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Abstract. In this paper we are concerned with the existence of transonic shocks
for 2-D steady isothermal Euler flows in a horizontal flat nozzle under vertical
gravity. In particular, we focus on the contribution of the vertical gravity in
determining the position of the shock front. For steady horizontal flows, the
existence of normal shocks with the position of the shock front being arbitrary in
the nozzle can be easily established. This paper will try to determine the position
of the shock front as the state of the flow at the entrance of the nozzle and the
pressure at the exit are slightly perturbed. Mathematically, it can be formulated
as a free boundary problem for the steady Euler system with vertical gravity,
and the position of the shock front is the very free boundary that need to be
determined. Since the unperturbed normal shock solutions give no information on
the position of the shock front, one of the key difficulties is to find where the shock
front may appear. To overcome this difficulty, this paper proposes a free boundary
problem of the linearized Euler system with vertical gravity, whose solution could
be an initial approximation for the shock solution with the free boundary being
the approximation for the shock front. Due to the existence of the vertical gravity,
difficulties arise in solving the boundary value problem in the approximate subsonic
domain behind the shock front. The linearized Euler system is elliptic-hyperbolic
composite for subsonic flows, and the elliptic part and the hyperbolic part are
coupled in the 0-order terms depending on the acceleration of gravity g. Moreover,
the coefficients are not constants since the unperturbed shock solution depends
on the vertical variable. New ideas and techniques are developed to deal with
these difficulties and, under certain sufficient conditions on the perturbation, the
existence of the solution to the proposed free boundary problem is established
as the acceleration of gravity g > 0 and the perturbation are sufficiently small.
Then, with the obtained initial approximation of the shock solution, a nonlinear
iteration scheme can be constructed which leads to a transonic shock solution with
the position of the shock front being close to the initial approximating position.
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1. Introduction

This paper concerns the existence of transonic shocks for steady 2-D Euler flows
of isothermal gases in a horizontal flat nozzle under the vertical gravity(see Figure
1.1). Assume the flow enters the nozzle with a supersonic state and leaves it with a
relatively high pressure, then it is expected that a shock front occurs in the nozzle
such that the flow pressure rises to coincide with the pressure at the exit. Then the
position of the shock front is one of the most desirable information one would like
to know. This paper is devoted to determine the admissible position of the shock
front with a given supersonic state at the entry and the receiver pressure at the exit,
under the assumption that the fluid cannot penetrate the nozzle walls, as proposed
by Courant and Friedrichs in [12] for supersonic flows with shocks in a nozzle. In
particular, this paper is going to investigate whether or not the vertical gravity
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helps to determine the position of the shock front and to show the mechanism if the
answer is “yes”.

Figure 1.1. The transonic shock flows in a flat horizontal nozzle
under vertical gravity.

Let (x, y) be the space variables with x-axis standing for the horizontal direction
and y-axis the vertical direction. Then the motion of the inviscid isothermal gas
under vertical gravity is governed by the following system

∂x(ρu) + ∂y(ρv) = 0, (1.1)

∂x(ρu
2 + p) + ∂y(ρuv) = 0, (1.2)

∂x(ρuv) + ∂y(ρv
2 + p) = −ρg, (1.3)

where ρ is the density, p is the pressure, (u, v)> are the horizontal component and
vertical component of the velocity, and g is the acceleration of gravity. For isothermal
gases, its state equation is assumed to be p(ρ) = ρ in this paper. Then the sonic
speed c2 := p′(ρ) ≡ 1.

Then for a shock front occurs in the flow field whose position is x = ϕ(y), the fol-
lowing Rankine-Hugoniot conditions (which will be abbreviated as R-H conditions)
should be satisfied

[ρu]− ϕ′ [ρv] = 0, (1.4)

[ρu2 + p]− ϕ′ [ρuv] = 0, (1.5)

[ρuv]− ϕ′ [ρv2 + p] = 0, (1.6)

where [·] stands for the jump of the corresponding quantity across the shock front.
Let

D := {(x, y) ∈ R2 : 0 < x < L, 0 < y < 1} (1.7)
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be the domain bounded by a flat horizontal nozzle with the entrance E0, the exit
EL, as well as the walls W0 and W1(see Figure 1.1):

E0 :=
{

(x, y) ∈ R2 : x = 0, 0 < y < 1
}
,

EL :=
{

(x, y) ∈ R2 : x = L, 0 < y < 1
}
,

W0 :=
{

(x, y) ∈ R2 : 0 < x < L, y = 0
}
,

W1 :=
{

(x, y) ∈ R2 : 0 < x < L, y = 1
}
.

The assumption that the fluid cannot penetrate the nozzle boundary yields the
following slip boundary condition on W0 and W1:

v = 0. (1.8)

Then the existence problem of the transonic shocks could be formulated as follows.

The Free Boundary Problem JSPK.

Let the independent flow parameters be denoted by U := (p, θ, q)>, where θ =

arctan
v

u
is the flow angle, and q =

√
u2 + v2 is the magnitude of the flow velocity.

Given a supersonic state U = Uin(y) at the entrance E0, and a relatively high
pressure p = Pout(y) at the exit EL, whether or not there exists a shock solution
U = U(x, y) in D to the 2-D steady Euler system (1.1)-(1.3), with the position of
the shock front being

Es :=
{

(x, y) ∈ R2 : x = ϕ(y), 0 < y < 1
}
,

such that the R-H conditions (1.4)-(1.6) are satisfied on Es, and the boundary
condition (1.8) holds on W0 and W1 (see Figure 1.1).

1.1. Steady normal shock solutions in a flat nozzle. We first show the ex-
istence of special shock solutions to the problem JSPK for horizontal flows. The
special solutions can be established under the following assumptions:

(H1) The velocity directions are horizontal for the flows both ahead of and behind
the shock front, namely, v ≡ 0 in D. Then the shock front is a vertical
straight line such that ϕ′(y) ≡ 0 (see Figure 1.2).

(H2) The states for the flows both ahead of and behind the shock front depend
only on the vertical variable y, and is independent of the horizontal variable
x. That is, U = U(y).

Let p0, q0 are positive constants and q0 > 1. Then it can be easily verified that

Ū−(y) = (p̄−(y), θ̄−(y), q̄−(y))> := (p0 exp(−gy), 0, q0)>, (1.9)

satisfies the Euler system (1.1)-(1.3), which describe a horizontal supersonic flow.
Then, under the assumption (H1) that ϕ′(y) ≡ 0, the R-H conditions (1.4)-(1.5)
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become, with Ū+(y) = (p̄+(y), 0, q̄+(y))> being the state behind the shock front,

[ρ̄q̄] = ρ̄+q̄+ − ρ̄−q̄− = 0, (1.10)

[p̄+ ρ̄q̄2] = (p̄+ + ρ̄+q̄
2
+)− (p̄− + ρ̄−q̄

2
−) = 0. (1.11)

Then it follows that
p̄+(y) = ρ̄+(y) = p̄−(y)q̄2

−(y) = p̄−(y)q2
0,

q̄+(y) =
1

q̄−(y)
=

1

q0

< 1.
(1.12)

It can also be verified that Ū+(y) also satisfies the Euler system (1.1)-(1.3), which
describe a horizontal subsonic flow.

Thus, for any x̄s ∈ (0, L) such that the position of the shock front being

Ēs :=
{

(x, y) ∈ R2 : x = ϕ̄(y) ≡ x̄s, 0 < y < 1
}
,(

Ū−(y); Ū+(y); ϕ̄(y)
)
consists a transonic normal shock solution to the problem

JSPK( see Figure 1.2), with Uin(y) := Ū−(y) and Pout(y) := p̄+(y), in the sense that

Ū(x, y) :=

Ū−(y), for 0 < x < x̄s, 0 < y < 1,

Ū+(y), for x̄s < x < L, 0 < y < 1.
(1.13)

In this paper, the subscript “−” will represent the parameters of the flow ahead of
the shock front and the subscript “+” behind of the shock front.

Figure 1.2. The transonic shock flows in the flat nozzle.

Remark 1.1. Analogous to the transonic planar normal shocks for steady Euler flows
in a flat nozzle without gravity, namely, g = 0, the position Ēs of the shock front
could be arbitrary in D since x̄s ∈ (0, L) could be arbitrary, and the subsonic state
Ū+(y) behind the shock front is uniquely determined by the supersonic state Ū−(y)

given by (1.9).

Remark 1.2. In case q̄−(y), with inf
0<y<1

q̄−(y) > 1, is a function depending only on

y, special shock solutions
(
Ū−(y); Ū+(y); ϕ̄(y)

)
to the problem JSPK could also be

established with Ū+(y) being determined by (1.12), and the position of the shock
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front could also be arbitrary. This fact means that in general the perturbation of
the horizontal component of the velocity does not help to determine the position of
the shock front.

Remark 1.3. In case the flat nozzle boundary is slightly perturbed, by applying the
ideas and techniques in [17], it turns out that, as the acceleration of gravity g > 0 is
small, the primary ingredient that helps to determine the position of the shock front
is contributed by the perturbation of the nozzle boundary as well as the receiver
pressure at the exit. That is, the contribution of the vertical gravity is covered
and could not be observed clearly. Hence, in order to show the contribution of the
vertical gravity, the flat nozzle boundary will not be perturbed in this paper.

Remark 1.4. It is worth of pointing out that, for polytropic gases p = A(S)ργ with
the entropy S and the adiabatic exponent γ > 1, there is no shock solutions to the
problem JSPK satisfying the assumptions (H1) and (H2).

1.2. The small perturbation problem. Based on the established special solu-
tions defined by (1.13), this paper is going to investigate the mechanism how the
vertical gravity contributes to determine the position of the shock front by slightly
perturbed the pressure at the entrance and the exit of the flat nozzle. Then the
problem JSPK is further described as the small perturbation problem JFBPK below
with more detailed boundary data.

The small perturbation problem JFBPK.

Let
Uin(y) := Ū−(y) + σ(PI(y), 0, 0)>,

Pout(y) := p̄+(y) + Pe(y; g, σ),
(1.14)

where σ > 0 and g > 0 are sufficiently small constants, PI(y) ∈ C2,α(R̄+) is a given
function with α ∈ (0, 1), and Pe(y; g, σ) ∈ C2,α(R̄+) is a given function of y with
parameters g > 0 and σ > 0. Then try to determine a transonic shock solution
(U−(x, y); U+(x, y); ϕ(y)) (see Figure 1.1) to the problem JSPK in the sense that:

(i). The position of the shock front is

Es :=
{

(x, y) ∈ R2 : x = ϕ(y), 0 < y < 1
}
, (1.15)

and the domain D is divided into two parts by Es:

D− = {(x, y) ∈ R2 : 0 < x < ϕ(y), 0 < y < 1},

D+ = {(x, y) ∈ R2 : ϕ(y) < x < L, 0 < y < 1},
(1.16)

where D− is the region of the supersonic flow ahead of the shock front,
while D+ is the region of the subsonic flow behind it.
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(ii). U(x, y) = U−(x, y) satisfies the Euler system (1.1)-(1.3) in D−, the bound-
ary conditions at the entry of the nozzle

U− = Uin(y), on E0, (1.17)

and the slip boundary condition on the walls of the nozzle

θ− = 0, on (W0 ∪W1) ∩ D−; (1.18)

(iii). U(x, y) = U+(x, y) satisfies the Euler system (1.1)-(1.3) in D+, the slip
boundary condition on the walls of the nozzle

θ+ = 0, on (W0 ∪W1) ∩ D+, (1.19)

and the given pressure at the exit of the nozzle

p+ = Pout(y), on EL; (1.20)

(iv). (U−, U+) satisfies the R-H conditions (1.4)-(1.6) across the shock front Es.

This paper is going to show the existence of a transonic shock solution to the
small perturbation problem JFBPK for certain given functions PI and Pe.

Let α ∈ (0, 1). Suppose that PI ∈ C2,α(R̄+) is a given function satisfying

(i). For some constant CI > 0 independent of g,

‖PI‖C2,α(R̄+) ≤ CI ; (1.21)

(ii). For some constant CI0 > 0 independent of g,

PI(y) ≥ CI0, for any y ∈ [0, 1]; (1.22)

(iii). Let ∂yPI(y)

PI(y)
= ℘(y). Then ℘(y) satisfies

℘(0) =℘(1) = −g, (1.23)

℘(y) <− g, for y ∈ (0, 1). (1.24)

Moreover, for any [τ1, τ2] $ (0, 1) and the constants τ1, τ2 > 0 independent
of g, there exist uniform constants CI1 and CI2 independent of g, such that

−CI1 ≤ ℘(y) ≤ −CI2, for y ∈ [τ1, τ2]. (1.25)

Let Pe be a function with the following form

Pe(y; g, σ) := σ · q2
0PI(y) + gσ · q2

0PE(y), (1.26)

where PE ∈ C2,α(R̄+) is a given function at the exit of the nozzle.
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Remark 1.5. There exist functions PI satisfying (1.21)-(1.25). For example, let

℘(y) =


g − 1

τ1

( 1

τ 2
1

y3 − 3

τ1

y2 + 3y
)
− g, y ∈ [0, τ1]

−1, y ∈ [τ1, τ2]
1− g

(1− τ2)3

(
y3 − 3τ2y

2 + 3τ 2
2 y − τ 3

2

)
− 1. y ∈ [τ2, 1]

Then it is easy to find functions for PI that satisfies the conditions (1.21)-(1.25).

Remark 1.6. (1.21)-(1.26) are sufficient conditions on PI(y) and Pe(y; g, σ), under
which the position of the shock front can be determined and the existence of a
transonic shock solution to the problem JFBPK can be established. These sufficient
conditions show a mechanism how the vertical gravity contributes to determine the
position of the shock front. In particular, the conditions (1.21)-(1.25) yield that the
break-down of the balance between the pressure and the vertical gravity, such that
the velocity direction is deflected and the flow is no longer horizontal. Then it will
be observed that the action of the vertical gravity is not canceled, which contributes
to determine the position of the shock front.

Define

Ωℵ := {(ξ, η) ∈ R2 : 0 < ξ < ξ1, 0 < η < 1},

with ξ1 =

√
M̄2
− − 1

p0q0

.

Let (pℵ, θℵ)> be the solution to the following problem in the domain Ωℵ:

∂ηp
ℵ + q0∂ξθ

ℵ = 0, (1.27)

∂ηθ
ℵ −

1− M̄2
−

p2
0q

3
0

∂ξp
ℵ = 0, (1.28)

with the initial-boundary conditions

θℵ(0, η) =0, pℵ(0, η) = PI(η), (1.29)

θℵ(ξ, 0) =0, θℵ(ξ, 1) = 0. (1.30)

Let

R\
gσ(ξ) :=K ·

ˆ 1

0

ˆ ξ

0

θℵ(τ, η)dτdη, (1.31)

where

K := −(q2
0 − 1)2

p0q0

< 0. (1.32)
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Figure 1.3. The characteristics for the equations (1.27) and (1.28).

Remark 1.7. For the problem (1.27)-(1.30), direct calculations yield that

θℵ(ξ, η) =



Θ1(ξ, η), 0 ≤ ξ ≤ ξ1

2
,
ξ

ξ1

≤ η ≤ 1− ξ

ξ1

Θ2(ξ, η), ξ1(1− η) ≤ ξ ≤ ξ1η,
1
2
≤ η ≤ 1

Θ3(ξ, η), ξ1η ≤ ξ ≤ ξ1(1− η), 0 ≤ η ≤ 1
2

Θ4(ξ, η),
ξ1

2
≤ ξ ≤ ξ1, 1− ξ

ξ1

≤ η ≤ ξ

ξ1

(1.33)

where K =

√
M̄2
−−1

2p0q20
,

Θ1(ξ, η) =K
(
PI
(
η − ξ

ξ1

)
− PI

(
η +

ξ

ξ1

))
,

Θ2(ξ, η) =K
(
PI
(
η − ξ

ξ1

)
− PI

(
2− η − ξ

ξ1

))
,

Θ3(ξ, η) =K
(
PI
( ξ
ξ1

− η
)
− PI

(
η +

ξ

ξ1

))
,

Θ4(ξ, η) =K
(
PI
( ξ
ξ1

− η
)
− PI

(
2− η − ξ

ξ1

))
.

Thus, (1.31) implies that

R\
gσ(ξ) :=

 [1(ξ), for 0 ≤ ξ ≤ ξ1
2
,

[2(ξ), for ξ1
2
< ξ ≤ ξ1,

(1.34)

where

[1(ξ) :=K
( ˆ ξ

0

ˆ τ
ξ1

0

Θ3(τ, η)dηdτ +

ˆ ξ

0

ˆ 1− τ
ξ1

τ
ξ1

Θ1(τ, η)dηdτ

+

ˆ ξ

0

ˆ 1

1− τ
ξ1

Θ2(τ, η)dηdτ
)
, (1.35)
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[2(ξ) :=K
(
[1(
ξ1

2
) +

ˆ ξ

ξ1
2

ˆ 1

τ
ξ1

Θ2(τ, η)dηdτ +

ˆ ξ

ξ1
2

ˆ 1− τ
ξ1

0

Θ3(τ, η)dηdτ

+

ˆ ξ

ξ1
2

ˆ τ
ξ1

1− τ
ξ1

Θ4(τ, η)dηdτ
)
. (1.36)

Then we are going to prove the following Theorem in this paper.

Theorem 1.8. Suppose that (1.21)-(1.26) hold. R\
gσ be the function defined in

(1.34), and

P\gσ :=
q2

0 − 1

p2
0q0

ˆ 1

0

PE(η)dη. (1.37)

Assume that

R\
gσ(ξ1) < P\gσ < R\

gσ(0), (1.38)

then there exist a sufficiently small constant g0 > 0 such that for any 0 < g < g0

and

0 < σ ≤ g3, (1.39)

there exists a transonic shock solution (U−(x, y); U+(x, y); ϕ(y)) to the problem
JFBPK.

Remark 1.9. The condition (1.39) can be replaced by

0 < σ ≤ g2+ε, (1.40)

where the constant ε > 0. Then g0 will depend on ε.

Remark 1.10. Under the condition of (1.38), there exists a solution ξ̄∗ ∈ (0, ξ1) such
that

R\
gσ(ξ̄∗) = P\gσ. (1.41)

It turns out that this solution ξ̄∗ helps to obtain the initial approximating position
of the shock front. See Theorem 2.5 for details.

In order to establish the existence of transonic shock solutions to the problem
JFBPK, one of the key difficulties is to obtain information on the position of the
shock front since it can be arbitrary for the special solution (1.13). Motivated
by the ideas introduced by Fang and Xin in [17], a free boundary problem for
the linearized Euler system with vertical gravity will be proposed to obtain an
approximating position of the shock front. Analogous to the problem without the
gravity in [17], the linearized equations of the Euler system for the subsonic flow
behind the shock front are elliptic-hyperbolic composite and a solvability condition
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should be satisfied in order that the boundary value problem for the elliptic sub-
system has a solution, which is employed to determine the approximating position
of the shock front. However, there are differences in the linearized system that
bring new difficulties. The first difference is the existence of the 0-order terms that
depend on the acceleration of gravity g in the linearized Euler system. It leads to the
coupling between the elliptic part and the hyperbolic part. The second difference is
the variable coefficients of the linearized system since the unperturbed shock solution
depends on the vertical variable y. Both differences are brought by the existence of
the vertical gravity. They couple together and make it more difficult to deduce the
solvability condition for the elliptic sub-problem and to further analyse its relation
with the approximation position of the shock front. To overcome the difficulties
brought by these differences, an auxiliary system is introduced to help deduce the
solvability condition for the linearized problem of elliptic-hyperbolic coupled type
for the subsonic flow, and establish the existence of its solution. Then further careful
analysis on the solvability condition will be carried out to show the existence of the
approximating position of the shock front under the prescribed conditions on PI(y)

and Pe(y; g, σ). Since the nozzle boundary is not perturbed, it turns out that the
leading terms in the solvability condition are g · σ-terms among the higher order
terms. These g ·σ-terms show the contribution of the vertical gravity in determining
the position of the shock front. Once the initial approximation is obtained, a further
nonlinear iteration could be constructed and proved to lead to a transonic shock
solution to the problem JFBPK if the acceleration of gravity g > 0 is sufficiently
small and σ is of order g3.

The flow pattern of gas flows involving a single shock front in a nozzle, which
enter the nozzle with a supersonic state and leave with a subsonic state, is one
of the fundamental phenomena for nozzle flows. In the mathematical analysis for
it, how the position of the shock front can be determined is one of the key issues.
In [12], Courant and Friedrichs first gave a systematic analysis from the viewpoint
of nonlinear partial differential equations. They point out that, the position of
the shock front cannot be determined unless additional conditions are imposed at
the exit and the pressure condition is suggested and preferred(see [12, Page 373-
374]). Since then, in order to establish a rigorous mathematical analysis for the flow
pattern, various nonlinear PDE models and different boundary conditions have been
proposed, fruitful ideas and methods had been developed, and substantial progresses
had been made. In 1980s, for the unsteady transonic gas flows governed by the quasi-
one-dimensional models, in [29, 30], T.P. Liu proved the existence of shocks solutions
for certain given Cauchy data, and established a stability theory for them. In [13],
Embid-Goodman-Majda showed that, in general, there exist more than one shock
solutions for the steady quasi-one-dimensional model. See also, for instance, [10, 31]
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and references therein for literatures on quasi-one-dimensional nozzle flows. As to
the steady multi-dimensional models such as potential equations or the Euler system,
thanks to continuous efforts of many mathematicians, there have been substantial
progresses in the past two decades, for instance, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].
Two typical kinds of nozzles are studied. One is an expanding nozzle of an angular
sector or a diverging cone. In [12], Courant and Friedrichs established the unique
existence of a transonic shock solution in such a nozzle with given constant pressure
at the exit. Based on this shock solution, in [9] by Chen and in a series of papers
[20, 21, 25] by Li-Xin-Yin, the well-posedness of shock solutions in an expanding
nozzle has been established, with prescribed pressure at the exit as suggested by
Courant and Friedrichs. See also [22, 23, 24, 33, 34] for related studies on transonic
shocks in a 3-D axisymmetric conic nozzle. The other is a flat nozzle with two
parallel walls. In this case, the existence of planar normal shock solutions can be
easily established. However, the position of the shock front cannot be determined
since it can be arbitrary in the flat nozzle. Thus, as the state of the incoming flow
or the nozzle boundary is perturbed, since no information is available in advance,
catching the position of the shock front is one of the key difficulties. An idea to deal
with this difficulty is presuming that the shock front goes through a fixed point which
is given in advance artificially, and spontaneously replacing the pressure condition at
the exit by other conditions, for instance, see [3, 4, 35, 36, 37, 38]. Recently, in [17],
Fang-Xin proposed another idea to determine the position of the shock front with
the pressure condition at the exit. They proposed a free boundary problem for the
linearized Euler system whose solution could be taken as an initial approximation
for the transonic shock solution, including the approximating position of the shock
front. Then a nonlinear iteration scheme starting from the initial approximation
could be designed, which leads us to a shock solution. In the above literatures, the
exterior forces are neglected. In this paper, the force of gravity will be taken into
account and it will be investigated whether and how the vertical gravity contributes
to determine the position of the shock front for the flow in a horizontal nozzle.

1.3. Outline of the paper. The rest of the paper is organized as follows. In Sec-
tion 2, the problem JFBPK is reformulated via the Lagrangian transformation. Then
a free boundary problem of the linearized Euler system based on the background
normal shock solution is proposed in order to obtain an initial approximation of the
shock solution. Moreover, the main theorems are stated. In Section 3, a preliminary
solving boundary value problems of a typical elliptic-hyperbolic composite system is
given, solvability conditions will be described, and the existence as well as the a prior
estimates will be established. They will be employed later in solving the linearized
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problem for the subsonic flows. In Section 4, with the help of the preliminary in
Section 3, the existence of the initial approximation for the shock solution can be
established, and, the approximate position of the shock front can also be determined
by applying the solvability condition given in Section 3. Based on the initial ap-
proximation, in Section 5, a nonlinear iteration scheme will be described. Finally,
in Section 6, the nonlinear iteration scheme will be verified to be well-defined and
contractive, which concludes the proof for the main theorem.

2. The Lagrange transformation and the main results

In this section, the Lagrange transformation will be introduced to straighten the
streamline and reformulate the problem JFBPK. Then, the free boundary problem
for the linearized Euler system will be introduced, which will be used to determine an
initial approximation of the shock solution. Finally, the main theorems, describing
the existence of the initial approximation and the transonic shock solution, are
presented.

2.1. Reformulation by the Lagrange transformation. For steady flows, the
streamlines coincide with the characteristics associating to the linearly degenerate
eigenvalue of the Euler system. It is useful to employ the Lagrange transformation
to straighten the streamlines which turns out to be crucial for the regularity analysis
of the solution in the subsonic region. We describe formally the Lagrange transfor-
mation below and refer the readers to, for instance, [7, 20, 25] and references therein
for more details.

Let {
ξ = x,

η =
´ (x,y)

(0,0)
ρu(s, t)dt− ρv(s, t)ds.

(2.1)

Under this transformation, the equations (1.1)-(1.3) become

∂ξ

( 1

ρu

)
− ∂η

(v
u

)
= 0, (2.2)

∂ξ

(
u+

p

ρu

)
− ∂η

(pv
u

)
= 0, (2.3)

∂ξv + ∂ηp+
g

u
= 0. (2.4)

Under the Lagrange transformation, the upper boundaryW1 becomes {η = η0} with

η0 = q0

ˆ 1

0

(
p̄−(y) + σPI(y)

)
dy,

which depends on the quantities g and σ. Obviously, the value of η0 changes as
g and σ change. Therefore, it would be better to further introduce the following
transformation such that W1 becomes a fixed boundary {η̃ = p0q0} independent of
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g and σ:  ξ̃ = ξ,

η̃ =
p0q0

η0

η,
(2.5)

where
p0q0

η0

:= 1 +H1(g, σ), (2.6)

with

H1(g, σ) :=

p0

(
1 +

1

g
(e−g − 1)

)
− σ ·

ˆ 1

0

PI(y)dy

−p0
1

g

(
e−g − 1

)
+ σ ·

ˆ 1

0

PI(y)dy

. (2.7)

Then the equations (2.2)-(2.4) are reformulated as

∂ξ̃

( 1

ρ̃ũ

)
−
(

1 +H1(g, σ)
)
∂η̃

( ṽ
ũ

)
= 0, (2.8)

∂ξ̃

(
ũ+

p̃

ρ̃ũ

)
−
(

1 +H1(g, σ)
)
∂η̃

( p̃ṽ
ũ

)
= 0, (2.9)

∂ξ̃ṽ +
(

1 +H1(g, σ)
)
∂η̃p̃+

g

ũ
= 0. (2.10)

For simplicity of the notations, we shall drop “ ˜ ” in the sequel arguments. In
addition, without loss of generality, we may assume p0q0 = 1.

Further computations yield that the equations (2.8)-(2.10) can be rewritten as
the following form:(

1 +H1(g, σ)
)
∂ηp−

sin θ

ρq
∂ξp+ q cos θ∂ξθ +

cos θ

q
g = 0, (2.11)(

1 +H1(g, σ)
)
∂ηθ −

sin θ

ρq
∂ξθ −

cos θ

ρq

1−M2

ρq2
∂ξp−

sin θ

ρq3
g = 0, (2.12)

∂ξ

(1

2
q2
)

+
1

ρ
∂ξp+ g tan θ = 0. (2.13)

The equation (2.13) can be replaced by the following form:

∂ξB + g tan θ = 0, (2.14)

where the Bernoulli constant B =
1

2
q2 + i and i = ln ρ being the enthalpy.

Remark 2.1. It is easy to see that (2.13) is a transport equation and is hyperbolic.
Moreover, the equations (2.11) and (2.12) can be rewritten in the matrix form as
below:

A1(U)∂ξ(p, θ)
> + A2∂η(p, θ)

> + a(U) = 0, (2.15)

where a(U) =
(cos θ

q
g, −sin θ

ρq3
g
)>

,
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A1(U) =
1

ρq

 − sin θ ρq2 cos θ
M2 − 1

ρq2
cos θ − sin θ

 , A2 =

(
1 +H1(g, σ) 0

0 1 +H1(g, σ)

)
.

Direct calculations follow that the eigenvalues of (2.15) are

λ± =
− sin θ ±

√
M2 − 1 cos θ

ρq(1 +H1(g, σ))
. (2.16)

For supersonic flows, λ± are real since the Mach number M > 1, which implies that
the system (2.15) is hyperbolic, while for subsonic flows, λ± are a pair of conjugate
complex number since the Mach number M < 1, which implies that the system
(2.15) is elliptic. Therefore, the system (2.11)-(2.13) is hyperbolic as M > 1, while
it is elliptic-hyperbolic composite as M < 1.

Let
Γs := {(ξ, η) ∈ R2 : ξ = ψ(η), 0 < η < 1}

be the position of a shock front under the transformations (2.1) and (2.5), then the
R-H conditions (1.4)-(1.6) across the shock front are reformulated as[ 1

ρu

]
+
(

1 +H1(g, σ)
)
ψ′
[v
u

]
= 0, (2.17)[

u+
p

ρu

]
+
(

1 +H1(g, σ)
)
ψ′
[pv
u

]
= 0, (2.18)

[v]−
(

1 +H1(g, σ)
)
ψ′[p] = 0. (2.19)

Applying the equation (2.19), one can eliminate the quantity ψ′ in the equations
(2.17) and (2.18) respectively, which yields that

G1(U+, U−) :=
[ 1

ρu

]
[p] +

[v
u

]
[v] = 0, (2.20)

G2(U+, U−) :=
[
u+

p

ρu

]
[p] +

[pv
u

]
[v] = 0, (2.21)

G3(U+, U−;ψ′) :=[v]−
(

1 +H1(g, σ)
)
ψ′[p] = 0. (2.22)

Under the transformations (2.1) and (2.5), the domain D becomes

Ω := {(ξ, η) ∈ R2 : 0 < ξ < L, 0 < η < 1}. (2.23)

It is separated by the shock front Γs into two parts: the supersonic region and
subsonic region respectively, denoted by,

Ω− = {(ξ, η) ∈ R2 : 0 < ξ < ψ(η), 0 < η < 1}, (2.24)

Ω+ = {(ξ, η) ∈ R2 : ψ(η) < ξ < L, 0 < η < 1}. (2.25)
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Figure 2.1. The transonic shock flows in the Lagrangian coordinate.

Moreover, the boundaries E0,W0, EL,W1 become

Γ1 = {(ξ, η) ∈ R2 : ξ = 0, 0 < η < 1}, (2.26)

Γ2 = {(ξ, η) ∈ R2 : 0 < ξ < L, η = 0}, (2.27)

Γ3 = {(ξ, η) ∈ R2 : ξ = L, 0 < η < 1}, (2.28)

Γ4 = {(ξ, η) ∈ R2 : 0 < ξ < L, η = 1}, (2.29)

respectively( see Figure 2.1).
Then, under the transformations (2.1) and (2.5), the small perturbation problem

JFBPK is reformulated as the problem below.

The free boundary problem JFBPLK

Try to determine a transonic shock solution (U−(ξ, η); U+(ξ, η); ψ(η)) such that

(i). U−(ξ, η) satisfies the equations (2.11)-(2.13) in Ω− and the following initial-
boundary conditions

U− = Uin(Y0(η; g, σ)), on Γ1, (2.30)

θ− = 0, on (Γ2 ∪ Γ4) ∩ Ω−, (2.31)

where

Y0(η; g, σ) =
1

1 +H1(g, σ)
·
ˆ η

0

1

q0ρ−(0, s)
ds, (2.32)

and,

Pin(Y0(η; g, σ)) :=p̄−(η) + P ]
I (Y0(η; g, σ)), (2.33)

with

p̄−(η) :=p0 − g ·
1

(1 +H1(g, 0))q0

η, (2.34)

P ]
I (Y0(η; g, σ)) :=σ · PI(Y0(η; g, σ))
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+ g · H1(g, σ)−H1(g, 0)(
1 +H1(g, 0)

)(
1 +H1(g, σ)

)
q0

η

+ gσ ·
ˆ Y0(η;g,σ)

0

PI(τ)dτ ; (2.35)

(ii). U+(ξ, η) satisfies the equations (2.11)-(2.13) in Ω+ and the following bound-
ary conditions:

θ+ = 0, on (Γ2 ∪ Γ4) ∩ Ω+, (2.36)

p+ = Pout(YL(η; g, σ); g, σ), on Γ3, (2.37)

where

YL(η; g, σ) =
1

1 +H1(g, σ)
·
ˆ η

0

1

(ρ+q+ cos θ+)(L, s)
ds, (2.38)

and,

Pout(YL(η; g, σ); g, σ) =p̄+(η) + P ]
e (YL(η; g, σ); g, σ), (2.39)

with

p̄+(η) :=p0q
2
0 − g ·

q0

1 +H1(g, 0)
η, (2.40)

P ]
e (YL(η; g, σ); g, σ) :=Pe(YL(η; g, σ); g, σ)

+ g ·
(
H1(g, σ)−H1(g, 0)

)
q0(

1 +H1(g, 0)
)(

1 +H1(g, σ)
)η

+ g ·
ˆ YL(η;g,σ)

0

Pe(τ ; g, σ)dτ ; (2.41)

(iii). On the shock front Γs, (U−(ξ, η), U+(ξ, η)) satisfies the R-H conditions
(2.17)-(2.19).

Remark 2.2. Under the transformations (2.1) and (2.5), the states Ū±(y) for the
background solution become:

Ū−(η) = (p̄−(η), θ̄−(η), q̄−(η))>

:= (p̄−(η), 0, q0)> , (2.42)

Ū+(η) = (p̄+(η), θ̄+(η), q̄+(η))>

:=

(
p̄−(η)q2

0, 0,
1

q0

)>
. (2.43)

Moreover,

∂ηP
]
I (0) = ∂ηP

]
I (1) = g · H1(g, σ)−H1(g, 0)(

1 +H1(g, 0)
)(

1 +H1(g, σ)
)
q0

. (2.44)

It shows that the compatibility conditions hold for the hyperbolic system in Ω−.
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2.2. The free boundary problem for the initial approximation.

Figure 2.2. The domain for the initial linearized problem.

To solve the free boundary problem JFBPLK, one of the key issue is to determine
the position of the shock front Γs. However, there is no information one can get
from the unperturbed shock solution. Motivated by the ideas introduced in [17]
to determine an approximating position of the shock front, we shall propose a free
boundary problem for the linearized Euler system as below, whose solution gives an
initial approximation of the shock solution.

Assume that the initial approximating position of the shock front is

Γ̇s = {(ξ, η) : ξ = ξ̇∗, 0 < η < 1}, (2.45)

where 0 < ξ̇∗ < L is unknown and will be determined later (see Figure 2.2). Then
the whole domain Ω is divided by Γ̇s into two parts: the supersonic region Ω̇− and
subsonic region Ω̇+, denoted respectively by

Ω̇− = {(ξ, η) ∈ R2 : 0 < ξ < ξ̇∗, 0 < η < 1}, (2.46)

Ω̇+ = {(ξ, η) ∈ R2 : ξ̇∗ < ξ < L, 0 < η < 1}. (2.47)

Let U̇− = (ṗ−, θ̇−, q̇−)> be the initial approximate supersonic flow ahead of the shock
front governed by the following linearized Euler system at the supersonic state Ū−
in Ω̇−: (

1 +H1(g, 0)
)
∂ηṗ− + q̄−∂ξθ̇− −

g

q̄2
−
q̇− = H2−(g, σ), (2.48)(

1 +H1(g, 0)
)
∂ηθ̇− −

1− M̄2
−

ρ̄2
−q̄

3
−
∂ξṗ− −

g

ρ̄−q̄3
−
θ̇− = 0, (2.49)

q̄−∂ξ q̇− +
1

ρ̄−
∂ξṗ− + gθ̇− = 0, (2.50)

where

H2−(g, σ) = g · H1(g, σ)−H1(g, 0)

q0(1 +H1(g, 0))
.
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Let U̇+ = (ṗ+, θ̇+, q̇+)> be the initial approximate subsonic flow behind of the shock
front governed by the following linearized Euler system at the subsonic state Ū+ in
Ω̇+: (

1 +H1(g, 0)
)
∂ηṗ+ + q̄+∂ξθ̇+ −

g

q̄2
+

q̇+ = H2+(g, σ), (2.51)(
1 +H1(g, 0)

)
∂ηθ̇+ −

1− M̄2
+

ρ̄2
+q̄

3
+

∂ξṗ+ −
g

ρ̄+q̄3
+

θ̇+ = 0, (2.52)

q̄+∂ξ q̇+ +
1

ρ̄+

∂ξṗ+ + gθ̇+ = 0, (2.53)

where

H2+(g, σ) = g ·
(
H1(g, σ)−H1(g, 0)

)
q0

1 +H1(g, 0)
. (2.54)

Then the following free boundary problem will be employed to determine the
initial approximation (U̇−, U̇+, ξ̇∗), and together with the updated approximating
shock profile ψ̇′.
The free boundary problem JIFBPLK for the initial approximation

Try to determine (U̇−(ξ, η), U̇+(ξ, η), ξ̇∗; ψ̇
′(η)) in Ω such that:

(i). U̇−(ξ, η) satisfies the linearized equations (2.48)-(2.50) in Ω̇−, with the
initial-boundary conditions

U̇− = (P ∗I (Y0(η; g, σ)), 0, 0)>, on Γ1, (2.55)

θ̇− = 0, on (Γ2 ∪ Γ4) ∩ Ω̇−, (2.56)

where

P ∗I (Y0(η; g, σ)) =
1 +H1(g, σ)

1 +H1(g, 0)
P ]
I (Y0(η; g, σ)) := P ∗I (η), (2.57)

with P ]
I being defined in (2.35);

(ii). U̇+ satisfies the linearized equations (2.51)-(2.53) in Ω̇+, with the boundary
conditions

θ̇+ = 0, on (Γ2 ∪ Γ4) ∩ Ω̇+, (2.58)

ṗ+ = P ]
e (YL(η; g, 0); g, σ), on Γ3, (2.59)

where P ]
e is defined in (2.41) and

YL(η; g, 0) =
1

1 +H1(g, 0)
·
ˆ η

0

1

q̄+ρ̄+(s)
ds; (2.60)
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(iii). On the shock front Γ̇s, (U̇−, U̇+) satisfies the following linearized R-H con-
ditions:

αj+ · U̇+ + αj− · U̇− = 0, j = 1, 2, (2.61)

α3+ · U̇+ + α3− · U̇− − (1 +H1(g, 0))[p̄]ψ̇′ = 0, (2.62)

where

αj± = ∇U±Gi(Ū+, Ū−), α3± = ∇U±G3(Ū+, Ū−; 0). (2.63)

Remark 2.3. Direct computation yields that

α1± = ± [p̄]

ρ̄±q̄±
·
(
− 1

ρ̄±c̄2
±
, 0, − 1

q̄±

)>
, (2.64)

α2± = ± [p̄]

ρ̄±q̄±
·
(

1− p̄±
ρ̄±c̄2

±
, 0, ρ̄±q̄± −

p̄±
q̄±

)>
, (2.65)

α3± = ±
(

0, q̄±, 0
)>
. (2.66)

Remark 2.4. By applying (2.42)-(2.43) and p0q0 = 1, it follows that

YL(η; g, 0) = Y0(η; g, 0), YL(η; 0, 0) = Y0(η; 0, 0) = η. (2.67)

Denote

Ṗ ]
e (η) := P ]

e (YL(η; g, 0); g, σ).

Then applying (1.26), (2.35) and (2.41), one has

Ṗ ]
e (η) =q2

0P
]
I (Y0(η; g, 0)) + gσ · q2

0PE(YL(η; g, 0))

+ g ·
ˆ Y0(η;g,0)

0

(
Pe(τ ; g, σ)− σ · q2

0PI(τ)
)

dτ

=q2
0P

]
I (Y0(η; g, 0)) + gσ · q2

0PE(YL(η; g, 0)) + g2σ · q2
0

ˆ Y0(η;g,0)

0

PE(τ)dτ.

Thus, one can deduce that

Ṗ ]
e (η) = q2

0P
∗
I (η) + gσ · q2

0PE(η) +O(1)g2σ +O(1)σ2, (2.68)

where P ∗I is defined in (2.57) and O(1) is a bounded function and depends on p0, q0,
PI , PE, P

′
I and P ′E.

2.3. Main results. Before we state the main result, some function spaces will be
first introduced.

In the supersonic region, it is natural to introduce the classical Hölder spaces. For
any bounded domain Ω ⊂ Rn, m > 0 be an integer, and 0 < α < 1, Cm,α(Ω) de-
notes the classical Hölder spaces with the index (m,α) for functions with continuous
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derivatives up to m-th order, equipped with the classical Cm,α(Ω) norm:

‖u‖Cm,α(Ω) :=
∑
|m|≤m

sup
x∈Ω
|Dmu(x)|+

∑
|m|=m

sup
x,y∈Ω;x 6=y

|Dmu(x)−Dmu(y)|
|x− y|α

, (2.69)

where Dm = ∂m1
x1
∂m2
x2
· · · ∂mnxn , m = (m1,m2, . . . ,mn) is a multi-index with mi ≥ 0

be an integer and |m| =
n∑
i=1

mi.

In the subsonic region, since the boundary of the domain has corner singularities,
the Sobolev spaces W s

β(Ω) with 1 ≤ β <∞ will be employed. The index s will take
real value, as defined in [19], for the trace function on the boundary. Let s = m+α,
where m is a nonnegative integer and 0 < α < 1. Define

‖u‖W s
β (Ω) :=

‖u‖βWm
β (Ω) +

∑
|m|=m

ˆ ˆ
Ω×Ω

|Dmu(x)−Dmu(y)|β

|x− y|n+αβ
dxdy

 1
β

. (2.70)

It should be pointed that for any u ∈ W 1
β (Ω), its trace on the boundary belongs to

W
1− 1

β

β (∂Ω).
Moreover, since the Euler system for subsonic flows is elliptic-hyperbolic compos-

ite, for the flow state U = (p, θ, q)>, the function spaces for (p, θ)> are different from
q. Define

‖U‖(Ω̇+;Γ̇s)
:= ‖p‖W 1

β (Ω̇+) + ‖θ‖W 1
β (Ω̇+) + ‖q‖C0(Ω̇+) + ‖q‖

W
1− 1

β
β (Γ̇s)

. (2.71)

Since the shock front Γs := {ξ = ψ(η)} is a free boundary, then the following
coordinate transformation will be employed

T :

ξ̃ = L+
L− ξ̇∗
L− ψ(η)

(ξ − L),

η̃ = η,

with the inverse

T −1 :

ξ = L+
L− ψ(η̃)

L− ξ̇∗
(ξ̃ − L),

η = η̃.

Obviously, under this transformation, the free boundary Γs is changed into the fixed
boundary Γ̇s. Correspondingly, the domain Ω+ (see Figure 2.1) is transformed into
the fixed domain Ω̇+.

Therefore, we define the norm of U in the domain Ω+ as below:

‖U‖(Ω+;Γs) := ‖U ◦ T −1‖(Ω̇+;Γ̇s)
. (2.72)

In this paper, we will establish the existence of the transonic shock in the flat
nozzle by proving the following theorems.
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Theorem 2.5. Let β > 2. Suppose that (1.21)-(1.26) hold and ξ̄∗ satisfies (1.41).
There exist a sufficiently small constant g0 > 0 such that for any 0 < g < g0 and
0 < σ ≤ g3, there exists a unique solution (U̇−(ξ, η), U̇+(ξ, η), ξ̇∗; ψ̇

′(η)) to the free
boundary problem JIFBPLK, with the unknown constant ξ̇∗ ∈ (0, ξ1). Moreover, the
following estimates hold:

|ξ̇∗ − ξ̄∗| ≤ Ċ∗g, (2.73)

‖U̇−‖C2,α(Ω̇−) ≤ Ċ−σ, (2.74)

‖U̇+‖(Ω̇+;Γ̇s)
+ ‖ψ̇′‖

W
1− 1

β
β (Γ̇s)

≤ Ċ+σ, (2.75)

where the constant Ċ∗ depends on p0, q0, PI , PE and ‖θℵ‖C0((0,ξ̄∗)×(0,1)), the constant
Ċ− depends on p0, q0, PI and L, the constant Ċ+ depends on p0, q0, PI , PE, L, β
and ξ̇∗.

With above preparations, the main result can be stated as follows:

Theorem 2.6. Under the assumptions of Theorem 2.5, there exists a unique solution
(U−, U+, ξ∗;ψ

′) to the free boundary problem JFBPLK and the following estimates
hold:

|ψ(1)− ξ̇∗| ≤ Cs
σ

g
, ‖ψ′‖

W
1− 1

β
β (Γs)

≤ Csσ, (2.76)

‖U− − Ū−‖C2,α(Ω−) ≤ C−σ, (2.77)

‖U+ − Ū+‖(Ω+;Γs) ≤ C+σ, (2.78)

‖U− − (Ū− + U̇−)‖C1,α(Ω) ≤
1

2
σg

3
2 , (2.79)

‖U+ ◦ T −1 − (Ū+ + U̇+)‖(Ω̇+;Γ̇s)
≤ 1

2
σg

3
2 , (2.80)

‖ψ′ − ψ̇′‖
W

1− 1
β

β (Γ̇s)
≤ 1

2
σg

3
2 , (2.81)

where the constants Cs and C± depend on p0, q0, PI , PE, L, β and ‖θℵ‖C0((0,ξ̇∗)×(0,1)).

Remark 2.7. It should be noted that, under the conditions (1.21)-(1.26), when the
length of the nozzle L ≤ ξ1, θℵ has the sign-preserving property such that the
function R\

gσ is strictly decreasing. Then (1.41) has a unique solution. That is, the
approximate position of the shock front in the nozzle can be determined uniquely.
Theorem 2.6 shows that there exists a transonic shock solution with the position of
the shock front close to it. However, under the given boundary conditions, it is still
an open problem whether the obtained shock solution is unique or not.

Moreover, when L > ξ1, the solution θℵ no longer enjoys the sign-preserving
property such that the function R\

gσ will not be monotone. Therefore, there may
exists more than one solutions ξ̄∗ to the equation (1.41). Thus, there may exist
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more than one initial approximating shock solutions, and each approximation will
lead to a transonic shock solution to the free boundary problem JFBPLK. Hence,
there may exist more than one shock solutions to the problem JFBPLK.

3. A preliminary: boundary value problems of a typical
elliptic-hyperbolic composite system

To establish the existence of the shock solution and prove Theorem 2.6, one of the
key steps is to solve the boundary value problem of the linearized Euler system for
the subsonic flow behind the shock front, which is elliptic-hyperbolic composite. As
a preliminary, in this section, we are going to establish theorems on the existence
of the solutions to such problems, which will be employed later in proving Theorem
2.5 and Theorem 2.6.

We remark that the notations used in this section are independent and have no
relations to the ones in other parts of the paper.

Let ξ0 and L be two positive constants, and

Ω = {(ξ, η) ∈ R2 : ξ0 < ξ < L, 0 < η < 1}, (3.1)

be a rectangle with the boundaries

Γs = {(ξ, η) ∈ R2 : ξ = ξ0, 0 < η < 1},

Γ2 = {(ξ, η) ∈ R2 : ξ0 < ξ < L, η = 0},

Γ3 = {(ξ, η) ∈ R2 : ξ = L, 0 < η < 1},

Γ4 = {(ξ, η) ∈ R2 : ξ0 < ξ < L, η = 1}.

Consider the following boundary value problem for the unknowns (U ,V ,W)>:

∂ηU +A1∂ξV −A2W = F1, in Ω (3.2)

∂ηV −A3(η)∂ξU −A4(η)V = F2, in Ω (3.3)

∂ξW +A5(η)∂ξU +A6V = ∂ξF3 + F4, in Ω (3.4)

U = Us,W =Ws, on Γs (3.5)

V = 0, on Γ2 ∪ Γ4 (3.6)

U = U3, on Γ3 (3.7)

where A1, A2 and A6 are constants, Ai > 0(i = 1, · · · , 6), and inf
η∈(0,1)

A3(η) > 0.

Since A1 and A3 are positive, the equations (3.2) and (3.3) form an elliptic system
of first order for (U ,V)> in its principle part. Moreover, it is obvious that the
equation (3.4) is a transport equation. Hence, the equations (3.2)-(3.4) form an
elliptic-hyperbolic composite system with the unknowns being coupled in the 0-
order terms. The appearance of the coupled terms brings difficulties in deducing
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the solvability condition on the non-homogeneous terms and the boundary data,
which is observed to be required for the elliptic sub-problem of the boundary value
problem of the linearized Euler system without the gravity for subsonic flows. To
deal with the difficulties, an auxiliary problem for a modified elliptic system of first
order for the equations (3.2)-(3.3) will be introduced. It turns out that the solvability
condition can be easily reduced with the help of the introduced problem. Then the
existence of the solution and its a priori estimates can be established by employing
classical theory for the elliptic equations and the hyperbolic equations.

In this section, we are going to prove the following theorem for the boundary
value problem (3.2)-(3.7).

Theorem 3.1. Let β > 2. Suppose Fi ∈ Lβ(Ω),(i = 1, 2), Fj ∈ C0(Ω),(j = 3, 4)

and Us,Ws ∈ W
1− 1

β

β (Γs), U3 ∈ W
1− 1

β

β (Γ3), then for the boundary value problem
(3.2)-(3.7), there exists a unique solution (U ,V ,W)> if and only ifˆ ˆ

Ω

A+(η)F2(ξ, η)dξdη =

ˆ 1

0

A3(η)A+(η)(Us − U3)(η)dη, (3.8)

where
A+(η) := exp

(
−
ˆ η

0

A4(τ)dτ
)
.

Moreover, (U ,V ,W)> satisfies the following estimate:

‖U‖W 1
β (Ω) + ‖V‖W 1

β (Ω) + ‖W‖C0(Ω) + ‖W‖
W

1− 1
β

β (Γs)

≤C
( 2∑
i=1

‖Fi‖Lβ(Ω) + ‖F3 −F3(ξ0, η)‖C0(Ω) + ‖F4‖C0(Ω)

)
+ C

(
‖Us‖

W
1− 1

β
β (Γs)

+ ‖Ws‖
W

1− 1
β

β (Γs)
+ ‖U3‖

W
1− 1

β
β (Γ3)

)
,

(3.9)

where the constant C depends on ξ0, L, β and the coefficients Ai, (i = 1, · · · , 6).

Proof. We divide our proof into three steps.
Step 1: In this step, the following auxiliary problem will be solved

∂ηU (1) +A1∂ξV(1) = 0, in Ω (3.10)

∂η

(
A+(η)V(1)

)
− ∂ξ

(
A+(η)A3(η)U (1)

)
= A+(η)F2, in Ω (3.11)

U (1) = Us, on Γs (3.12)

U (1) = U3, on Γ3 (3.13)

V(1) = 0, on Γ2 ∪ Γ4 (3.14)

where
A+(η) = exp

(
−
ˆ η

0

A4(τ)dτ
)
.
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The equation (3.10) implies that there exists a potential function Ψ such that

∇Ψ = (∂ξΨ, ∂ηΨ) = (−U (1),A1V(1)), (3.15)

then the problem (3.10)-(3.14) can be formulated as

∂η

(A+(η)

A1

∂ηΨ
)

+ ∂ξ

(
A+(η)A3(η)∂ξΨ

)
= A+(η)F2, in Ω (3.16)

− ∂ξΨ = Us, on Γs (3.17)

− ∂ξΨ = U3, on Γ3 (3.18)

∂ηΨ = 0. on Γ2 ∪ Γ4 (3.19)

By applying Corollary 4.4.3.8 in the book [19], there exists a unique solution Ψ ∈
W 2
β (Ω), up to an additive constant, to the problem (3.16)-(3.19), if and only if

ˆ ˆ
Ω

A+(η)F2(ξ, η)dξdη =

ˆ 1

0

A3(η)A+(η)(Us − U3)(η)dη, (3.20)

which is exactly the solvability condition (3.8). Moreover, without loss of generality,
we may assume

´ ´
Ω

Ψ(ξ, η)dξdη = 0. Then, by applying Poincaré inequality, there
exists a constant C(Ω) such that

‖Ψ‖L2(Ω) ≤ C(Ω)‖∇Ψ‖L2(Ω). (3.21)

Then, multiplying Ψ on both sides of the equation (3.16), integrating over Ω and
then employing the formula of integration by parts, one has

‖∇Ψ‖2
L2(Ω) ≤C‖F2‖L2(Ω)‖Ψ‖L2(Ω)

+ C
(
‖Us‖L∞(Γs) + ‖U3‖L∞(Γ3)

)
‖Ψ‖L2(∂Ω).

(3.22)

Therefore, by employing Trace theorem and (3.21), F2 ∈ Lβ(Ω), Us ∈ W
1− 1

β

β (Γs),

U3 ∈ W
1− 1

β

β (Γ3), it follows that

‖Ψ‖H1(Ω) ≤ CFΨ, (3.23)

where
FΨ := ‖F2‖Lβ(Ω) + ‖Us‖

W
1− 1

β
β (Γs)

+ ‖U3‖
W

1− 1
β

β (Γ3)
.

Employing the embedding theorem, and Theorem 4.3.2.4 as well as Remark 4.3.2.5
in the book [19], one has

‖Ψ‖W 2
β (Ω) ≤ CFΨ. (3.24)

By the definition of Ψ in (3.15), it is easy to see that

‖U (1)‖W 1
β (Ω) + ‖V(1)‖W 1

β (Ω) ≤ CFΨ. (3.25)
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Step 2: Let (U (2),V(2))> = (U ,V)>− (U (1),V(1))>, by employing (3.2)-(3.7), then
(U (2),V(2))> satisfies the following problem in Ω:

∂ηU (2) +A1∂ξV(2) −A2W = F1, (3.26)

∂η

(
A+(η)V(2)

)
− ∂ξ

(
A+(η)A3(η)U (2)

)
= 0, (3.27)

∂ξW +A5(η)∂ξU (2) +A6V(2) = ∂ξF3 + F4 −A5(η)∂ξU (1) −A6V(1), (3.28)

with the boundary conditions

W =Ws, on Γs (3.29)

U (2) = 0, on Γs ∪ Γ3 (3.30)

V(2) = 0. on Γ2 ∪ Γ4 (3.31)

Applying (3.28) and (3.29), one can deduce that

W =

ˆ ξ

ξ0

(
∂τF3 + F4 −A5(η)∂τU (1) −A6V(1)

)
(τ, η)dτ

−
ˆ ξ

ξ0

(
A5(η)∂τU (2) +A6V(2)

)
(τ, η)dτ +Ws.

(3.32)

Substituting (3.32) into (3.26), one has

∂ηU (2) +A1∂ξV(2) +A2A6

ˆ ξ

ξ0

V(2)(τ, η)dτ +A2A5(η)U (2)

=F1 +A2

(
F3 −F3(ξ0, η)

)
+A2

ˆ ξ

ξ0

(
F4 −A5(η)∂τU (1) −A6V(1)

)
(τ, η)dτ

+A2Ws

:=F̃1.

(3.33)

Let
B+(η) := exp

(ˆ η

0

A2A5(τ)dτ
)
,

then the equation (3.33) can be rewritten as

∂η

(
B+(η)U (2)

)
+ ∂ξ

(
A1B+(η)V(2)

)
+A2A6B+(η)

ˆ ξ

ξ0

V(2)(τ, η)dτ

=B+(η)F̃1.

(3.34)

By applying (3.27), there exists a potential function Φ such that

∇Φ = (∂ξΦ, ∂ηΦ) = (A+(η)V(2),A+(η)A3(η)U (2)). (3.35)
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Then (3.34) becomes

∂η

( B+(η)

A+(η)A3(η)
∂ηΦ

)
+ ∂ξ

(
A1
B+(η)

A+(η)
∂ξΦ

)
+A2A6

B+(η)

A+(η)

(
Φ− Φ(ξ0, η)

)
=B+(η)F̃1.

(3.36)

In addition, the boundary conditions (3.30)-(3.31) are changed into

∂ηΦ =0, on Γs ∪ Γ3 (3.37)

∂ξΦ =0. on Γ2 ∪ Γ4 (3.38)

Without loss of generality, one may assume that Φ(ξ0, 0) = 0, then one has

Φ = 0. on ∂Ω (3.39)

By employing standard elliptic theory (cf.[14, 19]), it follows that

‖Φ‖W 2
β (Ω) ≤ C‖F̃1‖Lβ(Ω). (3.40)

Then by applying the definition of Φ, it holds that

‖U (2)‖W 1
β (Ω) + ‖V(2)‖W 1

β (Ω) ≤ C‖F̃1‖Lβ(Ω). (3.41)

Step 3: Finally, it remains to solve W . Recalling the equation (3.4), one has

W(ξ, η) =F3(ξ, η)−F3(ξ0, η) +Ws(ξ0, η) +A5(η)(U(ξ, η)− Us(ξ0, η))

+

ˆ ξ

ξ0

(F4 −A6V)(τ, η)dτ,
(3.42)

from which one can deduce that

‖W‖C0(Ω) + ‖W‖
W

1− 1
β

β (Γs)
≤C
(
‖F3 −F3(ξ0, η)‖C0(Ω) + ‖F4‖C0(Ω) + ‖Us‖

W
1− 1

β
β (Γs)

+ ‖Ws‖
W

1− 1
β

β (Γs)
+ ‖U‖C0(Ω) + ‖V‖C0(Ω)

)
. (3.43)

Therefore, by applying (3.25),(3.41), (3.43) and the definition of F̃1, the estimate
(3.9) can be obtained immediately. �

4. The initial approximation

In this section, we are going to establish the existence of the solution to the initial
linearized free boundary problem JIFBPLK with the help of Theorem 3.1. That is,
the Theorem 2.5 will be proved.

4.1. The solution U̇− in Ω. For the linearized equations (2.48)-(2.50) in the do-
main Ω with the initial-boundary conditions (2.55)-(2.56), the existence of the
unique solution U̇− ∈ C2,α(Ω) can be easily obtained by applying the theory in
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the book [26]. In order to clearly analyze the solvability condition of the sub-
sonic solution in the following arguments, the linear equations (2.48)-(2.49) with
the initial-boundary conditions (2.55)-(2.56) will be divided into the following two
parts.

Let (ṗ
(1)
− , θ̇

(1)
− )> satisfies the following problem (a):

∂ηṗ
(1)
− + q0∂ξθ̇

(1)
− = 0, (4.1)

∂ηθ̇
(1)
− −

1− M̄2
−

p2
0q

3
0

∂ξṗ
(1)
− = 0, (4.2)

with the initial-boundary conditions

θ̇
(1)
− =0, ṗ

(1)
− = σPI(η), on Γ1 (4.3)

θ̇
(1)
− =0. on Γ2 ∪ Γ4 (4.4)

Recalling the problem (1.27)-(1.30), one can find that (ṗ
(1)
− , θ̇

(1)
− ) = σ(pℵ, θℵ). Let

(ṗ
(2)
− , θ̇

(2)
− )> be the solution to the following problem (b):

∂ηṗ
(2)
− + q0∂ξθ̇

(2)
− = −H1(g, 0)∂ηṗ− +

g

q2
0

q̇− +H2−(g, σ), (4.5)

∂ηθ̇
(2)
− −

1− M̄2
−

p2
0q

3
0

∂ξṗ
(2)
− =

1− M̄2
−

q3
0

(
1

ρ̄2
−
− 1

p2
0

)
∂ξṗ− −H1(g, 0)∂ηθ̇− +

gθ̇−
ρ̄−q3

0

, (4.6)

with the initial-boundary conditions

θ̇
(2)
− =0, ṗ

(2)
− = P ∗I (η)− σPI(η), on Γ1 (4.7)

θ̇
(2)
− =0. on Γ2 ∪ Γ4 (4.8)

Then it is obvious that

(ṗ−, θ̇−) = (ṗ
(1)
− , θ̇

(1)
− ) + (ṗ

(2)
− , θ̇

(2)
− ).

This decomposition will only be employed in the analysis for the solvability condi-
tion later. Moreover, it turns out that (ṗ

(1)
− , θ̇

(1)
− ) contributes the principle part in

analyzing the solvability condition, and (ṗ
(2)
− , θ̇

(2)
− ) contributes in the higher order

term.

Remark 4.1. For the problems (a) and (b), the initial data only ensures that the
zero order compatibility conditions hold, then applying the method of characteristic,
one can only obtain global C0 estimate and the piecewise C1 regularity of the solution
(ṗ

(i)
− , θ̇

(i)
− ), (i = 1, 2). Fortunately, the global C0 estimate is sufficient to analyze the

solvability condition.

Consequently, the following lemma holds:

Lemma 4.2. Suppose that (1.21)-(1.25) hold, then there exists a unique solution U̇−
to the linearized equations (2.48)-(2.50) in the domain Ω with the initial-boundary
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conditions (2.55)-(2.56), and satisfies the following estimate:

‖U̇−‖C2,α(Ω) ≤C‖P ∗I ‖C2,α(Γ1) ≤ Ċ−σ, (4.9)

where the constant Ċ− depends on p0, q0, PI and L. Moreover, for the problems (a)
and (b), there exist solutions (ṗ

(i)
− , θ̇

(i)
− )>, (i = 1, 2) satisfying

‖ṗ(1)
− ‖C0(Ω) + ‖θ̇(1)

− ‖C0(Ω) ≤ Ċ
\(1)
− σ, (4.10)

‖ṗ(2)
− ‖C0(Ω) + ‖θ̇(2)

− ‖C0(Ω) ≤ Ċ
\(2)
−
(
gσ + σ2

)
, (4.11)

where the constants Ċ\(i)
− , (i = 1, 2) depend on p0, q0, PI and L. In particular,

C0σ ≤ θ̇
(1)
− (ξ, η) ≤ C1σ, for any ξ ∈ (0, ξ1), η ∈ (0, 1), (4.12)

where ξ1 =

√
M̄2
− − 1

p0q0

and the constants C0, C1 > 0 depend on p0, q0 and PI .

Proof. By applying (2.44), the compatibility conditions hold at the corners up to
second order. Then the existence of the unique solution U̇− ∈ C2,α(Ω) can be
obtained by employing the theory in the book [26]. Moreover, the existence of the
unique solutions (ṗ

(i)
− , θ̇

(i)
− )> ∈ C0(Ω) can be easily obtained. In addition, it is easy

to see (4.10) holds. Besides, (4.11) can be derived immediately by applying the
estimate (4.9). Finally, employing (1.21)-(1.25) and (1.33), one can deduce that
(4.12) holds.

�

4.2. Reformulation of the linearized R-H conditions (2.61)-(2.62). The equa-
tion (2.61) can be rewritten as the following form:

A∗(ṗ+, q̇+)> = (J̇1, J̇2)>, (4.13)

where J̇i := −αj− · U̇−, (i = 1, 2),

A∗ =
[p̄]

ρ̄+q̄+

 −
1

ρ̄+c̄2
+

− 1

q̄+

1− p̄+

ρ̄+c̄2
+

ρ̄+q̄+ −
p̄+

q̄+

 .

Then the following lemma holds on the shock front Γ̇s.

Lemma 4.3. On the shock front Γ̇s, it holds that

det(A∗) =
[p̄]2

ρ̄2
+q̄

3
+

(1− M̄2
+) 6= 0, as M̄+ 6= 1, (4.14)

ṗ+ :=£̇1, (4.15)

q̇+ :=£̇2, (4.16)

ψ̇′ :=£̇3, (4.17)
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with

£̇1 =
ρ̄+q̄

2
+

M̄2
+ − 1

(1− q2
0

ρ̄−
P ∗I (η) + g ·

ˆ ξ

0

θ̇−(τ, η)dτ

− (1 +H1(g, 0))(2− q2
0)ρ̄−q0 · ∂η

ˆ ξ

0

θ̇−(τ, η)dτ
)
, (4.18)

£̇2 =
q̄+

1− M̄2
+

( 1

q2
0

g ·
ˆ ξ

0

θ̇−(τ, η)dτ − (1 +H1(g, 0))
ρ̄−
q0

∂η

ˆ ξ

0

θ̇−(τ, η)dτ
)
, (4.19)

£̇3 =
q̄+θ̇+ − q̄−θ̇−

(1 +H1(g, 0))[p̄]
. (4.20)

Proof. By applying the definition of A∗, (4.14) can be obtained immediately.
By employing the fact of ρ̄+q̄+ = ρ̄−q̄−, then (4.13) implies that

1

ρ̄+c̄2
+

ṗ+ +
1

q̄+

q̇+ =
1

ρ̄−c̄2
−
ṗ− +

1

q̄−
q̇−, (4.21)(

ṗ+ + ρ̄+q̄+q̇+

)
− p̄+

( 1

ρ̄+c̄2
+

ṗ+ +
1

q̄+

q̇+

)
=
(
ṗ− + ρ̄−q̄−q̇−

)
− p̄−

( 1

ρ̄−c̄2
−
ṗ− +

1

q̄−
q̇−

)
. (4.22)

Substituting (4.21) into (4.22), one has

ṗ+ + ρ̄+q̄+q̇+ = ṗ− + ρ̄−q̄−q̇− + [p̄]
( 1

ρ̄−c̄2
−
ṗ− +

1

q̄−
q̇−

)
. (4.23)

By employing the equations (4.21) and (4.23), it follows that

M̄2
+ − 1

ρ̄+q̄2
+

ṗ+ =− 1

ρ̄+q̄2
+

(
ṗ− + ρ̄−q̄−q̇−

)
+
(

1− [p̄]

ρ̄+q̄2
+

) 1

ρ̄−q̄2
−

(
M̄2
−ṗ− + ρ̄−q̄−q̇−

)
, (4.24)

q̇+ =− q̄+

ρ̄+c̄2
+(1− M̄2

+)

(
ṗ− + ρ̄−q̄−q̇−

)
+

q̄+

ρ̄−q̄2
−(1− M̄2

+)

(
1− [p̄]

ρ̄+c̄2
+

)(
M̄2
−ṗ− + ρ̄−q̄−q̇−

)
. (4.25)

Moreover, employing the equations (2.49) and (2.50), one can obtain

∂ηθ̇− +
1

1 +H1(g, 0)

1

ρ̄2
−q̄

3
−
∂ξ

(
M̄2
−ṗ− + ρ̄−q̄−q̇−

)
= 0. (4.26)

Furthermore, one has

M̄2
−ṗ− + ρ̄−q̄−q̇− = M̄2

−P
∗
I (η)− (1 +H1(g, 0))ρ̄2

−q̄
3
−∂η

ˆ ξ

0

θ̇−(τ, η)dτ. (4.27)
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In addition, (2.50) implies that

ṗ− + ρ̄−q̄−q̇− = P ∗I (η)− gρ̄−
ˆ ξ

0

θ̇−(τ, η)dτ. (4.28)

Substituting the expressions (4.27) and (4.28) into the equations (4.24) and (4.25),
then employing the equation (2.43), one can obtain the equations (4.15) and (4.16).

Finally, substituting the coefficients α3± in (2.66) into the equation (2.62), one
can obtain the equation (4.17) immediately. �

4.3. Determine ξ̇∗ and U̇+. With the help of Theorem 3.1, Lemma 4.2 and Lemma
4.3, one can now determine the approximating position of the shock front.

By employing Theorem 3.1 and taking

U := ṗ+, V := θ̇+, W := q̇+, F1 :=
H2+(g, σ)

1 +H1(g, 0)
, F2 = F3 = F4 = 0,

Us := £̇1, Ws := £̇2, U3 := Ṗ ]
e ,

A1 :=
q̄+

1 +H1(g, 0)
, A2 :=

1

1 +H1(g, 0)

g

q̄2
+

, A3 :=
1

1 +H1(g, 0)

1− M̄2
+

ρ̄2
+q̄

3
+

,

A4 :=
1

1 +H1(g, 0)

g

ρ̄+q̄3
+

, A5 :=
1

ρ̄+q̄+

, A6 :=
g

q̄+

,

then (3.8) yields that

0 =

ˆ 1

0

A+A3

(
£̇1(ξ̇∗, η)− Ṗ ]

e (η)
)

dη, (4.29)

where

A+ = exp
(
−
ˆ η

0

A4(τ)dτ
)

= exp
(
− g

1 +H1(g, 0)

ˆ η

0

1

q̄3
+ρ̄+(τ)

dτ
)

(4.30)

= exp
(
− gq0

1 +H1(g, 0)

ˆ η

0

1

ρ̄−(τ)
dτ
)

=

(
ρ̄−
p0

)q20
.

We can now prove the following lemma.

Lemma 4.4. Suppose that (1.21)-(1.26) hold. If

Rgσ(ξ1) < Pgσ < Rgσ(0), (4.31)

where

Rgσ(ξ) :=g ·K
ˆ 1

0

ˆ ξ

0

θ̇
(1)
− (τ, η)dτdη, (4.32)
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Pgσ :=gσ · q
2
0 − 1

p2
0q0

ˆ 1

0

PE(η)dη, (4.33)

with K := −(q2
0 − 1)2

p0q0

< 0, then there exists a ξ̄∗ ∈ (0, ξ1), such that

Rgσ(ξ̄∗) = Pgσ. (4.34)

Furthermore, for 0 < σ ≤ g3, there exists a unique ξ̇∗ ∈ (0, ξ1) such that

R(ξ̇∗) =P , (4.35)

where

R(ξ) :=g ·K
ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ

0

θ̇−(τ, η)dτdη, (4.36)

P :=
q2

0 − 1

p
q20
0 q0

ˆ 1

0

ρ̄
q20−2
−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
dη. (4.37)

In addition,

|ξ̇∗ − ξ̄∗| ≤Ċ∗g, (4.38)

where the constant Ċ∗ depends on p0, q0, PI , PE and ‖θℵ‖C0((0,ξ̄∗)×(0,1)).

Proof. Now we analyze the identity (4.29). By employing the equation (4.18), it
holds that ˆ 1

0

A+A3£̇1(ξ̇∗, η)dη

=

ˆ 1

0

1

1 +H1(g, 0)

( ρ̄−
p0

)q20 1

ρ̄+q̄+

q2
0 − 1

ρ̄−
P ∗I (η)dη (4.39)

−
ˆ 1

0

1

1 +H1(g, 0)

( ρ̄−
p0

)q20 1

ρ̄+q̄+

g

ˆ ξ̇∗

0

θ̇−(τ, η)dτdη

+

ˆ 1

0

( ρ̄−
p0

)q20(
2− q2

0

)
∂η

ˆ ξ̇∗

0

θ̇−(τ, η)dτdη

:=J1 + J2 + J3,

where

J1 :=

ˆ 1

0

1

1 +H1(g, 0)

( ρ̄−
p0

)q20 1

ρ̄+q̄+

q2
0 − 1

ρ̄−
P ∗I (η)dη,

J2 := −g
ˆ 1

0

1

1 +H1(g, 0)

( ρ̄−
p0

)q20 1

ρ̄+q̄+

ˆ ξ̇∗

0

θ̇−(τ, η)dτdη,

J3 :=

ˆ 1

0

( ρ̄−
p0

)q20(
2− q2

0

)
∂η

ˆ ξ̇∗

0

θ̇−(τ, η)dτdη.
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For the term J3, integrating by parts, one has

J3 =
g

1 +H1(g, 0)

(2− q2
0)q0

p0

ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ̇∗

0

θ̇−(τ, η)dτdη. (4.40)

Furthermore, one can obtain

J2 + J3

=
g

1 +H1(g, 0)

(
− 1

p0q0

+
2− q2

0

p0

q0

) ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ̇∗

0

θ̇−(τ, η)dτdη (4.41)

=− g

1 +H1(g, 0)

(q2
0 − 1)2

p0q0

ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ̇∗

0

θ̇−(τ, η)dτdη.

Moreover,ˆ 1

0

A+A3Ṗ
]
e (η)dη − J1

=
1

1 +H1(g, 0)

ˆ 1

0

( ρ̄−
p0

)q20 1

ρ̄+q̄+

(1− M̄2
+

ρ̄+q̄2
+

Ṗ ]
e (η)− q2

0 − 1

ρ̄−
P ∗I (η)

)
dη (4.42)

=
1

1 +H1(g, 0)

ˆ 1

0

( ρ̄−
p0

)q20 1

ρ̄+q̄+

q2
0 − 1

ρ̄−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
dη

=
1

1 +H1(g, 0)

q2
0 − 1

p
q20
0 q0

ˆ 1

0

ρ̄
q20−2
−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
dη.

Then the equation (4.29) yields that

J2 + J3 =

ˆ 1

0

A+A3Ṗ
]
e (η)dη − J1. (4.43)

That is

− g (q2
0 − 1)2

p0q0

ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ̇∗

0

θ̇−(τ, η)dτdη

=
q2

0 − 1

p
q20
0 q0

ˆ 1

0

ρ̄
q20−2
−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
dη.

(4.44)

Let

R(ξ) :=g ·K
ˆ 1

0

( ρ̄−
p0

)q20−1
ˆ ξ

0

θ̇−(τ, η)dτdη, (4.45)

P :=
q2

0 − 1

p
q20
0 q0

ˆ 1

0

ρ̄
q20−2
−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
dη, (4.46)

where K := −(q2
0 − 1)2

p0q0

< 0. Applying (2.68), one has

1

q2
0

Ṗ ]
e (η)− P ∗I (η) = PE(η)gσ +O(1)g2σ +O(1)σ2. (4.47)
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In addition, by employing (2.42), it follows that

ρ̄
q20−2
− =

(
p0 −

g

(1 +H1(g, 0))q0

η
)q20−2

= p
q20−2
0 − q2

0 − 2

q0

p
q20−3
0 ηg +O(1)g2. (4.48)

Therefore,

ρ̄
q20−2
−

( 1

q2
0

Ṗ ]
e (η)− P ∗I (η)

)
= p

q20−2
0 PE(η)gσ +O(1)g2σ +O(1)σ2, (4.49)

where O(1) depends on p0, q0, PI and PE. Denote

Rgσ(ξ) :=g ·K
ˆ 1

0

ˆ ξ

0

θ̇
(1)
− (τ, η)dτdη, (4.50)

Pgσ :=gσ · q
2
0 − 1

p2
0q0

ˆ 1

0

PE(η)dη. (4.51)

By applying Lemma 4.2, it is obvious that R′gσ(ξ) < 0. Furthermore, applying
(1.21)-(1.25) and (1.34), one has

− C̃0gσ ≥ inf
ξ∈(0,ξ1)

Rgσ(ξ) = Rgσ(ξ1) = g ·K
ˆ 1

0

ˆ ξ1

0

θ̇
(1)
− (τ, η)dτdη

=gσ · R\
gσ(ξ1) ≥ −C̃1gσ,

(4.52)

where the constants C̃0, C̃1 > 0 and depend on C0, C1, ξ1,K, CI and CIi, (i = 0, 1, 2).
In addition,

sup
ξ∈(0,ξ1)

Rgσ(ξ) = Rgσ(0) = 0. (4.53)

Obviously, there exists a ξ̄∗ ∈ (0, ξ1) such that

Rgσ(ξ̄∗) = Pgσ, (4.54)

if and only if
Rgσ(ξ1) < Pgσ < Rgσ(0). (4.55)

Let ξ̇∗ = ξ̄∗ + δξ̇∗, denote

İ(δξ̇∗;R(ξ̇∗),P ; U̇−) := R(ξ̇∗)− P . (4.56)

Applying (4.54), one has

İ(0;Rgσ(ξ̄∗),Pgσ; U̇−) = Rgσ(ξ̄∗)− Pgσ = 0. (4.57)

Moreover,

İ(δξ̇∗;R(ξ̇∗),P ; U̇−) =g ·K
ˆ 1

0

θ̇
(1)
− (ξ̄∗, η)dη · δξ̇∗ +O(1)

(
g2σ + gσ2

)
· δξ̇∗

+O(1)g2σ +O(1)σ2,

(4.58)

where O(1) depends on p0, q0, PI , PE and ξ̄∗.
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The expansion (4.58) yields that

∂İ

∂δξ̇∗
(0;Rgσ(ξ̄∗),Pgσ; U̇−) = g ·K

ˆ 1

0

θ̇
(1)
− (ξ̄∗, η)dη +O(1)

(
g2σ + gσ2

)
< 0. (4.59)

Therefore, by applying the implicit function theorem and 0 < σ ≤ g3, there exists a
unique δξ̇∗ such that

|δξ̇∗| ≤ C̄∗

(
g +

σ

g

)
≤ Ċ∗g, (4.60)

where the constant Ċ∗ depends on p0, q0, PI , PE and ‖θℵ‖C0((0,ξ̄∗)×(0,1)). Furthermore,
for sufficiently small g, there exists a ξ̇∗ ∈ (0, ξ1) such that

R(ξ̇∗) = P . (4.61)

�

Once ξ̇∗ is determined, then we can determine U̇+ in the domain Ω̇+, as the
following lemma shows:

Lemma 4.5. Let β > 2. Under the assumptions of Lemma 4.4, there exists a unique
solution U̇+ to the equations (2.51)-(2.53) with the boundary conditions (2.58)-(2.59)
and (4.15)-(4.17). Moreover, the following estimate holds:

‖U̇+‖(Ω̇+;Γ̇s)
+ ‖ψ̇′‖

W
1− 1

β
β (Γ̇s)

≤C ·
(
‖P ∗I ‖C2,α(Γ1) + ‖Ṗ ]

e‖C2,α(Γ3) +H2+(g, σ)
)
≤ Ċ+σ,

(4.62)

where the constant Ċ+ depends only on Ū±, L, PI , PE and β.

Proof. By applying (3.9) in Theorem 3.1, it follows that

‖ṗ+‖W 1
β (Ω̇+) + ‖θ̇+‖W 1

β (Ω̇+) + ‖q̇+‖C0(Ω̇+) + ‖q̇+‖
W

1− 1
β

β (Γ̇s)

≤C
( 2∑
i=1

‖£̇i‖
W

1− 1
β

β (Γ̇s)
+ ‖Ṗ ]

e‖C2,α(Γ3) +H2+(g, σ)
)
.

(4.63)

Moreover, according to (4.17), one has

‖ψ̇′‖
W

1− 1
β

β (Γ̇s)
≤ C

(
‖θ̇+‖

W
1− 1

β
β (Γ̇s)

+ ‖θ̇−‖
W

1− 1
β

β (Γ̇s)

)
. (4.64)

Therefore, employing Lemma 4.2 and Lemma 4.3, one can obtain the estimate (4.62).
�

5. The nonlinear iteration scheme

5.1. The supersonic flow U− in Ω.
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Lemma 5.1. Suppose that (1.21)-(1.25) hold, then there exists a positive constant σL
depending on Ū− and L, such that for any 0 < σ < σL, there exists a unique solution
U− ∈ C2,α(Ω̄) to the equations (2.11)-(2.13) with the initial-boundary conditions
(2.30)-(2.31). Moreover, denote U− := Ū−+ δU−, then the following estimates hold:

‖U− − Ū−‖C2,α(Ω̄) ≤C‖P ]
I‖C2,α(Γ1) ≤ CLσ, (5.1)

‖δU− − U̇−‖C1,α(Ω̄) ≤C\
Lσ

2, (5.2)

where the constants CL and C\
L depend on Ū−, PI , and L.

Proof. The existence of the unique solution U− ∈ C2,α(Ω̄) can be obtained by em-
ploying the theory in the book [26]. Thus, it suffices to verify (5.2).

The equations (2.11)-(2.13) can be rewritten as the following matrix form:

B(g, σ)∂ηU +B1(U)∂ξU + g · b(U) = 0, (5.3)

where U = (p, θ, q)>, b(U) =
(cos θ

q
,−sin θ

ρq3
, tan θ

)>
,

B(g, σ) =

1 +H1(g, σ) 0 0

0 1 +H1(g, σ) 0

0 0 0

 , B1(U) =


−sin θ

ρq
q cos θ 0

(M2 − 1) cos θ

ρ2q3
−sin θ

ρq
0

1

ρ
0 q

 .

Therefore, δU− − U̇− satisfies the following problem:

B(g, 0)∂η(δU− − U̇−) +B1(Ū−)∂ξ(δU− − U̇−) + g · ∇b(Ū−)(δU− − U̇−)

=F−(δU−), in Ω
(5.4)

with the following initial-boundary conditions

δU− − U̇− =
(
P ]
I (Y0(η; g, σ))− P ∗I (η), 0, 0

)>
, on Γ1 (5.5)

δθ− − θ̇− =0, on Γ2 ∪ Γ4 (5.6)

where

F−(δU−) :=−Bσ∂ηδU− +
(
B1(Ū−)−B1(U−)

)
∂ξδU−

− g ·
(
b(U−)− b(Ū−)−∇b(Ū−)δU−

)
, (5.7)

with

Bσ =

H1(g, σ)−H1(g, 0) 0 0

0 H1(g, σ)−H1(g, 0) 0

0 0 0

 .
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Then, applying (5.1), one can infer that

‖δU− − U̇−‖C1,α(Ω̄)

≤C
(
‖F−(δU−)‖C1,α(Ω̄) + ‖P ]

I (Y0(η; g, σ))− P ∗I (η)‖C2,α(Γ1)

)
(5.8)

≤C
(
σ‖∂ηδU−‖C1,α(Ω̄) + ‖∂ξδU−‖C1,α(Ω̄) · ‖δU−‖C1,α(Ω̄) + g‖δU−‖2

C1,α(Ω̄) + σ2
)

≤C\
Lσ

2.

�

5.2. The shock front and subsonic flow. For the given quantities PI , PE and
U− in Lemma 5.1, one needs to find the shock solution (U+;ψ). Here, ψ is the shock
front:

Γs := {(ξ, η) : ξ = ψ(η) := ξ̇∗ + δψ(η), 0 < η < 1}, (5.9)

which close to the initial approximating shock front Γ̇s. Correspondingly, the sub-
sonic region is

Ω+ = {(ξ, η) ∈ R2 : ψ(η) < ξ < L, 0 < η < 1}, (5.10)

and the subsonic flow U+ is supposed to be closed to Ū+.
Thus, The solution U+ satisfies the following free boundary value problem

B(g, σ)∂ηU+ +B1(U+)∂ξU+ + g · b(U+) = 0, in Ω+ (5.11)

The R-H conditions (2.20)− (2.22), on Γs (5.12)

θ+ = 0, on (Γ2 ∪ Γ4) ∩ Ω+ (5.13)

p+ = Pout(YL(η; g, σ); g, σ). on Γ3 (5.14)

The next step is to solve this free boundary value problem near (Ū+; ψ̇). It should
be pointed out that the free boundary ψ will be determined by the shape of the
shock front ψ′ and an exact point ξ∗ := ψ(1) on the nozzle. That is, ψ(η) will be
rewritten as below:

ψ(η) = ξ∗ −
ˆ 1

η

δψ′(τ)dτ, (5.15)

where ξ∗ := ξ̇∗ + δξ∗, and δξ∗ will be determined by the solvability condition for the
solution U+.

Then the following transformation will be introduced to fix the free boundary Γs:

T :

ξ̃ = L+
L− ξ̇∗
L− ψ(η)

(ξ − L),

η̃ = η,
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with the inverse

T −1 :

ξ = L+
L− ψ(η̃)

L− ξ̇∗
(ξ̃ − L),

η = η̃.

Under this transformation, the domain Ω+ becomes

Ω̇+ = {(ξ, η) ∈ R2 : ξ̇∗ < ξ < L, 0 < η < 1}, (5.16)

which is exactly the domain of initial approximating subsonic domain.
Let Ũ(ξ̃, η̃) := U+ ◦ T −1(ξ̃, η̃). Direct calculations yield that Ũ satisfies the fol-

lowing equation in Ω̇+:

B̃∂ξ̃Ũ +B(g, σ)∂η̃Ũ + g · b(Ũ) = 0, (5.17)

where

B̃ :=
(ξ̃ − L) · ψ′(η̃)

L− ψ(η̃)
B(g, σ) +

L− ξ̇∗
L− ψ(η̃)

B1(Ũ).

In addition, Ũ satisfies the following boundary conditions

θ̃ = 0, on (Γ2 ∪ Γ4) ∩ Ω+ (5.18)

p̃ = Pout(YL(η̃; g, σ); g, σ). on Γ3 (5.19)

Moreover, the R-H conditions (2.20)-(2.22) become

Gi(Ũ , U−(ψ′, ξ∗)) = 0, i = 1, 2, on Γ̇s (5.20)

G3(Ũ , U−(ψ′, ξ∗);ψ) = 0, on Γ̇s (5.21)

where U−(ψ′, ξ∗) := U−(ψ(η̃), η̃).
Therefore, the free boundary problem (5.11)-(5.14) can be transformed into the

fixed boundary problem (5.17)-(5.21). Then an iteration scheme will be constructed
to prove the existence of the solutions.

For simplicity of the notations, we shall drop “ ˜” in the sequel arguments.

5.3. The linearized problem for the iteration. This subsection is devoted to
describe the linearized problem for the nonlinear iteration scheme, which will be used
to prove the existence of solution to the problem (5.17)-(5.21) in the next section.

Given approximating states U = Ū+ + δU of the subsonic flow behind the shock
front, as well as approximating shape of the shock front ψ′ = δψ′, then we update
a new approximate state U∗ = Ū+ + δU∗ of the subsonic flow and the shape of the
shock front ψ∗′ = δψ∗′.
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(i). δU∗ := (δp∗, δθ∗, δq∗)> satisfies the following linearized equations in Ω̇+(
1 +H1(g, 0)

)
∂ηδp

∗ + q̄+∂ξδθ
∗ − g

q̄2
+

δq∗ = f1(δU, δψ′, δξ∗) +H2+(g, σ), (5.22)(
1 +H1(g, 0)

)
∂ηδθ

∗ − 1

ρ̄+q̄+

1− M̄2
+

ρ̄+q̄2
+

∂ξδp
∗ − g

ρ̄+q̄3
+

δθ∗ = f2(δU, δψ′, δξ∗), (5.23)

∂ξ

(
q̄+ · δq∗ +

1

ρ̄+

δp∗
)

+ g · δθ∗ = ∂ξf3(δU) + f4(δU, δψ′, δξ∗), (5.24)

where

f1(δU, δψ′, δξ∗) :=
(
q̄+∂ξδθ −

g

q̄2
+

δq +
g

q̄+

)
−
(
− sin θ

ρq
∂ξp+ q cos θ∂ξθ + g

cos θ

q

)
+ (1 +H1(g, σ))

L− ξ
L− ψ(η)

· δψ′(η)∂ξp

+
δξ∗ −

´ 1

η
δψ′(τ)dτ

L− ψ(η)

(sin θ

ρq
∂ξp− q cos θ∂ξθ

)
−
(
H1(g, σ)−H1(g, 0)

)
∂ηδp,

f2(δU, δψ′, δξ∗) :=
(
− 1

ρ̄+q̄+

1− M̄2
+

ρ̄+q̄2
+

∂ξδp−
g

ρ̄+q̄3
+

δθ
)

−
(
− sin θ

ρq
∂ξθ −

cos θ

ρq

1−M2

ρq2
∂ξp− g

sin θ

ρq3

)
+ (1 +H1(g, σ))

L− ξ
L− ψ(η)

· δψ′(η)∂ξθ

+
δξ∗ −

´ 1

η
δψ′(τ)dτ

L− ψ(η)

(sin θ

ρq
∂ξθ +

cos θ

ρq

1−M2

ρq2
∂ξp
)

−
(
H1(g, σ)−H1(g, 0)

)
∂ηδθ,

f3(δU) :=
(
q̄+ · δq +

1

ρ̄+

δp
)
−B(U),

f4(δU, δψ′, δξ∗) :=g ·
δξ∗ −

´ 1

η
δψ′(τ)dτ

L− ξ̇∗
tan θ + g · (δθ − tan θ).

(ii). On the nozzle walls,

δθ∗ = 0, on (Γ2 ∪ Γ4) ∩ Ω̇+. (5.25)

(iii). On the exit,

δp∗ = P ∗e (η, δU) := P ]
e (YL(η; g, σ; δU); g, σ), on Γ3, (5.26)
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where

YL(η; g, σ; δU) =
1

1 +H1(g, σ)

ˆ η

0

1

(ρq cos θ)(L, s)
ds.

(iv). On the free boundary Γ̇s,

αj+ · δU∗ = G∗j(δU, δU−, δψ
′, δξ∗), j = 1, 2, (5.27)

α3+ · δU∗ − (1 +H1(g, 0))[p̄]δψ∗′ = G∗3(δU, δU−, δψ
′, δξ∗), (5.28)

where

G∗j(δU, δU−, δψ
′, δξ∗) := αj+ · δU −Gj(U,U−(ψ′, ξ∗)), (5.29)

G∗3(δU, δU−, δψ
′, δξ∗) := α3+ · δU − (1 +H1(g, 0))[p̄]δψ′

−G3(U,U−(ψ′, ξ∗);ψ
′). (5.30)

Remark 5.2. The condition (5.27) can be rewritten as the following form:

A∗(δp
∗, δq∗)> = (G∗1, G

∗
2)> := G. (5.31)

Applying Lemma 4.3, one has detA∗ 6= 0. Thus (δp∗, δq∗) can be determined
uniquely, that is

δp∗ :=£∗1, (5.32)

δq∗ :=£∗2, (5.33)

with
(£∗1,£

∗
2)> = A−1

∗ G. (5.34)

Moreover, employing (5.28), one has

δψ∗′ =
α3+ · δU∗ −G∗3(δU, δU−, δψ

′, δξ∗)

(1 +H1(g, 0))[p̄]
:= £∗3. (5.35)

In order to find the solution (U, ψ), one needs to construct a suitable function
space for (δU, δψ′) such that δξ∗ can be determined, and the iteration mapping

Π : (δU ; δψ′) 7→ (δU∗; δψ∗′; δξ∗)

is well defined and contractive.
For simplicity of notations, define the solution (δU∗; δψ∗′; δξ∗) to the linearized

problem (5.22)-(5.28) near (U̇+; ψ̇′; 0) as an operator:

(δU∗; δψ∗′; δξ∗) = Te(F ; G ;P ∗e ), (5.36)

where F := (f1 +H2+(g, σ), f2, f3, f4), G := (£∗1,£
∗
2,£

∗
3). In particular,

(U̇+; ψ̇′; 0) = Te(Ḟ ; Ġ ; Ṗ ]
e ), (5.37)

where Ḟ := (H2+(g, σ), 0,−B(Ū+), 0), Ġ := (£̇1, £̇2, £̇3).
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When δξ∗ is omitted, it will be denoted by

(δU∗; δψ∗′) = T (F ; G ;P ∗e ), (5.38)

and

(U̇+; ψ̇′) = T (Ḟ ; Ġ ; Ṗ ]
e ) (5.39)

respectively.

5.4. The solvability condition and a prior estimates of δU∗.
By applying Theorem 3.1 and taking

U := δp∗, V := δθ∗, W := δq∗, F1 :=
f1 +H2+(g, σ)

1 +H1(g, 0)
, F2 :=

f2

1 +H1(g, 0)
,

F3 :=
f3

q̄+

, F4 :=
f4

q̄+

, Us := £∗1, Ws := £∗2, U3 := P ∗e ,

A1 :=
q̄+

1 +H1(g, 0)
, A2 :=

1

1 +H1(g, 0)

g

q̄2
+

, A3 :=
1

1 +H1(g, 0)

1− M̄2
+

ρ̄2
+q̄

3
+

,

A4 :=
1

1 +H1(g, 0)

g

ρ̄+q̄3
+

, A5 :=
1

ρ̄+q̄+

, A6 :=
g

q̄+

,

then (3.8) yields thatˆ ˆ
Ω̇+

A+f2

1 +H1(g, 0)
dξdη =

ˆ 1

0

A+A3

(
£∗1 − P ∗e

)
dη. (5.40)

Applying the arguments in Theorem 3.1, one can obtain the following estimates
for δU∗ immediately.

Lemma 5.3. Suppose that, for given (δU ; δψ′), there exists a δξ∗ such that (5.40)
holds. Then there exists a solution (δU∗; δψ∗) to the linearized problem (5.22)-(5.24)
with the boundary conditions (5.25)-(5.26) and (5.32)-(5.33), and satisfying the fol-
lowing estimates:

‖δp∗‖W 1
β (Ω̇+) + ‖δθ∗‖W 1

β (Ω̇+) + ‖δq∗‖C0(Ω̇+) + ‖δq∗‖
W

1− 1
β

β (Γ̇s)

≤C
( 2∑
i=1

‖fi‖Lβ(Ω̇+) + ‖f3 − f3(ξ̇∗, η)‖C0(Ω̇+) + ‖f4‖C0(Ω̇+) +H2+(g, σ) (5.41)

+
2∑
i=1

‖£∗i ‖
W

1− 1
β

β (Γ̇s)
+ ‖P ∗e ‖

W
1− 1

β
β (Γ3)

)
,

‖δψ∗′‖
W

1− 1
β

β (Γ̇s)
≤ C

(
‖δU∗‖

W
1− 1

β
β (Γ̇s)

+ ‖G∗3‖
W

1− 1
β

β (Γ̇s)

)
, (5.42)

where the constant C depends on Ū±, ξ̇∗, L and β.
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6. Well-posedness and contractiveness of the iteration scheme

In order to carry out the iteration scheme, one needs to find a suitable function
space for (δU, δψ′) such that δξ∗ can be determined, and the iteration mapping Π

is well defined and contractive.
Let ε > 0. Define the function space

N(ε) :=
{

(δU, δψ′) : ‖δU‖(Ω̇+;Γ̇s)
+ ‖δψ′‖

W
1− 1

β
β (Γ̇s)

≤ ε
}
. (6.1)

To begin with, one needs to show that there exists a δξ∗ such that the solvability
condition (5.40) holds. In fact, the following lemma holds.

Lemma 6.1. Let 0 < σ ≤ g3, and (δU − U̇+; δψ′− ψ̇′) ∈ N(1
2
σg

3
2 ), then there exists

a solution δξ∗ to the equation (5.40) with the estimate:

|δξ∗| ≤ Cs
σ

g
, (6.2)

where the constant Cs depends on p0, q0, PI , PE and ‖θℵ‖C0((0,ξ̇∗)×(0,1)).

Proof. Define

I(δξ∗, δψ
′, δU ;£∗1(δU−))

=−
ˆ ˆ

Ω̇+

A+f2

1 +H1(g, 0)
dξdη +

ˆ 1

0

A+A3

(
£∗1 − P ∗e

)
dη.

(6.3)

It is easy to verify that
I(0, 0, 0; £̇1(U̇−)) = 0. (6.4)

We first claim that when 0 < σ ≤ g3 and (δU − U̇+; δψ′ − ψ̇′) ∈ N(1
2
σg

3
2 ), one has

∂I

∂(δξ∗)
(0, 0, 0; £̇1(U̇−)) 6= 0. (6.5)

Then by employing the implicit function theorem, there exists a δξ∗ to the equation
(6.3).

To prove this, we show the expansion of I near the state (0, 0, 0; £̇1(U̇−)) and
analyse each term of I(δξ∗, δψ

′, δU ;£∗1(δU−)).
Since (δU − U̇+; δψ′ − ψ̇′) ∈ N(1

2
σg

3
2 ), by applying Lemma 4.5, it is easy to see

that

‖δU‖(Ω̇+;Γ̇s)
+ ‖δψ′‖

W
1− 1

β
β (Γ̇s)

≤ C∗σ, (6.6)

where the constant C∗ depends on Ċ+.
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Now, we consider the first term on the right hand side of (6.3). After a routine
calculation, one has

−
ˆ ˆ

Ω̇+

A+f2

1 +H1(g, 0)
dξdη

=−
ˆ ˆ

Ω̇+

A+

1 +H1(g, 0)

δξ∗
L− ψ

(cos θ

ρq

1−M2

ρq2
∂ξδp

)
dξdη

+O(1)σ2 · δξ∗ +O(1)σ2,

(6.7)

where O(1) depends only on C∗, Ū+ and ξ̇∗. Notice that

δξ∗
L− ψ

cos θ

ρq

1−M2

ρq2
∂ξδp

=
δξ∗
L− ψ

(cos θ

ρq

1−M2

ρq2
− 1

ρ̄+q̄+

·
1− M̄2

+

ρ̄+q̄2
+

)
∂ξδp

+
δξ∗
L− ψ

1

ρ̄+q̄+

·
1− M̄2

+

ρ̄+q̄2
+

∂ξ(δp− ṗ+)

−
δξ∗ ·

´ 1

η
δψ′(τ)dτ

(L− ψ)(L− ξ∗)
· 1

ρ̄+q̄+

·
1− M̄2

+

ρ̄+q̄2
+

∂ξṗ+ +
δξ∗

L− ξ∗
1

ρ̄+q̄+

·
1− M̄2

+

ρ̄+q̄2
+

∂ξṗ+

=
δξ∗

L− ξ∗
1

ρ̄+q̄+

·
1− M̄2

+

ρ̄+q̄2
+

∂ξṗ+ +O(1)σg
3
2 · δξ∗ +O(1)σ2 · δξ∗,

where O(1) depends only on C∗, Ū+ and ξ̇∗. Then, by applying (2.52), it follows
that ˆ ˆ

Ω̇+

A+

1 +H1(g, 0)

1− M̄2
+

ρ̄2
+q̄

3
+

∂ξṗ+dξdη =

ˆ ˆ
Ω̇+

∂ξ(A+A3ṗ+)dξdη

=

ˆ ˆ
Ω̇+

∂η(A+θ̇+)dξdη =

ˆ L

ξ̇∗

(
A+θ̇+(ξ, 1)−A+θ̇+(ξ, 0)

)
dξ = 0.

(6.8)

Therefore, (6.7) implies that

−
ˆ ˆ

Ω̇+

A+f2

1 +H1(g, 0)
dξdη = O(1)σg

3
2 · δξ∗ +O(1)σ2 · δξ∗ +O(1)σ2, (6.9)

where O(1) depends only on C∗, Ū+ and ξ̇∗.
Then we estimate £∗1. Recalling (5.27), for j = 1, 2, one has

G∗j =αj+ · δU −Gj

(
U,U−(δψ′, ξ∗)

)
=
(
αj+ · δU + αj− · δU−(δψ′, ξ∗)−Gj(U,U−(δψ′, ξ∗))

)
− αj− ·

(
δU−(δψ′, ξ∗)− U̇−(ξ∗, η)

)
− αj− · U̇−(ξ∗, η).

(6.10)
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Notice that
αj+ · δU + αj− · δU−(δψ′, ξ∗)−Gj(U,U−(δψ′, ξ∗))

=
1

2

ˆ 1

0

D2Gj(Ū+ + tδU, Ū− + tδU−)dt · (δU, δU−)2

=O(1)σ2,

(6.11)

where O(1) depends on C∗ and CL. In addition, by employing Lemma 4.2 and
Lemma 5.1, it holds that

δU−(δψ′, ξ∗)− U̇−(ξ∗, η)

=
(
δU−(ξ∗ −

ˆ 1

η

δψ′(τ)dτ, η)− U̇−(ξ∗ −
ˆ 1

η

δψ′(τ)dτ, η)
)

+
(
U̇−(ξ∗ −

ˆ 1

η

δψ′(τ)dτ, η)− U̇−(ξ∗, η)
)

=O(1)σ2,

(6.12)

where O(1) depends on C\
L, Ċ− and C∗. Therefore, (6.10) yields that

G∗j = −αj− · U̇−(ξ̇∗ + δξ∗, η) +O(1)σ2. (6.13)

Thus, one has
£∗j = £̇j(ξ̇∗ + δξ∗, η) +O(1)σ2. (6.14)

Moreover, by applying (6.6) and (1.26), it holds that

P ∗e =q2
0 ·
(
P ]
I (Y0(η; g, σ))− P ]

I (Y0(η; g, 0))
)

+ g ·
(ˆ YL(η;g,σ)

0

Pe(τ ; g, σ)dτ −
ˆ YL(η;g,0)

0

Pe(t; g, σ)dt
)

− gσ · q2
0

( ˆ Y0(η;g,σ)

0

PI(τ)dτ −
ˆ Y0(η;g,0)

0

PI(t)dt
)

+ gσ · q2
0

(
PE(YL(η; g, σ))− PE(YL(η; g, 0))

)
+ Ṗ ]

e (η)

=Ṗ ]
e (η) +O(1)σ2,

(6.15)

where O(1) depends on p0, q0, PI , PE, P
′
I , P

′
E and C∗.

Furthermore, by applying (6.9), (6.15) and Lemma 4.4, then (6.3) implies that

I(δξ∗, δψ
′, δU ;£∗1(δU−))

=

ˆ 1

0

A+A3

(
£̇1(ξ̇∗ + δξ∗, η)− Ṗ ]

e (η)
)

dη +O(1)σg
3
2 · δξ∗ +O(1)σ2 · δξ∗ +O(1)σ2

=
1

1 +H1(g, 0)

(
R(ξ̇∗ + δξ∗)− P

)
+O(1)σg

3
2 · δξ∗ +O(1)σ2 · δξ∗ +O(1)σ2
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=
(
g ·K

ˆ 1

0

( ρ̄−
p0

)q20−1

θ̇−(ξ̇∗, η)dη
)
· δξ∗ +O(1)gσ · (δξ∗)2 +O(1)σg

3
2 · δξ∗

+O(1)σ2 · δξ∗ +O(1)g2σ · δξ∗ +O(1)σ2 (6.16)

=
(
g ·K

ˆ 1

0

θ̇
(1)
− (ξ̇∗, η)dη

)
· δξ∗ +O(1)gσ · (δξ∗)2 +O(1)g2σ · δξ∗

+O(1)σg
3
2 · δξ∗ +O(1)σ2 · δξ∗ +O(1)σ2,

which indicates that
∂I

∂δξ∗
(0, 0, 0; £̇1(U̇−)) =g ·K

ˆ 1

0

θ̇
(1)
− (ξ̇∗, η)dη

+O(1)σg2 +O(1)σg
3
2 +O(1)σ2,

(6.17)

where O(1) depends on p0, q0, PI , PE, P
′
I , P

′
E, C∗, C

\
L, CL, Ċ± and ξ̇∗. Applying

0 < σ ≤ g3 and θ̇(1)
− (ξ̇∗, η) ≥ C0σ, for sufficiently small g, one can deduce that

∂I

∂δξ∗
(0, 0, 0; £̇1(U̇−)) 6= 0. (6.18)

Moreover, the expansion (6.16) implies the estimate (6.2).
�

Lemma 5.3 and Lemma 6.1 yield that the existence of the subsonic solution
(δU∗; δψ∗

′
; δξ∗) to the linearized problem (5.22)-(5.28) as (δU − U̇+; δψ′ − ψ̇′) in

the function space N(1
2
σg

3
2 ) with the sufficiently small g and σ. In the sequel ar-

guments, we will prove (δU∗; δψ∗) also satisfies (δU∗ − U̇+; δψ∗
′ − ψ̇′) ∈ N(1

2
σg

3
2 ) as

long as g and σ are sufficiently small. Define

N (U̇+; ψ̇′) :=
{

(δU ; δψ′) : (δU − U̇+; δψ′ − ψ̇′) ∈ N
(1

2
σg

3
2

)}
.

Then the following lemma holds.

Lemma 6.2. Let 0 < σ ≤ g3, if (δU ; δψ′) ∈ N (U̇+; ψ̇′), then there exists a solu-
tion (δU∗; δψ∗′) to the linearized problem (5.22)-(5.28) and satisfies (δU∗; δψ∗′) ∈
N (U̇+; ψ̇′).

Proof. It suffices to verify that (δU∗; δψ∗′) ∈ N (U̇+; ψ̇′).
Recalling the definitions (5.38)-(5.39), one has

(δU∗ − U̇+; δψ∗′ − ψ̇′) = T (F − Ḟ ; G − Ġ ;P ∗e − Ṗ ]
e ), (6.19)

where

F :=(f1(δU, δψ′, δξ∗) +H2+(g, σ), f2(δU, δψ′, δξ∗), f3(δU), f4(δU, δψ′, δξ∗)),

Ḟ :=(H2+(g, σ), 0,−B(Ū+), 0),

G :=(£∗j(δU, δU−, δψ
′, δξ∗); j = 1, 2, 3),
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Ġ :=(£̇1, £̇2, £̇3).

Similar as Lemma 5.3, one has

‖δU∗ − U̇+‖(Ω̇+;Γ̇s)
+ ‖δψ∗′ − ψ̇′‖

W
1− 1

β
β (Γ̇s)

≤C
( 2∑
i=1

‖fi‖Lβ(Ω̇+) + ‖f3 +B(Ū+)‖C0(Ω̇+) + ‖f4‖C0(Ω̇+)

+
3∑
i=1

‖£∗i − £̇i‖
W

1− 1
β

β (Γ̇s)
+ ‖P ∗e − Ṗ ]

e‖
W

1− 1
β

β (Γ3)

)
.

(6.20)

Now, we analyze the terms on the right hand side of (6.20). Applying the expression
of f1, one has

‖f1(δU, δψ′, δξ∗)‖Lβ(Ω̇+)

≤
∥∥∥sin θ

ρq
∂ξδp−

(
q cos θ − q̄+

)
∂ξδθ −

(
g

cos θ

q
− g

q̄+

+
g

q̄2
+

δq
)∥∥∥

Lβ(Ω̇+)

+
∥∥∥(1 +H1(g, σ))

L− ξ
L− ψ(η)

· δψ′(η)∂ξδp
∥∥∥
Lβ(Ω̇+)

(6.21)

+
∥∥∥δξ∗ − ´ 1

η
δψ′(τ)dτ

L− ψ(η)

(sin θ

ρq
∂ξδp− q cos θ∂ξδθ

)∥∥∥
Lβ(Ω̇+)

+
∥∥∥(H1(g, σ)−H1(g, 0)

)
∂ηδp

∥∥∥
Lβ(Ω̇+)

≤C
{
‖δU‖L∞(Ω̇+)

(
‖(δp, δθ)‖W 1

β (Ω̇+) + |δξ∗|‖δp‖W 1
β (Ω̇+)

)
+ g(‖δU‖L∞(Ω̇+))

2

+ ‖δψ′‖L∞(Γ̇s)
‖(δp, δθ)‖W 1

β (Ω̇+) + |δξ∗|‖δθ‖W 1
β (Ω̇+) + σ‖δp‖W 1

β (Ω̇+)

}
≤C
(
σ2 + Csσ

2σ

g
+ Csσ

σ

g

)
≤C[

1

σ2

g
.

Similarly, one has

‖f2(δU, δψ′, δξ∗)‖Lβ(Ω̇+) ≤ C[
2

σ2

g
. (6.22)

Moreover, since

f3(δU) +B(Ū+) = −
(
B(U)−B(Ū+)− (q̄+δq +

1

ρ̄+

δp)

)
= −
ˆ 1

0

D2
UB(Ū+ + tδU)dt · (δU)2,

(6.23)

then one can obtain
‖f3 +B(Ū+)‖C0(Ω̇+) ≤ C[

3σ
2. (6.24)
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Moreover,

‖f4‖C0(Ω̇+) ≤ C
(
gσ|δξ∗|+ gσ2

)
≤ C[

4σ
2. (6.25)

The constants C[
i , (i = 1, 2, 3, 4) depend on ξ̇∗, Cs and C∗.

On the exit Γ3, recalling (6.15), one has

‖P ∗e − Ṗ ]
e‖

W
1− 1

β
β (Γ3)

≤ Cσ2. (6.26)

Finally, on the fixed boundary Γ̇s, for j = 1, 2, employing (6.14), one has

‖£∗i − £̇i‖
W

1− 1
β

β (Γ̇s)
≤ C

(
‖∂ξU̇−‖C1,α(Ω̄) · |δξ∗|+ σ2

)
≤ C[

5

σ2

g
. (6.27)

In addition, a similar argument yields that

‖£∗3 − £̇3‖
W

1− 1
β

β (Γ̇s)
≤ C[

6

σ2

g
. (6.28)

The constants C[
i , (i = 5, 6) depend on Ċ\

−, C
\
L, CL, ξ̇∗, Cs and C∗.

Therefore, for sufficiently small g, one has

‖δU∗ − U̇+‖(Ω̇+;Γ̇s)
+ ‖δψ∗′ − ψ̇′‖

W
1− 1

β
β (Γ̇s)

≤C
(σ2

g
+ σ2

)
≤ Cσg

3
2

(
g

1
2 + g

3
2

)
≤ 1

2
σg

3
2 .

(6.29)

�

The Theorem 2.6 will be proved as long as we prove that the mapping Π is
contractive. The following lemma completes the proof.

Lemma 6.3. Let 0 < σ ≤ g3, then the mapping Π is contractive.

Proof. Suppose that (δUk; δψ
′

k) ∈ N (U̇+; ψ̇′), (k = 1, 2), then by employing Lemma
6.1 and Lemma 6.2, there exists δξ∗k satisfying the estimate (6.2) and (δU∗k ; δψ∗

′

k ) ∈
N (U̇+; ψ̇′) such that

(δU∗k ; δψ∗k
′; δξ∗k) = Te(Fk; Gk;P

∗
e (η; δUk)), (6.30)

where

Fk :=(f1(δUk, δψ
′

k, δξ∗k) +H2+(g, σ), f2(δUk, δψ
′

k, δξ∗k), f3(δUk), f4(δUk, δψ
′

k, δξ∗k)),

Gk :=(£∗j(δUk, δU−, δψ
′

k, δξ∗k); j = 1, 2, 3).
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To prove the mapping Π is contractive, it suffices to verify that, for sufficiently small
g and σ,

‖δU∗2 − δU∗1‖(Ω̇+;Γ̇s)
+ ‖δψ∗′2 − δψ∗

′

1 ‖
W

1− 1
β

β (Γ̇s)

≤1

2

(
‖δU2 − δU1‖(Ω̇+;Γ̇s)

+ ‖δψ2
′ − δψ1

′‖
W

1− 1
β

β (Γ̇s)

)
.

(6.31)

Applying (6.30), one has

(δU∗2 − δU∗1 ; δψ∗
′

2 − δψ∗
′

1 ) (6.32)

=Te(F2 −F1; G2 − G1;P ∗e (η; δU2)− P ∗e (η; δU1)).

Since the right hand side of (6.32) includes δξ∗k, which is determined by Lemma 6.1
with given (δU∗k ; δψ∗

′

k ), thus one has to estimate |δξ∗2 − δξ∗1| first.

0 =I(δξ∗2, δU2, δψ2
′,£∗1(δU−))− I(δξ∗1, δU1, δψ1

′,£∗1(δU−))

=I(δξ∗2, δU2, δψ2
′,£∗1(δU−))− I(δξ∗1, δU2, δψ2

′,£∗1(δU−))

+ I(δξ∗1, δU2, δψ2
′,£∗1(δU−))− I(δξ∗1, δU1, δψ1

′,£∗1(δU−))

=

ˆ 1

0

∂I

∂(δξ∗)
(δξ∗t, δU2, δψ2

′,£∗1(δU−))dt · (δξ∗2 − δξ∗1)

+

ˆ 1

0

∇(δU,δψ′)I(δξ∗1, δUt, δψt
′,£∗1(δU−))dt · (δU2 − δU1, δψ2

′ − δψ1
′),

(6.33)

where

δξ∗t := tδξ∗2 + (1− t)δξ∗1, δUt := tδU2 + (1− t)δU1,

δψt
′ := tδψ2

′ + (1− t)δψ1
′. (6.34)

Similar calculations as in Lemma 6.1, one has
∂I

∂(δξ∗)
(δξ∗t, δU2, δψ2

′,£∗1(δU−))

=
∂I

∂(δξ∗)
(0, 0, 0; £̇1(U̇−)) (6.35)

+

ˆ 1

0

∇(δξ∗,δU,δψ′,£∗1(δU−))
∂I

∂(δξ∗)
(sδξ∗t, sδU2, sδψ2

′, s£∗1(δU−) + (1− s)£̇∗1(U̇−))ds

· (δξ∗t, δU2, δψ2
′,£∗1(δU−)− £̇∗1(U̇−))

=g ·K
ˆ 1

0

θ̇
(1)
− (ξ̇∗, η)dη +O(1)σg2 +O(1)σg

3
2 +O(1)σ2.

Moreover,

∇(δU,δψ′)I(δξ∗1, δUt, δψt
′,£∗1(δU−)) = O(1)σ. (6.36)
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Therefore, (6.33) implies that

|δξ∗2 − δξ∗1| ≤ C
∣∣∣σ
(
‖ δU2 − δU1 ‖

W
1− 1

β
β (Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
Kg ·

´ 1

0
θ̇

(1)
− (ξ̇∗, η)dη +O(1)σg2 +O(1)σg

3
2 +O(1)σ2

∣∣∣
≤ C]

1g
−1 ·

(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
.

(6.37)

Applying (6.37), one can deduce that

‖f1(δU2, δψ2
′, δξ∗2)− f1(δU1, δψ1

′, δξ∗1)‖Lβ(Ω̇+) (6.38)

≤C
((
‖δU1‖L∞(Ω̇+) + ‖δU2‖L∞(Ω̇+) + ‖δψ′‖L∞(Γ̇s)

)
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)
+|δξ∗2 − δξ∗1|

)
+ (|δξ∗1|+ |δξ∗2|)‖δU2 − δU1‖W 1

β (Ω̇+;Γ̇s)
+ σ‖δp2 − δp1‖W 1

β (Ω̇+)

)
≤C
(
σ +

σ

g

)
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
≤C]

2

σ

g
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
.

Similarly, one has

‖f2(δU2, δψ2
′, δξ∗2)− f2(δU1, δψ1

′, δξ∗1)‖Lβ(Ω̇+) (6.39)

≤C]
3

σ

g
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
,

‖f3(δU2)− f3(δU1)‖C0(Ω̇+) (6.40)

≤C]
4σ · ‖δU2 − δU1‖(Ω̇+;Γ̇s)

,

‖f4(δU2)− f4(δU1)‖C0(Ω̇+) (6.41)

≤C]
5σ ·

(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
.

On the free boundary Γ̇s, for j = 1, 2, one has

‖£∗2i −£∗1i ‖
W

1− 1
β

β (Γ̇s)

≤C‖∂ξU̇−‖C1,α(Ω̄) · |δξ∗2 − δξ∗1|

≤C]
6

σ

g
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
.

(6.42)

Similarly,

‖£∗23 −£∗13 ‖
W

1− 1
β

β (Γ̇s)

≤C]
7

σ

g
·
(
‖ δU2 − δU1 ‖(Ω̇+;Γ̇s)

+ ‖ δψ2
′ − δψ1

′ ‖
W

1− 1
β

β (Γ̇s)

)
.

(6.43)
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Moreover,

‖P ∗2e − P ∗1e ‖
W

1− 1
β

β (Γ3)
≤ C]

8 · σ‖δU2 − δU1‖(Ω̇+;Γ̇s)
. (6.44)

By employing (6.37)-(6.44), it holds that

‖δU∗2 − δU∗1‖(Ω̇+;Γ̇s)
+ ‖δψ∗′2 − δψ∗

′

1 ‖
W

1− 1
β

β (Γ̇s)

≤Cσ
g
·
(
‖δU2 − δU1‖(Ω̇+;Γ̇s)

+ ‖δψ2
′ − δψ1

′‖
W

1− 1
β

β (Γ̇s)

)
≤C]

9g
2 ·
(
‖δU2 − δU1‖(Ω̇+;Γ̇s)

+ ‖δψ2
′ − δψ1

′‖
W

1− 1
β

β (Γ̇s)

)
,

(6.45)

The constants C]
j , (j = 1, · · · 9) depend on p0, q0, PI , PE, β, L and ξ̇∗. Therefore,

we can choose C]
9g

2 = 1
2
for sufficiently small g. Thus, the proof of Lemma 6.3 is

completed. �
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