quasi-
Monte Carlo (QMC) method to integrate over the remaining variables. This approach
overcomes the difficult aspect of the original integration problem, namely, that φ occurs
in the argument of a non-smooth function (a jump discontinuity in the case of the cdf; a
delta function in the case of the pdf), making the direct application of QMC integration
problematic. Interpolation is then used to reconstruct the cdf on a given interval. This is
useful for applications where one wishes to build a surrogate of the cdf to be used many
times within a larger computational problem, e.g., when evaluating φ is computationally
expensive and so computing pointwise approximations is also expensive.
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Smoothing by preintegration can be considered as a special case of conditional sampling
from the statistics and computational finance literature [1, 2, 4, 12, 13, 19, 22, 29], whereby
a given function has its variance reduced by the operation of conditioning on or “hiding”
(integrating out) partial information, reducing the problem to a conditional expectation.
Preintegration involves integrating out just a single variable, say Y0, which is equivalent to
conditioning on the other remaining variables, Y1, Y2, . . . , Yd. In particular, the pointwise
approximation method in the present paper is a specific case of the conditional density
estimator studied in [23].

The principal contribution of the present paper lies in a rigorous error analysis of the
method, assuming only properties of the original function φ before performing preintegra-
tion. The first step in the analysis (a nontrivial one) is to establish regularity properties
of the preintegrated function, where regularity is meant in the sense of the preintegrated
function having all its mixed derivatives of first order being square integrable.

The analysis in [23] is essentially different, in that it started with an assumption
of suitable smoothness of the resulting integrand after preintegration, not the original
function.

The minimal smoothness property assumed in classical QMC analyses on the unit
cube is membership of BVHK — the class of functions with bounded variation in the
sense of Hardy and Krause. A sufficient condition for membership of BVHK is that f has
continuous, integrable mixed derivatives of first order. Our analysis and function space
setting [9, 24] include preintegrated functions which, after transformation to the unit cube,
do not belong to BVHK, see Appendix A.1 for further details.

In this paper we assume that the random variables Yi for i = 0, . . . , d have as support
the whole real line R. This assumption is essential, since the results do not apply if the Yi
have compact support. In Appendix A.2 we give a simple example on the unit cube illus-
trating that a single step of preintegration is not sufficient for the preintegrated function
to belong to BVHK, neither does it possess the necessary mixed derivative smoothness.
To achieve the required first-order mixed derivative smoothness on [0, 1]d, the paper [14]
shows that, in general, one must perform preintegration with respect to d/2 different
variables.

It is now known [10] that for the preintegrated function to have the classical smoothness
property assumed in QMC analyses, it is necessary (as assumed here and in [18]) that φ be a
monotone function of the chosen preintegration variable. If that monotonicity assumption
does not hold and d ≥ 2, then from [10] the preintegrated function has generically one-
sided square-root or higher-root singularities, which, as shown in Appendix A.3, precludes
membership of BVHK.

1.1 The problem and the approach

Let X be a continuous real-valued random variable, and denote its cumulative distribution
function (cdf) and probability density function (pdf) by F := FX and f := fX , respectively,
which are defined on an interval [a, b] but which are not known a priori. Suppose that X
is a function of d+ 1 independent random variables Y0, Y1, . . . , Yd ∈ R,

X = φ(Y0, Y1, . . . , Yd) , (1.1)

for some computable (but possibly expensive) function φ : Rd+1 → R. Suppose also that
the density and distribution functions of each Yi are known, and are denoted by ρi and
Φi, respectively, with supp(ρi) = R. Realisations of the random variables X and Yi are
denoted by x and yi, respectively.

An example of such a random variable X is the value of an Asian option, where the
random variables Y0, . . . , Yd are the Brownian motion increments at each time step and are
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normally distributed. Another example is the linear functional of the solution of a PDE
with a log-normal random coefficient, where Y0, . . . , Yd are zero-mean normal random
variables that correspond to the random parameters in a series expansion of a Gaussian
random field.

Our goal is to approximate the cdf F and the pdf f (the derivative of F ) on a compact
interval [a, b] ⊂ R, which is done in two steps:

1. Approximate F and f at finitely many points {tm}Mm=0 ⊂ [a, b] using quasi-Monte
Carlo (QMC) with preintegration (see Sections 2.2 and 3, respectively).

2. Reconstruct F and f on [a, b] by interpolating the approximations at the points
{tm}Mm=0.

The cdf and pdf can each be written as expected values (i.e., potentially high-dimensional
integrals) with respect to Y0, Y1, . . . , Yd. For t ∈ [a, b], we have

F (t) = E
[
ind(t−X)

]
=

∫
Rd+1

ind
(
t− φ(y0, . . . , yd)

)( d∏
i=0

ρi(yi)

)
dy0 · · · dyd , (1.2)

f(t) = E
[
δ(t−X)

]
=

∫
Rd+1

δ
(
t− φ(y0, . . . , yd)

)( d∏
i=0

ρi(yi)

)
dy0 · · · dyd , (1.3)

where ind(·) is the indicator function

ind(z) =

{
1 if z ≥ 0 ,

0 otherwise ,

and δ(·) is the Dirac δ distribution characterised by the properties

δ(z) = 0 for all z 6= 0, and∫ ∞
−∞

g(z) δ(z) dz = g(0) for all sufficiently smooth functions g . (1.4)

Note that if the pdf exists, then it is the derivative of the cdf, i.e., f = F ′. Indeed,
the integral in (1.3) can be interpreted as differentiating (1.2) with respect to t in the
distributional sense (recall that δ is the distributional derivative of ind). In the following,
we will give more precise conditions we need to impose on the function φ such that the
integral formulations (1.2) and (1.3) are well defined.

QMC theory alone is unable to tackle integrals such as (1.2) and (1.3) due to the
discontinuity introduced by the indicator and Dirac δ functions. This discontinuity means
that the integrand fails to belong to the function spaces required for QMC theory. The
integrand in the formulation of the pdf (1.3) is not even a function, but rather a distri-
bution that is 0 everywhere except when φ(y0, . . . , yd) = t. However, recent work [18] on
smoothing by preintegration was successful in handling simple discontinuities caused by
an indicator function in the integrand, both practically and theoretically. In this paper,
we extend the work to cover distributions involving a δ function, as well as extending the
theory for the indicator function.

1.2 Preintegration

To explain the idea of preintegration, consider a simple discontinuous function

g(y0, . . . , yd) = ind
(
φ(y0, . . . , yd)

)
,
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where the inner function φ : Rd+1 → R is sufficiently smooth and satisfies certain technical
assumptions with respect to a specially chosen variable, which throughout this paper we
shall take to be y0. As stated above, a key assumption is that φ is strictly increasing in y0

∂φ

∂y0
> 0, (1.5)

(cf. Assumption 1 below). To perform the preintegration step, we integrate with respect
to this special variable y0 to give a preintegrated function

P0g(y1, . . . , yd) :=

∫ ∞
−∞

g(y0, . . . , yd) ρ0(y0) dy0 , (1.6)

which is now a d-variate function of the remaining variables y1, . . . , yd.
The key point from [18] is that if we fix (y1, . . . , yd) ∈ Rd and treat φ(·, y1, . . . , yd)

as a function of the single variable y0, then since φ is strictly increasing with respect
to y0, the discontinuity in g either occurs at a single point, in which case that variable
can then be integrated out, or does not occur at all. Thus after preintegration, there is
no longer any discontinuity and the result is a d-variate function P0g that under suitable
conditions is as smooth as the original smooth function φ. In this way, after performing the
preintegration step, either exactly or numerically, one can use a d-dimensional cubature
rule for the remaining dimensions. Due to the smoothness of P0g, the cubature error will
now converge at a faster rate, e.g., close to O(1/N) for a QMC method using N points.

The smoothing by preintegration step was recently analysed in [18] which extends
the earlier work [15, 16, 17]; see also [10]. In this paper we follow the terminology of
preintegration instead of conditioning, since [18] forms the foundation of our theory.

1.3 Related work and other approaches

The recent paper [5] used QMC to construct kernel density estimators and histograms.
Their need to balance the variance and bias means the provided error convergence rate de-
teriorates very rapidly with dimension. The paper [11] replaced the non-smooth functions
in (1.2) and (1.3) by smooth approximations and then applied multilevel Monte Carlo
methods. The paper [6] introduced smooth cdf and pdf estimators for the specific case of
a sum of dependent lognormals, with promising numerical results using QMC.

As stated earlier, preintegration is a specific case of conditional sampling or con-
ditioning, a method widely used in the statistics and computational finance literature
[1, 2, 4, 12, 13, 19, 22, 29]. The idea to combine a QMC rule with conditioning was first
presented in [22], where it was applied to compute probabilities for a stochastic activity
network. More recently, [3] used conditional Monte Carlo for density estimation in the
specific case of a sum of random variables. Then, the paper [23] introduced a general
conditional density estimator (CDE) and [26] used conditioning for variance reduction
for a generalised likelihood ratio density estimator, where both works used Monte Carlo
and QMC integration. The pointwise estimator analysed in this paper is a special case
of the QMC CDE in [23]. That paper also presented a more general CDE, by allowing
conditioning on general sets, as well as considering convex combinations of CDE’s and
using QMC within a generalised likelihood ratio density estimator. To analyse the CDE
with QMC, the paper [23] assumed that after conditioning the result belonged to the class
BVHK, which allowed the use of the classical Koksma–Hlawka inequality to bound the
QMC error.
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2 Mathematical background

In this section, we introduce the required background material on preintegration, QMC,
and the function spaces that we need.

We start with some notation. Recall that y0 is the special variable with respect to which
we perform preintegration. We denote the remaining d variables by y = (y1, . . . , yd) ∈ Rd
and all of the d+1 variables collectively by y0:d := (y0, . . . , yd) ∈ Rd+1 or (y0,y). Similarly,
we denote the products of univariate functions (ρi)

d
i=0, by

ρ(y) :=

d∏
i=1

ρi(yi) and ρ0:d(y0,y) :=

d∏
i=0

ρi(yi) = ρ0(y0)ρ(y) .

Let N0 := {0, 1, 2, . . .} and N := {1, 2, . . .} denote the set of natural numbers with and
without zero, respectively. Let {0 : d} := {0, 1, . . . , d} and define {1 : d} analogously. Let
ν = (ν0, ν1, . . . , νd) ∈ Nd+1

0 be a multi-index, and let |ν| :=
∑d

i=0 νi denote its order and
supp(ν) := {j ∈ {0 : d} : νj > 0} denote its support. Operations and relations between
multi-indices are defined componentwise, e.g., for η,ν ∈ Nd+1

0 we write η ≤ ν if and only
if ηi ≤ νi for all i = 0, 1, . . . , d, and addition is defined by η + ν = (ηi + νi)

d
i=0. For

y0:d ∈ Rd+1 and ν ∈ Nd+1
0 , we denote the active variables by yν := (yi : νi > 0)di=0 and

the inactive variables by y−ν := (yi : νi = 0)di=0. Analogously to the notation (y0,y), we
denote the (d+ 1)-dimensional concatenation of ν0 ∈ N0 and ν = (ν1, ν2, . . . , νd) ∈ Nd0 by
(ν0,ν) = (ν0, ν1, ν2, . . . , νd) ∈ Nd+1

0 .

2.1 Function spaces

Here we introduce our function space setting. Although we deal with both (d + 1)- and
d-variate functions throughout this paper, we give definitions only for the (d+ 1)-variate
spaces, since the d-variate spaces can be defined analogously by simply excluding the
variable y0.

We begin by defining some shorthand notation for mixed partial derivatives. For
i = 0, 1, . . . , d and a multi-index ν ∈ Nd+1

0 , let

Di :=
∂

∂yi
and Dν =

d∏
i=0

∂νi

∂yνii

denote the first-order derivative and the higher order mixed derivative of order ν, respec-
tively. This notation will also be used for weak derivatives, where the νth weak derivative
of g is defined to be the distribution Dνg that satisfies∫

Rd+1

Dνg(y0:d) v(y0:d) dy0:d = (−1)|ν|
∫
Rd+1

g(y0:d)D
νv(y0:d) dy0:d

for all v ∈ C∞0 (Rd+1). Here C∞0 (Rd+1) is the space of infinitely differentiable functions
with compact support.

Let C(Rd+1) denote the space of continuous functions on Rd+1. For ν ∈ Nd+1
0 let

Cν(Rd+1) denote the space of functions with continuous mixed derivatives up to ν:

Cν(Rd+1) :=
{
g ∈ C(Rd+1) : Dηg ∈ C(Rd+1) for all η ≤ ν} .

To provide a function space setting for φ in (1.1), we introduce a class of Sobolev spaces
of dominating mixed smoothness on Rd+1, where the behaviour of derivatives as yi → ±∞
is controlled by functions different from the densities ρi. To this end, for i = 0, 1, . . . , d,
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let ψi : R→ R be a strictly positive and integrable weight function. We denote the whole
collection of weight functions by ψ = (ψi)

d
i=0. Also, let γ := {γu > 0 : u ⊆ {0 : d}}

be a collection of positive real numbers called weight parameters; they model the relative
importance of different collections of variables, i.e., γu describes the relative importance
of the collection of variables (yi : i ∈ u). We set γ∅ := 1.

Then for ν ∈ Nd+1
0 , define the Sobolev space of dominating mixed smoothness of order ν,

denoted by Hνd+1, to be the space of locally integrable functions on Rd+1 such that the
norm

‖g‖2Hνd+1
:=
∑
η≤ν

1

γη

∫
Rd+1

|Dηg(y0:d)|2ψη(yη)ρ−η(y−η) dy0:d

is finite, where we introduced the shorthand notations

γη := γsupp(η), ψη(yη) :=

d∏
i=0, ηi 6=0

ψi(yi) and ρ−η(y−η) :=

d∏
i=0, ηi=0

ρi(yi).

Recall from the Introduction that we plan to carry out preintegration on a non-smooth
function of d+1 variables with appropriate properties, with the aim of obtaining a smooth
function of d variables. We therefore need (but do not write down) an analogous d-variate
Sobolev space Hνd with variables indexed from 1 to d.

An important property of the Sobolev space of first-order dominating mixed smooth-
ness, i.e., H1

d with 1 := (1, 1, . . . , 1), is that it is equivalent to the (unanchored) ANOVA
space over the unbounded domain Rd introduced in [24]. Explicitly, it was shown recently
in [9] that if the weight functions ψi satisfy∫ ∞

−∞

Φi(z)(1− Φi(z))

ψi(z)
dz < ∞ for all i = 1, 2, . . . , d, (2.1)

then H1
d and the ANOVA space from [24] are equivalent. This equivalence is crucial for our

analysis, because it immediately shows that the bounds on the QMC error from [24] also
hold in H1

d (see Theorem 2.1 below). Since the preintegration theory in [18] is formulated
in Hνd , without this equivalence, there would be a mismatch between the settings for the
analysis of preintegration and QMC methods. With the equivalence established, we can
from now on work exclusively with the spaces Hνd , and have no need to introduce the
ANOVA space from [24]. Note that the condition (2.1) is also assumed throughout [24],
where it is required for the QMC error bounds to hold. Examples of common pairings
(ρi, ψi) satisfying (2.1) can be found in [21, Table 3]. Note that ψ2

i in [21, 24] is replaced
here, and in [9], by ψi. We assume (2.1) holds throughout.

2.2 Quasi-Monte Carlo methods

In the classic case of the unit cube, an N -point QMC approximation (see e.g., [8, 25]) for
the integral of a function g : [0, 1]d → R is given by

1

N

N−1∑
n=0

g(qn) ≈
∫
[0,1]d

g(u) du ,

where here the cubature points {qn}N−1n=0 are deterministically chosen to be well-distributed
within [0, 1)d, and to have desirable approximation properties.

In this paper, we consider a simple class of randomised QMC methods called randomly
shifted rank-1 lattice rules, for which the QMC points are given by

qn =

{
nz

N
+ ∆

}
for n = 0, 1, . . . , N − 1. (2.2)
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Here z ∈ {1, 2, · · · , N − 1}d is the generating vector, ∆ ∈ [0, 1)d is a uniformly distributed
random shift and {·} denotes taking the fractional part of each component.

The benefits of randomly shifting the point set are threefold: (i) the resulting approxi-
mation is unbiased; (ii) we can take the average of the approximations from a small number
of i.i.d. random shifts as the final approximation and use the sample variance to estimate
the mean-square error; and (iii) for functions in H1

d , randomly shifted lattice rules with
good z can be constructed efficiently (see below) to achieve nearly O(N−1) convergence
of the root-mean-square error (RMSE).

To approximate an integral over an unbounded domain, one must map the point set
{qn}N−1n=0 from the unit cube to Rd. In the case of an integral with respect to a product
of densities, as we have in (1.2), we can perform this mapping by applying the inverse cdf
componentwise. An N -point QMC approximation for the integral of a function g : Rd → R
is then given by

Qd,N (g) :=
1

N

N−1∑
n=0

g(Φ−1(qn)) ≈
∫
[0,1]d

g(Φ−1(u)) du =

∫
Rd
g(y)ρ(y) dy , (2.3)

where Φ−1 denotes the application of the inverse cdf Φ−1i in each dimension i, recalling
that Φi is the cdf of the density ρi. For the remainder of the paper we only consider
approximating integrals on Rd, and so we denote the transformed QMC points by

τn = Φ−1(qn) ∈ Rd for n = 0, 1, . . . , N − 1. (2.4)

It was proved in [24] that good generating vectors z for the approximation (2.3) can
be constructed using a component-by-component (CBC) algorithm to achieve almost the
optimal convergence rate for the RMSE in a certain first-order ANOVA space (which as
we have discussed is equivalent to H1

d). Below, we restate the error bound from [24], but
now in terms of H1

d rather than the equivalent ANOVA space used in [24].

Theorem 2.1 Suppose (2.1) holds. Let ω ∈ (1, 2] and c <∞ be such that

1

π2k2

∫ ∞
−∞

sin2(π kΦi(y))

ψi(y)
dy ≤ c

|k|ω
for all k ∈ Z \ {0} and all i = 1, . . . , d . (2.5)

Let N ∈ N and suppose that z is a generating vector constructed using the CBC algorithm
from [24]. Then for g ∈ H1

d , the RMSE (with the expectation taken with respect to the
random shift ∆) of the randomly shifted lattice rule approximation (2.3) corresponding to
z satisfies√

E∆

[∣∣∣∣ ∫
Rd
g(y)ρ(y) dy −Qd,N (g)

∣∣∣∣2] ≤ Cd,γ,λ [φtot(N)]−1/(2λ) ‖g‖H1
d

(2.6)

for all λ ∈ (1/ω, 1], with

Cd,γ,λ :=

( ∑
0 6=η∈{0,1}d

γλη
[
2 c ζ(ωλ)

]|η|)1/(2λ)

,

where φtot is the Euler totient function and ζ is the Riemann zeta function.

Proof. Let Wd denote the ANOVA space from [24]. Theorem 8 from [24] gives the error
bound (2.6) for g ∈ Wd and with the Wd-norm on the right. Since [9, Theorem 13] shows
that Wd and H1

d are equivalent under assumption (2.1) on the weight functions, with
‖g‖Wd

≤ ‖g‖H1
d
, the result is proved. 2
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Observe that the convergence rate N−1/(2λ) of the RMSE is governed by the parameter
ω ∈ (1, 2] from (2.5), which in turn depends on the interaction between the pairs (ρi, ψi).
Ideally, we would like ω to be arbitrarily close to 2, which would allow us to take λ
arbitrarily close to 1/2, giving a convergence rate arbitrarily close to 1/N . However, this
is not always possible. Table 3 in [21] gives values of r2 = ω/2 such that (2.5) holds for
several pairs (ρi, ψi), and in particular, it provides common examples for which ω ≈ 2.
Note that, as before, ψi in this paper is ψ2

i in [21]. As an example, if each ρi is a standard
normal density, then one can take either ψi(y) = e−|y| or ψi = 1/(1 + |y|), resulting in
ω ≈ 2. Alternatively, one can take a scaled normal density, ψi(y) = e−y

2/(2η) for η > 1,
giving ω = 2(1 − 1/η), which for η sufficiently large will give a convergence rate close to
1/N . In general, the essential feature is that ψi decays more slowly than ρi.

2.3 Lagrange interpolation in one dimension

There are two steps to the cdf and pdf estimation algorithms: pointwise approximation,
which we do using a QMC rule after a preintegration step, and then interpolation on the
interval [a, b]. For the latter step, we use Lagrange interpolation based on Chebyshev
points in [a, b].

Let {tm}Mm=0 be a collection of distinct points in [a, b] and let VM denote the set of all
polynomials up to degree M on [a, b]. The Lagrange interpolation operator LM : C[a, b]→
VM is given by

LMg :=
M∑
m=0

g(tm)χM,m, χM,m(t) :=
M∏
`=0
`6=m

t− t`
tm − t`

. (2.7)

We now state the classical error bounds for Lagrange interpolation based on Chebyshev
points from, e.g., [27]. For σ ∈ N, let W σ,∞[a, b] denote the Sobolev space of functions on
[a, b] with essentially bounded derivatives up to order σ, which we equip with the norm
‖g‖Wσ,∞ := maxq=0,1,...,σ ‖g(q)‖L∞ . Let σ ∈ N and suppose that g ∈ W σ+1,∞[a, b]. Then
for M > σ, the error of the Lagrange interpolant based on Chebyshev nodes satisfies

‖g − LMg‖L∞ ≤ 4 ‖g(σ+1)‖L1

πσ(M − σ)σ
. (2.8)

The original result [27, Theorem 7.2] was stated in terms of the total variation of g(σ) on
[a, b], which for g ∈ W σ+1,∞[a, b] is given by ‖g(σ+1)‖L1 . As we will see in Section 5.1,
under our assumptions on φ, the cdf and pdf are smooth enough to take σ up to d− 1.

One may also use other methods to approximate F and f on [a, b], such as splines or
best polynomial approximation, but we do not pursue those directions here.

3 Smoothing by preintegration

As explained in the introduction, smoothing by preintegration is a method of smoothing
a discontinuous or kink function by integrating out a single, specially chosen variable.
It is a special case of conditional sampling. For notational convenience we take y0 to
be this special variable. In this section, we formalise the preintegration step for indicator
functions by following [18], and then extend the method to simple distributions involving δ
distributions, which will allow us to also apply the preintegration technique to approximate
the pdf as formulated in (1.3).

First, we make the following assumptions about the function φ in (1.1).
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Assumption 1 For d ≥ 1 and ν ∈ Nd0, let φ : Rd+1 → R satisfy

1. D0φ(y0,y) > 0 for all (y0,y) ∈ Rd+1; and

2. for each y ∈ Rd, φ(y0,y)→∞ as y0 →∞; and

3. φ ∈ H(ν0,ν)
d+1 ∩ C(ν0,ν)(Rd+1), where ν0 := |ν|+ 1.

Additionally, suppose that ρ0 ∈ C |ν|(R).

It was unresolved from the analysis in [15, 17, 18] whether the monotonicity assumption
(item 1 above) is necessary. Recently it was proved in [10] that this is indeed necessary:
if it fails then there may remain a singularity after preintegration.

3.1 Smoothing by preintegration for indicator functions

Motivated by the cdf (1.2), for t ∈ [a, b] we define a discontinuous function gt : Rd+1 → R
by

gt(y0,y) := ind
(
t− φ(y0,y)

)
, y0 ∈ R , y ∈ Rd , (3.1)

where φ : Rd+1 → R satisfies Assumption 1. Note that [18] considered functions of the
more general form g(y0,y) = θ(y0,y) ind(φ(y0,y)), where both θ and φ are sufficiently
smooth, a formulation that allows for more general discontinuities and kinks. However,
since we are here only concerned with computing probabilities using (1.2), the restricted
form in (3.1) is sufficient. Also, note that we consider here shifted indicator functions
ind(t−·) instead of ind(·) as in [18]. This results only in minor changes in the presentation,
and does not affect any of the theory.

Since in Assumption 1 we assume that φ(·,y) is strictly increasing with respect to y0
for fixed y ∈ Rd, and also tends to ∞ as y0 → ∞, there are only two possible scenarios:
either the discontinuity of gt(·,y) for fixed t ∈ [a, b] and y ∈ Rd occurs at a unique point in
dimension 0, or the discontinuity does not occur at all because φ(y0,y) > t for all y0 ∈ R.

To describe the former case more explicitly, for given t ∈ [a, b], we define the set of
y ∈ Rd for which the discontinuity occurs by

Ut :=
{
y ∈ Rd : φ(y0,y) = t for some y0 ∈ R

}
, (3.2)

which (unlike in [18]) now depends on the point t. Since supp(ρ0) = R, the point y0 in
(3.2) is in the support of ρ0. We have the following equivalence

y ∈ Ut ⇐⇒ t ∈ φ(R,y) ,

where with a slight abuse of notation we use φ(R,y) to denote the image of R under φ(·,y).
For t ∈ [a, b] and y ∈ Ut, the point at which the discontinuity occurs in dimension 0 is
denoted by ξ(t,y), i.e., ξ(t,y) ∈ R is the unique real number such that

φ(ξ(t,y),y) = t . (3.3)

Here uniqueness follows from the monotonicity condition Assumption 1 item 1. Similarly,
because φ(·,y) is increasing, it follows from (3.3) that for y ∈ Ut,

φ(y0,y) < t ⇐⇒ y0 < ξ(t,y). (3.4)

The following Implicit Function Theorem adapted from [15] shows that ξ is a well-
defined function of both t and y, and implies that ξ “inherits” the smoothness of φ.
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Theorem 3.1 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy Assump-
tion 1, and define

V :=
{

(t,y) ∈ (a, b)× Rd : φ(y0,y) = t for some y0 ∈ R
}
⊂ [a, b]× Rd. (3.5)

If V is not empty, then there exists a unique function ξ ∈ C(ν0,ν)(V ) satisfying (3.3) for
all (t,y) ∈ V . Furthermore, for (t,y) ∈ V the first-order derivatives are given by

Diξ(t,y) =
∂

∂yi
ξ(t,y) = −D

iφ(ξ(t,y),y)

D0φ(ξ(t,y),y)
for all i = 1, . . . , d, and (3.6)

∂

∂t
ξ(t,y) =

1

D0φ(ξ(t,y),y)
. (3.7)

Proof. The result ξ ∈ C(ν0,ν)(V ) follows by applying [15, Theorem 2.3] to the function
φ(y0,y) − t, with j = 1 along with the variables labelled as xi+1 = yi for i = 0, 1, . . . , d
and xd+2 = t. Since the proof of [15, Theorem 2.3] is based on a local argument about an
arbitrary point x, the restriction xd+2 = t ∈ (a, b), instead of R, does not affect the result.
Additionally, the original proof was conducted for the isotropic smoothness spaces, but
it can easily be extended to the dominating mixed smoothness space C(ν0,ν)(V ). Finally,
differentiating (3.3) with respect to yi leads to the formula (3.6). Similarly, differentiating
(3.3) with respect to t implies (3.7). 2

With P0 the preintegration operator defined by (1.6), we now apply preintegration to
the function gt defined by (3.1) for t ∈ [a, b], obtaining

P0gt(y) =

∫ ∞
−∞

ind
(
t− φ(y0,y)

)
ρ0(y0) dy0 .

From the definition of ξ(t,y) in (3.3) and the relation (3.4), for y ∈ Ut we can write

P0gt(y) =

∫ ξ(t,y)

−∞
ρ0(y0) dy0 = Φ0(ξ(t,y)) , (3.8)

while for y ∈ Rd \Ut we have P0gt ≡ 0. In both cases there is no longer any discontinuity.
The main result from [18, Theorem 3] showed that if φ satisfies Assumption 1, along

with some extra technical conditions in Assumption 2 below, then the preintegrated func-
tion is as smooth as φ. The technical conditions are required to control all of the terms
that arise when differentiating P0gt using the chain rule.

As a first illustration, for any i ∈ {1 : d} we have

Di[P0gt(y)] = Di[Φ0(ξ(t,y))] = ρ0(ξ(t,y))Diξ(t,y) = −ρ0(ξ(t,y))Diφ(ξ(t,y),y)

D0φ(ξ(t,y),y)
,

(3.9)

where we used (3.6). This motivates the general form of functions in Assumption 2 below.
Our assumption is formulated differently from [18] because we need to account for the t
dependence in this paper and we also aim to give a tight estimate on the number of terms
that arise from the differentiation. This allows us in Theorem 3.2 below to extend [18,
Theorem 3] by providing an explicit bound on the norm. We use ei to denote a multi-index
whose ith component is 1 and all other components are 0.

Assumption 2 Let d ≥ 1, ν ∈ Nd0, [a, b] ⊂ R, and suppose that φ and ρ0 satisfy Assump-
tion 1. Recall the definitions of Ut, ξ and V in (3.2), (3.3) and (3.5), respectively. Given
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q ∈ N0 and η ≤ ν satisfying |η| + q ≤ |ν| + 1, we consider functions hq,η : V → R of the
form

hq,η(t,y) = hq,η,(r,α,β)(t,y) :=
(−1)rρ

(β)
0 (ξ(t,y))

∏r
`=1D

α`φ(ξ(t,y),y)

[D0φ(ξ(t,y),y)]r+q
,

with r ∈ N0, α = (α`)
r
`=1, α` ∈ Nd+1

0 \{e0,0}, β ∈ N0 satisfying

r ≤ 2|η|+ q − 1, α`,0 ≤ |η|+ q, β ≤ |η|+ q − 1, βe0 +
r∑
`=1

α` = (r + q − 1,η).

(3.10)

We assume that all such functions hq,η satisfy

lim
y→∂Ut

hq,η(t,y) = 0 for all t ∈ [a, b], (3.11)

and there is a constant Bq,η such that

sup
t∈[a,b]

∫
Ut

|hq,η(t,y)|2ψη(yη)ρ−η(y−η) dy ≤ Bq,η < ∞. (3.12)

It is worthwhile to briefly discuss Assumption 2. As we will see in the theorem below,
the functions hq,η occur when differentiating a preintegrated function using the multivari-
ate chain and product rules. Loosely speaking, the parameter q relates to differentiating
with respect to t, whereas η relates to differentiating with respect to y. The conditions
(3.11) and (3.12) then ensure that the derivatives are well-behaved enough for the preinte-
grated function to be sufficiently smooth. It follows from Assumption 1 and Theorem 3.1
that each function hq,η of the form (3.10) is continuous on V . For an appropriate choice of
{ψi}, Assumption 2 will hold for functions φ for which the preintegrated function P0gt as
in (3.8) (and also (3.16) below) is unbounded and has unbounded derivatives hq,η. In this
case, since P0gt is unbounded, after mapping back to [0, 1]d it does not belong to BVHK.

Having introduced preintegration and our key assumptions, we now state the main
smoothing by preintegration theorem for functions of the form (3.1). It is a refined version
of [18, Theorem 3].

Theorem 3.2 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy As-
sumption 1 and Assumption 2 for q = 0 and all 0 6= η ≤ ν. Then for t ∈ [a, b], the
function

gt(y0,y) := ind(t− φ(y0,y)) satisfies P0gt ∈ Hνd ∩ Cν(Rd),

with its Hνd -norm bounded uniformly in t,

sup
t∈[a,b]

‖P0gt‖Hνd ≤

(
1 +

∑
0 6=η≤ν

(
8|η|−1(|η| − 1)!

)2
B0,η

γη

)1/2

< ∞ . (3.13)

Proof. From (3.8) the preintegrated function can be written as

P0gt(y) =

{
Φ0(ξ(t,y)) if y ∈ Ut ,
0 if y ∈ Rd \ Ut .

If Ut = ∅ then P0gt ≡ 0 on Rd, and the result holds trivially. If Ut 6= ∅ then for any η ∈ Nd0
with 0 6= η ≤ ν, we first prove by induction on |η| ≥ 1 that the ηth derivative of P0gt is
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given by

Dη[P0gt(y)] =


J0,η∑
j=1

h
[j]
0,η(t,y) if y ∈ Ut , with J0,η ≤ 8|η|−1(|η| − 1)! ,

0 if y ∈ Rd \ Ut ,

(3.14)

where each function h
[j]
0,η is of the form (3.10) with q = 0.

For the base case η = ei with any i ∈ {1 : d}, we take r = 1, α1 = ei, β = 0 and
J0,ei = 1 to recover the single function (3.9). Suppose next that (3.14) holds for some
η ∈ Nd0 with |η| ≥ 1 and consider any i ∈ {1 : d} and y ∈ Ut. We have

DiDη[P0gt(y)] =

J0,η∑
j=1

Dih
[j]
0,η(t,y) =

J0,η∑
j=1

K0,η∑
k=1

h
[j,k]
0,η+ei

(t,y)

=

J0,η+ei∑
j′=1

h
[j′]
0,η+ei

(t,y). (3.15)

In the second equality we used Lemma B.1 in Appendix B with q = 0, which states that

each function Dih
[j]
0,η can be written as a sum of K0,η ≤ 8|η|−3 functions of the form (3.10)

with η replaced by η + ei. We enumerated these functions with the notation h
[j,k]
0,η+ei

and
then relabeled all functions for different combinations of indices j and k with the notation

h
[j′]
0,η+ei

. The total number of functions satisfies

J0,η+ei = J0,ηK0,η ≤ 8|η|−1(|η| − 1)! (8|η| − 3) ≤ 8|η+ei|−1 (|η + ei| − 1)! ,

as required. This completes the induction proof for (3.14).

Since, for all η ≤ ν, every function h
[j]
0,η(t, ·) in (3.14) is continuous on Ut, it follows

that P0gt ∈ Cν(Ut). Also, P0gt ≡ 0 on Rd \ Ut is clearly smooth, and so we just need
the derivatives to be continuous across the boundary ∂Ut. Indeed, the assumption (3.11)
implies that Dη[P0gt(y)]→ 0 as y → ∂Ut for all η ≤ ν. Hence, it follows by an adaptation
of [18, Lemma 9] that P0gt ∈ Cν(Rd).

It remains to show that P0gt ∈ Hνd by estimating its norm. We have

‖P0gt‖2Hνd =
∑
η≤ν

1

γη

∫
Rd

∣∣Dη[P0gt(y)]
∣∣2ψη(yη)ρ−η(y−η) dy

=

∫
Ut

|Φ0(ξ(t,y))|2 ρ(y) dy +
∑

06=η≤ν

1

γη

∫
Ut

∣∣∣∣∣
J0,η∑
j=1

h
[j]
0,η(t,y)

∣∣∣∣∣
2

ψη(yη)ρ−η(y−η) dy

≤ 1 +
∑

0 6=η≤ν

J0,η
γη

J0,η∑
j=1

∫
Ut

|h[j]0,η(t,y)|2ψη(yη)ρ−η(y−η) dy

≤ 1 +
∑

0 6=η≤ν

(
8|η|−1(|η| − 1)!

)2
B0,η

γη
< ∞ ,

where we used the assumption (3.12) with q = 0. This completes the proof. 2

We remark that it would suffice to have ν0 := |ν| and ρ0 ∈ C |ν|−1(R) in Assumption 1
for Theorem 3.2 to hold. In other words, we have assumed an extra order of regularity
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on φ and ρ0 with respect to y0 beyond that required for the cdf. The extra regularity is
needed for the corresponding theorem for the pdf, see Theorem 3.3 below.

The bound on the norm (3.13) with constants {B0,η} (e.g., obtained from information
on specific problems) can be used to choose the weight parameters {γη} to model the
relative importance of subsets of variables. This would in turn allow for a complete error
analysis that is explicit in the dependence on dimension. Performing this analysis for
specific problems will be pursued in future work.

3.2 Smoothing by preintegration for Dirac δ distributions

In this section, we show that the same smoothing by preintegration theory also works
for distributions that are constructed by a Dirac δ function, which will allow us to also
estimate the pdf as formulated in (1.3).

For t ∈ [a, b], consider a distribution of the form

gt(y0,y) = δ
(
t− φ(y0,y)

)
,

where δ(·) is the Dirac δ function as characterised by (1.4) and φ : Rd+1 → R satisfies
Assumption 1.

For t ∈ [a, b], y ∈ Ut, and assuming Ut 6= ∅, we have t ∈ φ(R,y). Let ξ(t,y) be
the unique point of discontinuity in dimension 0 as in (3.3). Applying the preintegration
operator (1.6) to the distribution gt and using the change of variables z = φ(y0,y) so that
y0 = ξ(z,y), we obtain

P0gt(y) =

∫ ∞
−∞

δ
(
t− φ(y0,y)

)
ρ0(y0) dy0 =

∫
φ(R,y)

δ(t− z) ρ0(ξ(z,y))
∂

∂z
ξ(z,y) dz

=

∫
φ(R,y)

δ(t− z) ρ0(ξ(z,y))
1

D0φ(ξ(z,y),y)
dz =

ρ0(ξ(t,y))

D0φ(ξ(t,y),y)
, (3.16)

where we used (3.3), (3.7), and the definition of the δ(·) function (1.4). For y ∈ Rd \ Ut
and so t 6∈ φ(R,y), we have δ(t − z) = 0 for all z ∈ φ(R,y), and hence P0gt(y) = 0. As
expected, (3.16) is the derivative of (3.8) with respect to t.

With a similar proof to Theorem 3.2, we now show that the preintegrated distribution
P0gt is also smooth, with a different bound on its norm.

Theorem 3.3 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy Assump-
tion 1 and Assumption 2 for q = 1 and all η ≤ ν. Then for t ∈ [a, b], the distribution

gt(y0,y) := δ
(
t− φ(y0,y)

)
satisfies P0gt ∈ Hνd ∩ Cν(Rd),

with its Hνd -norm bounded uniformly in t,

sup
t∈[a,b]

‖P0gt‖Hνd ≤

(∑
η≤ν

(
8|η||η|!

)2
B1,η

γη

)1/2

< ∞ . (3.17)

Proof. From (3.16) the preintegrated distribution can be written as

P0gt(y) =


ρ0(ξ(t,y)

D0φ(ξ(t,y),y)
if y ∈ Ut ,

0 if y ∈ Rd \ Ut .

The proof follows the same strategy the proof of Theorem 3.2, but now with q = 1.
Again, P0gt ≡ 0 for the case Ut = ∅, so the result holds trivially.
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For η ≤ ν, we first prove by induction on |η| that the ηth derivative of P0gt is given

by (3.14) with q = 1 (instead of 0), where each h
[j]
1,η is of the form (3.10) with q = 1 and

J1,η ≤ 8|η||η|!. For the base case η = 0, we take r = 0 (and so there are no α` terms),
β = 0, and J1,0 = 1 to recover the single function ρ0(ξ(t,y))/D0φ(ξ(t,y),y). For the
inductive step, Lemma B.1 with q = 1 implies that (3.15) holds with q = 1. Since in this
case K1,η ≤ 8|η| − 3, the total number of functions satisfies

J1,η+ei = J1,ηK1,η ≤ 8|η||η|! (8|η|+ 3) ≤ 8|η+ei| |η + ei|! ,

as required. This completes the induction proof for (3.14) with q = 1.

Since each h
[j]
1,η(t, ·) ∈ C(Ut) and by (3.11), it follows that P0gt ∈ Cν(Ut) with

DηP0gt(y) → 0 as y → ∂Ut for all η ≤ ν. Hence, [18, Lemma 9] again implies that
P0gt ∈ Cν(Rd).

Finally, it remains to show that P0gt ∈ Hνd . The norm of P0gt is given by

‖P0gt‖2Hνd =
∑
η≤ν

1

γη

∫
Ut

∣∣∣∣∣
J1,η∑
j=1

h
[j]
1,η(y)

∣∣∣∣∣
2

ψη(yη)ρ−η(y−η) dy

≤
∑
η≤ν

J1,η
γη

J1,η∑
j=1

∫
Ut

|h[j]1,η(y)|2ψη(yη)ρ−η(y−η) dy ≤
∑
η≤ν

(
8|η||η|!

)2
B1,η

γη
< ∞ ,

where we used the assumption (3.12) with q = 1. This completes the proof. 2

4 Distribution function and density estimators

In this section we briefly outline the QMC with preintegration algorithms for approximat-
ing the cdf and pdf. First, note that the cdf and pdf can be written as d-dimensional
integrals after carrying out the preintegration step. Explicitly, by Fubini’s Theorem we
can write the representation (1.2) for the cdf as

F (t) =

∫
Rd
P0

(
ind
(
t− φ(·,y)

))
ρ(y) dy =

∫
Ut

Φ0(ξ(t,y))ρ(y) dy , (4.1)

where in the last step we have substituted in the simplified formula (3.8) for a preintegrated
indicator function. Similarly, using the representation (1.3) along with (3.16) we can write

f(t) =

∫
Rd
P0

(
δ
(
t− φ(y)

))
ρ(y) dy =

∫
Ut

ρ0(ξ(t,y))

D0φ(ξ(t,y),y)
ρ(y) dy . (4.2)

4.1 Pointwise approximation

As a start, we consider approximating F and f pointwise at t ∈ [a, b]. Applying an
N -point QMC rule (2.3) to the d-dimensional integrals (4.1) and (4.2), we obtain the
approximations F̂N and f̂N as follows:

F (t) ≈ F̂N (t) := Qd,N
(
Φ0(ξ(t, ·))

)
=

1

N

N−1∑
n=0

Φ0

(
ξ(t, τn)

)
, (4.3)

f(t) ≈ f̂N (t) := Qd,N

(
ρ0(ξ(t, ·))

D0φ(ξ(t, ·), ·)

)
=

1

N

N−1∑
n=0

ρ0(ξ(t, τn))

D0φ(ξ(t, τn), τn)
. (4.4)

14



We are particularly interested in using randomly shifted lattice points (2.2) with (2.4),
but the description in this section applies equally to other QMC rules.

Since a randomly shifted lattice rule Qd,N is an unbiased estimator of the d-dimensional

integral, it follows that the estimators F̂N and f̂N are also unbiased. However, this assumes
that we can compute the point of discontinuity ξ(t, ·) exactly, which is not generally true.
In practice, we must often approximate this ξ(t, ·) by some numerical approximation, as
performed in [18, 23] for the case where Y is a multivariate normal vector. This leads to
biased estimators F̃N and f̃N . We now detail how to construct these biased estimators
efficiently.

First, consider approximating the cdf F at t ∈ [a, b]. For each transformed QMC point
τn we must: (i) find the point of discontinuity ξ(t, τn), and then (ii) evaluate Φ0 at this
point. In practice, these two actions must be performed numerically, however, we stress
that we only need to work with the univariate function

φ0,n := φ(·, τn),

which can be evaluated efficiently for multiple inputs if we “precompute” and store the
contribution of τn to φ0,n. As a trivial example to demonstrate this, if we have a product

function φ(·, τn) = p0(·)
∏d
i=1 pi(τn,i), then evaluating φ in general has a cost of O(d),

but if we precompute and store the product involving τn, then we can evaluate φ0,n for
K different inputs with a cost of O(K + d) instead of O(Kd). We assume that φ′0,n =

D0φ(·, τn) can be evaluated directly, and we also precompute and store the contribution
of τn to φ′0,n.

To find the point of discontinuity, we use a numerical root-finding algorithm, e.g.,
Newton’s method. Since φ ∈ C(ν0,ν)(Rd+1) with ν0 = |ν| + 1, we have φ0,n ∈ Cν0(R) for
each τn. If |ν| ≥ 1 then φ0,n ∈ C2(R) and Newton’s method converges quadratically, so
in practice only a few iterations are required. Alternatively, if the higher-order derivatives
of φ0,n can be computed explicitly, then a higher-order Householder method can instead

be used. We denote the numerical approximation of ξ by ξ̃.
If ρ0 is a Gaussian distribution, then fast and accurate approximations of its cdf Φ0

are readily available. Otherwise, if we cannot evaluate Φ0 easily, then we approximate the
one-dimensional integral Φ0(y0) =

∫ y0
−∞ ρ0(z) dz by a quadrature rule. In both cases we

denote the approximation of Φ0 by Φ̃0.
Approximating the pdf f at t ∈ [a, b] is similar: (i) obtaining the point ξ(t, τn) is the

same, while (ii) evaluating the ratio ρ0/φ
′
0,n instead of the one-dimensional integral for Φ0

is slightly simpler.
The QMC with approximate preintegration estimators of the cdf F and pdf f are

F̃N (t) :=
1

N

N−1∑
n=0

Φ̃0

(
ξ̃(t, τn)

)
, (4.5)

f̃N (t) :=
1

N

N−1∑
n=0

ρ0
(
ξ̃(t, τn)

)
D0φ

(
ξ̃(t, τn), τn

) . (4.6)

Algorithms 4.1 and 4.2 give explicit implementations of (4.5) and (4.6).

4.2 Cost of pointwise approximation

First, in the special case where the point of discontinuity ξ(t, ·) and the one-dimensional
integral Φ0 can be computed analytically, we have cost(F̂N (t)) = O(N) and cost(f̂N (t)) =
O(N). However, as mentioned above, this is not the typical case in practice, and we must
approximate these quantities by numerical root-finding and quadrature methods.
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Algorithm 4.1 Pointwise cdf estimator

Given t ∈ [a, b], N ∈ N and {τn}N−1n=0 a transformed d-dimensional QMC point set:

1: Initialise: F̃N (t)← 0
2: for n = 0, 1, . . . , N − 1 do
3: Precompute the contribution of τn to φ0,n = φ(·, τn) and φ′0,n = D0φ(·, τn)

4: Compute the point of discontinuity ξ̃(t, τn)

5: Approximate the 1D integral Φ̃0

(
ξ̃(t, τn)

)
≈
∫ ξ̃(t,τn)
−∞ ρ0(z) dz

6: Sum: F̃N (t)← F̃N (t) + Φ̃0

(
ξ̃(t, τn)

)
7: end for
8: Average: F̃N (t)← F̃N (t)/N

Algorithm 4.2 Pointwise pdf estimator

Given t ∈ [a, b], N ∈ N and {τn}N−1n=0 a transformed d-dimensional QMC point set:

1: Initialise: f̃N (t)← 0
2: for n = 0, 1, . . . , N − 1 do
3: Precompute the contribution of τn to φ0,n = φ(·, τn) and φ′0,n = D0φ(·, τn)

4: Compute the point of discontinuity ξ̃(t, τn)

5: Sum: f̃N (t)← f̃N (t) +
ρ0
(
ξ̃(t,τn)

)
D0φ
(
ξ̃(t,τn),τn

)
6: end for
7: Average: f̃N (t)← f̃N (t)/N

To analyse the cost of the pointwise approximations F̃N (t) and f̃N (t) in Algorithms 4.1
and 4.2, we assume that the number of evaluations of φ0,n and φ′0,n in the root-finding

method to compute ξ̃(t, τn) for each n in Step 4 is bounded by Kroot, which is assumed
to be independent of n. For the cdf approximation in Algorithm 4.1, we also assume
that cost(ρ0) = O(1), and that the number of quadrature points to compute the one-
dimensional integral in Step 5 is bounded by Kquad, also independently of n.

Then to more concretely illustrate why it is important to precompute the contribution
of τn to φ0,n and φ′0,n, we make the following assumption about the difference in cost in

evaluating φ and D0φ compared with the univariate functions φ0,n and φ′0,n:{
cost(φ) = $(d), cost(φ0,n) = $(1) with precomputed contribution of τn,

cost(D0φ) = $(d), cost(φ′0,n) = $(1) with precomputed contribution of τn,
(4.7)

for some nondecreasing function $ : N→ N.
The cost of Algorithms 4.1 and 4.2 are then

cost
(
F̃N (t)

)
= O

(
N [$(d) +Kroot $(1) +Kquad]

)
and

cost
(
f̃N (t)

)
= O

(
N [$(d) +Kroot $(1)]

)
.

For large d, this will be much more efficient than a naive implementation without precom-
puted contribution of τn, which would have

cost
(
F̃N (t)

)
= O

(
N [Kroot $(d) +Kquad]

)
and cost

(
f̃N (t)

)
= O

(
N Kroot $(d)

)
.

4.3 Approximating the cdf and pdf on an interval

Now we outline the full QMC with preintegration method for approximating the cdf and
pdf on [a, b], obtained by applying Lagrange interpolation LM based on points {tm}Mm=0 ⊂
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[a, b] to the pointwise estimators F̂N and f̂N . We denote the approximations by

F̂N,M := LM (F̂N ) = LM

(
Qd,N

(
Φ0(ξ(•, ·))

))
, (4.8)

f̂N,M := LM (f̂N ) = LM

(
Qd,N

( ρ0(ξ(•, ·))
D0φ(ξ(•, ·), ·)

))
, (4.9)

where the QMC rule Qd,N acts on a function with respect to · whereas Lagrange interpo-
lation LM acts on •. As discussed in Section 2.3 we will use Chebyshev points, but the
description below allows for any set of distinct interpolation nodes.

In practice, we must approximate the point of discontinuity by ξ̃ ≈ ξ, and for the cdf
also the one-dimensional integral by Φ̃0 ≈ Φ0. This leads to the biased estimators

F̃N,M := LM (F̃N ) = LM

(
Qd,N

(
Φ̃0

(
ξ̃(•, ·)

)))
, (4.10)

f̃N,M := LM (f̃N ) = LM

(
Qd,N

(
ρ0
(
ξ̃(•, ·)

)
D0φ

(
ξ̃(•, ·), ·

))). (4.11)

Recall from the definition of the Lagrange interpolation operator (2.7) that to construct
the estimators F̃N,M and f̃N,M , we must compute the pointwise approximations F̃N and f̃N
at all of the interpolation nodes {tm}Mm=0. One way to implement the estimator F̃N,M as in

(4.10) is to simply run Algorithm 4.1 for each tm for m = 0, 1, . . . ,M , with cost(F̃N,M ) =

(M + 1)× cost(F̃N ). However, since we can use the same QMC rule for each interpolation
node tm, it is more efficient to instead vectorise Algorithm 4.1 and utilise precomputed
contributions of each point τn so that we only have to deal with M+1 univariate functions.
Similar arguments can also be made for the cdf estimator f̃N,M . Explicit algorithms

detailing how to construct the estimators F̃N,M and f̃N,M are given in Algorithms 4.3
and 4.4.

4.4 Cost of full cdf and pdf estimators

Following the analysis of the cost of the pointwise estimators in Section 4.2, we again
assume the cost model (4.7) and assume that the number of evaluations of the univariate
functions in the root-finding method and the number of quadrature points for computing
the one-dimensional integral are bounded by Kroot and Kquad, respectively, which are
additionally assumed to be independent of n and m. The cost of Algorithms 4.3 and 4.4
are then

cost(F̃N,M ) = O
(
N [$(d) +M Kroot $(1) +M Kquad]

)
,

cost(f̃N,M ) = O
(
N [$(d) +M Kroot $(1)]

)
.

To once again illustrate the importance of the precomputation step, we note that a
näıve implementation that simply evaluates φ at all of its components each time would
have cost(f̃N,M ) = O(N M Kroot $(d)).

5 Error analysis

5.1 Regularity of F and f

In order to utilise the results on the error for interpolation on [a, b] from Section 2.3,
we need to know quantitatively how smooth the cdf F and pdf f are with respect to t.
Clearly this smoothness will depend on the smoothness of the original transformation φ
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Algorithm 4.3 cdf estimator

Given M ∈ N, {tm}Mm=0 ⊂ [a, b], N ∈ N and {τn}N−1n=0 a transformed d-dimensional QMC
point set:

1: Initialise: F̃N (tm)← 0 for each m = 0, 1, . . . ,M
2: for n = 0, 1, . . . , N − 1 do
3: Precompute the contribution of τn to φ0,n = φ(·, τn) and φ′0,n = D0φ(·, τn)
4: for m = 0, 1, . . . ,M do
5: Compute the point of discontinuity ξ̃(tm, τn)

6: Approximate the 1D integral Φ̃0

(
ξ̃(tm, τn)

)
≈
∫ ξ̃(tm,τn)
−∞ ρ0(z) dz

7: Sum: F̃N (tm)← F̃N (tm) + Φ̃0

(
ξ̃(tm, τn)

)
8: end for
9: end for

10: Average: F̃N (tm)← F̃N (tm)/N for each m = 0, 1, . . . ,M
11: Interpolate: F̃N,M ←

∑M
m=0 F̃N (tm)χM,m

Algorithm 4.4 pdf estimator

Given M ∈ N, {tm}Mm=0 ⊂ [a, b], N ∈ N and {τn}N−1n=0 a transformed d-dimensional QMC
point set:

1: Initialise: f̃N (tm)← 0 for each m = 0, 1, . . . ,M
2: for n = 0, 1, . . . , N − 1 do
3: Precompute the contribution of τn to φ0,n = φ(·, τn) and φ′0,n = D0φ(·, τn)
4: for m = 0, 1, . . . ,M do
5: Compute the point of discontinuity ξ̃(tm, τn)

6: Sum: f̃N (tm)← f̃N (tm) +
ρ0
(
ξ̃(tm,τn)

)
D0φ
(
ξ̃(tm,τn),τn

)
7: end for
8: end for
9: Average: f̃N (tm)← f̃N (tm)/N for each m = 0, 1, . . . ,M

10: Interpolate: f̃N,M ←
∑M

m=0 f̃N (tm)χM,m

from (1.1). Since in Assumption 1 we assume that φ is |ν| + 1 times differentiable with
respect to variable y0 and ρ0 ∈ C |ν|(R), we can expect a similar level of smoothness for F
and f .

To see the dependence on t more explicitly, recall that the formulas (1.2) for cdf
and (1.3) for the pdf can be formulated as d-dimensional integrals as in (4.1) and (4.2),
respectively. From these formulas, it is then clear that the smoothness of F and f depends
on the smoothness of ξ, which in turn depends on the smoothness of φ. In particular,
Theorem 3.1 implies that ξ is as smooth (with respect to t) as φ (with respect to y0).

Note that the assumptions we make here on the smoothness of φ and ρ0 are the same
as those required for the preintegration step, i.e., we do not need any further smoothness
assumptions.

Theorem 5.1 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy Assump-
tion 1 and Assumption 2 for η = 0 and all q = 1, 2, . . . , |ν| + 1. Assume additionally
that Ut = Rd for all t ∈ [a, b]. Then F ∈ W |ν|+1,∞[a, b] and f ∈ W |ν|,∞[a, b], and for
q = 1, . . . , |ν|+ 1 the derivatives are bounded by

‖F (q)‖L∞ = ‖f (q−1)‖L∞ ≤ 3q−1 (q − 1)!B
1/2
q,0 .
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Proof. We prove that the cdf satisfies F ∈ W |ν|+1,∞[a, b]. Then since f = F ′, the result
for the pdf follows immediately.

Consider the derivative of order q ≤ |ν| + 1. First, differentiating (4.1) with respect
to t and applying the Leibniz rule [18, Theorem 4] q times, we obtain

F (q)(t) =

∫
Rd

∂q

∂tq
Φ0(ξ(t,y))ρ(y) dy . (5.1)

Recall that we have
∂

∂t
Φ0(ξ(t,y)) =

ρ0(ξ(t,y))

D0φ(ξ(t,y),y)
. (5.2)

We now prove by induction on q ≥ 1 that

∂q

∂tq
Φ0(ξ(t,y)) =

Jq,0∑
j=1

h
[j]
q,0(t,y), with Jq,0 ≤ 3q−1 (q − 1)! , (5.3)

where each function h
[j]
q,0 is of the form (3.10) with η = 0. The base step q = 1 holds for

the single function (5.2) with r = 0 (no α), β = 0, and J1,0 = 1. Suppose next that (5.3)
holds for some q ≥ 1. Then we have

∂

∂t

(
∂q

∂tq
Φ0(ξ(t,y))

)
=

Jq,0∑
j=1

∂

∂t
h
[j]
q,0(t,y) =

Jq,0∑
j=1

Kq,0∑
k=1

h
[j,k]
q+1,0(t,y) =

Jq+1,0∑
j′=1

h
[j′]
q+1,0(t,y).

In the second equality we used Lemma B.2 in Appendix B with η = 0, which states

that each function ∂
∂th

[j]
q,0 can be written as a sum of Kq,0 ≤ 3q − 1 functions of the form

(3.10), with q replaced by q+ 1. We enumerated these functions with the notation h
[j,k]
q+1,0

and then relabeled all functions for different combinations of indices j and k with the

notation h
[j′]
q+1,0. The total number of functions satisfies

Jq+1,0 = Jq,0Kq,0 ≤ 3q−1(q − 1)! (3q − 1) ≤ 3q q! ,

as required. This completes the induction proof for (5.3).
Thus we have

f (q−1)(t) = F (q)(t) =

Jq,0∑
j=1

∫
Rd
h
[j]
q,0(t,y)ρ(y) dy

and

‖f (q−1)‖L∞ = ‖F (q)‖L∞ ≤
Jq,0∑
j=1

sup
t∈[a,b]

∫
Rd

∣∣h[j]q,0(t,y)
∣∣ρ(y) dy ≤ 3q−1 (q − 1)!B

1/2
q,0 ,

where we used assumption (3.12) with η = 0 and the Cauchy-Schwarz inequality. Hence
F ∈W |ν|+1,∞[a, b] and also f = F ′ ∈W |ν|,∞[a, b]. 2

Remark 5.2 In Theorem 5.1, we have assumed for simplicity that Ut = R for all t ∈ [a, b],
which implies that for each y ∈ Rd and t ∈ [a, b] there is some y0 ∈ R such that φ(y0,y) = t.
This can be viewed as a restriction on the interval [a, b].

19



5.2 Error of cdf and pdf estimators

In this subsection we analyse the error of the unbiased estimators from Section 4. First,
we prove bounds for the RMSE of the pointwise estimators F̂N and f̂N . Then we bound
the root-mean-integrated-square error (RMISE) of the full estimators F̂N,M and f̂N,M on
[a, b]. Recall that the expectation in the RMSE and RMISE, which we denote by E∆, is
taken with respect to the random shift ∆ in the lattice rule. In this section, we assume
that the generating vector is constructed using the CBC algorithm from [24].

Theorem 5.3 (Pointwise RMSE) Let d ≥ 1, ν = 1 ∈ Nd, and [a, b] ⊂ R. Suppose that
φ and ρ0 satisfy Assumption 1 and Assumption 2 for all η ∈ {0, 1}d with q = 0 for the cdf
case and q = 1 for the pdf case. Let Qd,N be a CBC-constructed randomly shifted lattice

rule as in (2.3). Then, for t ∈ [a, b], the estimators F̂N (t) and f̂N (t) as given in (4.3) and
(4.4) satisfy, for all λ ∈ (1/ω, 1],√

E∆

[∣∣F (t)− F̂N (t)
∣∣2] ≤ CF,λ φtot(N)−1/(2λ) , (5.4)√

E∆

[∣∣f(t)− f̂N (t)
∣∣2] ≤ Cf,λ φtot(N)−1/(2λ) , (5.5)

where, with ω and c as in Theorem 2.1,

CF,λ :=

( ∑
0 6=η∈{0,1}d

γλη
[
2 c ζ(ωλ)

]|η|) 1
2λ
(

1 +
∑

0 6=η∈{0,1}d

(
8|η|−1(|η| − 1)!

)2
B0,η

γη

) 1
2

,

Cf,λ :=

( ∑
0 6=η∈{0,1}d

γλη
[
2 c ζ(ωλ)

]|η|) 1
2λ
( ∑
η∈{0,1}d

(
8|η||η|!

)2
B1,η

γη

) 1
2

.

Proof. First for the cdf estimator, using (4.1) and the definition (4.3) of F̂N we can write
the mean-square error as

E∆

[
|F (t)− F̂N (t)|2

]
= E∆

[∣∣∣∣ ∫
Rd

Φ0(ξ(t,y))ρ(y) dy −Qd,N (Φ0(ξ(t, ·)))
∣∣∣∣2].

Then since φ and ρ0 satisfy Assumption 1 and Assumption 2 for all η ∈ {0, 1}d with q = 0,
we can apply Theorem 3.2 to show that the preintegrated function Φ0(ξ(t, ·)) belongs to
H1
d and its norm is bounded by (3.13) with ν = 1. Substituting this norm bound into the

CBC error bound (2.6) and taking the square root proves the desired result.
The result for the pdf estimator follows by essentially the same argument, but with

q = 1 and using the norm bound (3.17) in Theorem 3.3 instead of Theorem 3.2. 2

Next, we bound the RMISE on [a, b]. For the cdf estimator F̂N,M the mean-integrated
square error (MISE) is formulated as

E∆

[
‖F − F̂N,M‖2L2

]
= E∆

[ ∫ b

a
|F (t)− F̂N,M (t)|2 dt

]
,

and similarly for f̂N,M .

Theorem 5.4 Let d ≥ 1, ν = 1 ∈ Nd and [a, b] ⊂ R. Suppose φ and ρ0 satisfy
Assumption 1; and

Assumption 2 for η = 0 and all q ≤ d+ 1; and

Assumption 2 for all η ∈ {0, 1}d with q = 0 for the cdf case; and

Assumption 2 for all η ∈ {0, 1}d with q = 1 for the pdf case.
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Suppose also that Ut = Rd for all t ∈ [a, b]. Let Qd,N be a CBC-constructed randomly
shifted lattice rule as in (2.2) and let LM be the Lagrange interpolation operator on [a, b]
based on Chebyshev points as in (2.7). Then for σ ∈ N, specified below, and M > σ, the
estimators F̂N,M and f̂N,M in (4.8) and (4.9) satisfy, for all λ ∈ (1/ω, 1],√

E∆

[
‖F − F̂N,M‖2L2

]
≤ CF,λ,σ

(
φtot(N)−1/(2λ) +M−σ

)
for σ ≤ d, (5.6)√

E∆

[
‖f − f̂N,M‖2L2

]
≤ Cf,λ,σ

(
φtot(N)−1/(2λ) +M−σ

)
for σ ≤ d− 1, (5.7)

where CF,λ,σ :=
√

2(b− a) max(CF,λ, CF,σ), Cf,λ,σ :=
√

2(b− a) max(Cf,λ, Cf,σ), with
CF,λ, Cf,λ as in Theorem 5.3, ω ∈ (1, 2] as in Theorem 2.1, and

CF,σ :=
4(b− a)

π
[3(σ + 1)]σ (σ − 1)!B

1/2
σ+1,0,

Cf,σ :=
4(b− a)

π
[3(σ + 1)]σ+1 (σ − 1)!B

1/2
σ+2,0.

Proof. First, consider the cdf estimator F̂N,M . We can split the MISE into the QMC and
interpolation components

E∆

[
‖F − F̂N,M‖2L2

]
≤ 2E∆

[
‖F − F̂N‖2L2

]
+ 2E∆

[
‖F̂N − LM F̂N‖2L2

]
. (5.8)

The first term in (5.8) can be bounded by the pointwise error as follows. By Fubini’s
Theorem we may swap the expected value with respect to ∆ and the integral over [a, b]
to obtain

E∆

[
‖F − F̂N‖2L2

]
=

∫ b

a
E∆

[
|F (t)− F̂N (t)|2

]
dt ≤ (b− a)C2

F,λ φtot(N)−1/λ, (5.9)

where we have substituted in the bound (5.4).
For the second term in (5.8) we will use the Lagrange interpolation error bound (2.8)

by first adapting the proof of Theorem 5.1 to show that F̂N ∈ W σ+1,∞[a, b] for σ ≤ d
and all random shifts ∆. Differentiating (4.3) with respect to t then substituting in the
formula (5.3) for q = σ + 1 gives

F̂
(σ+1)
N (t) =

1

N

N−1∑
n=0

∂σ+1

∂tσ+1
Φ0

(
ξ(t, τ∆

n )
)

=
1

N

N−1∑
n=0

Jσ+1,0∑
j=1

h
[j]
σ+1,0(t, τ∆

n ) , (5.10)

with Jσ+1,0 ≤ 3σ σ! , where we emphasized the explicit dependence of each transformed
QMC point on the random shift with the superscript ∆. Hence, we can apply (2.8) to
obtain

E∆

[
‖F̂N − LM F̂N‖2L2

]
≤ (b− a)E∆

[
‖F̂N − LM F̂N‖2L∞

]
≤ (b− a)

(
4

πσ(M − σ)σ

)2

E∆

[
‖F̂ (σ+1)

N ‖2L1

]
≤ (b− a)

(
4 (σ + 1)σ

πσ

)2

E∆

[
‖F̂ (σ+1)

N ‖2L1

]
M−2σ , (5.11)

where we used the easily verified inequality M − σ ≥M/(σ + 1) for all M ≥ σ + 1.
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To bound the expected value in (5.11), we use the formula (5.10), the Cauchy–Schwarz
inequality for integral and sum, and Fubini’s Theorem to obtain

E∆

[
‖F̂ (σ+1)

N ‖2L1

]
≤ (b− a) Jσ+1,0

N

N−1∑
n=0

Jσ+1,0∑
j=1

∫ b

a

∫
[0,1]d

|h[j]σ+1,0(t, τ∆
n )|2 d∆ dt

=
(b− a) Jσ+1,0

N

N−1∑
n=0

Jσ+1,0∑
j=1

∫ b

a

∫
Rd
|h[j]σ+1,0(t,y)|2 ρ(y) dy dt

≤ (b− a)2 J2
σ+1,0Bσ+1,0 ≤ [(b− a) 3σ σ!]2Bσ+1,0, (5.12)

where we made a change of variables and then used the upper bound (3.12), which is
assumed to hold for all q = σ + 1 ≤ |ν|+ 1 = d+ 1, as well as the bound Jσ+1,0 ≤ 3σ σ! .
Substituting (5.12) into (5.11), we conclude that

E∆

[
‖F̂N − LM F̂N‖2L2

]
≤ (b− a)C2

F,σM
−2σ , (5.13)

with CF,σ as defined in the theorem. Substituting (5.9) and (5.13) into (5.8), we obtain
the RMISE bound (5.6) for the cdf estimator.

The result for the pdf estimator follows by essentially the same argument. The key

difference is that we must instead bound the norm ‖f̂ (σ+1)
N ‖L1 for σ+ 1 ≤ |ν| = d. Similar

to the relationship f = F ′, it follows from (5.2) that f̂N is the derivative with respect to
t of F̂N . Thus

f̂
(σ+1)
N (t) = F̂

(σ+2)
N (t) =

1

N

N−1∑
n=0

∂σ+2

∂tσ+2
Φ0(ξ(t, τ

∆
n )) =

1

N

N−1∑
n=0

Jσ+2,0∑
j=1

h
[j]
σ+2,0(t, τ∆

n ) ,

with Jσ+2,0 ≤ 3σ+1 (σ + 1)! . Following the same steps as before, we obtain

E∆

[
‖f̂ (σ+1)
N ‖2L1

]
≤ [(b− a) 3σ+1 (σ + 1)!]2Bσ+2,0 ,

and eventually arrive at the RMISE bound (5.7) for the pdf estimator. 2

Remark 5.5 In Theorem 5.4, we assume the minimal smoothness required to apply the
QMC theory from Theorem 2.1 (see also [24]), i.e., ν = 1, which in most cases is sufficient
to also handle the interpolation error. For the special case d = 1, the interpolation
component of the error converges linearly for F̂N,M , i.e., σ = 1 in (5.6), but does not

converge for f̂N,M , i.e., σ = 0 in (5.7). Under stricter smoothness assumptions, one can of
course prove higher convergence rates for the interpolation error when d = 1. However, in
this case, after preintegration one only needs to approximate a one-dimensional integral,
for which it is more appropriate to use a one-dimensional quadrature rule, e.g., Gauss–
Hermite, instead of QMC. Such a rule would additionally exploit any higher smoothness
assumptions to obtain higher-order convergence for the quadrature error.

Theorem 5.4 implies that we can take σ up to d−1 (or d for the cdf approximation) and
obtain a very fast convergence rate in terms of M . However, as σ increases the constant
increases significantly. Hence, in practice one should take a moderate value for σ, e.g.,
around 2–5.

To see how Theorem 5.4 applies in practice, let now N be a prime or a prime power, in
which case φtot(N) ∼ N . Then to balance the QMC and interpolation error, Theorem 5.4
implies that we should take M ∼ N1/σ. The final result is that the estimators converge
at a rate arbitrarily close to 1/N . It is summarised in the following Corollary.

22



Corollary 5.6 Let d ≥ 2 and suppose that the conditions in Theorem 5.4 hold. Let N be
a prime power and choose M ∼ N1/σ for a moderate σ ≤ d − 1. Then, for ε > 0 there
exist constants CF,ε, Cf,ε <∞ such that the error of the cdf and pdf estimators satisfy√

E∆

[
‖F − F̂N,M‖2L2

]
≤ CF,εN

−1+ε,√
E∆

[
‖f − f̂N,M‖2L2

]
≤ Cf,εN

−1+ε .

6 Numerical results

To test the method, we consider approximating the cdf and pdf of a random variable
X ∈ R given by a sum of d+ 1 log-normals,

X =

d∑
i=0

exp(Wi) =

d∑
i=0

exp(AiY ) =: φ(Y ), (6.1)

where W = (Wi)
d
i=0 is a (d + 1)-dimensional multivariate normal vector with mean 0

and covariance Σ. In the second equality, we have factorised the covariance matrix as
Σ = AA> and made the change of variables Y = A−1W , so that φ is a function of the
(d+ 1)-dimensional standard normal vector Y = (Yi)

d
i=0. In (6.1), Ai denotes the ith row

of the matrix factor A. We use the principal components or PCA factorisation, which is
based on the eigendecomposition of Σ with the eigenvalues ordered in nonincreasing value.
Clearly, X fits the setting of this paper with ρi(yi) = e−y

2
i /2/
√

2π.
We test the method for two covariance matrices. The first example is in d + 1 = 32

dimensions with covariance matrix Σ(1) and the second example takes d + 1 = 64 and a
covariance matrix Σ(2) with entries that are decaying in value:

Σ
(1)
i,j =

{
1 for i = j ,
1
2 for i 6= j ,

and Σ
(2)
i,j =

1

max(i, j)
.

It can easily be verified that Assumption 1 and Assumption 2, with the weight functions
ψi(y) = e−δy

2/2 for δ ∈ (0, 12), are satisfied for both covariance matrices. For this choice of
ψi, Table 3 in [21] indicates that (2.5) holds with ω = 2(1− δ), giving a QMC convergence
rate of 1 − δ. Choosing the weight parameters {γη} and performing a full error analysis
that is explicit in the dependence on the dimension is left for future work.

For the QMC approximations we use embedded lattice rules given by the CBC con-
struction from [7] and which are available at [20]. Although there is no accompanying
theory, these rules have been shown to work well in practice. For Σ(1), we use the generat-
ing vectors lattice-38005-1024-1048576.5000, constructed using equal product weights
γi = 0.05, and for Σ(2), we use lattice-39102-1024-1048576.3600, constructed using
decaying product weights γi = 1/i2.

The final estimate is the average over R = 32 random shifts, and we estimate the
RMSE of this average by the sample standard error over the random shifts. For a fair
comparison, each MC approximation uses R×N points in total and the RMSE is estimated
by the sample standard error over all MC realisations. For each τn, the value of ξ(t, τn) is
computed using Newton’s method with a tolerance of 10−10. All computations were run
on the computational cluster Katana [28] at UNSW Sydney.

Convergence results for the cdf and pdf at the point t = 60 for both covariance matri-
ces are given in Figures 1 and 2 for N = 210, 211, . . . , 220, where we plot the approximate
relative RMSE (the RMSE divided by the estimated value). We see clearly that preinte-
gration drastically improves the empirical results for QMC, especially for the matrix Σ(2)
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Figure 1: Relative RMSE convergence in N for MC and QMC, with and without preinte-
gration, for F (60) = P[X ≤ 60], and also QMC with preintegration for f(60), for Σ(1).
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Figure 2: Relative RMSE convergence in N for MC and QMC, with and without preinte-
gration, for F (60) = P[X ≤ 60], and also QMC with preintegration for f(60), for Σ(2).

which has decaying eigenvalues. The results for Σ(1) are similar to those presented in [6].
A possible explanation for the better results observed for Σ(2), compared to Σ(1), is that
although formally the dimension is larger, this problem may have a lower effective dimen-
sion. Since the eigenvalues of Σ(2) are decaying, this suggests that the variables are also
decaying in importance, whereas the largest eigenvalue of Σ(1) is simple and the remaining
d = 31 eigenvalues are equal, suggesting that after preintegration the remaining variables
are all equally important.

Tables 6 and 2 give the CPU times for the QMC and QMC with preintegration ap-
proximations for the cdf at t = 60, as well as the QMC with preintegration approximation
of the pdf at t = 60, for Σ(1) and Σ(2), respectively. The timing tests were run on a single
processor for N = 213, 214, . . . , 220 with a single random shift. As expected, the CPU time
increases linearly with N . In the last rows, we give the increase factor of the CPU time for
QMC with preintegration compared to plain QMC for the cdf. Since this factor is around
2 in all cases, it is much less compared to the the error reduction observed in Figures 1
and 2, which ranges from 10 to over 100. This demonstrates that preintegration is well
worth the slight increase in cost.

In Figure 3, we plot the QMC with preintegration estimators for both the cdf F (left)
and pdf f (right) on the interval [40, 100]. Figure 4 then plots the convergence of the
RMISE. The approximations of the cdf and pdf use N = 220 QMC points averaged over
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N 213 214 215 216 217 218 219 220

QMC (cdf) 0.05 0.11 0.23 0.46 0.95 1.92 3.59 7.17
QMC preint. (cdf) 0.13 0.25 0.50 1.01 2.03 4.11 8.09 16.12
QMC preint. (pdf) 0.09 0.18 0.34 0.72 1.36 2.89 5.41 10.88

increase factor (cdf) 2.6 2.3 2.2 2.2 2.1 2.1 2.3 2.2

Table 1: CPU times for QMC approximations with a single random shift for Σ(1).
N 213 214 215 216 217 218 219 220

QMC (cdf) 0.08 0.17 0.32 0.67 1.28 2.60 5.14 10.22
QMC preint. (cdf) 0.15 0.31 0.63 1.31 2.49 5.03 10.04 19.83
QMC preint. (pdf) 0.12 0.23 0.49 0.92 1.92 3.71 7.49 14.68

increase factor (cdf) 1.9 1.8 2.0 2.0 1.9 1.9 2.0 1.9

Table 2: CPU times for QMC approximations with a single random shift for Σ(2).
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Figure 3: Approximate cdf (left) and approximate pdf (right) for Σ(2).

R = 32 random shifts and degree M = 42 Lagrange interpolation based on Chebyshev
points. For the RMISE we use N = 210, 211, . . . , 219 with interpolation degree M =
dN1/4e + 10 and R = 32 random shifts. In this way, the number of interpolation points
is coupled to the number of QMC points as in Corollary 5.6, with the choice σ = 4. To
estimate the RMISE of F̂M,N and f̂M,N , we first approximate the L2 error by comparing
each approximation to an approximation with much higher precision (i.e., M = 42, N =
220, R = 32) treated as the true cdf or pdf. Then we approximate the mean with respect
to ∆ by averaging the L2 error over the random shifts. This captures both the QMC
and interpolation contributions to the RMISE As expected from Corollary 5.6, we observe
almost 1/N convergence for the RMISE. This demonstrates that the method is an effective
practical strategy.
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A Illustrative examples

A.1 Some functions in H1
d are not in BVHK after transformation

Mapping a weighted integral of an unbounded function g on Rd to the d-dimensional unit
cube as in (2.3) clearly results in an unbounded integrand over [0, 1]d, since the closure of
the range of g is unchanged by the transformation. This precludes membership of BVHK
for the transformed integrand. For example, letting d = 1 and g(y) = y2, and taking ρ to
be the standard normal Gaussian density, results in an unweighted integral over [0, 1] of an
unbounded function, namely Φ−1(u)2. An unbounded function of a single variable does not
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have bounded variation. The argument applies equally to any non-constant polynomial
on Rd, and to any unbounded function g that is integrable after multiplication by ρ.

On the other hand, choosing the weight function ψ(y) = e−|y|, it is easily seen that
g(y) = y2, or any polynomial, belongs to H1

1 . Furthermore, for this pair of ρ and ψ,
Theorem 2.1 holds with ω arbitrarily close to 2, and hence we get nearly first order
convergence.

Thus the setting used in the present paper allows a wider class of problems than
assuming that the transformed function is in BVHK.

A.2 Smoothness fails for preintegrated functions if the random variables
Yi have compact support

The following example, defined on R4, conforms with the definitions in the Introduction
for d = 3, except that in this case the underlying independent random variables Yi have
support [0, 1], and have uniform distribution, corresponding to ρi(y) = 1 for y ∈ [0, 1] and
ρi(y) = 0 elsewhere. We take

φ(y) := φ(y0, y1, y2, y3) = y0 −
y1
3
− y2

3
− y3

3
+

1

2
, y ∈ [0, 1]4.

Preintegration with respect to y0 of the indicator function composed with φ yields∫ 1

0
ind(φ(y)) dy0 =

∫ 1

0
ind
(
y0 −

y1
3
− y2

3
− y3

3
+

1

2

)
dy0

=

∫ 1

(
y1
3
+
y2
3
+
y2
3
− 1

2
)+

1 dy0 = 1−
(y1

3
+
y2
3

+
y3
3
− 1

2

)
+
, (A.1)

which is continuous on [0, 1]3, but has a discontinuous gradient across the plane

y1 + y2 + y3 =
3

2
. (A.2)

The preintegrated function (A.1) is not in the class BVHK, and hence does not have the
smoothness assumed for QMC. To see this, for n a positive even integer, consider all the
cubes of edge length 1/n with one vertex at ( i1n ,

i2
n ,

i3
n ) and the diagonally opposite vertex

at ( i1+1
n , i2+1

n , i3+1
n ), with i1, i2, i3 ∈ {0, 1, . . . , n− 1} and such that i1 + i2 + i3 = 3

2n− 2.
For each such cube, the vertex ( i1+1

n , i2+1
n , i3+1

n ) satisfies

y1
3

+
y2
3

+
y3
3
− 1

2
=

1

3n
> 0,

and hence (y13 + y2
3 + y3

3 −
1
2)+ has the value 1

3n at that vertex, while having the value 0 at
the other seven vertices, since they lie on or below the plane (A.2). Thus each small cube
contributes 1

3n to the variation in the sense of Vitali [25]. Moreover, because the plane
(A.2) is a 2-dimensional manifold with a non-trivial intersection with the unit cube, it is
easy to see that there are of exact order n2 such cubes in the unit cube. Thus the total
variation in the sense of Vitali has a lower bound of exact order n. Letting n → ∞, it
follows that the variation in the sense of Vitali, and hence also of Hardy and Krause, is
infinite. Similar results also hold in higher dimensions.

The paper [14] shows that for the case of the cube, as in this example, preintegration
needs to be performed repeatedly if the mixed derivative smoothness is to be improved,
with each successive preintegration yielding at most one additional order of smoothness.
This implies that, in general, for the unit cube one must perform preintegration with
respect to at least d/2 different variables to obtain first-order mixed derivative smoothness.
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A.3 The monotonicity condition is necessary

Consider the bivariate function g(y1, y2) := m
√

(y1 − y2)+, for m ≥ 2, on [0, 1]2. This
is a simplified model (simplified in being restricted to the unit square instead of Rd)
of the typical singularity shown in [10] to arise when monotonicity with respect to the
preintegration variable fails. A lower bound on the variation in the sense of Vitali, and
hence of Hardy and Krause, can be obtained by taking a uniform partition of edge length
1/n of the unit square, and then considering the contribution to the variation in the sense of
Vitali from only those squares of size 1/n that are bisected by the main diagonal. From the
values of g at the four vertices, each such square contributes |0−0 + 0− m

√
1/n| = m

√
1/n.

Since there are n such squares, a lower bound on the variation of g is n1−1/m, which for
all m ≥ 2 is unbounded as n→∞. Thus g is not in the class BVHK.

A.4 Implications for analysis of QMC after preintegration

The results in [14] and the example in Section A.2 show that preintegration is not guar-
anteed to be an effective method on compact domains, e.g., the unit cube. Hence, in this
work we assume that the random variables Yi, i = 0, 1, . . . d, have support on the whole
real line, resulting in an integration problem defined on Rd+1, and we then use the theory
from [18], which proves that on Rd+1 one step of preintegration is sufficient (under certain
conditions). Furthermore, it is well-known that for problems on unbounded domains, the
strategy of mapping back to the unit cube and using the Koksma–Hlawka inequality has
the drawback that it cannot handle unbounded integrands, because they are not in BVHK
(see also Section A.1). Hence, in this paper we use the setting introduced in [24] (specif-
ically an equivalent space), which can handle unbounded integrands by an appropriate
choice of the weight functions {ψi}. The BVHK setting may allow for certain functions
that do not have square-integrable mixed derivatives, as assumed in our setting.

In summary, preintegration is most effective for problems on unbounded domains, for
which the results in [24] provide the appropriate setting to perform QMC error analysis.
On the other hand, Section A.3 and [10] show that if the monotonicity condition fails then
there may exist a square-root singularity, which can neither be handled by BVHK nor by
our setting.

B Technical results

Lemma B.1 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy Assump-
tion 1, and recall the definitions of Ut, ξ and V in (3.2), (3.3) and (3.5), respectively. For
any q ∈ N0 and η ≤ ν satisfying |η|+ q ≤ |ν|+ 1, we consider functions hq,η : V → R of
the form (3.10). Then for any i ∈ {1 : d}, we can write

Dihq,η(t,y) =

Kq,η∑
k=1

h
[k]
q,η+ei

(t,y) with Kq,η ≤ 8|η|+ 6q − 3,

where each function h
[k]
q,η+ei

is of the form (3.10) with η replaced by η + ei.

Proof. For any i ∈ {1 : d} and hq,η(t,y) = hq,η,(r,α,β)(t,y) from (3.10) we have

Dihq,η,(r,α,β)(t,y) = Di

(
(−1)r

[D0φ(ξ(t,y),y)]r+q︸ ︷︷ ︸
=:T1(t,y)

ρ
(β)
0 (ξ(t,y))︸ ︷︷ ︸
=:T2(t,y)

r∏
`=1

Dα`φ(ξ(t,y),y)︸ ︷︷ ︸
=:T3(t,y)

)
.
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Using the chain rule and substituting Diξ(t,y) = −Diφ(ξ(t,y),y)/D0φ(ξ(t,y),y) (see
(3.6)), and then simplifying our notation by suppressing the dependence on t and y, we
obtain

DiT1(t,y) =
−(r + q) (−1)r

[
DiD0φ(ξ(t,y),y) +D0D0φ(ξ(t,y),y)Diξ(t,y)

]
[D0φ(ξ(t,y),y)]r+q+1

=
(r + q) (−1)r+1De0+eiφ(ξ)

[D0φ(ξ)]r+1+q
+

(r + q) (−1)r+2D2e0φ(ξ)Deiφ(ξ)

[D0φ(ξ)]r+2+q
,

DiT2(t,y) = ρ
(β+1)
0 (ξ(t,y))Diξ(t,y) = −ρ

(β+1)
0 (ξ)Deiφ(ξ)

D0φ(ξ)
,

DiT3(t,y) =

r∑
m=1

[
DiDαmφ(ξ(t,y),y)+D0Dαmφ(ξ(t,y),y)Diξ(t,y)

] r∏
`=1
` 6=m

Dα`φ(ξ(t,y),y)

=
r∑

m=1

[
Dαm+eiφ(ξ)− Dαm+e0φ(ξ)Deiφ(ξ)

D0φ(ξ)

] r∏
`=1
` 6=m

Dα`φ(ξ).

Using the product rule, we arrive at

Dihq,η,(r,α,β) = (DiT1)T2 T3 + T1 (DiT2)T3 + T1 T2 (DiT3)

=
(
S1a + S1b

)
+ S2 +

r∑
m=1

(
S3a,m + S3b,m

)
,

where

S1a := (r + q)hq,η+ei,(r+1,α̃,β), with α̃` :=

{
α` for ` = 1, . . . , r,
ei + e0 for ` = r + 1,

S1b := (r + q)hq,η+ei,(r+2,α̃,β), with α̃` :=

α` for ` = 1, . . . , r,
2e0 for ` = r + 1,
ei for ` = r + 2,

S2 := hq,η+ei,(r+1,α̃,β+1), with α̃` :=

{
α` for ` = 1, . . . , r,
ei for ` = r + 1,

S3a,m := hq,η+ei,(r,α̃,β), with α̃` :=

{
α` for ` = 1, . . . , r, ` 6= m,
αm + ei for ` = m,

S3b,m := hq,η+ei,(r+1,α̃,β), with α̃` :=

α` for ` = 1, . . . , r, ` 6= m,
αm + e0 for ` = m,
ei for ` = r + 1.

Observe that all the hq,η+ei,[··· ] functions above are of the form (3.10) with η replaced
by η+ei, and the conditions in (3.10) are satisfied by an inductive argument. For example,
in S1b, we gained two factors D2e0φ(ξ) and Deiφ(ξ) to join the product over `, increasing
the upper limit of the product from r to r + 2, which is consistent with the increase in
the exponent of D0φ(ξ) from r + q to r + 2 + q. Furthermore, r + 2 ≤ 2|η|+ q − 1 + 2 =
2|η + ei| + q − 1, as required. Moreover, with α̃r+1 = 2e0 and α̃r+2 = ei, we have the
updated sum βe0+

∑r+2
`=1 α̃` = (r+q−1,η)+2e0+ei = (r+2+q−1,η+ei), as required.

The result for the other terms above can be justified in the same way. These hq,η+ei,[··· ]
functions are all different so there is no cancellation.
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Treating the multiple (r+q)hq,η+ei,[··· ] in S1a as r+q occurrences of the same function
and doing this analogously for S1b, we conclude that Dihq,η,(r,α,β) can be written as a sum
of Kq,η functions of the form (3.10) with η replaced by η + ei, where

Kq,η = (r + q) + (r + q) + 1 +
∑r

m=1(1 + 1) = 4r + 2q + 1

≤ 4(2|η|+ q − 1) + 2q + 1 = 8|η|+ 6q − 3.

This completes the proof. 2

Lemma B.2 Let d ≥ 1, ν ∈ Nd0, and [a, b] ⊂ R. Suppose that φ and ρ0 satisfy Assump-
tion 1, and recall the definitions of Ut, ξ and V in (3.2), (3.3) and (3.5), respectively. For
any q ∈ N0 and η ≤ ν satisfying |η|+ q ≤ |ν|+ 1, we consider functions hq,η : V → R of
the form (3.10). Then we can write

∂

∂t
hq,η(t,y) =

Kq,η∑
k=1

h
[k]
q+1,η(t,y), with Kq,η ≤ 4|η|+ 3q − 1,

where each function h
[k]
q+1,η is of the form (3.10) with q replaced by q + 1.

Proof. For hq,η(t,y) = hq,η,(r,α,β)(t,y) from (3.10) we have

∂

∂t
hq,η,(r,α,β)(t,y) =

∂

∂t

(
(−1)r

[D0φ(ξ(t,y),y)]r+q︸ ︷︷ ︸
=:T1(t,y)

ρ
(β)
0 (ξ(t,y))︸ ︷︷ ︸
=:T2(t,y)

r∏
`=1

Dα`φ(ξ(t,y),y)︸ ︷︷ ︸
=:T3(t,y)

)
.

Using the chain rule and substituting ∂
∂tξ(t,y) = 1/D0φ(ξ(t,y),y) (see (3.7)), and then

simplifying our notation by suppressing the dependence on t and y, we obtain

∂

∂t
T1(t,y) =

−(r + q) (−1)rD0D0φ(ξ(t,y),y) ∂
∂tξ(t,y)

[D0φ(ξ(t,y),y)]r+q+1
=

(r + q) (−1)r+1D2e0φ(ξ)

[D0φ(ξ)](r+1)+(q+1)
,

∂

∂t
T2(t,y) = ρ

(β+1)
0 (ξ(t,y))

∂

∂t
ξ(t,y) =

ρ
(β+1)
0 (ξ)

D0φ(ξ)
,

∂

∂t
T3(t,y) =

r∑
m=1

D0Dαmφ(ξ(t,y),y)
∂

∂t
ξ(t,y)

r∏
`=1
`6=m

Dα`φ(ξ(t,y),y)

=

r∑
m=1

Dαm+e0φ(ξ)

D0φ(ξ)

r∏
`=1
6̀=m

Dα`φ(ξ).

Using the product rule, we arrive at

∂

∂t
hq,η,(r,α,β) =

∂T1
∂t

T2 T3 + T1
∂T2
∂t

T3 + T1 T2
∂T3
∂t

= S1 + S2 +
r∑

m=1

S3,m,

where now

S1 := (r + q)hq+1,η,(r+1,α̃,β), with α̃` :=

{
α` for ` = 1, . . . , r,
2e0 for ` = r + 1,

S2 := hq+1,η,(r,α,β+1),

S3,m := hq+1,η,(r,α̃,β), with α̃` :=

{
α` for ` = 1, . . . , r, ` 6= m,
αm + e0 for ` = m.
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Again, all of the hq+1,η,[··· ] functions above are of the form (3.10) with q replaced by
q+1, and the conditions in (3.10) are satisfied by an inductive argument with justification
similar to the arguments in the proof of Lemma B.1. These hq+1,η,[··· ] functions are all
different so there is no cancellation.

Treating the multiple (r+ q)hq+1,η,[··· ] in S1 as r+ q occurrences of the same function,

we conclude that ∂
∂thq,η,(r,α,β) can be written as a sum of Kq,η functions of the form (3.10)

with q replaced by q + 1, where now

Kq,η = (r + q) + 1 +
∑r

m=1 1 = 2r + q + 1 ≤ 2(2|η|+ q − 1) + q + 1 = 4|η|+ 3q − 1.

This completes the proof. 2
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