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Abstract. We consider synthetic aperture radar imaging of a region containing point-like targets.
Measurements are the set of frequency responses to scattering by the targets taken over a collection
of individual spatial locations along the flight path making up the synthetic aperture. Because
signal subspace imaging methods do not work on these measurements directly, we rearrange the
frequency response at each spatial location using the Prony method and obtain a matrix that is
suitable for these methods. We arrange the set of these Prony matrices as one block-diagonal matrix
and introduce a signal subspace imaging method for it. We show that this signal subspace method
yields high-resolution and quantitative images provided that the signal-to-noise ratio is sufficiently
high. We give a resolution analysis for this imaging method and validate this theory using numerical
simulations. Additionally, we show that this imaging method is stable to random perturbations to
the travel times and validate this theory with numerical simulations using the random travel time
model for random media.

1. Introduction

Synthetic aperture imaging is used in many applications such as ultrasonic non-destructive test-
ing, mine detection, surveillance, and radar imaging. The main idea behind synthetic aperture
imaging is that a single transmitter/receiver is used to probe an unknown region by emitting
known pulses into the medium and recording the time-dependent responses as it moves along a
given path. Fourier transforming these time-dependent measurements yields their corresponding
frequency responses. In this work we focus our attention on the synthetic aperture radar imaging
problem. However, the methodology used here can be directly applied to other related problems.

Several imaging methods have been proposed in the literature for imaging with SAR data. The
traditional SAR image is formed by evaluating the data at each measurement location at the travel
time that it takes for the waves to propagate from the platform location to a point in the imaging
region on the ground and back. The resolution of this image increases with the synthetic aperture
and the system bandwidth [7]. When the phases of the waves are recorded with high accuracy, SAR
imaging produces high-resolution images of the reflectivity on the ground. It is well known however
that SAR imaging is quite sensitive to noise in the phase. Such noise may result from uncertainty
in the platform motion and/or scattering by randomly inhomogeneous media. For SAR imaging
with noise in the phase, we refer to [10] for the application of coherent interferometry (CINT) to
SAR imaging and to the more recent work in [2] on a high-resolution interferometric method for
imaging through scattering media.

Several approaches have been proposed in the literature to further improve the resolution of
SAR images. We refer to [1, 17] for sparsity-constrained `1-minimization methods and to [4] for
imaging effectively direction and frequency dependent reflectivities using the multiple measurement
vector (MMV) framework [13]. As in other applications, using sparsity-constrained optimization
methods significantly increases the resolution of the SAR image. However, the computational cost
of optimization is significantly higher than that for sampling methods such as SAR or CINT, which
simply consist of evaluating an imaging functional at each grid point on a mesh of the imaging
region.
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MUSIC (multiple signal classication) is another sampling method that has been widely used in
several imaging applications [8, 9, 12, 16]. To explain the main idea of MUSIC, let us consider the
single-frequency array imaging problem. For this problem the data is a matrix, called the array
response matrix. The (i, j)-th element of the array response matrix corresponds to the data received
at the i-th array element when the j-th element is an emitter. The singular value decomposition
(SVD) of the array response matrix is used to determine the signal and noise subspaces of the
data. Next, a model for the illumination vector a(y) is introduced, with y denoting a point in the
imaging region. The illumination vector is the vector of measurements received along the receiving
array due to a source at y. If a target is located at y, then a(y) is in the signal subspace of the
array response matrix. Thus, the projection of a(y) onto the noise subspace is zero or very small.
In MUSIC, one forms an image by evaluating one over this norm of the projection of a(y) onto
the noise subspace. The peaks appearing in the MUSIC image give the locations of the targets
with high resolution. Although MUSIC effectively and efficiently produces high-resolution images,
it does not apply directly to SAR imaging data.

In this paper we introduce a modification and generalization of MUSIC for SAR imaging. This
imaging method modifies SAR data by using the Prony method [18] to rearrange frequency-
dependent data at one measurement location as a matrix. Then we form a block-diagonal matrix
with the set of Prony matrices from all spatial locations on the flight path. An image of the reflec-
tivity on the ground is then formed using a signal subspace method applied to this block-diagonal
matrix. This signal subspace method is a generalization of MUSIC that projects the illuminating
vector for each point y in the imaging region on both the noise and signal subspaces [11]. The noise
subspace provides high spatial resolution and the signal subspace provides quantitative information
about the targets. The result of combining these two subspaces is a high-resolution quantitative
imaging method. The relative balance between the noise and signal subspaces depends on the noise
level in the data which is controlled through a user-defined regularization parameter, ε.

There are two main results in this paper. The first main result is the resolution analysis for
this modified and generalized MUSIC method that shows an enhancement in resolution com-
pared to classical SAR imaging by a factor

√
ε. Namely we obtain a cross-range resolution of

O(
√
ε(c/B)(L/a)) and a range resolution of O(

√
ε(c/B)(L/R)). Here c denotes the speed of the

waves, B denotes the bandwidth, a denotes the synthetic array aperture, L denotes the distance
from the center of the flight path to the center of the imaging region, and R denotes the range
offset (see Fig. 1). The second main result is the stability analysis of the method to random per-
turbations of the travel times. This analysis shows that the method provides stable reconstructions
when ε is chosen to satisfy σ2 � ε < 1 with σ2 denoting the maximum variance of the random per-
turbations of the travel times. Our numerical simulations are in agreement with these theoretical
findings. Moreover, they show that the proposed method provides statistically stable results with
signal-to-noise ratios comparable to CINT, but with much better resolution.

The remainder of this paper is as follows. In Section 2 we give a brief description of synthetic
aperture radar imaging and define the measurements. In Section 3 we describe the Prony method
that we use to rearrange the frequency data and show why it is appropropriate for signal subspace
imaging. We define the two imaging functionals that we use for quantitative signal subspace imaging
in Section 4. In Section 5 we give a resolution analysis for the imaging method. We consider this
imaging method when the travel times have random perturbations in Section 6 and give results
for the expected value and statistical stability of the image formed using this method. We show
numerical results that support our theory in Section 7. Section 8 contains our conclusions.
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Figure 1. Setup for synthetic aperture radar imaging.

2. Synthetic aperture radar imaging

In synthetic aperture radar (SAR) imaging, a single transmitter/receiver is used to collect the
scattered electromagnetic field over a synthetic aperture that is created by a moving platform
[6, 7, 14]. The moving platform is used to create a suite of experiments in which pulses are emitted
and resulting echoes are recorded by the transmitter/receiver at several locations along the flight
path. Let f(t) denote the broadband pulse emitted and let d(s, t) denote the data recorded. Here,
the measurements depend on the slow time s that parameterizes the flight path of the platform,
r(s), and the fast time t in which the round-trip travel time between the platform and the imaging
scene on the ground is measured. In SAR imaging, one seeks to recover the reflectivity of an
imaging scene from these measurements.

Although SAR uses a single transmit/receive element, high-resolution images of the probed scene
can be obtained because the data are coherently processed over a large synthetic aperture created
by the moving platform. As illustrated in Fig. 1, the platform is moving along a trajectory probing
the imaging scene by sending a pulse f(t) and collecting the corresponding echoes. We call range the
direction that is obtained by projecting on the imaging plane the vector that connects the center of
the imaging region to the central platform location. Cross-range is the direction that is orthogonal
to the range. Denoting the size of the synthetic aperture by a and the available bandwidth by B,
the typical resolution of the imaging system is O((c/B)(L/R)) in range and O(λL/a) in cross-range.
Here c is the speed of light and λ the wavelength corresponding to the central frequency while L
denotes the distance between the platform and the imaging region and R the offset in range.

We use the start-stop approximation, which is typically done in SAR imaging. This approxima-
tion assumes that the change in displacement between the targets and the platform is negligibly
small compared to the travel time it takes for the pulse emitted to propagate to the imaging scene
and return as echoes. This approximation is valid in radar since the speed of light is orders of
magnitude larger than the speed of the targets and the platform.

Using this start-stop approximation, we the consider the measurements only at N discrete values
of s, corresponding to d(sn, t) for n = 1, · · · , N . Next, we suppose that d(sn, t) is digitally sampled
at 2M−1 values of t. Consequently, these data have a discrete Fourier transform denoted by dn(ω)
evaluated at 2M − 1 frequencies denoted by ωm for m = 1, · · · , 2M − 1. This choice of 2M − 1
samples is to make the notation in Section 3 simpler. With these assumptions, we find that our
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measurement data is given by the 2M − 1×N matrix D whose columns are

(1) dn =


dn(ω1)
dn(ω2)

...
dn(ω2M−1)

 , n = 1, · · · , N.

3. Rearranging frequency data

The data matrix D is not suitable for direct application of signal subspace methods. Therefore,
we introduce a rearrangement of the data based on the Prony method [18] which, for the n-th
column of D, yields the following M ×M matrix,

(2) Dn =


dn(ω1) dn(ω2) · · · dn(ωM )
dn(ω2) dn(ω3) · · · dn(ωM+1)

...
...

. . .
...

dn(ωM ) dn(ωM+1) · · · dn(ω2M−1)

 .
In this rearrangement, the first column is the truncation of dn to its first M entries. Subsequent
columns are sequential upward shifts of dn truncated to its first M entries.

To see why this rearrangement is suitable for signal subspace imaging, consider the Born approx-
imation for a single point target. Let ρ0 denote the reflectivity of the point target and y0 denote its
position. According to the Born approximation, the scattered field at frequency ωm is the spherical
wave,

(3) ψs(x, ωm) = ρ0
eiωm|x−y0|/c

4π|x− y0|
ψinc(y0, ωm),

with c denoting the wave speed and ψinc(y0, ωm) denoting the field incident on the point target.
Suppose that the signal emitted at position xn on the flight path at frequency ωm is a spherical
wave with unit amplitude. For that case, the measurement dn(ωm) corresponding to the scattered
field evaluated at xn is given by

(4) dn(ωm) = ρ0
ei2ωm|xn−y0|/c

(4π|xn − y0|)2
.

It follows that

(5) dn =
ρ0

(4π|xn − y0|)2


ei2ω1|xn−y0|/c

ei2ω2|xn−y0|/c

...

ei2ω2M−1|xn−y0|/c

 ,
from which we find that

(6) Dn =
ρ0

(4π|xn − y0|)2


ei2ω1|xn−y0|/c ei2ω2|xn−y0|/c · · · ei2ωM |xn−y0|/c

ei2ω2|xn−y0|/c ei2ω3|xn−y0|/c · · · ei2ωM+1|xn−y0|/c

...
...

. . .
...

ei2ωM |xn−y0|/c ei2ωM+1|xn−y0|/c · · · ei2ω2M−1|xn−y0|/c

 .
Next, suppose that the frequencies are sampled according to ωm = ω1 + (m − 1)∆ω for m =

1, · · · , 2M − 1 with ∆ω a fixed constant. For that case, we can rewrite (6) as Dn = σ
(n)
0 u

(n)
0 (v

(n)
0 )∗



SIGNAL SUBSPACE IMAGING FOR SAR 5

with σ
(n)
0 = M |ρ0|/(4π|xn − y0|)2,

(7) u
(n)
0 =

eiθ0/2

√
M


ei2ω1|xn−y0|/c

ei2ω2|xn−y0|/c

...

ei2ωM |xn−y0|/c

 , and v
(n)
0 =

e−iθ0/2

√
M


1

e−i2∆ω|xn−y0|/c

...

e−i2(M−1)∆ω|xn−y0|/c

 .
Here, we have written the reflectivity as ρ0 = |ρ0|eiθ0 and included eiθ0 in u

(n)
0 and v

(n)
0 arbitrarily

in (7).
Suppose there are P non-interacting point targets in the region with reflectivities ρp at positions

yp for p = 1, · · · , P . It follows that

(8) Dn =
P∑
p=1

σ(n)
p u(n)

p (v(n)
p )∗.

Here, σ
(n)
p = M |ρp|/(4π|xn−yp|)2, and u

(n)
p and v

(n)
p are defined just like u

(n)
0 and v

(n)
0 in (7), but

evaluated on |xn−yp| instead. This expression for Dn is a sum of P outer products, each of which
corresponds to an individual point target. This outer product representation for Dn indicates that
signal subspace methods may be effectively used on these matrices for imaging.

4. Quantitative signal subspace method

To combine the matrices formed using the Prony method, we consider the MN ×MN block
diagonal matrix,

(9) DProny =


D1

D2

. . .

DN

 .
Using the outer-product structure identified in (8), we can extend a recently developed quantitative
signal subspace imaging method [11] to this block-diagonal Prony matrix as follows.

Suppose we compute the singular value decomposition for each block: Dn = UnΣnV
∗
n for n =

1, · · · , N . According to (8), for P point targets, the rank of each block will be P . Assuming that the
signal-to-noise ratio (SNR) is sufficiently high, the first P singular values residing in the diagonal
entries of Σn will be significantly larger than the others. Those first P singular values correspond
to the signal subspace. The remaining singular values correspond to the noise subspace. Since we
can separate the first P singular values, we are able to compute the pseudo-inverse,

(10) Σ+
n =

1

σ1
diag

(
1,
σ2

σ1
, · · · , σP

σ1
,
1

ε
, · · · , 1

ε

)
,

with ε > 0 denoting a user-defined parameter.
For search point y in the imaging region, we introduce the illumination block-vector

(11) a(y) =

a1(y)
...

aN (y)

 , an(y) =
1

4π|xn − y|

 e
i2ω1|xn−y|/c

...

ei2ωM |xn−y|/c

 .
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Figure 2. Sketch of the linear flight path over the planar imaging region used to
study the resolution of the imaging method.

Using (10) and (11), we compute the following imaging functional

(12) Fε(y) =
1

N
a∗(y)

U1Σ+
1 U
∗
1

. . .

UNΣ+
NU
∗
N

a(y) =
1

N

N∑
n=1

a∗n(y)UnΣ+
nU
∗
nan(y).

We also consider another imaging functional. For that imaging functional, we introduce the com-
plimentary illumination block-vector,

(13) b(y) =

b1(y)
...

bN (y)

 , bn(y) =
1

4π|xn − y|


1

e−i2∆ω|xn−y|/c

...

e−i2(M−1)∆ω|xn−y|/c

 ,
and compute

(14) Rε(y) =
1

N
b∗(y)

V1Σ+
1 U
∗
1

. . .

VNΣ+
NU
∗
N

a(y) =
1

N

N∑
n=1

b∗n(y)VnΣ+
nU
∗
nan(y).

We form images through evaluation of 1/Fε(y) and 1/Rε(y) over an imaging region. We show below
that the image formed using Fε is useful for determining the location and magnitude of reflectivities
for point targets and the image formed using Rε is useful for determining the complex reflectivities
for point targets.

5. Resolution analysis

To study the performance of imaging using (12) and (14), we consider one point target located
in a planar imaging region at position y0 with complex reflectivity ρ0. We use a coordinate system
in which the origin lies at the center of the planar imaging region. The flight path of the platform
is linear and parallel to the x-axis. It is offset from the origin along the y-axis by range R and
along the z-axis by height H. Thus, spatial positions of the measurements are xn = (xn, R,H) for

n = 1, · · · , N with xn = −a/2 +a(n−1)/(N −1) and a denoting the aperture. Let L =
√
R2 +H2

denote the distance from the center of the flight path to the origin, and let θ denote the so-called
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look angle with sin θ = R/L and cos θ = H/L. We assume that L is the largest length scale in this
problem. A sketch of this linear flight path over a planar imaging region is shown in Fig. 2.

To establish estimates for the resolution of image of one point target produced through evaluation
of 1/Fε(y) over an imaging region, let y0 = (x0, y0, 0) denote the target location, y = (x, y, 0)
denote the search location, and B denote the system bandwidth centered at frequency f0 with
corresponding wavenumber k0 = 2πf0/c. With these quantities defined, we prove the following
theorem.

Theorem 5.1 (Resolution estimates for a linear flight path). Assuming that the SNR is suffi-
ciently high that we can distinguish the singular values corresponding to the signal subspace from
those corresponding to the noise subspace, 1/Fε(y) with Fε(y) given in (12) attains a maximum
of |ρ0| on y = y0, and in the asymptotic limit, L � 1, x0/a � 1, y0/R � 1, and ε � 1,
this image has a cross-range resolution of ∆x∗ = O(

√
ε(c/B)(L/a)) and a range resolution of

∆y∗ = O(
√
ε(c/B)(L/R)).

Proof. For a single point target, we have Dn = σ
(n)
0 u

(n)
0 v

(n)∗
0 for n = 1, · · · , N with σ

(n)
0 =

M |ρ0|/(4π|xn − y0|)2 and u
(n)
0 and v

(n)
0 given in (7). Consequently, the column space of Dn is

C(Dn) = span{u(n)
0 } and P (n) = I−u

(n)
0 u

(n)∗
0 is the projection onto subspace orthogonal to C(Dn).

Using

Σ+
n =

1

σ
(n)
0

diag

(
1,

1

ε
, · · · , 1

ε

)
,

we find that

Fε(y) =
1

N

N∑
n=1

[
1

εσ
(n)
0

a∗n(y)(I − u
(n)
0 u

(n)∗
0 )an(y) +

1

σ
(n)
0

a∗n(y)u
(n)
0 u

(n)∗
0 an(y)

]

=
1

|ρ0|
1

N

N∑
n=1

[(
1

ε
−
(

1

ε
− 1

)
|Φn|2

)
|xn − y0|2

|xn − y|2

]
,(15)

where we have introduced the quantity,

(16) Φn =
1

M

M∑
m=1

eiωm∆τn ,

with ∆τn = 2(|xn − y| − |xn − y0|)/c denoting the difference in travel times for the search and
target locations.

Evaluating (15) on y0, we find that Fε(y0) = 1/|ρ0|, so 1/Fε(y0) = |ρ0|. Because |Φn|2 ≤ 1 and
|xn−y0|2/|xn−y|2 ≤ 1 with both functions evaluating to 1 only at y = y0, this result corresponds
the maximum value that 1/Fε(y) attains.

Let

ωm = ω0

[
1 + β

(
m− 1

M − 1
− 1

2

)]
, m = 1, · · · ,M,

with β = 2πB/ω0 denoting the fraction of the bandwith about the central frequency. Substituting
these frequencies into (16) and computing the sum, we find

Φn =
eiω0(1−β/2)∆τn

M

1− eiω0βM∆τn/(M−1)

1− eiω0β∆τn/(M−1)
,
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from which it follows that

|Φn|2 =
1

M2

sin2
(
πMB∆τn
M−1

)
sin2

(
πB∆τn
M−1

) .

In the expression above, we have resubstituted ω0β = 2πB. Assuming we are in a small neighbor-
hood about the target location, we expand the expression above about ∆τn = 0 and obtain

|Φn|2 = 1− π2B2

3

M + 1

M − 1
∆τ2

n +O(∆τ4
n).

Additionally, we find that

|xn − y0|
|xn − y|

=
(xn − x0)2 + (L sin θ − y0)2 + (L cos θ)2

(xn − x)2 + (L sin θ − y)2 + (L cos θ)2
= 1 +O(L−1),

where sin θ = R/L and cos θ = H/L. Using these approximations, we find that

(17) Fε(y) =
1

|ρ0|

[
1 +

(
1

ε
− 1

)
π2B2

3

M + 1

M − 1

(
1

N

N∑
n=1

∆τ2
n

)]
+O(∆τ4

n, L
−1).

Next, we use

(18) ∆τn = (|xn − y| − |xn − y0|)/c = cos θ
(y − y0)

c

+
(x− x0)2 − 2(x− x0)(ξn − x0)

2cL
+ sin2 θ

(y − y0)2 + 2(y − y0)y0

2cL
+O(L−2).

For the cross-range resolution, we evaluate (18) on y = y0 and find that

∆τ2
n

∣∣
y=y0

∼ (x− x0)2

c2L2
(xn − x0)2.

Using xn = −a/2 + a(n− 1)/(N + 1), we find that

1

N

N∑
n=1

(xn − x0)2 =
a2

12

N + 1

N − 1
+ x2

0,

and so

Fε(x, y0) ∼ 1

|ρ0|

[
1 +

(
1

ε
− 1

)
π2B2a2

3c2L2

M + 1

M − 1

(
1

12

N + 1

N − 1
+
x2

0

a2

)
(x− x0)2

]
.

The full-width/half-maximum (FWHM) in cross-range ∆x∗ satisfies 1/Fε(x0+∆x∗, y0) = 1/(2|ρ0|).
Substituting the approximation above into this definition, solving for ∆x∗, and expanding that
result about ε = 0, we find

∆x∗ = ±
√
ε
c

B

L

a

6

π

√
M − 1

M + 1

√
N − 1

(N + 1) + 12(N − 1)(x2
0/a

2)
+O(ε3/2)

= ±
√
ε
c

B

L

a

6

π

√
M − 1

M + 1

√
N − 1

N + 1
+O

(
ε3/2,

x2
0

a2

)
= O

(√
ε
c

B

L

a

)
.

For the range resolution, we evaluate (18) on x = x0 and find that

∆τ2
n

∣∣
x=x0

=
(y − y0)2

c2

(
cos θ − sin2 θ

y0

L

)2
.
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It follows that

Fε(x0, y) ∼ 1

|ρ0|

[
1 +

(
1

ε
− 1

)
π2B2

3c2

M + 1

M − 1

(
cos θ − sin2 θ

y0

L

)2
(y − y0)2

]
.

The full-width/half-maximum (FWHM) in range ∆y∗ satisfies 1/Fε(x0, y0 + ∆y∗) = 1/(2|ρ0|).
Substituting the approximation above into this definition, resubstituting cos θ = R/L, solving for
∆y∗, and expanding that result about ε = 0, we find

∆y∗ = ±
√
ε
c

B

L

R

1

1− sin2 θ(y0/R)

√
3

π

√
M − 1

M + 1
+O(ε3/2)

= ±
√

3

π

√
ε
c

B

L

R
+O

(
ε3/2,

y0

R

)
= O

(√
ε
c

B

L

R

)
.

This completes the proof. �

Theorem 5.1 states that images of a point target formed through evaluation of 1/Fε(y) with
Fε(y) given in (12) will form an image that is peaked at the location of the target with magnitude
equal to |ρ0|. Because the user-defined parameter ε can be made arbitrarily small, this imaging
method will yield high-resolution images provided that there is sufficient signal that the non-trivial
singular values provide accurate quantitative data.

In general, the reflectivity of a point target is complex. To recover the complex reflectivity, we
make use of the following theorem.

Theorem 5.2 (Recovery of the complex reflectivity). For a point target located at y0 with complex
reflectivity ρ0, when the SNR is sufficient high that we can distinguish the signal subspace from the
noise subspace, 1/Rε(y0) = ρ0 with Rε(y) given in (14).

Proof. Through direct evaluation of Rε given in (14) on y = y0, we find Rε(y0) = e−iθ0/|ρ0|. It
follows that 1/Rε(y0) = |ρ0|eiθ0 = ρ0. �

Although Theorem 5.2 states that evaluating 1/Rε(y) yields the complex reflectivity, it is not
generally useful for determining the location of the target because this function does not exhibit
localized behavior that indicates the region about the target location. For this reason, we propose
the following two-stage imaging method.

(i) Evaluate 1/Fε(y) with Fε(y) given in (12) to determine the location of targets. The value
of ε may be varied to adjust the resolution of this image.

(ii) Evaluate 1/Rε(y) with Rε(y) given in (14) using the locations determined in (i) to determine
the complex reflectivities of the targets.

6. Travel time uncertainty

We now consider the effect of uncertainty in the travel times on images formed through evaluation
of 1/Fε(y) with Fε(y) given in (12). Uncertainty in travel times can arise from sampling clock jitter,
deviations from the assumed flight path, and random fluctuations in the propagating medium among
other practical issues. It is therefore important to understand to what extent images formed using
the method described above are useful under uncertain conditions.

To model travel time uncertainty, we use

(19) ∆τn = ∆τ0
n + νn, n = 1, · · · , N.
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with ∆τ0
n denoting the difference in travel times for a homogeneous medium and the vector, ν =

(ν1, · · · , νN ) denoting a multivariate distribution with E[νn] = 0 and E[ν2
n] = σ2

n for n = 1, · · · , N .
Let σ2 = max{σ2

1, · · ·σ2
N}. Using this model for travel time uncertainty, we prove the following

theorem.

Theorem 6.1 (Travel time uncertainty). Assuming that the SNR is sufficiently high that we can
distinguish the singular values corresponding to the signal subspace from those corresponding to the
noise subspace, the image formed through evaluation of 1/Fε(y) in a neighborhood about y = y0

with Fε(y) given in (12) and using (19) with σ2/ε� 1 has an expected value whose leading behavior
is the result for the homogeneous medium plus a term that is O(σ2/ε), and has a variance that is
O(σ2/ε).

Proof. Since we consider a neighborhood about y = y0, we start with (17) and write

Fε ∼
1

|ρ0|

[
1 + α

(
1

ε
− 1

)(
1

N

N∑
n=1

∆τ2
n

)]
,

with α = π2B2(M + 1)/(3(M − 1)). Substituting (19) yields

Fε ∼
1

|ρ0|

[
1 + α

(
1

ε
− 1

)(
1

N

N∑
n=1

(
∆τ0

n + νn
)2)]

.

Based on our resolution estimates, we introduce the stretched variables ∆τn =
√
ε∆Tn for n =

1, · · · , N , and obtain

Fε ∼
1

|ρ0|

[
1 + α (1− ε)

(
1

N

N∑
n=1

(
∆Tn + νn/

√
ε
)2)]

.

Let fY (y1, · · · , yN ) denote the probability density function for (ν1, · · · , νN ). The expected value of
the image is then

E
[

1

Fε

]
∼ |ρ0|

∫
· · ·
∫

fY (y1, · · · , yN )

1 + α (1− ε)

(
1

N

N∑
n=1

(
∆Tn + yn/

√
ε
)2)dy1 · · · dyN .

Substituting yn = σηn yields

E
[

1

Fε

]
∼ |ρ0|

∫
· · ·
∫

σNfY (ση1, · · · , σηN )

1 + α (1− ε)

(
1

N

N∑
n=1

(
∆Tn + σηn/

√
ε
)2)dη1 · · · dηN .

Assuming that δ = σ/
√
ε� 1, we expand about δ = 0 and find[

1 + α (1− ε)

(
1

N

N∑
n=1

(∆Tn + δηn)2

)]−1

= I0 − 2δα(1− ε)I2
0

(
1

N

N∑
n=1

∆Tnηn

)
+O(δ2),

with

I0 =

[
1 + α(1− ε) 1

N

N∑
n=1

(∆Tn)2

]−1

,
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denoting the normalized image formed in the homogeneous medium. Substituting this expansion
into the integral above for the expected value of the image and using E[νn] = 0 for n = 1, · · · , N ,
we find that

E
[

1

Fε

]
= |ρ0|I0 +O(δ2).

Next, by using the expansion[
1 + α (1− ε)

(
1

N

N∑
n=1

(∆Tn + δηn)2

)]−2

= I2
0 − δα(1− ε)I3

0

(
N∑
n=1

∆Tnηn

)
+O(δ2),

we determine that

E

[(
1

Fε

)2
]

= |ρ0|2I2
0 +O(δ2).

Therefore,

Var

[
1

Fε

]
= E

[(
1

Fε

)2
]
−
(
E
[

1

Fε

])2

= O(δ2).

�

Theorem 6.1 states that when σ/
√
ε � 1, the leading behavior of the expectation of the image

with random perturbations to the travel time is exactly the same as the image in the homogeneous
medium. The recovery of the magnitude of the reflectivity |ρ0|, and the resolution estimates of
Theorem 5.1 are different by a term that is O(σ2/ε). Because the variance of the image is O(σ2/ε),
we determine that this image formed is statistically stable.

An immediate consequence of Theorem 6.1 is given in the following corollary.

Corollary 6.1.1 (Resolution with travel time uncertainty). When σ2 is known or can be reliably
estimated, one can set the value of ε so that σ2 � ε and Theorem 6.1 will hold.

Setting ε in this way connects the resolution of the image with the variance of the random
perturbations to the travel time.

7. Numerical results

To validate the theoretical results from above, we use numerical simulations to generate data for
various scattering scenes. The following values for the parameters are based on the GOTCHA data
set [5]. In particular, we have set R = 3.55 km and H = 7.30 km, so that L =

√
H2 +R2 = 8.12 km.

The synthetic aperture created by the linear flight path is a = 0.13 km. The central frequency is
f0 = 9.6 GHz and the bandwidth is B = 622 MHz. Using c = 3× 108 m/s, we find that the central
wavelength is λ0 = 3.12 cm. The imaging region is at the ground level z = 0. We use 2M − 1 = 39
frequencies so that M = 20, and N = 32 spatial measurements.

7.1. Single point target. We first consider imaging a single point target located at x0 = y0 = 1 m
with complex reflectivity ρ0 = 3.4i on the planar imaging region. Figure 3 shows the image formed
through evaluation of 1/Fε(y) with Fε(y) given in (12) with ε = 10−10. Measurement noise was
added so that the signal-to-noise ratio (SNR) is SNR = 44.1339 dB. The left plot of Fig. 3 shows
the color contour plot of the image in a region about the target location. The center plot of Fig. 3
shows the image on y = y0 as a function of x (cross-range), and the right plot shows the image on
x = x0 as a function of y (range). These results shown in Fig. 3 show that the image attains its
maximum value of 3.4 corresponding to |ρ0| at the correct target location. The image attains a high
resolution due to choice of ε. Because L/R = 2.29 and L/a = 62.46, we expect from the resolution
estimates given in Theorem 5.1 that the range resolution should be better than the cross-range
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Figure 3. Image formed through evaluation of 1/Fε(y) with Fε(y) given in (12) for
a point target located at x0 = y0 = 1 m on the planar imaging region. Measurement
noise was added so that SNR = 44.1339dB. For this image, ε = 10−8.

resolution. This difference in resolution can be observed by noting the values of k0(x− x0) in the
center plot compared to the values of k0(y − y0) in the right plot of Fig. 3.
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Figure 4. Numerically computed image resolutions with respect to ε (left) and
c/B (right). The range resolutions, k0∆x, are plotted as “◦” symbols, and the
cross-range resolution, k0∆y, are plotted as red “×” symbols. The blue and red
curves are the least-squares fit to lines through the range and cross-range resolution
data, respectively.

In Fig. 4 we show numerically computed FWHM values of k0∆x (cross-range resolution) and
k0∆y (range resolution) for a single point target when varying ε (left plot) and c/B (right plot).
The blue “◦” symbols are the computed values of k0∆x and the red “×” symbols are the computed
values of k0∆y both found by numerically determining the FWHM. The solid blue and red curves
are the least-squares linear fit through the ∆x and ∆y data, respectively. For the results shown
in the left plot of Fig. 4, all parameters are set to the same values used for Fig. 3, except that
SNR = ∞, so there is no noise. For the right plot of Fig. 4, we have varied the value of B, but
all other parameter values are the same as those used for Fig. 3. In these results, we find that
k0∆x > k0∆y for all values of ε and c/B which is due to the fact that L/R < L/a.

The results for cross-range and range resolutions with respect to ε given in the left plot of
Fig. 4 clearly show an O(

√
ε) behavior which is plotted as a dashed-black curve in the left plot

of Fig. 4. The computed least-squares fits are log(∆x) ≈ 3.9593 + 0.4991 log(ε) and log(∆y) ≈
−0.5565 + 0.4992 log(ε) which numerically validate this O(

√
ε) behavior.
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The results for cross-range and range resolutions with respect to c/B given in the right plot of
Fig. 4 clearly show an O(c/B) behavior which is plotted as a dashed-black curve. The least-squares
fits are log(∆x) ≈ −6.8067 + 0.9997 log(c/B) and log(∆y) ≈ −11.3247 + 0.9999 log(c/B) which
numerically validate the O(c/B) behavior.
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Figure 5. Numerical computed image resolutions with respect to L/a (left) and
L/R (right). The cross-range resolutions, k0∆x, are plotted as “◦” symbols, and the
range resolutions, k0∆y, are plotted as red “×” symbols. The blue and red curves
are the least-squares fit to lines through the cross-range and range resolution data,
respectively.

The behaviors of computed image resolution with respect to L/a and L/R are shown in Fig. 5.
For these results, all parameter values are the same as those used for Fig. 3 except that SNR =∞,
so there is no noise and a is varied in the left plot and R is varied in the right plot. The computed
range and cross-range FWHM values, k0∆x and k0∆y, respectively, are plotted just as in Fig. 4
including the corresponding least-squares fit to lines.

The results for cross-range resolution with respect to L/a shown in the left plot of Fig. 5 clearly
show an O(L/a) behavior, which is plotted as a dashed-black curve. The computed least-squares fit
to a line is log(∆x) ≈ −11.5748+0.9741 log(L/a) which numerically validates the O(L/a) behavior.
In contrast, the range resolution does not vary significantly with L/a. The computed least-squares
fit to a line is log(∆y) ≈ −12.0007 − 0.0139 log(L/a) which quantifies the weak dependence that
range resolution has on aperture.

The results for range resolution with respect to L/R shown in the right plot of Fig. 5 clearly
show an O(L/R) behavior, which is plotted as a dashed-black curve. The computed least-squares
fit to a line is log(∆y) ≈ −12.8645 + 0.9690 log(L/R) which numerically validates this O(L/R)
behavior. In contrast, the cross-range resolution shows a much weaker dependence on L/R. The
computed least-squares fit to a line is log(∆x) ≈ −7.5134 − 0.0340 log(L/R) which quantifies this
weak dependence on L/R.

We now show results from evaluating 1/Rε(y) with Rε(y) given in (14). These results use the
same parameter values as those used in Fig. 3. When plotting 1/Rε, there is no local behavior to
indicate the location of the target. For this reason these images do not provide useful information
about the location of targets. However, when we evaluate 1/Rε(y) in a region near the target
location, we are able to recover the complex reflectivity. In Fig. 6 we show the real and imaginary
parts of 1/Rε(x − x0, y0) in the left plot and of 1/Rε(x0, y − y0) in the right plot. In both plots
the actual value ρ0 = 3.4i is plotted as a black “×” symbol. These plots show that when the
location of the point target is known, evaluating 1/Rε(y) at the recovered target location provides
a method for recovering the complex reflectivity. At the target location, we find 1/Rε(y0) =
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Figure 6. Recovering the complex reflectivity through evaluation of 1/Rε(y) with
Rε(y) given in (14) with ε = 10−10. Measurement noise was added so that SNR =
44.1339dB. The left plot shows 1/Rε on y = y0 as a function of x−x0 and the right
plot shows 1/Rε on x = x0 as a function of y − y0. The blue curves give the real
part of 1/Rε(y) and the red curves give the imaginary part. The black “×” symbol
gives the exact value of the complex reflectivity, ρ0 = 3.4i.

−1.3059 × 10−3 + 3.3928i which demonstrates a very high accuracy in recovering the complex
reflectivity. Provided that the target location is reasonably accurate, the user-defined parameter ε
can be used to regularize these results to enable stable recovery of the complex reflectivity.
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Figure 7. Relative error in the recovery of the complex reflectivity through eval-
uation of 1/Rε(y0) with ε = 10−8 for a point target as a function of SNR (dB). All
parameters are the same as those used in Fig. 3.

In both Theorems 5.1 and 5.2, it is assumed that the SNR is sufficiently high that one can
separate the signal subspace from the noise subspace. To investigate the effect of SNR on the
recovery of the complex reflectivity, we evaluate 1/Rε(y0) for different SNR values and compute
the relative error, Erel = |ρ0− 1/Rε(y0)|/|ρ0|. These relative error results are shown with ε = 10−6

as a solid blue curve, ε = 10−8 as a dashed red curve, and ε = 10−10 as a dot-dashed yellow
curve in Fig. 7. The results in Fig. 7 show that sufficiently high SNR is needed to achieve a high
accuracy. Additionally, we observe that larger ε values achieve higher accuracy for any fixed SNR.
This higher accuracy occurs because ε regularizes 1/Rε(y) thereby stabilizing the recovery of the
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Figure 8. Imaging through evaluation of 1/Fε(y) with Fε(y) given in (12) and
ε = 10−6 (left), ε = 10−8 (center), and ε = 10−10 (right) for 3 point targets with
SNR = 64.1695 dB. The first target is located at (x1, y1, 0) = (0.01 m, 0.1 m, 0)
with complex reflectivity ρ1 = 3.4i. The second target is located at (x2, y2, 0) =
(−0.3 m,−0.5 m, 0) with complex reflectivity ρ2 = 4.2i. The third target is located
at (x3, y3, 0) = (−0.5 m, 0.5 m, 0) with complex reflectivity ρ3 = 3.1i.

complex reflectivity. The role of SNR on the resolution becomes more of an issue when imaging
multiple targets which we discuss below.

7.2. Multiple point targets. We now consider multiple point targets in the imaging region. We
set the origin of the coordinate system to lie at the center of a 5 m× 5 m planar imaging region on
z = 0. The first target is located at (x1, y1, 0) = (0.01 m, 0.1 m, 0) with complex reflectivity ρ1 =
3.4i. The second target is located at (x2, y2, 0) = (−0.30 m,−0.50 m, 0) with complex reflectivity
ρ2 = 4.2i. The third target is located at (x3, y3, 0) = (−0.50 m, 0.50 m, 0) with complex reflectivity
ρ3 = 3.1i.

In Fig. 8 we show the image produced through evaluation of 1/Fε(y) with Fε(y) given in (12)
with ε = 10−6 (left), ε = 10−8 (center), and ε = 10−10 (right). The imaging region is discretized
using a 51×51 equi-spaced mesh corresponding to approximately a 10 cm meshwidth. Measurement
noise was added so that SNR = 64.1695 dB. We see that the value of ε affects the overall resolution
of the three targets, especially with respect to cross-range since L/a < L/R. With ε = 10−10, the
image produced through evaluation of 1/Fε(y) clearly indicates the locations of the three targets.
Even though we do not have direct interpretation of the magnitude of the peaks in this plot, we do
find that ‖1/Fε(y)‖∞ = 3.8641 for ε = 10−10, which is close to the values of |ρ1|, |ρ2|, and |ρ3|.

Using Fig. 8 to determine regions about each of the target locations, we then evaluate 1/Fε(y)
using the same measurements to obtain the location more precisely and 1/Rε(y) to recover the
complex reflectivities. In particular, we plotted the evaluation of 1/Fε(y) in a window of size 10 k0

in cross-range (x) and 0.2 k0 in range (y) about each target using a 51 × 51 mesh. The results of
doing this are shown in Fig. 9 for target 1, Fig. 10 for target 2, and Fig. 11 for target 3. The left
plots in Figs. 9 – 11 show results of evaluating 1/Fε(y) in regions about the respective targets. The
center plots in Figs. 9 – 11 shows results of evaluating 1/Rε(y) on y = y1, y2, and y3, respectively,
and the left plots in Figs. 9 – 11 shows results of evaluating 1/Rε(y) on x = x1, x2, and x3,
respectively.

When plotting 1/Fε(y) in a small region about each target location, we are readily able to
determine the target location corresponding to where this function attains its local maximum
thereby demonstrating the high-resolution of this imaging method. With the location of each target
determined using these results, we then evaluate 1/Rε(y) in these regions which allows for recovery
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Figure 9. (left) Imaging using 1/Fε(y) in a region about target 1 located at
(x1, y1, 0) = (0.01 m, 0.1 m, 0) with complex reflectivity ρ1 = 3.4i. Recover-
ing the complex reflectivity through evaluation of 1/Rε(x − x1, y1) (center) and
1/Rε(x1, y − y1) (right). The blue curves give the real part of 1/Rε(y) and the red
curves give the imaginary part. The black “×” symbol gives the exact value of the
complex reflectivity, ρ1 = 3.4i.
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Figure 10. The same as Fig. 9, except for target 2 located at (x2, y2, 0) =
(−0.30 m,−0.50 m, 0) with complex reflectivity ρ2 = 4.2i.
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Figure 11. The same as Fig. 9, except for target 3 located at
(x3, y3, 0)(−0.50 m, 0.50 m, 0) with complex reflectivity ρ3 = 3.1i.

of the complex reflectivity of each target. For these results, these evaluations yielded ρ1 = 3.4i ≈
4.0096×10−4 +3.3990i, ρ2 = 4.2i ≈ 1.4427×10−4 +4.2000i, and ρ3 = 3.1i ≈ 1.3969×10−4 +3.0998i
thereby demonstrating the high quantitative accuracy achieved using this method.

We showed the effect of SNR on the recovery of the complex reflectivity for a single point target
in Fig. 7. To study the effect of SNR of imaging multiple point targets, we consider images for the
same scenario produced through evaluation of 1/Fε(y) with Fε(y) given in (12) and ε = 10−8 for
SNR = 44.1695 dB (top row of Fig. 12) and 24.1695 dB (bottom row of Fig. 12). Except for the
SNR values, all parameter values are the same as those in Fig. 8(b). Included with each of those
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Figure 12. Image produced through evaluation of 1/Fε(y) with Fε(y) given in (12)
and ε = 10−8 for SNR = 44.1695 dB (top left), and the corresponding singular value
spectrum (top right). The lower left and right plots are for SNR = 24.1695 dB. All
parameter values are the same as those used in Fig. 8.

images are the corresponding singular value spectra for DProny given in (9) plotted as blue curves.
The dashed red curves show the thresholded singular values in which σn is replaced with εσ1 for
all σn < 0.01σ1.

In Fig. 12, the image for SNR = 44.1695 dB (top left) shows the three targets clearly, but
the image for SNR = 24.1695 dB (bottom left) has much poorer resolution, especially in range.
The singular value spectra in Fig. 12 (top right and bottom left) provide valuable insight into the
difference between these two images. A signal subspace method is predicated on the assumption that
one can distinguish the signal and noise subspaces from one another. With regards to the singular
value spectrum, one would like to have a large “gap” between the singular values corresponding
to the signal subspace and those corresponding to the noise subspace. We observe in Fig. 12 that
when the SNR decreases, so does the gap separating the singular values for the signal subspace
from those of the noise subspace. Even though the thresholding criterion of replacing σn with εσ1

when σn < 0.01σ1 captures the location of the gap correctly for both SNR values, a consequence of
the narrowing of this gap is a loss of image resolution. Because L/a < L/R, we see a more severe
loss in resolution in range than in cross-range. These results demonstrate that this imaging method
requires a sufficiently high SNR to be effective and accurate.
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Figure 13. Imaging through evaluation of 1/Fε(y) with Fε(y) given in (12) and
ε = 0.02 for a point target located at range L = 100` in a random medium with
` = 100λ. The strength of the fluctuations in the random medium is such that: (a)
σ̃/
√
ε = 0, (b) σ̃/

√
ε = ε, and (c) σ̃/

√
ε = 1.

7.3. Imaging in random media. We consider perturbations in travel times resulting from wave
propagation in random media. Assuming an inhomogeneous velocity profile of the form

(20)
1

c2(x)
=

1

c2
0

(
1 + σµ

(x
`

))
,

we approximate the Green’s function between points x and y at frequency ω by

(21) G(x,y;ω) = G0(x,y;ω) exp [iων(x,y)],

with ν(x,y) denoting the random travel time function

(22) ν(x,y) =
σ|x− y|

2c0

∫ 1

0
µ
(y
`

+ (x− y)
s

`

)
ds.

Here c0 denotes the average propagation speed, assumed constant, ` is the correlation length and σ is
the strength of the fluctuations. The stationary random process µ(·) has mean zero and normalized
auto-correlation function R(|x−x′|) = E(µ(x)µ(x′)), so that R(0) = 1, and

∫∞
0 R(r)r2dr <∞. In

(21), G0 denotes the Green’s function in the homogeneous medium with propagation speed c0.
The random travel time model provides an approximation of the Green’s function in the high-

frequency regime in random media with weak fluctuations σ � 1 and large correlation lengths `
compared to the wavelength λ. The propagation distance L is assumed to be large with respect to
the correlation length, L� `, so that the scattering induced by the random medium perturbations
has an order one effect on the phase of the Green’s function. This is true when [3]

(23)
σ2L3

`3
� λ2

σ2`L
∼ 1 ,

Following [15] we introduce the dimensionless parameter

σ0 = λ/
√
`L,(24)

and scale the fluctuations of the random medium so that

σ̃ =
σ

σ0
(25)

is order one according to (23).
In contrast to the previous results, we consider here a “flat” geometry for which H = 0. The

propagation distance is L = 100` and the correlation length in the random medium is ` = 100λ.
The synthetic array aperture is a = 24` and the bandwidth parameter β = 0.5.
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Figure 14. Stability of the image as a function of the parameter ε with σ̃ = 0.4
(a) and as a function of σ̃ with ε = 0.2 (b). The CINT image is computed with
Xd = a/6 and Ωd = B/2.

In Fig. 13, we show images of a single point target formed through evaluation of 1/Fε(y) for a
single realization of the random medium with different values of σ̃. The magnitude of the complex
reflectivity of the target is |ρ0| = 1.2584. For Fig. 13(a), σ̃ = 0 corresponding to a homogeneous
medium. For Figs. 13(b) and (c), the values of of σ̃ are set so that σ̃/

√
ε = ε and 1, respectively.

As predicted by Theorem 6.1, the image with σ̃/
√
ε = ε � 1 is stable and qualitatively and

quantitatively similar to the one obtained for the homogeneous medium. For σ̃/
√
ε = 1 the image

is not focused on the true target location, the resolution is decreased, and the reconstructed absolute
value of the reflectivity is less accurate.

Following [3], we compute the image’s SNR defined as the mean of the image divided by its
standard deviation in a small area around the true target location to estimate the stability of the
imaging method. The sample mean and the sample standard deviation are computed using 100
realizations of the random medium with the same characteristics (correlation length and strength
of fluctuations). For comparison, we also compute this SNR for the classical SAR image and the
CINT image. The CINT method requires specifying two key parameters, the decoherence length
Xd and the decoherence frequency Ωd. In the CINT results that follow, we have set Xd = a/6 and
Ωd = B/2. The results of these comparisons are shown in Fig. 14 where we compare SNR as a
function of ε with σ̃ = 0.4 (Fig. 14(a)) and as a function of σ̃ with ε = 0.2 (Fig. 14(b)). Figure
14(a) and (b) illustrate the well-known result that classical SAR imaging results are statistically
unstable in random media [3] since this SNR is very low. These results also suggest similar stability
for CINT and 1/Fε, both with comparably large SNRs. In Fig. 14(a), neither classical SAR nor
CINT depend on ε, so we see no change in behavior. However, as ε increases relative to σ̃ such
that σ̃/

√
ε becomes small, we find that the SNR for 1/Fε becomes larger than that for CINT. In

Fig. 14(b), all images decrease in SNR as σ̃ increases. However, the SNR for the CINT and 1/Fε
images is three orders of magnitude higher than the one for classical SAR. It is important to note
that the control offered by ε is limited because one cannot set the value of ε to be larger than 1.
Otherwise, one cannot separate the signal from the noise subspace.

Although the images formed using CINT and 1/Fε have similar stability behaviors, the image
of 1/Fε has a much better resolution. In Fig. 15 we compare images formed using CINT and 1/Fε
with ε and σ̃ set so that σ̃/

√
ε =
√
ε. These results show that the image formed by 1/Fε is focused

more tightly on the target location in comparison to the image formed by CINT. Additionally,



20 ARNOLD D. KIM AND CHRYSOULA TSOGKA

-50 0 50

-6

-4

-2

0

2

4

6

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) CINT

-50 0 50

-6

-4

-2

0

2

4

6

0.2

0.4

0.6

0.8

1

1.2

(b) 1/Fε

Figure 15. Comparison of images formed using CINT with Xd = a/6 and Ωd =
B/2 (a), and 1/Fε with ε and σ̃ satisfying σ̃/

√
ε =
√
ε.

there is quantitative information available from the image formed by 1/Fε. This tighter focus is
especially true for range although resolution is also better with cross-range.

To see the effect of this improved resolution, we compare images formed using CINT and 1/Fε
when the imaging region contains four point targets situated closely to one another in Fig. 16. For
all of these images, σ̃ = 0.2. Figures 16(b) and (c) are formed using 1/Fε with ε = 0.01 and 0.001,
respectively. Here, the resolution of the CINT image does not allow for identification of the four
targets. The 1/Fε with ε = 0.01 image has a sharper resolution, but allows for identification only
three of the four targets. In contrast, the 1/Fε image with ε = 0.001 shows four distinct peaks
indicating the target locations. These results show the potential importance of being able to tune
the resolution of an image by varying the parameter ε, even with random perturbations to the
travel times.

8. Conclusions

We have introduced and analyzed a quantitative signal subspace imaging method for multi-
frequency SAR measurements. The key to this method involves a simple rearrangement of the
frequency data at each spatial location along the flight path where measurements are taken using the
Prony method. Using this rearranged frequency data, this method involves two stages corresponding
to two explicit imaging functionals, (12) and (14).

Images produced through evaluation of 1/Fε(y) over an imaging region attain tunably high-
resolution images of target locations through a user-defined parameter ε. Through a resolution
analysis for a linear flight path, we have determined that the cross-range resolution of this imaging
method is O(

√
ε(c/B)(L/a)) where c is the wave speed, B is the bandwidth, L is the distance

from the center of the flight path to the center of the imaging region, and a is the length of the
synthetic aperture. We have also determined that the resolution of this imaging method in range
is O(

√
ε(c/B)(L/R)) where R is the range distance from the center of the flight path to the center

of the imaging region. With these resolution estimates, we see how the user-defined parameter ε
may be set to adjust the image resolution for different settings.

Images produced through evaluation of 1/Rε(y) over an imaging region do not reveal target loca-
tions. However, if the target location is known, 1/Rε(y) provides an accurate method for recovering
the complex reflectivity of a target. Again, the user-defined parameter ε can be set to regularize
the function to enable stable recovery of the complex reflectivity. It is for this reason that we have
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Figure 16. Comparison of images formed using CINT (a) and 1/Fε with ε = 0.01
(b) and ε = 0.001 (c) for four point targets. The CINT image is computed with
Xd = a/6 and Ωd = B/2. The strength of the fluctuations is σ̃ = 0.2.

proposed a two-stage imaging method in which 1/Fε(y) is used to determine location of target(s),
and 1/Rε(y) is evaluated at those locations to recover the complex reflectivities. Additionally, the
value of ε used for evaluating 1/Fε need not be the same used for evaluating 1/Rε, so this parameter
can be tuned independently for these two different imaging functionals.

When there is uncertainty in the travel times, we have shown that images formed by evaluating
1/Fε(y) have an expected value that is the same as the image formed in a homogeneous medium
provided that the variances of the random perturbations are sufficiently small. Moreover, the
variance of the image will be small for that case indicating that this imaging method is statistically
stable to random perturbations in the travel times.

Both Fε(y) and Rε(y) are computed using the SVD of the rearranged data. Consequently, their
effectiveness is understood to be related to how well the singular values corresponding to signals
scattered by the targets are separated from noise. Provided that there is sufficient SNR for these
singular values to be separated, the parameter ε mitigates noise and allows the user to control
image resolution. When there is uncertainty in travel times, one can set the value of ε to ensure
image accuracy and statistical stability which, in turn, will set the achievable image resolution.

Because this imaging method involves only elementary computations on the data and allows for
user-control to produce high-resolution, quantitative images of targets, we believe that it is useful
for a broad variety of SAR imaging applications.
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