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Abstract

We consider a space of sparse Boolean matrices of size n × n, which have finite
co-rank over GF (2) with high probability. In particular, the probability that such a
matrix has full rank, and is thus invertible, is a positive constant with value about
0.2574 for large n.

The matrices arise as the vertex-edge incidence matrix of 1-out 3-uniform hyper-
graphs. The result that the null space is finite, can be contrasted with results for the
usual models of sparse Boolean matrices, based on the vertex-edge incidence matrix of
random k-uniform hypergraphs. For this latter model, the expected co-rank is linear
in the number of vertices n, [5], [8].

For fields of higher order, the co-rank is typically Poisson distributed.

1 Introduction

For positive integers r ≥ 1, s ≥ 2, let M(s, r, n) be the space of n× rn matrices with entries
generated in the following manner. For each i = 1, ..., n there are r columns Ci,j, j = 1, ..., r.
Each column Ci,j has a unit entry in row i, and s−1 other unit entries, in rows chosen
randomly with replacement from [n], or without replacement from [n]−{i}, all other entries
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in the column being zero. In general we consider the arithmetic on entries in the matrix,
(and thus the evaluation of linear dependencies), to be over GF (2). If so, in the “with
replacement case”, if two unit entries coincide the entry is set to zero. When r = 1, the
matrix consists of an identity matrix plus s−1 random units in each column.

If s = 2, and entries are chosen without replacement, M is the vertex-edge incidence matrix
of the random graph Gr−out(n). This model of random graphs has been extensively studied,
and is known to be r-connected for r ≥ 2, Fenner and Frieze [9], to have a perfect matching
for r ≥ 2, Frieze [10], and to be Hamiltonian for r ≥ 3, Bohman and Frieze [4]. If s ≥ 3
we are considering r-out, s-uniform hypergraphs. Random Boolean matrices based on the
vertex-edge incidence matrix of s-uniform hypergraphs where the columns (edges) are chosen
i.i.d. from all columns with s ones were studied by Cooper, Frieze and Pegden, [8]. A very
general paper by Coja-Oghlan, Ergür, Gao, Hetterich and Rolvien, [5], gives the limiting rank
in this latter model for a wide range of assumptions on the distribution of non-zero entries
in the rows and columns. The fundamental difference between the r-out model of random
matrices, and those of [5], [8] is the presence of an n× n identity matrix as a sub-matrix (in
the without replacement case).

A set of vectors is said to be linearly dependent if there is a nontrivial linear combination
of the vectors that equals the zero vector. If no such linear combination exists, then the
vectors are said to be linearly independent. The (row) rank ρ of an n×m matrix, (m ≥ n)
is the maximum number of linearly independent rows, and the co-rank is n − ρ. If the
field is GF (2), x ∈ {0, 1}n is a linear dependency (dependency for short) if xM = 0. Let
|x| = | {j : xj = 1} |. We say that a set of rows D ⊆ [n] is a dependency if D = {j : xj = 1}
for some dependency x. An ℓ-dependency is one where |x| = ℓ or |D| = ℓ.

Of particular interest is the case r = 1 which gives n × n Boolean matrices. We will show
that over GF (2), for r = 1, s = 3, the linear dependencies among the rows of M are w.h.p.
either small (bounded in expectation) or large (of size about n/2), and the distributions of
these dependencies are somewhat entangled. For r = 1, s = 3, define a Poisson parameter φ
for small dependencies. The value of φ differs marginally in summation range between the
“with replacement” φR, and “without replacement” models φR as follows:

φR =
∑

ℓ≥1

1

ℓ
(2e−2)ℓ

ℓ−1∑

j=0

ℓj

j!
, φR =

∑

ℓ≥2

1

ℓ
(2e−2)ℓ

ℓ−2∑

j=0

ℓj

j!
. (1)

The numeric values are φR ≈ 0.5215, and φR ≈ 0.1151, where a ≈ b means approximately
equal.
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Let π be the probability distribution given by

π(k) =





∏∞
j=1

(
1−

(
1
2

)j)
k = 0.

∏∞
j=k+1

(

1−( 1
2)

j
)

∏k
j=1

(

1−( 1
2)

j
)

(
1
2

)k2
k ≥ 1.

(2)

For 0 ≤ r ≤ m let

P ∗(h, h+ r;m) =

[
m
r

]

2

(
1

2

)(h+r)(m−r) h+r∏

j=h+1

(
1−

(
1

2

)j
)
, (3)

where empty products are treated as unity, and

[
m
r

]

q

= (qm−1)...(qm−r+1)
(q−1)...(qr−1)

. Let

P (σ, λ) =
φσ

σ!
e−φ

σ∑

r=0

π(λ+ r)P ∗(λ, λ+ r, σ), (4)

where here and later in the paper, σ indicates the dimension of the space induced by small
dependencies and λ indicates the dimension of the space induced by large dependencies.

Theorem 1. Let M be chosen u.a.r. from M (3, 1, n). Let d ≥ 0 be integer. The limiting
probability that, over GF (2), the matrix M has co-rank d, is given by

lim
n→∞

P(co-rank(M) = d) =

d∑

σ=0

P (σ, d− σ). (5)

In particular,

P(rank(M) = n) ∼ P (0, 0) = e−φπ(0) = e−φ
∞∏

j=1

(
1−

(
1

2

)j
)
.

Theorem 1 differs from many previous results on sparse random Boolean matrices. The
co-rank (dimension of the null space) is finite, and the matrix is invertible with probability
e−φπ(0), where π(0) ≈ 0.2888. The problem can be seen as an instance of the change in
rank, if any, arising from small perturbations of the identity matrix.

The finite co-rank given in Theorem 1 can be contrasted with results for the edge-vertex
incidence matrix of random hypergraphs, ([5], [8]), where the expected co-rank is linear in
the number of vertices n, and the probability of a full rank matrix is exponentially small.

The joint distribution of co-rank given by (4) is a mixture of a Poisson with parameter φ
given in (1), and the distribution π given in (2). This mixture arises due to a gap property
in the size of the dependencies (small or large), which we next explain.
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Theorem 2. Let M be chosen u.a.r. from M(3, 1, n), then w.h.p. either (i) a dependency
x is small i.e. |x| ≤ ω where ω → ∞ slowly or (ii) x is large i.e. |x| = n/2 +O(

√
n logn).

A gap property in solutions to random XOR-SAT systems over GF (2) was previously ob-
served by Achiloptas and Molloy [1], and by Ibrahimi, Kanoria, Kraning and Montanari [12].
They found that the Hamming distance between XOR-SAT solutions was either O(logn) or
at least αn; where n is the number of variables. In our case, large dependencies have inter-
section about n/4 (see Section 4), giving a precise value of α.

Estimating the interaction between small and large dependencies is the main problem we
solve. The negative correlation between the two types of dependency is characterized by the
binomial term in (4).

A dependency x is fundamental if there is no other dependency y 6= x such that y ≤
x, componentwise. We will prove in Section 2 that the number Z of fundamental small
dependencies is asymptotically distributed as Po(φ) i.e. Poisson with mean φ. The quantity
P (σ, λ) in (5) is the limiting probability that small dependencies span a space of dimension
σ, and large dependencies span a space of dimension λ.

The distribution π(k) given in (2) was previously observed in a model of random matrices over
GF (2) in which the entries mi,j are i.i.d Bernoulli random variables with P(mi,j = 1) = p.
For a wide range of p the distribution of dimension k of the null space is given by π(k).
The result was proved by Kovalenko et al., [13] for p = 1/2, and extended to the range
min(p(n), 1 − p(n)) ≥ (logn + c(n))/n, (where c(n) → ∞ slowly) by Cooper [6]. A similar
result holds for the model of random matrices over the finite field GF (t), see Cooper [7].
Here the non-zero entries α ∈ GF (t)\{0} are independently and uniformly distributed with
P(mi,j = α) = p/(t− 1). The distribution of co-rank πt(k) equivalent to π(k) = π2(k) in (2)
is obtained by directly replacing the (1/2) terms in (2) by (1/t).

Finally we consider some related cases for r-out s-uniform hypergraphs. For r = 1 and s = 2,
M has expected rank ∼ n− (log n)/2. This is because the expected number of components
in a random mapping is ∼ (1/2) logn, (see e.g., [11]). Note: For s even, the rows of M add
to zero modulo 2. The following theorem will be immediate from the proof of Theorem 1.

Theorem 3. If r ≥ 2 and s = 2, 3, then M has rank n∗ = n− 1{s=2}, w.h.p.

Results for other finite fields follow easily from the analysis over GF (2). We use the non-
standard notation GF (t) for a finite field of order t, rather than the usual GF (q); and for
brevity we consider only the ‘without replacement’ case. We consider three simple models
with entries from the non-zero elements of GF (t), in each column. Let {fi} be a distribution
on i ∈ GF (t), i 6= 0.

Model 1: The diagonal and other two non-zero entries in a column are 1.
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Model 2: The diagonal entries are 1, and the two other non-zero entries in each column are
drawn u.a.r. from the distribution {fi}.

Model 3: The diagonal and other two non-zero entries in each column are drawn u.a.r. from
the uniform distribution {fi}.

For Model 2, let γ = ft−1, α =
∑
fift−i−1. For Model 3, let γ =

∑
i fift−i, α =

∑
i+j+k=0 fifjfk.

Let φt be given by

φt =
∑

ℓ≥2

1

ℓ

(
2γe−2

)ℓ ℓ−2∑

i=0

ℓi

i!
. (6)

Because M has 3 entries in each column, there is a special case of Model 1 for GF (3).

Theorem 4. The following asymptotic results hold over GF (t).

1. Model 1: If t = 3 the limiting probability that M has rank n− 1 is 1, and M has rank
n otherwise.

2. Models 2 and 3: If t ≥ 3 then provided α ≤ 2γ ≤ 1,

P(rank(M) = n− d) ∼ φd
t

d!
e−φt .

In the simplest case where entries are sampled uniformly from the non-zero elements of
GF (t), Theorem 4.2 holds for Models 2, 3 with γ = 1/(t− 1).

Notation: Apart from O(·), o(·),Ω(·) as a function of n→ ∞, we use the notation An ∼ Bn

if limn→∞An/Bn = 1. The symbol a ≈ b indicates approximate numerical equality due e.g.,
to decimal truncation. The notation ω(n) describes a function tending to infinity as n→ ∞.
The expression with high probability (w.h.p.), means with probability 1 − o(1), where the
o(1) is a function of n, which tends to zero as n→ ∞.

Outline of the proof for GF (2) with r = 1, s = 3

Because the proofs are rather technical, we give a detailed proof in the “with replacement”
model, and indicate separately in Section 9 why these results are also valid in the “without
replacement” model. The difference in the range of summation indices for φR is explained
in detail in Section 9.2.

We refer to the rows of M as Mi, i ∈ [n] and to the columns as Cj, j ∈ [n]. By a set of rows
S, we mean the set of rows Mi, i ∈ S. A set of rows with indices L is linearly dependent
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(zero-sum) if
∑

i∈LMi = 0(mod 2). A linear dependence L is small if |L| ≤ ω, where
ω = ω(n) is a function tending slowly to infinity with n. A linear dependence L is large
if |L| = (n/2)(1 + O(

√
log n/n)). As part of our proof, we show that w.h.p. there are no

other sizes of dependency. A set of zero-sum rows L is fundamental if L contains no smaller
zero-sum set and is disjoint from all other zero-sum sets. The zero-sum sets of size about
n/2 are not disjoint. We count k-sequences of large dependencies with a property we call
simple. Many of the problems with the proofs arise because the large dependencies are not
disjoint, and are conditioned by the simultaneous presence of small linear dependencies in
M .

We next outline the main steps in the proof of Theorem 1.

1. In Section 2 we prove that the number Z of small fundamental dependencies has
factorial moments E (Z)k ∼ φk, where φ is given by (1). Thus Z is asymptotically
Poisson distributed and

P

(
M has i small fundamental linear dependencies ∼ φi

i!
e−φ

)
.

2. For M ∈ M(3, 1, n) w.h.p. any fundamental sets of zero-sum rows of M are either
small (of size ℓ ≤ ω) or large (of size ℓ = (n/2)(1 + O(

√
logn/n))). This is proved in

Section 3.

3. In Section 5 we discuss simple sequences of large dependencies, and in Section 6 we
estimate the moments of these sequences and determine their interaction with small
dependencies.

4. We estimate the number of simple sequences, conditional on the the number of small
fundamental dependencies. This leads to an approximate set of linear equations whose
solution completes the proof of Theorem 1.

2 Small linear dependencies in GF (2): with replace-

ment

Notation For 1 ≤ k ≤ ω, where ω → ∞ arbitrarily slowly with n, let Xk(M) or Yk(M)
denote the number of index sets of k-dependencies in M . A k-dependency is small if k ≤ ω
and we use Yk when k ≤ ω and use Xk when k ∼ n/2. We will show that for other values of
k, Xk = 0 w.h.p. We also use Zd, d ≤ ω to denote the number d of fundamental (minimal)
dependent sets among the rows of M .
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We first consider dependencies with s = o(n1/2) rows. For S ⊆ [n], let F(S) denote the
event that the rows corresponding to S are dependent. Let Ys denote the number of s-set
dependencies.

Lemma 5. If |S| = s = o(n1/2) then

P(F(S)) ∼
(
2s

n

)s

e−2s. (7)

If ω → ∞, ω ≤ s = o(n1/2) then Ys = 0 w.h.p.

Proof. Suppose that s = o(n1/2) and S = [s]. Then,

P(F(S)) =

(
2
( s
n

)(n− s

n

))s
(( s

n

)2
+

(
n− s

n

)2
)n−s

∼
(
2s

n

)s

e−2s, using s = o(
√
n). (8)

Explanation: The probability that exactly one of the two random choices in a column of
S lies in a row of S is 2

(
s
n

) (
n−s
n

)
. The probability that both or neither of the two random

choices in a column of [n] \ S lies in a row of S is
(
s
n

)2
+
(
n−s
n

)2
.

This verifies (7). It follows that

E (Ys) ∼
(
n

s

)(
2s

n

)s

e−2s ∼ (2s)se−2s

s!
,

As EYs+1/E (Ys) ∼ 2/e we have that EYω = e−Ω(ω) and so w.h.p. there are no dependencies
with ω ≤ s = o(n1/2).

Define σs, κs by

σs =
s−1∑

j=0

sj

j!
, and κs =

(s− 1)!

ss
σs. (9)

For S ⊆ [n], let F∗(S) denote the event that the rows corresponding to S form a fundamental
dependency. The next lemma deals with small fundamental dependencies.

Lemma 6. P(F∗(S) | F(S)) = κs.

Proof. The rows of the dependency S consist of an s×s sub-matrixMS,S and a zero (s×n−s)
sub-matrix. For i ∈ S, if Mi,i = 1, then w.h.p. there is a unique entry Mj,i = 1 which gives
rise to an edge (i, j). If Mi,i = 0 we regard this as a loop (i, i). Thus MS,S is the incidence
matrix of a random functional digraph DS, and S is fundamental iff the underlying graph
of DS is connected. For s ≥ 1, P(DS is connected) = κs (see e.g., [2] or [11]).
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We now prove

Lemma 7. Small fundamental dependent sets of M are pairwise disjoint, w.h.p.

Proof. Let S, T be two small fundamental zero-sum row sets with a non-trivial intersection
C = S ∩ T and differences A = S\T , B = T \S, where A ∪ B 6= ∅. Suppose A 6= ∅. As the
functional digraphs DS, DT are connected, one of the following events must occur. Either
(i) some column of C has two non-zero entries in the rows of S ∪ T ; or (ii) some column j
of A has a non-zero entry in the rows of C. The latter is not possible as then a column of S
has a non-zero entry in the rows of T . Let k = |S ∪ T |. The former has probability at most

2ω∑

k=2

(
n

k

)
k

(
k

n

)k−1(
k

n

)2

= o(1). (10)

Given this lemma we can now prove

Lemma 8. The number Z of small fundamental dependent sets among the rows of M is
asymptotically Poisson distributed with parameter φR, and thus

P(Z = d) ∼ φd
R

d!
e−φR. (11)

Proof. Fix S ⊆ [n] and let S1, . . . , Sd be a partition of S with |Si| = si, i = 1, 2, . . . , d. Let
P (s1, . . . , sd) be the probability that each Si, i = 1, 2, . . . , d is a fundamental set, given that
S is a dependency. Thus,

P (s1, . . . , sd) =
(s1)

s1 · · · (sd)sd
ss

∏

i=1,...,d

P(DSi
connected) =

1

ss

d∏

i=1

(si − 1)!σsi.

Explanation: the factor (s1)s1 ···(sd)sd
ss

is the conditional probability that the random choices
for columns with index in Si are in rows with index in Si.
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Thus, using (7), we see that

E (Z)d ∼
∑

s≥1

(2s)s

s!
e−2s

∑

s1+···+sd=s

(
s

s1, . . . , sd

)
P (s1, . . . , sd) (12)

=
∑

s≥1

∑

s1+...+sd=s

d∏

i=1

(2e−2)si
1

si
σsi

=

(
∑

s≥1

1

s
(2e−2)sσs

)d

=φd
R. (13)

Thus, by the method of moments, the number of small disjoint fundamental zero-sum sets
Z tends tend to a Poisson distribution with parameter φR.

3 Large zero-sum sets: First moment calculations

Define an index set Ja as follows,

Ja = {n/2−
√
an logn ≤ ℓ ≤ n/2 +

√
an logn} and Ja = [n] \ Ja, a ≥ 0. (14)

Lemma 9. (Large linearly dependent sets.) Let Xℓ denote the number of ℓ-dependencies
among the rows of M .

(i)
∑

ℓ∈J1 EXℓ ∼ 1.

(ii) Let F = [n]\([ω]∪J1), where ω → ∞ arbitrarily slowly with n. Then
∑

ℓ∈F EXℓ = o(1).

Proof. From (8), the expected number of dependencies of size ℓ is

EXℓ =

(
n

ℓ

)(
2

(
ℓ

n

)(
n− ℓ

n

))ℓ
((

ℓ

n

)2

+

(
n− ℓ

n

)2
)n−ℓ

.

We next approximate the expression for EXℓ. We note the following expansion.

(1+x) log(1−x2)+(1−x) log(1+x2) = −2

(
x3 +

x4

2
+
x7

3
+
∑

k≥4

1{k even}
x2k

k

(
1 +

kx3

k + 1

))
.

(15)
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We write EXℓ =
(
n
ℓ

)
Φn

ℓ , ℓ = (n/2)(1 + ε), where

Φℓ =

(
1− ε2

2

) (1+ε)
2

((
1 + ε

2

)2

+

(
1− ε

2

)2
) (1−ε)

2

=
1

2
(1− ε2)

(1+ε)
2 (1 + ε2)

(1−ε)
2

=
1

2
exp

{
1

2

(
(1 + ε) log(1− ε2) + (1− ε) log(1 + ε2)

)}

=
1

2
exp

{
−
(
ε3 +

ε4

2
+
ε7

3
+
∑

k≥4

1{k even}ε
2k

(
1

k
+

ε3

k + 1

))}

=
1

2
exp

{
−
(
ε3 +

ε4

2
+ ε7

)}
, (16)

where |ε7| ≤ 2|ε|7/3 for sufficiently small ε.

Also for ℓ = (n/2)(1 + ε), |ε| < 1,

(
n

ℓ

)
=

(
1 +O

(
1

n

))
2n√

2πn(1− ε2)
exp

(
−n
(
ε2

2
+
ε4

12
+ ε6

))
, (17)

where |ε6| ≤ |ε|6/10.

Case 1: ℓ ∈ J1 . From (17) with |ε| = 2
√
(log n)/n we have

1

2n

∑

ℓ/∈J1

(
n

ℓ

)
= O(1/n5/2),

so that
1

2n

∑

ℓ∈J1

(
n

ℓ

)
= 1−O(1/n5/2).

Using (16), for ℓ ∈ J1, Φℓ
n = eΘ(nε3)/2n. Then, as nε3 = O(log3/2 n/

√
n),

∑

ℓ∈J1

EXℓ =
∑

ℓ∈J1

(
n

ℓ

)
1

2n
eΘ(nε3) = 1 + o(1).

10



For future reference, we note that for |ε| < c < 1,

EXℓ =

(
n

ℓ

)
1

2n
exp

{
−n
(
ε3 +

ε4

2
+ ε7

)}

=
(1 + o(1))√
2πn(1− ε2)

exp

{
−n
(
ε2

2
+ ε3 +

ε4

2
+
ε4

12
+ ε6 + ε7

)}

=
(1 + o(1))√
2πn(1− ε2)

exp

{
−nε

2

2

(
(1 + ε)2 +

ε2

6
+O(ε4)

)}
. (18)

Case 2: ℓ ∈ F . Write F = [n] \ ([ω]∪ J1) as F = F1 ∪F2 ∪F3 where F1 = {ω, . . . , 3n/10},
F2 = {7n/10, . . . , n} and F3 = F \ (F1 ∪ F2). Thus, for ℓ ∈ F3, ℓ = (n/2)(1 + ε) where
−2/5 ≤ ε ≤ −

√
(2 logn)/n or

√
(2 logn)/n ≤ ε ≤ 2/5.

Case ℓ ∈ F1. For sufficiently large n, Stirling’s approximation implies that

(
n

ℓ

)
≤ nn

ℓℓ(n− ℓ)n−ℓ
,

so for some constant C (in both with and without replacement models)

EXℓ ≤
Cnn

ℓℓ(n− ℓ)n−ℓ

(
2

(
ℓ

n

)(
n− ℓ

n

))ℓ
((

ℓ

n

)2

+

(
n− ℓ

n

)2
)n−ℓ

. (19)

Continuing with this expression, using ℓ = λn for λ < 1/2,

EXℓ ≤C
(

2λ

λλ(1− λ)1−λ
λλ(1− λ)λ(λ2 + (1− λ)2)1−λ

)n

=C

(
2λ(1− λ)λ

(
1− λ +

λ2

1− λ

)1−λ
)n

≤C
(
2λ(1− λ)λe−λ(1−λ)+λ2

)n

=C
(
2(1− λ)e−1+2λ

)λn

=C[g(λ)]λn.

The function g(λ) is strictly concave and has a unique maximum at λ = 1/2 with g(1/2) = 1.
For λ ≤ 3/10, g(λ) ≤ g(3/10) = (7/5)e−2/5 < 1 so that

∑

ℓ∈F1

EXℓ ≤ C
∑

ℓ∈F1

g(3/10)ℓ = o(1).
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Case ℓ ∈ F2. Referring to (18), the function h(ε) = (ε2/2)((1+ ε)2 + ε2/6+ ε6+ ε7) satisfies
h(ε) > 2/25 for ε ≥ 2/5, and so

∑

ℓ∈F2

EXℓ ≤
∑

ℓ∈F2

e−Ω(n) = o(1).

Case ℓ ∈ F3. For
√

(2 logn)/n ≤ |ε| ≤
√

(25 logn)/n, the function h(ε) ≥ (1−o(1))(logn)/n.
Let F3a be the values of ℓ in this range

∑

ℓ∈F3a

EXℓ = O(
√
n logn)/n1−o(1)) = o(1/n1/3).

Let F3b = F3 \F3a. Then ε2/2 ≥ (25/2)(logn)/n, and (1 + ε)2 + ε2/6 + ε6 + ε7 > 9/25.
Referring to (18), ∑

ℓ∈F3b

EXℓ = O(n)/n4 = o(1/n3).

4 Higher moments of large zero-sum sets: Background

Let A⊕B denote the symmetric set difference of the sets A and B. Thus A⊕B = (A∪B)\
(A ∩ B) = (A\B) ∪ (B\A). Suppose that, over GF (2), the rows M [i], i ∈ A indexed by A
are zero-sum, thus zA =

∑
i∈AM [i] = 0. Let B be another set such that zB = 0. We can

write zA = zA\B + zA∩B and zB = zB\A + zA∩B. Adding these two sets of rows modulo 2
has the effect of canceling the intersection A ∩ B. Thus (i) zA + zB = 0, whether zA∩B is
itself zero-sum or not; and (ii) zA + zB = zA⊕B.

Recall that a set of zero-sum rows is fundamental if it contains no smaller zero-sum set of
rows. For small sets we were able to count fundamental dependencies directly. We have to
adopt an alternative strategy for large zero-sum sets. We use an approach similar to the one
given in [6]. We count simple sequences of large linearly dependent row sets B = (B1, ..., Bk),
k ≥ 1 constant, and where |Bi| ∈ J1 so that |Bi| ∼ n/2. A k-tuple of large dependent sets
B = (B1, ..., Bk) is simple, if for all sequences (j1 < j2 < ... < jl) and (1 ≤ l ≤ k) the set
differences satisfy

|Bj1⊕Bj2⊕· · ·⊕Bjl| ∈ J1 (20)

For any given matrix M there is a largest k such that B1, ..., Bk are simple. In which case,
we say k is maximal and B1, ..., Bk is a maximal simple sequence.

Let V (M) = {∅} ∪ {B : B is zero-sum in M}, then (V (M),⊕) is a vector space over GF 2

under the convention that 0 · B = ∅, 1 · B = B. In V (M) a simple sequence (B1, ..., Bk) is
an ordered basis for a subspace S of dimension k.
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Given k linearly dependent sets of rows with index sets B1, · · · , Bk, there are 2
k intersections

of these sets and their complements. For each x = (x1, · · · , xk), x ∈ {0, 1}k we let Ix =

∩i=1,...,kB
(xi)
i where B

(0)
i = Bi = [n] \ Bi and B

(1)
i = Bi. The index sets Ix are disjoint by

definition and their union (including x0 = (0, · · · , 0)) is [n].
Next for x ∈ {0, 1}k let B(x) =

⊕
i:xi=1Bi. Let K = 2k − 1. Let U be a K × K matrix

indexed by x,y ∈ {0, 1}k, x,y 6= 0; with entries U(x,y) = 1 if Iy ⊆ B(x), and U(x,y) = 0
otherwise. In summary,

Row index x = (x1, x2, . . . , xk) is the indicator vector for B(x) =
⊕

i:xi=1
Bi,

Column index y = (y1, y2, . . . , yk) is the indicator vector for Iy =
⋂

i=1,...,k

B
(yi)
i .

The row of U representing the set B(x) is formed by adding the rows of those sets Bi such
that xi = 1 in x; the addition being over GF (2). Thus B(x) is the union of the sets Iy,
where yi = 1 for an odd number of those sets Bi where xi = 1. This can be seen inductively
by generating B1, B1⊕B2, (B1⊕B2)⊕B3 etc. in the given order. In summary U(x,y) = 1
iff both xi = 1 and yi = 1 for an odd number of indices i, and thus, over GF (2),

U(x,y) =

k∑

i=1

xiyi. (21)

Our aim is to use U , treated as a real matrix to show that w.h.p. |Ix| ∼ n/2k for every
x. We do this by observing that given the characterisation U(x,y) = 1Iy⊆B(x), the vector

(|Ix|, x ∈ {0, 1}k , x 6= 0) is the solution z over the reals of an equation

Uz = b where b ∼ n

2
1, (22)

assuming that B = (B1, ..., Bk) is simple. To prove that |Ix| ∼ n/2k, we prove the properties
of U listed in Lemma 10 below.

Equation (21) implies that by arranging the rows and column indices of U in the same order,
U will be symmetric. We will choose an ordering such the first k rows correspond to Bi, i =
1, ..., k. Thus xi = ei, i = 1, 2, . . . , k where e1 = (1, 0, . . . , 0) etc., and yi = ei, i = 1, 2, . . . , k.
After this we let Q be the k ×K matrix with column indices x made up of the first k rows.
Thus row i represents Bi, i = 1, ..., k and U contains a k × k identity matrix in the first k
rows and columns.

The row indexed by x = (x1, ..., xk) is the linear combination
∑k

i=1 xiri of the rows of Q,
and corresponds to B(x) in the vector space V (M) given above.

Lemma 10. The K ×K matrix U has the following properties:

13



(i) The matrix U symmetric.

(ii) Every row or column of U has 2k−1 non-zero entries.

(iii) Any two distinct rows of U have 2k−2 common non-zero entries.

(iv) The matrix U is non-singular when the entries are taken to be over the real numbers,
and the matrix S = UU⊤ = U2 = 2k−2(I + J) is symmetric, with inverse S−1 =
(1/2k−2)(I − J/2k); where J is the all-ones matrix.

Proof. (i) This follows immediately from (21), and the above construction.

(ii) Fix x and assume that x1 = 1. There are 2k−1 choices for the values of yi, i = 2, 3, . . . , k.
Having made such a choice, there are two choices for y1, exactly one of which will give∑k

i=1 xiyi = 1.

(iii) Fix x,x′ and think of rows x,x′,x + x′ as non-empty subsets of [2k]. Then we have
|x| = |x′| = |x\x′|+ |x′\x| = 2k−1, by (iii). Thus |x|+ |x′|−(|x\x|+ |x′\x|) = 2|x∩x′| =
2k−1.

(iv) That the matrix U is non-singular over the real numbers, uses an argument given in
[3] (pages 11-13). Let S = UU⊤. Let u, v be distinct rows of U , then u · u = 2k−1 and
u · v = 2k−2. Thus S = 2k−2(I + J), where J is the all-ones matrix. The reader can check
that S−1 = 1

2k−2 (I − 1
2k
J) 2k−1 which implies that U is invertible too.

The definition of a simple k-tuple (B1, ..., Bk) requires that all sets Bi be large and their set
differences to be distinct and of size ∼ n/2. Let (|B1|, . . . , |Bk|) ∼ (n/2)1 be the vector of
these set sizes. Over the reals, solving (22) gives the sizes of the subsets Ix.

Lemma 11. Let (B1, ..., Bk) be a simple sequence. Then for all x ∈ {0, 1}k,

|Ix| =
n

2k

(
1± 4k

√
logn

n

)
. (23)

Proof. Let i = 1, ..., K index the rows of U , and j = 1, ..., K index the columns. Let B(i)
be the set corresponding to the row i of U . Referring to (22), let y = (2/n)z, and Uy = b

where now bi = 2|B(i)|/n = 1 + εi, so that |εi| ≤ 2
√

logn/n. The matrix S = U2, so
Sy = Ub = c where ci = 2k−1(1+ δi) and δi =

∑
j:U(i,j)=1 εj/2

k−1, the summation being over

the 2k−1-subset of non-zero entries of row i of U . Thus, as J is K ×K where K = 2k − 1,

y = S−1c =
1

2k−2

(
I − 1

2k
J

)
2k−1(1+ δ) =

1

2k−1
1+ η,

where |η| ≤ 2k
√
log n/n. It follows that w.h.p. the solution z to (22) over the real numbers

satisfies |Ix| = (n/2k)(1± 4k
√
log n/n) for all x ∈ {0, 1}k.
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Remark 12. The proofs above generalize to the case where b ∼ (ξn, ξn, . . . , ξn) for some
constant ξ ∈ (0, 1/2] in equation (22). In which case (23) becomes

|Ix| =
2ξn

2k

(
1± 2k

√
log n

n

)
.

5 Simple sequences of large zero-sum sets.

Let B1, B2, . . . , Bk be a simple sequence. In row Mi of the matrix M , there is a 1 in the
diagonal entry Mi,i. As s = 3 there need to be two (random) 1’s in column Ci chosen in a
way to ensure the linear dependence of B1, . . . , Bk. The following lemma describes where
these non-zeros must be placed.

Lemma 13. B1, · · · , Bk are dependencies if and only if the following holds for all i ∈ [n].
Suppose that row i is in Ix, and that the two random non-zeros e1(i), e2(i) in column i are
in Iu, Iv respectively. Then we must have x = u+ v(mod 2).

Proof. Let x = (x1, ..., xk) and consider xm for 1 ≤ m ≤ k. If xm = 0 then i /∈ Bm, so either
none or both of j, j′ are in Bm, and so zero or two unit entries in this column are in Bm. We
must therefore have either um = vm = 0 or um = vm = 1 and xm = um + vm. If xm = 1 then
i ∈ Bm and so exactly one of e1(i), e2(i) must also be in Bm. Hence um = 1, vm = 0, or vice
versa. Thus in all cases xm = um + vm.

The main result of this section is the following.

Lemma 14. Let k ≥ 1 be a positive integer, and let Xk count the number of simple k-
sequences of large dependencies. Then E (Xk) ∼ 1.

Proof. We have to estimate the expected number of simple sequences (B1, ..., Bk) of large de-
pendencies. By (23) of Lemma 11 the index sets Ix have size |Ix| = (n/2k)(1+O(

√
log n/n)).

Let K = 2k − 1 as above, and let

Ω =

{
h = (h0, h1, ..., hK) : hi satisfies (23),

K∑

i=1

hi ∈ J1

}
.
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Then we define Φ(h, k) by

E (Xk) =
∑

h∈Ω

(
n

h0, h1, . . . , hK

)∏

x6=0


2

∑

{u,v}
u+v=x

hu
n

hv
n




hx (
∑

u

(
hu
n

)2
)h0

(24)

=
∑

h∈Ω

(
n

h0, h1, . . . , hK

)
Φ(h, k). (25)

Explanation of (24). Let hx = |Ix|. The multinomial coefficient
(

n
h0,h1,...,hK

)
counts the

number of choices for the subsets Ix. In the product, in order for B1, ..., Bk to be zero-sum,
for x 6= 0 we need to cancel the diagonal entries Mj,j = 1 of j ∈ Ix within the columns
indexed by Ix. This is achieved by putting one entry in rows Iu and one in rows Iv where
u+ v = x. The last factor counts the choices for the entries of columns indexed by I0 over
the row index sets Iu, either zero or two in an index set, in order to preserve the zero-sum
property.

Set hx = (n/2k)(1 + εx) where |εx| = O(
√
log n/n). We note that

∑
x εx = 0, implies that

∑

x

hxεx =
n

2k

∑

x

(εx + ε2x) =
n

2k

∑

x

ε2x and
∑

x

hxε
2
x =

n

2k

∑

x

ε2x +O

(
log3/2 n

n1/2

)
.

And then Stirling’s approximation implies that

(
n

h0, h1, . . . , hK

)
∼ nn

√
2πn

∏
x∈{0,1}k((n/2

k)(1 + εx))hx(
√
2πn/2k)2k

= 2kn exp



−

K∑

x∈{0,1}k
hx

(
εx − ε2x

2

)
+O(logn)





= 2kn exp



− n

2k+1

K∑

x∈{0,1}k
ε2x +O(logn)



 = 2knnO(1).

In addition, by considering random 2k-colorings of [n] we see from the Chernoff bounds that

∑

h∈Ω

(
n

h0, h1, . . . , hK

)
= 2kn(1− O(n−2k/3)). (26)
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With respect to (24), using
∑

x εx = 0, we see that


 ∑

u∈{0,1}k

(
hu
n

)2



h0

=

(
∑

u

1

22k
(1 + 2εu + ε2u)

)h0

=

(
1

2k

)h0
(
1 +

1

2k

∑

u

ε2u

)h0

=

(
1

2k

)h0

exp

{
n

2k
(1 + ε0) log

(
1 +

∑

u

ε2u
2k

)}

=

(
1

2k

)h0

exp

{
n

22k

∑

u

ε2u +O

(
log3/2 n

n1/2

)}
. (27)

If x 6= 0 then each index z occurs exactly once in
∑

{u,v}
u+v=x

(εu+εv) and so
∑

{u,v}
u+v=x

(εu+εv) =∑
z εz = 0. Therefore,


2

∑

{u,v}
u+v=x

hu
n

hv
n




hx

=


2

∑

{u,v}
u+v=x

1

22k
(1 + εu + εv + εuεv)




hx

=

(
1

2k

)hx


1 +

1

2k

∑

{u,v}
u+v=x

2εuεv




hx

=

(
1

2k

)hx

exp




n

2k
(1 + εx) log


1 + 2

∑

{u,v}
u+v=x

εuεv
2k








=

(
1

2k

)hx

exp




n

2k

∑

{u,v}
u+v=x

2εuεv
2k

+O

(
log3/2 n

n1/2

)

.

Note that
Λ =

∑

x6=0

∑

{u,v}
u+v=x

2εuεv =
∑

u

εu
∑

x+u

x 6=0

εx+u =
∑

u

εu
∑

v 6=u

εv,

gives

Λ +
∑

u

ε2u =

(
∑

u

εu

)2

= 0.
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Thus using
∑

x hx = n,

Φ(h, k) =

(
1

2k

)∑

x
hx

exp





n

22k



∑

u

ε2u +
∑

x 6=0

∑

{u,v}
u+v=x

2εuεv


+O

(
log3/2 n

n1/2

)


=
1

2kn
eO(log3/2 n/

√
n). (28)

It follows from (25), (26) and (28) above that

E (Xk) = 1 +O

(
log3/2 n√

n

)
= 1 + o(1). (29)

6 Conditional expected number of small zero-sum sets

Let (B1, . . . , Bk) be a fixed sequence of subsets of [n] with |Bi| ∈ J1 for i = 1, 2, . . . , k ≤ ω.
Let B be the event

B = {(B1, ...Bk) is a simple sequence of large row dependencies} . (30)

Lemma 15. Given B and i ∈ Ix, |Ix| = hx, the distribution of the row indices ℓ, ℓ′ of the
other two non-zeros in column i is as follows.
If x 6= 0 then choose u, v such that x = u+ v mod 2 with probability

p(u, v) =
huhv∑

y+z=x hyhz
,

and then randomly choose ℓ ∈ Iu, ℓ
′ ∈ Iv. If x = 0 then choose u with probability

p(u,u) =
h2u∑

y∈{0,1}k h
2
y

,

and then randomly choose ℓ, ℓ′ ∈ Iu.

Proof. This follows from the fact that the non-zeros in each column are independently chosen
with replacement and from the condition given in Lemma 13.
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For m ≤ ω, let Sj, j = 1, 2, . . . , m be pairwise disjoint subsets of the rows of M , where
|Sj| ≤ ω. Let S =

⋃m
j=1 Sj and s = |S|. For j = 1, 2, . . . , m define the following events

Sj = {Sj is a small zero-sum set}, S∗
j = {Sj is a small fundamental zero-sum set}.

Let

S =

m⋂

j=1

Sj and S∗ =

m⋂

j=1

S∗
j .

We need to understand the conditioning imposed by the event B in (30) on the small
dependencies.

Lemma 16.
P(S∗ | B) ∼ P(S∗). (31)

Proof. Let Ix, x ∈ {0, 1}k, be as defined in Section 4. Let hx = |Ix|. By Lemma 11 we can
assume that |Ix| = hx ∼ n/2k for all x ∈ {0, 1}k. For j = 1, 2, . . . , m, let Sj,x = Sj ∩ Ix and
sj,x = |Sj,x|. Similarly, let Sx = S ∩ Ix, sx = |Sx|. These definitions include x = 0, so that
S0 = I0 ∩ S and sj,0 = |Sj,0| etc.
For each i ∈ [n], we consider the probability that column i of M is consistent with S
according to four cases.

Case 1: i ∈ I0 \S. For each column i ∈ I0\S = I0 \ S0, we must estimate the probability
that the two non-zeros e1(i), e2(i) are in rows consistent with the occurrence of S. Because
i ∈ I0 and B occurs, we know from Lemma 13 that e1(i), e2(i) ∈ Iu for some u ∈ {0, 1}k.
For S to occur, we require that zero or two of e1(i), e2(i) fall in Su, an event of conditional
probability (1− su/hu)

2 + (su/hu)
2.

Let Eu denote the number of non-zero pairs from I0 \ S0 falling in Iu. Then the conditional
probability that the non-zeros of I0 \ S0 are consistent with S is given by

P(I0 \ S0 is consistent S | B) = E


∏

u

(
1− 2

su
hu

+ 2

(
su
hu

)2
)Eu


 . (32)

Given B, we see that Eu is distributed as Bin(h0 − s0, p(u,u)), and has expectation

E (Eu) = (h0 − s0)
h2u

h2
0
+ h21 + · · ·+ (h2k−1)2

∼ h0
2k
.
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By Lemma 11 we can assume that h0 ∼ N = n/2k. The Chernoff bounds imply that Eu is
concentrated around its mean (h0 − s0)p(u,u). Thus,

∣∣∣∣Eu − h0
2k

∣∣∣∣ ≤ n2/3 with probability at least 1− e−Ω(n1/3). (33)

Going back to (32) and using (33) gives

P(I0 \ S0 is consistent with the occurrence of S | B) ∼
∏

u

(
1− 2su

N

)N/2k

∼ exp

{
−2
∑

u

su
2k

}
= e−s/2k−1

. (34)

Case 2: i ∈ Ix \ S, x 6= 0. Given B, and i ∈ Ix, we know from Lemma 13 that the non-
zeros e1(i), e2(i) of column i lie in Iu, Ix+u respectively, for some u ∈ {0, 1}k. The probability
of this is p(u,x + u). The number Ex(u,x + u) of such pairs of non-zeros in Iu, Ix+u has
distribution Bin((hx − sx)p(u,x+ u)), and expectation asymptotic to (hx − sx)/2

k−1.

The rows of S1, . . . , Sm have to be zero-sum in this column, so either exactly one non-
zero falls in some Sj,u, Sj,x+u for some 1 ≤ j ≤ m or exactly one non-zero falls in some
Iu \ Su, Ix+u \ Sx+u. The conditional probability of this is

P (u,x+ u) =E



(

m∑

j=1

sj,u
hu

sj,x+u

hx+u

+
hu − su
hu

hx+u − sx+u

hx+u

)Ex(u,x+u)



∼
(

m∑

j=1

sj,usj,x+u

N2
+
N − su
N

N − sx+u

N

)(N−sx)/2k−1

∼ e−(su+sx+u)/2k−1

.

For a given x there are 2k−1 unordered pairs Su, Sx+u, so

P(Ix \ Sx is consistent with S) ∼ exp



− 1

2k−1

∑

{u,x+u}
(su + sx+u)



 = e−s/2k−1

. (35)

Note that, in the sum in (35) su + sx+u and sx+u + su, contribute as one term. Thus

P(Ix \ Sx is consistent with S, ∀x 6= 0) ∼ e−(2k−1)s/2k−1

. (36)
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Case 3: i ∈ Sj,x ⊆ Ix, x 6= 0. Suppose that the pair e1(i), e2(i) fall in Iu, Iu+x. For
i ∈ Sj,x, one non-zero needs to be in Sj , and the other to completely avoid S. Let v = x+u.
The probability this happens is

Pj(u, v) ∼
1

2k−1

(
sj,u
hu

hv − sv
hv

+
sj,v
hv

hu − su
hu

)
. (37)

The events {u,x+ u} are disjoint and are an exhaustive dissection of Sj. For a given
i ∈ Sj,x, the probability p(i, j) of success is

p(i, j) =
∑

{u,u+x}
Pj(u,u+ x) ∼ 1

2k−1

∑

u,v=x+u

(
sj,u
N

N − sv
N

+
sj,v
N

N − su
N

)

∼ sj
N2k−1

(
1 +O

( ω
N

))
. (38)

Every column of Sj,x has to succeed or some St is not a small zero-sum set. Thus

P(Sj,x succeeds) ∼
(
sj(1 +O(s/N))

N2k−1

)sj,x

.

As
∑

x6=0
sj,x = sj − sj,0, the above allows us to calculate

P(Sj,x succeeds ∀x 6= 0) ∼
( sj
N2k−1

)sj−sj,0
. (39)

Case 4: i ∈ Sj,0 ⊆ I0. In the case that x = 0, and Sj,0 ⊆ I0, the non-zeros in a column of
Sj,0 must both fall in the same index set Iu; one in Sj,u and one in Iu \Sj,u. Thus P (u,u) is
now summed over all Iu, a total of 2k such sets. For i ∈ Sj,0, the probability p(i) of success
is

p(i) =
∑

{u,u}
P (u,u) ∼ 1

2k

∑

u

(
2
sj,u
N

N − sj,u
N

)
∼ sj
N2k−1

(
1 +O

( ω
N

))
.

The final term is the same as in (38), and we obtain

P(Sj,0 succeeds) ∼
( sj
N2k−1

)sj,0
(40)

Using (34), (36), (39) and (40), we obtain

P(S | B) ∼
m∏

j=1

( sj
N2k−1

)sj
e−(2k−1)s/2k−1

e−s/2k−1

=
m∏

j=1

(
2sj
n

)sj

e−2s. (41)

Applying (8) to the right hand side of (41) completes the proof of P(S | B) ∼ P(S). To
replace S by S∗ the conditional probability that Sj is fundamental is obtained by multiplying
by κsj of (9). This completes the proof of the lemma.
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We can now use inclusion-exclusion to prove the following lemma.

Lemma 17. Let Σσ be the event that there are exactly σ disjoint small fundamental depen-
dencies. Then,

P(Σσ | B) ∼ φσ
Re

−φR

σ!
∼ P(Σσ).

Proof. Let s = s1 + · · ·+ sℓ, then

Tℓ =
1

ℓ!

∑

1≤s1,...,sℓ≤ω

∑

|Si|=si,
i=1,...,ℓ

P

(
ℓ⋂

i=1

S∗
i

∣∣∣∣B
)

∼ 1

ℓ!

∑

1≤s1,...sℓ≤ω

∑

|Si|=si,
i=1,...,ℓ

P

(
ℓ⋂

i=1

S∗
i

)

∼ 1

ℓ!

∑

1≤s1,...,sℓ≤ω

(
n

s1, . . . , sℓ, n− s

) ℓ∏

i=1

(
2si
n

)si

e−2siκsi ∼
1

ℓ!

∑

1≤s1,...sℓ≤ω

ℓ∏

i=1

(2si)
si

si!
e−2siκsi

∼ 1

ℓ!

( ∞∑

s=1

(2e−2)s

s
σs

)ℓ

∼ φℓ
R

ℓ!
.

The first approximation follows from Lemma 16 and the second from (8), (9).

Using Inclusion-Exclusion, we have

P(Σσ | B) =
∑

ℓ≥σ

(−1)ℓ−σ

(
ℓ

σ

)
Tℓ ∼

∑

ℓ≥σ

(−1)ℓ−σ

(
ℓ

σ

)
φℓ
R

ℓ!
=
φσ
Re

−φR

σ!
.

Lemma 8 gives the unconditional probability.

Let Xk count the number of simple k-sequences as in Lemma 14.

Lemma 18. If σ = O(1) then E (Xk | Σσ) ∼ 1.
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Proof.

E (Xk | Σσ) =
∑

B=(B1,...,Bk)

P(B | Σσ)

=
∑

B=(B1,...,Bk)

P(Σσ | B)P(B)
P(Σσ)

=
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

ℓ≥σ

(−1)ℓ−σ

(
ℓ

σ

)
Tℓ

=
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

ℓ≥σ

(−1)ℓ−σ

(
ℓ

σ

)
1

ℓ!

∑

1≤s1,...,sℓ≤ω

∑

|Si|=si,
i=1,...,ℓ

P

(
ℓ⋂

i=1

S∗
i

∣∣∣∣B
)

∼
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

ℓ≥σ

(−1)ℓ−σ

(
ℓ

σ

)
1

ℓ!

∑

1≤s1,...,sℓ≤ω

∑

|Si|=si,
i=1,...,ℓ

P

(
ℓ⋂

i=1

S∗
i

)

∼
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

P(Σσ)

= E (Xk) ∼ 1.

7 Joint distribution of small and large dependencies

7.1 Pn(0, d): the case of no small fundamental dependencies.

Let Pn(0, d) be the probability that M ∈ M(n) has no small fundamental dependencies and
the maximum number of large simple dependencies is d. Let π(d) be given by (2). The
purpose of this section is to prove the following.

Pn(0, d) ∼ π(d) e−φ. (42)

Let V be the vector space generated by the dependencies. Let Lλ be the event that the
dimension of V is λ. Let

p(0, λ) = P(Σ0 ∧ Lλ) and p(0) = P(Σ0).

Lemma 19. For 0 ≤ λ = O(1), p(0, λ) ∼ P (0, λ) where P (0, λ) = π(λ) e−φ.
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Proof. For 0 ≤ k = O(1), we have from Lemma 18 that

1 ∼ E (Xk | Σ0) =
∑

λ≥k

E (Xk | Σ0 ∧ Lλ)×
p(0, λ)

p(0)
. (43)

Let H be the event that there exists a set of dependent rows H where ω ≤ |H| /∈ J1. Then
we have

E (Xk | Σ0 ∧ Lλ) = E (Xk | Σ0,∧Lλ ∧ ¬H)P(¬H) + E (Xk | Σ0 ∧ Lλ ∧ H)P(H)

∼
k−1∏

i=0

(2λ − 2i). (44)

Justification for (44): Given Σ0∧Lλ∧¬H there are 2λ vectors in V . Choosing i members
of a simple sequence generates a subspace of dimension i, and we eliminate 2i vectors from
consideration as the next member of the sequence. Given ¬H the number of simple sequences
is given by the RHS of (44). Equation (44) then follows from P(H) = o(1).

It follows from (44) that for λ ≥ 0,

1 ∼
∞∑

λ=k

p(0, λ)

p(0)

k−1∏

i=0

(2λ − 2i). (45)

The asymptotic solution of (45) is given by the following lemma.

Lemma 20. For λ ≥ 0, the solutions to

1 =

∞∑

λ=k

qλ

k−1∏

i=0

(2λ − 2i), k ≥ 0. (46)

are given by qλ = π(λ) of (2).

Proof. Gaussian coefficients are defined as

[
λ

k

]

z

=

∏k
i=1(z

λ−i+1 − 1)
∏k

i=1(z
i − 1)

. (47)

Using (47) with z = 2, equation (46) can be rewritten as

1 = 2(
k
2)

k∏

i=1

(2i − 1)

∞∑

λ=k

qλ

[
λ

k

]

2

. (48)
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Put ψk = 1/
(
2(

k
2)
∏k

i=1(2
i − 1)

)
, we see that qλ is the solution to

∞∑

λ=k

[
λ

k

]

2

qλ = ψk, k ≥ 0. (49)

Fix δ ≥ 0, multiply equation k ≥ δ in (49) by (−1)k−δ2(
k−δ
2 )[k

δ

]
2
, and sum these equations

over k ≥ δ. This gives

∞∑

k=δ

(−1)k−δ2(
k−δ
2 )
[
k

δ

]

2

ψk =

∞∑

k=δ

∞∑

λ=k

(−1)k−δ

[
k

δ

]

2

2(
k−δ
2 )
[
λ

k

]

2

qλ (50)

=
∞∑

k=δ

∞∑

λ=k

(−1)k−δ

[
λ− δ

k − δ

]

2

2(
k−δ
2 )
[
λ

δ

]

2

qλ

=

∞∑

λ=δ

[
λ

δ

]

2

qλ

λ∑

k=δ

(−1)k−δ

[
λ− δ

k − δ

]

2

2(
k−δ
2 ) (51)

= qδ. (52)

Explanation: (51) to (52): Gaussian coefficients satisfy the identity

(1 + x)(1 + zx) · · · (1 + zr−1x) =

r∑

ℓ=0

[
r

ℓ

]

z

z(
ℓ
2)xℓ. (53)

To prove the last summation on the right hand side of (51) is zero for λ > δ, use (53) with

x = −1, z = 2, ℓ = k − δ and r = λ− δ. This gives
∑λ−δ

ℓ=0

[
λ−δ
ℓ

]
2
2(

ℓ
2)(−1)ℓ = 0 for λ > δ.

For z < 1, taking the limit of (53) gives

∞∏

ℓ=0

(1 + zℓx) =
∞∑

ℓ=0

z(
ℓ
2)xℓ

∏ℓ
i=1(1− zi)

. (54)

Replacing δ by λ in equation (50), we see that the solution qλ to (46) is

qλ =

∞∑

k=λ

(−1)k−λ2(
k−λ
2 )−(k2)

∏λ−1
i=0 (2

λ−i − 1)
∏k−1

i=λ (2
k−i − 1)

=

(
1
2

)λ2

∏λ
i=1

(
1−

(
1
2

)i)
∞∑

ℓ=0

(−1)ℓ
(
1
2

)(ℓ2) (1
2

)(1+λ)ℓ

∏ℓ
i=1

(
1−

(
1
2

)i) (55)

=

(
1

2

)λ2
∏∞

i=λ+1

(
1−

(
1
2

)i)

∏λ
i=1

(
1−

(
1
2

)i) = π(λ), (56)
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where π(λ) is given in (2). To get from (55) to (56), use (54) with z = 1/2 and x =
(−1/2λ+1).

The p(0, λ) only satisfy (46) asymptotically and so to prove the lemma, we show that for
large K, ∑

λ≥K
σ≥0

qλ ≤ ε, (57)

where ε > 0 is arbitrarily small. Now,

k−1∏

i=0

(2λ − 2i) = 2kλ
k−1∏

i=0

(
1− 1

2λ−i

)
≥ 2kλ

(
1−

k−1∑

i=0

1

2λ−i

)
≥ 2(k−1)λ.

It follows that ∑

λ≥K
σ≥0

qλ ≤ 2−K(K−1).

Thus (57) holds if K ≥
√
2 log2 1/ε.

7.2 Pn(1, d): the case of one small fundamental dependency.

Introduce the notation Pn([m, d]) for the probability that M ∈ M(n) has exactly m small
fundamental dependencies and the maximum number of large simple dependencies is d. Thus
there are small dependencies D1, ..., Dm and (not necessarily unique) large dependencies
B1, ..., Bd corresponding to M having a null space of dimension m + d. In the case m = 0,
it follows from (42) that Pn(0, d) ∼ π(d) e−φ.

Before considering Pn(m, d), we explain the basic principle by deriving Pn(1, d). The general
case will follow from the recursive application of this.

Let M ∈ M([n]) and let L be a fixed set of rows, |L| = ℓ. We write

M =

(
SL R
C M ′

)
.

Here SL is ℓ× ℓ, R is ℓ× (n− ℓ), C is (n− ℓ)× ℓ and M ′ has rows and columns indexed by
[n]− L.

The event R = 0, is dependent only on the columns of [n]− L in M . Provided ℓ = o(n1/2),
R = 0 has probability

P(R = 0) =

(
1− ℓ

n

)2(n−ℓ)

∼ e−2ℓ.
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Given R = 0, M ′ is a uar element of M([n] − L). This follows directly from the fact that
M is a uar element of M([n]). Each column of M has 2 random entries, and these are not
in the rows of L. At this point

M =

(
SL 0
C M ′

)
. (58)

The event DL that within the columns of L the sub-matrix SL is the vertex-edge incidence
matrix of a connected random mapping DL is independent of what happens in the columns
of [n]− L in M . Each column of the sub-matrix C has one uar entry, is (see Section 2) and
we have

P (DL) ∼
(
2ℓ

n

)ℓ

· (ℓ− 1)!

ℓℓ
σℓ.

The probability Pn−ℓ(0, k) ∼ e−φπ(k) that M ′ has no small dependencies and k large
ones is given by (42) above. Let P ∗(j, k; 1) be the probability that exactly j of the k large
dependencies ofM ′ remain as dependencies after adding back the sub-matrix C. To maintain
continuity of exposition, the analysis of this event is deferred until Section 7.4. Equation
(65) of Section 7.4 with m = 1, gives

P ∗(j, j; 1) =

(
1

2

)j

and P ∗(j, j + 1; 1) = 1−
(
1

2

)j+1

.

Let

Pn(1, j, L) = P(M has 1 small fundamental dependency L and j large dependencies),

Thus using (42), and the above

Pn(1, j, L) ∼
(
2

n

)ℓ

(ℓ− 1)!σℓ · e−2ℓ · e−φ

(
π(j)

(
1

2

)j

+ π(j + 1)

(
1−

(
1

2

)j+1
))

. (59)

The probability that L is dependent, but R 6= 0 is O(ℓ2/n). The events that L is the unique
fundamental dependency are exclusive and exhaustive, so P([1, j]) is the sum of these. Thus,
summing (59) over L for L 6= ∅ gives

Pn(1, j) ∼ φ e−φ ·
(
π(j)

(
1

2

)j

+ π(j + 1)

(
1−

(
1

2

)j+1
))

.

7.3 The general case of null(M) = d, with m small fundamental
dependencies

The matrix M ′ in (58) is a uar element of M ([n] − L), and we can repeat the above con-
struction with M ′ instead of M . We remove a set of columns L′ and conditional on R′ = 0,
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the sub-matrix M ′′ is a uar element of M([n] − L − L′). In this way we can obtain the
probability P([2, j]) of two small and j large dependencies, and so on.

To systematize this, let M0 = M,L0 = L,R0 = R, n0 = n, ℓ0 = |L| and let M1 = M ′, n1 =
n0 − ℓ0. Thus, M0 is a uar element of M(n0) and with some relabelling of [n]− L, M1 is a
uar element of M(n1), etc.

In this way, we remove a sequence (L0, L1, ..., Lm−1) of column sets, of total size at most
mω. As n−mω ∼ n, equation (42) holds in M(nm) with the same asymptotic probability.
Taking the subspace M([0, k], nm) ofM(nm), we work back to the subspace of M with small
fundamental dependencies L0, ..., Lm and j ≤ k large dependencies, and thus to Pn(m, j]),
the probability of M([m, j], n).

Summarizing, we have

P(R(Lj) = 0, j = 0, ..., m− 1) ∼
m−1∏

j=0

e−2ℓj , (60)

P (DLj
, j = 0, ..., m− 1) ∼

m−1∏

j=0

(
2ℓj
nj

)ℓj

· (ℓj − 1)!

ℓ
ℓj
j

σℓj , (61)

P ∗(j, j + r;m) ∼
[
m
r

]

2

(
1

2

)(j+r)(m−r) h+r∏

j=h+1

(
1−

(
1

2

)j
)
, (62)

Pn−ℓ(0, k) ∼ e−φ π(k). (63)

The last line is (42). For continuity of exposition, the proof of (62) is deferred until Theorem
21 in Section 7.4 below.

The dependency of probability in (62) on the sizes ℓj ≤ ω, j = 0, ..., m − 1, is hidden in
the (1 + o(1)) term in the asymptotic notation. We multiply (60) by (61), and sum over all
distinct sets of removed columns (L0, ..., Lm−1), and noting that each entry is repeated m
times in such sequences, we obtain a quantity Ψ(m) given by

Ψ(m) ∼ 1

m!

∑

ℓ≥1

∑

ℓ=ℓ0+···+ℓm−1

(
n

ℓ0, . . . , ℓm−1

) m−1∏

j=0

(
P(R(Lj) = 0) · P (DLj

)
)

∼ 1

m!

∑

ℓ≥1

∑

ℓ=ℓ0+···+ℓm−1

m∏

j=0

(2e−2)ℓj
1

ℓj
σℓj

=
φm

m!
.
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Thus, multiplying Ψ(m) by (62) and (63), and summing over k ≥ j large dependencies,

Pn(m, j) ∼
φm

m!
e−φ

m∑

r=0

π(j + r)P ∗(j, j + r;m)

∼ φm

m!
e−φ

m∑

r=0

π(j + r)

[
m
r

]

2

(
1

2

)(j+r)(m−r) h+r∏

j=h+1

(
1−

(
1

2

)j
)
. (64)

Finally, the probability that null(M) = d is

P(null(M) = d) =
d∑

m=0

Pn(m, d−m),

which completes the proof of Theorem 1.

7.4 Going back from M ′ to M . Change in dimension of null space.

Write M =

(
SL 0
C M ′

)
as given in (58). In this section we prove the following theorem.

Theorem 21. Suppose that the (n−L)× (n−L) sub-matrix M ′ of M has no small depen-
dencies, and k large simple dependencies, and the L × L sub-matrix SL of M has m small
fundamental dependencies of total size L. For k = h + r, where 0 ≤ r ≤ m, the probability
the maximum number of large simple dependencies in M is h, is asymptotic to

P ∗(h, h+ r;m) =

[
m
r

]

2

(
1

2

)(h+r)(m−r) h+r∏

j=h+1

(
1−

(
1

2

)j
)
. (65)

Before proceeding with the proof of Theorem 21, we give an outline of the proof structure.
Each column of the sub-matrix C has a unique random non-zero entry in the rows of M ′.
On average about ℓ/2 of these non-zeros fall in the rows of any large dependency B of M ′.
To extend B to a dependency A of M , we may need to include some rows of SL in A to
cancel any non-zeros of C which fall in the rows of B.

Thus in general A∩L 6= ∅, and some rows of A have been deleted to give B. IfM ′ has k large
dependencies B1, ..., Bk, then any extension of these sets needs to preserve and extend the
intersection structure I ′x, x ∈ {0, 1}k in M ′ to M . If j ≤ k of the sets Bi extend successfully
then the final intersection structure will be given by Iy, y ∈ {0, 1}j. The interaction of this
structure with L is the one described in Section 6 and summarized by (41). The extensions
are not unique. If A is a large dependency, and L is small, then A∆L is large. It was exactly
this problem which obliged us to construct our proofs in this way.

29



Proof of Theorem 21

Suppose M ′ has k large dependencies B1, ..., Bk but no small dependencies. In this case
there is a well defined vector space of dimension k spanned by B1, ..., Bk. Assume the m
small dependencies Dj, j = 0, ..., m − 1 occupy the first L columns. The matrix M can be
written as follows.

M =




D0 0 0 · · · 0 0
C0,1 D1 0 · · · 0 0
C0,2 C1,2 D2 · · · 0 0
...

...
...

. . . 0 0
C0,m−1 C1,m−1 C2,m−1 · · · Dm−1 0
C0,m C1,m C2,m · · · Cm−1,m M ′




.

Let |Dj| = ℓj where L = (ℓ0+· · ·+ℓm−1), and nj = n−(ℓ0+· · ·+ℓj−1). Each (nj−ℓj)×ℓj sub-
matrix Cj = (Cj,j+1, ..., Cj,m)

⊤ has exactly one random one in each column. The probability
any of these ones fall in any Cj,i where j + 1 ≤ i ≤ m − 1 for j = 0, ..., m − 1 is O(ω3/n).
Conditional on this not occurring, the non-zero entry in each column is u.a.r. in n′ = n−L.
Tidying up, and writing C ′

j = Cj,m we have

M =




D0 0 0 · · · 0 0
0 D1 0 · · · 0 0
...

...
. . . 0 0

0 0 0 · · · Dm−1 0
C ′

0 C ′
1 C ′

2 · · · C ′
m−1 M ′




=

(
D 0
C M ′

)
. (66)

Assuming the above structure for M , write Bj ⋄Ds, and say the rows Bj agree with Ds, if
there exists a set of row indices Jj,s, a subset of the row indices of Ds, such that the rows
Bj ∪ Jj,s are zero sum in the columns of Ds. Otherwise we say Bj is inconsistent on Ds, as
Bj cannot be extended to a large dependency in M .

For i ∈ Ds, column i has a unit entry in row i, and if the random unit entries are in rows
t, t′, we use the notation e1(i) = t ∈ Ds, e2(i) = t′ /∈ Ds. Let Hs be the set of column indices
associated with the vertices of the cycle in Ds.

Given a maximal simple sequence (B1, ..., Bk), let Q = Q(k) be the k-dimensional vec-
tor space generated by the first k rows of the K ×K matrix U , the rows corresponding to
B1, ..., Bk; see Section 4. For a givenD with cycle verticesH , let x

(j)
i = 1{e2(i) ∈ R(Ij), i ∈ H}

be the indicator that e2(i) of vertex i falls in the rows of the index set Ij , j = 1, ..., K = 2k−1

obtained from the dissection of (B1, ..., Bk) in M
′. Let pj =

∑
i∈H x

(j)
i and p the K-vector

of parities of the index set rows.
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Let T = {y : Uy = 0} be the set of parity vectors which agree with all of B1, ..., Bk, and
S = {w ∈ Q : w · p = 0} be the rows of U which agree with a given parity vector p.

Depending on p, the dimension ofQ is either reduced by zero or one by the small dependency
D. The set D agrees with (B1, ..., Bk) iff p ∈ T .

Lemma 22. (a) Bj ⋄D if and only if | {i ∈ H : e2(i) ∈ Bj} | is even.

(b) If p ∈ T then S = Q and (B1, ..., Bk) agree with D.
If p /∈ T then |S| = |Q|/2, and there is a basis of S of dimension k− 1 corresponding to
a maximal simple sequence (B′

1, ..., B
′
k−1) which agrees with D.

(c) Let Bj = Bj ⋄D. Suppose that Y ⊆ [j] is arbitrary. Then

P(Bj+1 | Bi, i ∈ Y,¬Bi, i /∈ Y ) ∼ P(Bj+1) ∼ 1/2.

Thus the occurrence of Bj+1 is asymptotically independent of the occurrence or non-
occurrence of the events B1,B2, . . . ,Bj. It follows that P(p ∈ T ) = P(B1 · · · Bk) ∼ 1/2k.

Proof. (a) Suppose the vertices of the cycle of D = Ds are labelled 1, ..., ℓ, with edges
(1, 2), ..., (ℓ − 1, ℓ), (ℓ, 1). Let (i, i + 1) be such an edge, where i, i + 1 ∈ Ds and thus
i + 1 = e1(i). Then let xi = 1 if e2(i) ∈ Bj . We introduce variables yi, zi, i = 1, 2, . . . , ℓ,
which will be used to define the index set of rows Jj,s, if this is possible. We interpret yi = 1
to mean i ∈ Jr,s and zi = 1 to mean that e1(i) ∈ Jr,s. For Bj ∪ Jj,s to be a dependency we
need xi + yi + zi = 0 for i = 1, 2, . . . , ℓ. For consistency we need yi+1 = zi for i = 1, 2, . . . , ℓ
where yℓ+1 = y1. This leads to the equations yi + yi+1 = xi, i = 1, 2, . . . , ℓ. These equations
are feasible if and only if

x1 + x2 + · · ·+ xℓ = 0. (67)

If (67) holds there are exactly two possible choices for the yi. Choosing an arbitrary value
in {0, 1} for y1, determines yi, i = 2, ..., ℓ and thus Jj,s = {i : yi = 1}.

x1 y1 = z4 y4 = z3 x4

x2 y2 = z1 y3 = z2 x3

1

2 3

4

Figure 1: Example: Cycle (1, 2, 3, 4) with labelling. The edges (i, e1(i)) are drawn solid,
and edges (i, e2(i)) dashed.
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We deal with the attached trees by working backwards from the cycle to the leaves. Suppose
that vertex i is not in the cycle and that the values xj , yj, zj have been determined for its
parent j its tree. We are forced to take zi = yj and then yi is determined from xi+yi+zi = 0.
Each time we find that yi = 1, we add i to Jr,s.

(b)Let z1, z2 ∈ Q\S then (z1+ z2) ·p = 0 so z1+S = z2+S; the subgroup S has only one
non-trivial coset in the group Q. Thus |S| = |Q|/2, the dimension of S is k′ = k − 1, and
some k′ rows of S form a basis for the reduced matrix U ′ = S.

(c) Let P = (P0, P1, P2, . . . , P2j−1) be the partition of [n − L] induced by B1, B2, . . . , Bj.
Each part of the partition contains ∼ n/2j rows. The occurrence of Bi, i ∈ Y,¬Bi, i /∈ Y is
determined by the the allocation of the e2(i) into each part. As such, if e2(i) lies in some
part Pt, 1 ≤ t ≤ 2j, then it is distributed uniformly over Pt. Each part of P corresponds
to an index w ∈ {0, 1}j. The introduction of Bj+1 splits each Pt into two parts with index
sets (w, 0), (w, 1) of asymptotically equal size. If e2(i) lies in Pt, in one “half” we will have
xi = 0 and in the other “half” we will have xi = 1, where xi is computed with respect to
Bj+1. It follows that (67) holds with probability ∼ 1/2.

Proof of Theorem 21

For convenience, let k = h+r, then by Lemma 22(b), 0 ≤ r ≤ m. For a small dependency Di,
i = 1, ..., m, let si = 1 if at least one of the remaining 1 ≤ k′ ≤ k simple large dependencies
(B′

1, ..., B
′
k) is inconsistent on Di, thus reducing k

′ to k′−1; and si = 0 otherwise. By Lemma
22(c), P(si = 0) ∼ 1/2k

′
.

Let Sr = {s ∈ {0, 1}m :
∑m

i=1 si = r} be those sequences s with r unit entries. Let
d(s) = (d0, d1, ..., dr) where dj is the number of zeroes between the j–th and j + 1–th unit
entry of s; and thus

∑
dj = m− r. The probability of a given sequence s is asymptotic to

ρr(s) where

ρr(s) =
r∏

j=0

(
1

2k−j

)dj r−1∏

j=0

(
1− 1

2k−j

)

= 2
∑r

j=0 jdj ·
(

1

2k

)(m−r) r−1∏

j=0

(
1− 1

2k−j

)
.

To obtain P ∗(h, h+ r;m), we need to sum ρr(s) over s ∈ Sr.

The polynomial

[
m
r

]

q

= (qm−1)...(qm−r+1)
(qr−1)...(q−1)

, is the number of r-dimensional subspaces of m-

dimensional space over GF (q), and thus enumerates the number of r × m matrices over
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GF (q) with no zero rows which are in reduced echelon form. As a consequence of this, it
is also the generating function for the total number of inversions, i(s), in sequences s ∈ Sr,
(see [14], Chapter 3.4.5). An inversion in a 0− 1 sequence s, is a pair (1, 0) contained in s,
and i(s) =

∑r
j=0 jdj . Thus,

[
m
r

]

q

=
∑

s∈Sr
d(s)=(d0,d1,...,dr)

q
∑r

j=0 jdj . (68)

Using (68) with q = 2, we obtain P ∗(h, h+ r;m) as in (65) from,

∑

s∈Sr

ρr(s) =

[
m
r

]

2

(
1

2

)(h+r)(m−r) h+r∏

j=h+1

(
1−

(
1

2

)j
)
.

8 Further comments: Rank over GF (t), and GF (2) for

r ≥ 2, s = 2, 3: Proof of Theorem 3

8.1 Rank over GF (2) for r ≥ 2, s = 2, 3

Case r = 2, s = 2. An n × 2n matrix of this type has even column sum and row rank
n∗ = n− 1 w.h.p.

Borrowing from [11] Theorem 16.5, for r = 1, the expected number of fundamental zero-sum
sets of size ℓ is

EXℓ =

(
n

ℓ

)(
ℓ− 1

n− 1

)ℓ(
n− 1− ℓ

n− 1

)n−ℓ

· 1

(ℓ− 1)ℓ

ℓ∑

k=2

(k − 1)!kℓℓ−k−1 ∼ e−ℓ1

ℓ

ℓ−2∑

j=0

ℓj

(ℓ)j
.

As the last sum tends to eℓ/2 we have EXℓ ≤ 1/ℓ. If L is zero-sum, so is [n]−L. For r = 2
the total expected number of ℓ-dependencies, 2 ≤ ℓ ≤ n− 2 is at most

4

n/2∑

ℓ=2

EXℓ

(
ℓ− 1

n− 1

)ℓ

∼ 4

n/2∑

ℓ=2

(
ℓ− 1

n

)ℓ
1

ℓ
= O

(
1

n2

)
.

Case r = 2, s = 3. It follows from the proofs that an n × 2n matrix of this type has full
row rank w.h.p., as the ’second matrix’ cancels the constant number of dependencies in the
first (if any).
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8.2 Rank over GF (t), t > 2: Proof of Theorem 4

The proof of Theorem 4 is greatly simplified by the w.h.p. lack of large dependencies.

Case I: The sum of all rows. Let W (M) be an indicator that
∑n

i=1 ri = 0, (i.e., that
the rows of M sum to zero). Then with arithmetic over GF (t),

EW =

{
(
∑

i fift−1−i)
n Model 1, 2(∑

i+j+k=0 fifjfk

)n
Model 3

.

Thus unless t = 3 and f1 = 1 (Model 1), EW → 0 as n→ ∞.

Case II: The sum of ℓ rows. Let L be a set of row indices of size ℓ. For a given column
i where i ∈ L, for the rows of L to be dependent, one of two events must occur. Either
there is a unique random entry in the rows of L which cancels the entry Mi,i in row i (Model
2, γ = ft−1; Model 3, γ =

∑
fift−i). Or there are 3 entries in the column which sum to

zero (Model 2, α =
∑
fift−i−1; Model 3, α =

∑
i+j+k=0 fifjfk). For a column i, where

i ∈ [n] − L there must either be no random entries, or two random entries adding to zero,
with probability β =

∑
fift−i. Thus

EXℓ =

(
n

ℓ

)(
2γ
ℓ

n

(
n− ℓ

n

)
+ α

(
ℓ

n

)2
)ℓ(

β

(
ℓ

n

)2

+

(
n− ℓ

n

)2
)n−ℓ

. (69)

The sum of ℓ rows, ℓ ≤ ω.
From (69) above, using the methods of Section 2 we find EYℓ is given by

EYℓ ∼
(2γℓ)ℓ

ℓ!
e−2ℓ.

Extracting the moments of the fundamental dependencies Z from E Yℓ as in Section 2 gives
φt, as given by (6).

The sum of ℓ rows, ω < ℓ = o(n).
As β, γ ≤ 1 then

∑
EXℓ>ω → 0. This follows by comparison with the analysis in Section 3.

The sum of ℓ rows, ℓ = cn.
Let ℓ = cn, then

EXcn =O(1)

(
(2γc(1− c) + αc2)c

cc
(βc2 + (1− c)2)1−c

(1− c)(1−c)

)n

=O(1)
(
DcG1−c

)n
.
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Model 1: For GF (3), γ = 0, α = 1, and DcG1−c = cc(1− c)1−c < 1, and thus EXcn → 0.

Model 2, 3: We prove that, provided 1 ≥ 2γ ≥ α, then D(c) ≤ 1, G(c) < 1 for c ∈ (0, 1),
and thus EXcn → 0.

Firstly D(0) = 2γ ≤ 1, and D(c) = 2γ − (2γ − α)c which is monotone non-increasing in c.
Secondly G(0) = 1, G(1) = 1, and G′(c) = 0 at c = 1±

√
β/(β + 1). Let ĉ = 1−

√
β/(β + 1),

then G(ĉ) = 2
√
β(β + 1)− 2β. As 2

√
β(β + 1)− 2β < 1, G(c) is a minimum at ĉ.

9 Appendix. Converting between the with and with-

out replacement models

9.1 E Yℓ for ℓ small.

Regarding (72), let

A =

(
(ℓ− 1)(n− ℓ)

(n− 1)2

)ℓ((
(ℓ)2

(n− 1)2

)
+

(
(n− 1− ℓ)2
(n− 1)2

))n−ℓ

.

Then

A =

(
(ℓ− 1)(n− ℓ)

n2

)ℓ
((

ℓ

n

)2

+

(
n− ℓ

n

)2
)n−ℓ

×
(

n2

(n− 1)2

)n(
1− 3(n− ℓ) + ℓ− 2

ℓ2 + (n− ℓ)2

)n−ℓ

.

However (
n2

(n− 1)2

)n

= (1 +O(1/n))e3, (70)

and for ℓ = o(n)

B =

(
1− 3(n− ℓ) + ℓ− 2

ℓ2 + (n− ℓ)2

)n−ℓ

= (1 +O(ℓ/n))e−3, (71)

which proves equivalence as A ∼ 1.

EXℓ for ℓ large. Note from (71) that B is less than one for any feasible ℓ, and if ℓ =
(n/2)(1 + o(1) then B = (1 +O(1/n))e−2. Also for any ℓ→ ∞,

(ℓ− 1)ℓ = (ℓ)ℓ
(
ℓ− 1

ℓ

)ℓ

= (1 +O(1/ℓ))(ℓ)ℓe−1.
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E (X)k for ℓ ∼ n/2. Referring to (25), in the with-replacement model we have

Φ(h, k) =
∏

x 6=0


2

∑

{u,v}
u+v=x

hu
n

hv
n




hx (
∑

u

(
hu
n

)2
)h0

The equivalent to Φ(h, k) in the without-replacement model is

Ψ(h, k) =
∏

x 6=0


2




∑

{u,v}6={x,0}
u+v=x

huhv
(n− 1)2

+
(hx − 1)h0
(n− 1)2







hx (
(h0 − 1)2
(n− 1)2

+
∑

u 6=0

(
(hu)2

(n− 1)2

))h0

=Φ(h, k)

(
n2

(n− 1)2

)n∏

x 6=0

(
1− h0∑

huhv

)hx
(
1−

∑
u hu + 2h0 − 2∑

h2u

)h0

=Φ(h, k) · C.

As hi = (1 + o(1))n/2k, and (1− h0/
∑
huhv)

hx ∼ e−2/2k we have

∏

x 6=0

(
1− h0∑

huhv

)hx

∼ (e−2/2k)2
k−1 = e−2+1/2k−1

,

and (
1−

∑
u hu + 2h0 − 2∑

h2u

)h0

∼
(
1− 2k + 2

n

)n/2k

= e−1−1/2k−1

.

Combining this with (70) gives

C ∼ e3e−2+1/2k−1

e−1−1/2k−1

= 1.

9.2 Without replacement

Let S = {2 ≤ ℓ ≤ ω} where ω → ∞ slowly with n. For ℓ ∈ S, let Yℓ(M) be the number of
index sets of zero-sum rows of size ℓ in M . Similarly to (8)

E Yℓ =

(
n

ℓ

)(
2
(ℓ− 1)(n− ℓ)

(n− 1)2

)ℓ((
(ℓ)2

(n− 1)2

)
+

(
(n− 1− ℓ)2
(n− 1)2

))n−ℓ

. (72)

Assuming that ℓ = o(
√
n) then

EYℓ =
(2(ℓ− 1))ℓ

ℓ!
e−2ℓ(1 + o(1)).
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If L is zero-sum then the sub-matrix ML,L is the incidence matrix of a random functional
digraph DL with no fixed points, in which case there are ℓ − 1 off-diagonal entries in any
column ofML,L and we exclude cycles of size one. The probability that the underlying graph
of DL is connected is

P(DL connected) =
(ℓ− 1)!

(ℓ− 1)ℓ

ℓ−2∑

j=0

ℓj

j!
.
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