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Abstract

We consider an incomplete Cholesky factorization preconditioner for the iterative
solution of large sparse symmetric positive definite (SPD) systems of linear equa-
tions. The preconditioner exploits the numerical rank deficiency of some off-diagonal
blocks of the Cholesky factor. As a distinctive feature, the approximations performed
during the factorization procedure are orthogonal, and therefore the preconditioner
falls within the framework introduced in [A. Napov, SIAM J. Matrix Anal. Appl.,
34(2013), pp.1148–1173]. This implies that the incomplete factorization procedure is
breakdown-free, and that the resulting preconditioner is SPD. The aforementioned
reference also gives some upper bounds on the spectral condition number of the pre-
conditioned system based on the accuracy of individual approximations. The most
accurate among these bounds is extended here to the considered preconditioner. On
the practical side, we present and study an implementation of the preconditioner. It
exploits the block sparsity structure as induced by nested dissection block partition-
ing, and identifies blocks with low numerical rank based on the sparsity pattern of
the system matrix. The performance is assessed based on model PDE discretizations
and, further, based on linear systems whose matrices correspond to large enough SPD
matrices from the SuiteSparse matrix collection. The reported results are compared
with those of some other solvers, including the SPD version of ILUPACK solver.

Key words. preconditioner, sparse incomplete Cholesky, breakdown-free incom-
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1 Introduction

We study an incomplete Cholesky factorization preconditioner for the iterative solution of
large sparse symmetric positive definite (SPD) N ×N systems of linear equations

Au = b . (1.1)

The preconditioner exploits the numerical rank deficiency of given off-diagonal blocks of
the Cholesky factor, and therefore belongs to the family of data-sparse incomplete factor-
izations. As a distinctive feature, the approximations performed during the factorization
procedure are orthogonal [25].

Cholesky factorization preconditioners based on orthogonal approximations have several
attractive properties. First, the corresponding factorization procedure is breakdown-free,
meaning that it produces an approximate factor for any value of the approximation accu-
racy threshold. This is of importance since for some problems the preconditioners yielding
the fastest overall solution time are obtained with relatively high threshold values; these
preconditioners then also require comparably less memory. Second, the resulting precon-
ditioner is SPD, which makes it suitable for the conjugate gradient iteration [3, 36, 35].
Third, the spectral condition number of the preconditioned system, and hence the number
of conjugate gradient iterations needed for convergence, can be bounded above as a func-
tion of accuracy of individual approximations. This result is a sign of robustness of the
considered preconditioner and provides some guidance for its algorithmic design.

Regarding the upper bounds on the condition number, we show in this work that the
most accurate among the bounds presented in [25], which is also the one known to be tight,
can be extended to the considered preconditioner. More specifically, the bounds presented
in [25] depend on the set of rows affected by the individual approximations at every step,
and the most accurate bound is obtained for a relatively constraining one-level approxi-
mation pattern. Here we rely on an additional assumption, which is naturally satisfied in
our setting, to extend the one-level bound to the preconditioner under consideration.

Considering the practical aspects, the preconditioner is based on a competitive direct
solver: a variant of sparse block Cholesky factorization combined with the nested dissection
block sparsity structure [14, 23]. Such a combination yields the Cholesky factor with dense
and typically large off-diagonal blocks, making the use of low-rank approximations suitable.
The considered orthogonal low-rank approximation scheme is of hierarchical nature, which
further allows to exploit more efficiently the rank deficiency of some off-diagonal blocks of
the factor. The rank deficient blocks are in turn identified within nested dissection blocks
by using an algebraic procedure that relies on the sparsity structure of the system matrix
[27].

The performance of the preconditioner is assessed through numerical experiments. The
considered set of test problems is composed of some discretizations of model PDE prob-
lems, and of systems whose matrices correspond to large enough SPD matrices from the
SuiteSparse matrix collection [11]. The experiments are performed with a sequential and
an OpenMP version of the preconditioner [26], and the results are compared, among oth-
ers, with the SPD version of ILUPACK solver [6, 7]. ILUPACK solver is considered here
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since it is a state-of-the-art incomplete factorization preconditioner based on the drop-
ping of individual entries – a reference approximation scheme for incomplete factorization
preconditioning.

The results of the experiments with the PDE-based problems indicate that the precon-
ditioner is competitive, except for the 3D Poisson and similar problems, for which ILU-
PACK solver is faster. This may sound disappointing at first, but incomplete factorization
preconditioners in general do not represent a reference approach for Poisson and similar
problems and are superseded, for instance, by algebraic multigrid methods [34, 37, 29].
The experiments with SuiteSparse test problems further demonstrate that the precondi-
tioner is robust, spending a comparable time per nonzero entry of the system matrix for
most SuiteSparse problems. Its overall solution time is competitive compared to the other
solvers considered in this comparison.

The preconditioner is of general purpose, and its construction only requires the system
matrix and an approximation tolerance. In this regard, it contributes to a larger effort of
developing general purpose solvers exploiting numerical rank deficiency in sparse factoriza-
tion methods. Many such solvers have a design similar to what is considered here: they rely
on a nested dissection block sparsity structure and exploit a low-rank representation for
some large dense blocks of the factor. This approach is adopted, for instance, in [17, 18] in
combination with the H-matrix representation, in [38, 40, 27, 10] together with the (some-
times implicit) hierarchical semi-separable (HSS) representation, whereas in [39, 33, 15, 41]
the use of multifrontal sparse factorization [13, 24] further enables data-sparse representa-
tion of update matrices, and in [1, 31] block low-rank representation is adopted. Another
family of preconditioners, see [12, 42] and the references therein, uses low-rank updates for
given approximations of the inverse of the system matrix or its Schur complements. Even-
tually, the method in [32] relies on the low-rank representation expressed as an extended
sparse matrix.

Now, like the preconditioner considered here, some preconditioners in [38, 10] are also
based on a sparse Cholesky factorization, also rely on orthogonal approximations as defined
in [25], and are also breakdown-free. It is therefore natural to wonder if the conditioning
analysis presented here applies to these preconditioners as well. Regarding first the ap-
proach in [38], it does not fit into the framework introduced in [25] as it performs additional
approximations on the Cholesky factor; however, a variant of the method without addi-
tional approximations is covered by the presented analysis, and therefore the one-level
bound applies to it. Regarding the variant of the preconditioner in [10] which is based on
orthogonal approximations, the analysis applies to it without additional adaptations.

A peculiar feature of orthogonal approximations is that they are commonly implemented
by truncating an orthogonal factorization, such as rank-revealing QR or SVD, of a whole off-
diagonal block row of the Cholesky factor. This limitation prevents from using orthogonal
approximations to build H-matrix and H2-matrix representations [4, 20, 8] other than
those based on a weak admissibility condition [19]. On the other hand, it seems unclear
how orthogonal approximations [25] can be obtained by approximating only a portion of
the block row of the Cholesky factor.

The reminder of the paper is organized as follows. In Section 2 we provide a high-level

3



description of the preconditioner. In Section 3 we show that the considered preconditioner
fits into the framework introduced in [25] and extend the one-level bound from this ref-
erence to the preconditioner under consideration. Section 4 is dedicated to the numerical
experiments. Conclusions are drawn in Section 5.

Notation

For any integers i and j ≥ i , i : j = {i, i+ 1, . . . , j} represents the ordered set of integers
ranging from i to j . Iℓ stands for a ℓ× ℓ identity matrix and Oℓ×m for a ℓ×m zero matrix
(i.e., a matrix with all entries being zero). For any vector v, ∥v∥ is its Euclidean norm.
For any matrix C , the induced Euclidean matrix norm is

∥C∥ = max
v ̸=0

∥Cv∥
∥v∥

.

For any SPD matrix D , λmax(D) and λmin(D) are, respectively, its largest and its smallest
eigenvalue, both eigenvalues being real and positive; the spectral condition number κ(D) =
λmax(D)/λmin(D) is then well defined. For any n × n block matrix E = (Ei,j) and any
block indices i, j and k such that 1 ≤ i ≤ n , 1 ≤ j ≤ k ≤ n ,

Ei,j:k =
(
Ei,j · · · Ei,k

)
,

and, for any m such that i ≤ m ≤ n ,

Ei:m,j:k =
(
ET

i,j:k · · · ET
m,j:k

)T
.

2 Preconditioner description

Here we describe the considered incomplete Cholesky preconditioner. We start by intro-
ducing in Section 2.1 the orthogonal low-rank approximations and their use in the Cholesky
factorization. The setting is deliberately general, as the material of this subsection forms
the basis for the analysis in Section 3. The considerations of sparsity are further treated
in Section 2.2 in the context of nested dissection block partitioning. Next, in Section 2.3
we further specify the approximation scheme used here, which is of hierarchical type, and
briefly summarize the associated algebraic procedure for the identification of rank deficient
blocks; more details on this procedure can be found in [27]. Eventually, some complexity
estimates for the considered preconditioner in a model setting are provided in Section 2.4.

2.1 Orthogonal low-rank approximations

In what follows we first describe the exact Cholesky factorization method on which the con-
sidered preconditioner is based, then present the orthogonal low-rank approximation, and
eventually explain how both of these are combined to yield the considered preconditioner.
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The considered exact Cholesky factorization method takes as input an SPD matrix A
partitioned into a n× n block form

A =

 A1,1 . . . A1,n
...

. . .
...

AT
1,n . . . An,n

 , (2.1)

where each block Ai,j is a mi × mj matrix , i, j = 1, . . . , n . On the output, it returns an
upper triangular factor

R =

 R1,1 . . . R1,n

. . .
...

Rn,n

 (2.2)

with the same block partitioning as A and such that

A = RTR .

Note that the diagonal blocks Ri,i in (2.2) are mi × mi upper triangular and, for i > j,
there holds Ri,j = Omi×mj

, i, j = 1, . . . , n .
We consider more specifically a block version of the method, which computes one block

row at a time1. Assuming that the first i − 1 < n block rows of R have already been
computed, one has

A =

(
RT

1:i−1,1:i−1

RT
1:i−1,i:n SA

)(
R1:i−1,1:i−1 R1:i−1,i:n

Imi

)
(2.3)

with
SA = Ai:n,i:n −RT

1:i−1,i:nR1:i−1,i:n (2.4)

and mi =
∑n

j=imj . The next block row Ri,i:n of the factor is then computed by noting
that, for 1 < i < n, it satisfies

RT
i,i

(
Ri,i Ri,i+1:n

)
= Ai,i:n −RT

1:i−1,iR1:i−1,i:n , (2.5)

the expressions for i = 1 and i = n being similar. This is typically done in three stages:

• update : compute2 Ci,i:n = Ai,i:n −RT
1:i−1,iR1:i−1,i:n , with C1,1:n = A1,1:n ;

• factorize : compute upper triangular Ri,i such that RT
i,iRi,i = Ci,i ,

• solve : if i < n , solve RT
i,iRi,i+1:n = Ci,i+1:n for Ri,i+1:n .

1This version is equivalent to the block left-looking Cholesky factorization method for the construction
of RT .

2Block matrix C is used here for clarity; the computation can be performed in place, without the need
of extra storage.

5



Note that computing one block row at a time is suitable in view of an incomplete fac-
torization method, since this row can subsequently be approximated, and the resulting
approximation further used when computing the following rows.

The key ingredient of the considered incomplete Cholesky factorization preconditioner
are orthogonal low-rank approximations. A low-rank approximation of a givenm×pmatrix
T is a couple (Q, T̃ ) of matrices such that Q is m × r , T̃ is r × p , and r ≤ min(m, p) .

Here, r is the approximation rank and T −QT̃ the approximation error. The product QT̃
of the matrices is sometimes also referred to as a low-rank approximation of T .

The approximation (Q, T̃ ) of T is said to be orthogonal if QTQ = Ir and

QT
(
T −QT̃

)
= Or×p . (2.6)

The equality (2.6) implies in particular that the low-rank approximation QT̃ is orthog-

onal to the approximation error T − QT̃ . In what follows, we only consider low-rank
approximations which are orthogonal.

An orthogonal low-rank approximation can be obtained by truncating an orthogonal
factorization, such as rank-revealing QR or SVD. For instance, if a rank-revealing QR
factorization of a m× p matrix T is given by

T = QR =
(
Q1 Q2

)( R1

R2

)
= Q1R1 +Q2R2 ,

where Q1 are the first r columns of Q and R1 are the first r rows of R , then (Q1, R1) is
an orthogonal low-rank approximation of T . The orthogonality of such an approximation

stems from the orthogonality ofQ ; more specifically, the relation (2.6) follows fromQ
T

1Q2 =

Or×(m−r) , whereas there also holds Q
T

1Q1 = Ir . Regarding the approximation rank r , it is
typically chosen so that the Euclidean norm of the approximation error satisfies, sometimes
up to a factor,

∥ Q2R2 ∥ = ∥ R2 ∥ ≤ ε,

where ε is a given approximation tolerance.
Regarding now the construction of the considered incomplete Cholesky preconditioner,

it proceeds by interleaving factorization and approximation steps, the first step being a
factorization one. During the factorization step, a new block row is added to the factor,
whereas during the approximation step, some rows of the off-diagonal block of the already
computed part of the factor undergo a low-rank approximation. After s = (i − 1) +
(k − 1) steps, of which i− 1 and k − 1 being, respectively, the number of factorization and
approximation steps, the factor R has the following form(

R1:i−1,1:i−1 Q(s)T
(s)
i:n

)
(2.7)

where R1:i−1,1:i−1 is upper triangular, Q(s) is such that Q(s) T Q(s) = Ir(s) , where r(s) is the

number of columns of Q(s) , and T
(s)
i:n has the same number of columns (and, therefore, the
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same block column structure) as the block columns i : n of A . In what follows, we show
by induction that the above also holds for s + 1 , the base case corresponding to s = 1,
i− 1 = 1, k− 1 = 0, T

(1)
2:n = R1,2:n and Q(1) = Im1 . We also note that in practice, matrices

R1:i−1,1:i−1 (except for i−1 = 1) and Q(s) do not have to be formed explicitly; at this stage,
they are no longer needed for the construction of the factor, and only their product (or the
product of their transpose) with a vector is required for the preconditioner application.

If step s + 1 is a factorization step, the next block row Ri,i:n , i ≤ n , is added to the
factor. For 1 < i < n the block row is computed based on

RT
i,i

(
Ri,i Ri,i+1:n

)
= Ai,i:n − T

(s)
i

T
T

(s)
i:n , (2.8)

the expressions for i = 1 and i = n being similar; this is done in the same way as for
the exact Cholesky factorization based on (2.5), using update, factorization and solution

stages. Taking into account that Q(s) T Q(s) = Ir(s) , the above displayed equality is nothing
but (2.5) in which the off-diagonal block R1:i−1,i:n of the exact factor is replaced by that

Q(s)T
(s)
i:n of the approximate one. At the end of step s+ 1 , the available rows of the factor

are, if i < n , (
R1:i−1,1:i−1 Q(s)T

(s)
i:n

Ri,i:n

)
=
(

R1:i,1:i Q(s+1)T
(s+1)
i+1:n

)
, (2.9)

with hence

R1:i,1:i =

(
R1:i−1,1:i−1 Q(s)T

(s)
i

Ri,i

)
, Q(s+1) =

(
Q(s)

Imi

)
,

T
(s+1)
i+1:n =

(
T

(s)
i+1:n

Ri,i+1:n

)
;

as a result, R1:i,1:i is upper triangular and there holds Q(s+1) T Q(s+1) = Ir(s+1) . If i = n ,
there rightmost block in the right hand side of (2.9) vanishes, and the factorization is
completed.

Otherwise, step s+1 is an approximation step, meaning that the block T
(s)
i:n undergoes

an orthogonal low-rank approximation, which we denote with respect to T
(s)
i:n as (Q, T

(s+1)
i:n ) .

The first i block rows of the factor then become(
R1:i−1,1:i−1 Q(s)(QT

(s+1)
i:n )

)
=
(

R1:i−1,1:i−1 Q(s+1)T
(s+1)
i:n

)
with Q(s+1) = Q(s)Q; the relation Q(s+1) T Q(s+1) = Ir(s+1) follows directly from QTQ = Ir,
where r is the number of columns of Q . The Euclidean norm of the error then further
satisfy

∥Q(s)T
(s)
i:n −Q(s)(QT

(s+1)
i:n )∥ = ∥T (s)

i:n −QT
(s+1)
i:n ∥ , (2.10)

which means that although the orthogonal low-rank approximation is based only on T
(s)
i:n ,

the resulting approximation error is also that of the off-diagonal block Q(s)T
(s)
i:n of the factor.
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(a) (b) (c)

Figure 1: An example of two possible recursive subdivisions of nested dissection: connec-
tivity graph and the separators (a) as well as the associated block sparsity structure of the
system matrix (b) and Cholesky factor (c); big • , midsize • and small • markers represent
first, second and third level separators, respectively.

2.2 Sparsity

An important element of the considered preconditioner is the block partitioning (2.1) of the
system matrix. When speaking of block partitioning, we mean both the actual partitioning
and the symmetric permutation applied to the system matrix in order to bring together
(i.e., make contiguous) indices of the same block. Here we use a coarse block partitioning
based on nested dissection, and further refine it for large enough coarse blocks. The nested
dissection partitioning, described in this subsection, aims at giving the system matrix a
specific block sparsity structure which, on one hand, can be exploited in much the same
way as by exact Cholesky factorization methods and, on the other hand, is not altered by
orthogonal low-rank approximations. The refinement for large enough blocks is performed
in a way that enforces the numerical rank deficiency of the off-diagonal part of the resulting
subblocks; this is further exploited in the considered low-rank approximation scheme, as
described in Section 2.3.

Nested dissection block partitioning is based on a recursive subdivision of the con-
nectivity graph of a sparse matrix. For a symmetric matrix A = (aij) , the connectivity
graph is an undirected graph whose vertices are row/column indices of the matrix and
such that two vertices i and j are connected by an edge if and only if aij is nonzero (or
treated as such). The set of vertices of the connectivity graph is recursively subdivided
into three subsets, two of which are disconnected (i.e., have no edge connecting them); the
subdivision is then applied again to each disconnected subset, if this subset is not small
enough. The no longer subdivided vertex subsets are called separators, and the set of
all separators induce the resulting coarse block partitioning of the matrix. An example
illustrating a possible outcome of two recursive nested dissection subdivisions is given in
Figure 1(a)-(b), where Figure 1(a) represents the considered connectivity graph and the
possible separators, whereas Figure 1(b) gives the induced block sparsity structure (with
zero blocks in white). Individual subdivisions typically aim at maximizing the sum of the
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sizes of the two disconnected subsets while keeping the two sizes roughly equal. Nested
dissection partitioning can be computed with the help of software packages like Metis [21],
mt-Metis [22] or Scotch [30].

Using nested dissection block partitioning for exact and incomplete Cholesky factoriza-
tions has several attractive properties. First, the Cholesky factor inherits the same block
sparsity structure as the upper triangular part of the original matrix, although the blocks
are mostly dense in the case of the factor; see Figures 1(b) and (c) for an illustration. This
allows to limit the number of nonzero entries in the factors for both exact and incomplete
factorizations. Moreover, the block partitioning possess an inherent parallelism, as the
computation of block rows corresponding to the two disconnected subsets of every nested
dissection subdivision can be performed independently of each other. Further, for an ex-
act Cholesky factorization, the nested dissection block sparsity allows for a use of block
(BLAS3) matrix operations. As a consequence, variants of sparse exact block Cholesky
factorization method based on nested dissection block subdivision represent good sparse
direct solvers in their own right. As of incomplete factorization based on low-rank approx-
imations, an extra advantage is the presence of relatively large dense off-diagonal blocks,
which are suitable for low-rank approximations.

On the practical side, the factors of both exact and incomplete Cholesky factorizations
are represented here as a collection of coarse block rows. Further, each row is stored as
a single (implicit or explicit) dense matrix, and the zero blocks are therefore ignored. A
representation of a single coarse block row is given in Figure 2(a); a similar row with zero
blocks is highlighted, for instance, in Figure 1(c).

Note that alternative coarse block partitioning strategies may be worth of a sepa-
rate investigation. A possible motivation for such strategies is the observation from [5,
Section 3.3] that the use of nested dissection ordering in combination with incomplete
factorization preconditioners based on dropping of individual entries can slow down con-
vergence. Of course, since the considered preconditioner does not rely on such a dropping,
this motivation is indirect. In the present work we do not discuss alternative coarse block
partitioning strategies any further.

2.3 Hierarchical approximations

For the considered incomplete Cholesky factorization, large enough coarse block rows of
the factor are approximated using a hierarchical low-rank approximation scheme. More
specifically, the relevant coarse block row is recursively subdivided into two block rows, and
the subdivision stops once the number of rows in the block comes close to a target value η.
Each subdivision of a block row into two sub-blocks implies that a low-rank approximation
is to be computed for each sub-block separately before it is computed for the whole block.
Note that for the present description the actual implementation of the orthogonal low-
rank approximation scheme is not important; the details of the scheme consider for the
numerical experiments are given in Section 4.1.

Approximation step for a given block row occurs as soon as all the rows of the block
are computed. More precisely, if a block row is no longer subdivided into sub-blocks,
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(a)

k = 1
{

k = 2
{

k = 4
{

k = 5
{

{
{k = 3

k = 6

{
k = 7

(b) (c)

(d) (e) (f) (g)

Figure 2: Two steps of recursive subdivision of a coarse block row (a), as well as the
representation of some steps of the considered hierarchical approximation scheme: first
factorization step (b), first approximation step (c), second factorization step (d), second
approximation step (e), third approximation step (f), and the final block row after 4
factorization and 7 approximation steps (g). The indices k of the approximation steps are
alos depicted on the representation (a) of the coarse block row, each index being to the left
of the curly bracket delimiting the subblock row modified during the approximation step.

the corresponding factorization step is followed immediately by an approximation step
restricted to this block row; see Figures 2(b)-(c) and 2(d)-(e) for an illustration. If a
block row is subdivided in two sub-blocks, then the approximation step for the block row
is performed once the approximation steps for the two sub-blocks are complete; see, for
example, Figures 2(f) and 2(g). The advantage of this early compression strategy is that
the update stage for every new block row of the factor, as based on (2.8), benefits from the

matrix T
(s)
i:n which incorporates all relevant already computed low-rank approximations.

Eventually we note that, although only a subset of rows of the block T
(s)
i:n undergoes

an orthogonal approximation at every approximation step while the other rows remain
unchanged, the resulting approximation for the whole block is also orthogonal, and the
Euclidean norm of the approximation error is the same in both cases.

Now, each block row is chosen with the aim to enforce the numerical rank deficiency of
its off-diagonal part. More specifically, we use the heuristic approach for the partitioning
of the coarse block rows from [27], which is based solely on the sparsity pattern of the
system matrix A . The main idea is to put in each block the rows whose vertices in the
connectivity graph G of A are close to each other in the sense specified below. To this
end, for the set S of indices of each large enough coarse block row, we build an enhanced
connectivity graph GS whose set of vertices is S, and whose set of edges corresponds to
couples (i, j) ∈ S × S such that either (i, j) is an edge of G, or there exists a vertex p /∈ S
such that (i, p) and (p, j) are edges of G ; the vertices connected by an edge of GS are
considered close to each other. The rationale behind the use of an enhanced connectivity
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graph GS is that it is typically less fragmented (i.e., has fewer connected components) than
the sub-graph of G induced by S , allowing for a better assessment of the closeness of the
vertices, whereas it is typically as sparse as this latter.

The recursive subdivision of a coarse block row is therefore preformed by recursively
subdividing the corresponding set S of vertices into two subsets so as to reduce the number
of connections between the subsets in the enhanced connectivity graph GS ; the subdivision
is performed using the routine PartGraphRecursive from Metis [21] and stops when the
vertex set size comes close to the target value η.

2.4 Complexity

Here we provide some complexity estimates for the considered preconditioner in a model
setting, which is typical for the discretizations of scalar elliptic two- and three-dimensional
(2D and 3D) PDEs defined on, respectively, square (2D) and cube (3D) domains, and
discretized on a Cartesian grid. More specifically, regarding the nested dissection coarse
block partitioning, we assume a geometric nested dissection ordering inspired by [14] in
2D (which for a N ×N system matrix yields 1 separator with N1/2 vertices after the first
recursive subdivision, 2 separators with N1/2/2 vertices after the second subdivision, 4
separators with N1/2/2 vertices after the third subdivision, etc.) and a natural extension
of this 2D ordering in 3D (which yields 1 separator withN2/3 vertices after the first recursive
subdivision, 2 separators with N2/3/2 vertices after the second subdivision, 4 separators
with N2/3/4 vertices after the third subdivision, 8 separators with N2/3/4 vertices after the
fourth subdivision, etc.). Moreover, we assume that each coarse block is further recursively
subdivided into sub-blocks of even size till the number of its indices comes close to the
target value η, and that the off-diagonal rank of each block of m rows considered in the
recursive subdivision (and not only the resulting sub-blocks) has a rank at most r0 in 2D,
and at most r0

√
m in 3D. Further, we assume that the number of floating point operations

(flops) needed to compute the low-rank approximation (Q, T̃ ) of a m× p matrix T of rank
r is c0mpr (with c0 = 4 for the the rank revealing QR factorization with column pivoting
considered for the numerical experiments in Section 4), that the product of Q and QT with
a vector costs at most c1mr flops (with c1 = 2 if Q is stored explicitly as a matrix, and
c1 = 4 if only the vectors needed for the Householder transformations are stored).

Under these assumptions, and further assuming that the implementation of the precon-
ditioner is similar to what is done in [26], the upper bounds on the number of flops needed
to compute the considered incomplete Cholesky factorization preconditioner as well as the
upper bound on the number of flops needed for a single application of this preconditioner
are given in Table 1, along with the number of flops for the corresponding exact Cholesky
factorization (for which the application actually amounts to the solution of the linear sys-
tem). Note that the upper bounds on the number of flops needed for the application also
correspond (up to a factor) to the upper bounds on the amount of memory needed for the
corresponding Cholesky factor.
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2D 3D
compute apply/store compute apply/store

incomplete Cholesky O(N log2N) O(N) O(N5/3) O(N logN)
exact Cholesky O(N3/2) O(N log(N)) O(N2) O(N4/3)

Table 1: Upper bounds on the number of floating point operations for computing and apply-
ing the considered incomplete Cholesky factorization preconditioner and the corresponding
exact Cholesky factorization; N is the dimension of the system matrix.

3 Analysis

In this section we are concerned with an upper bound on the spectral condition number
of the preconditioned system that accounts for the accuracy of the individual approxima-
tions. In particular, in Section 3.1 we specify the setting and show that the considered
preconditioner fits into the framework introduced in [25]. The upper bound is proved in
Section 3.2. Since it coincides with the one-level bound from [25], some related results
which are proved in this latter reference, including the tightness of the bound, are further
briefly summarized in Section 3.3.

3.1 Preliminaries

The analysis makes use of auxiliary matrices Bk, k = 0, . . . , ℓ , where ℓ is the number of
approximation steps. Here, Bk is the preconditioner obtained with the incomplete Cholesky
factorization, as described in Section 2.1, in which only the first k approximation steps are
performed. In particular, B0 = A corresponds to the exact factorization of the system
matrix, whereas Bℓ = RTR corresponds to the actual preconditioner.

Now, if i− 1 > 0 factorization steps are performed before the kth approximation step,
it follows from (2.7) that Bk−1 can be expressed in the following factored form

Bk−1 =

(
R(k)

11

T

R(k)
12

T
S
(k)
B

)(
R(k)

11 R(k)
12

Imi

)
. (3.1)

were R(k)
11 = R1:i−1,1:i−1 , R(k)

12 = Q(s)T
(s)
i:n , Q(s) T Q(s) = Ir(s) , s = (i− 1) + (k − 1) , and

S
(k)
B = Ai:n,i:n − R(k)

12

T
R(k)

12 . (3.2)

This latter expression stems from the fact that approximation steps from k till ℓ are
dropped, and hence the factorization after step s is exact.

Next, Bk is obtained from Bk−1 by performing an orthogonal low-rank approximation

(Q, T
(s+1)
i:n ) of the matrix T

(s)
i:n , and therefore

Bk =

(
R(k)

11

T

R̃(k)
12

T
S̃
(k)
B

)(
R(k)

11 R̃(k)
12

Imi

)
, (3.3)
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where R̃(k)
12 = Q(s)QT

(s+1)
i:n , QTQ = Ir , r is the number of columns of Q , and

S̃
(k)
B = Ai:n,i:n − R̃(k)

12

T
R̃(k)

12 . (3.4)

To show that the considered preconditioner fits into the framework introduced in [25],
one needs to check that, for every k = 1, . . . , ℓ ,

R̃(k)
12

T
(R(k)

12 − R̃(k)
12 ) = T

(s+1)
i:n

T
QT
(
T

(s)
i:n −QT

(s+1)
i:n

)
= Omi×mi

. (3.5)

Here, the above relation follows directly from the orthogonality (2.6) of the approximation

(Q, T
(s+1)
i:n ) of the matrix T

(s)
i:n . As a consequence, the following result holds.

Lemma 3.1 ([25]). Let A be SPD and partitioned as in (2.1). Let Bk be the incomplete
Cholesky factorization preconditioner in which only the first k approximation steps are
performed, k = 0, . . . , ℓ , as described in Section 2.1. Then

(a) Bk is SPD, k = 1, ..., ℓ .

(b) The construction procedure described in Section 2.1 does not break down.

Note that, by construction, the remaining approximation steps k+1, . . . , ℓ , may affect
the block R̃(k)

12 = Q(s)QT
(s+1)
i:n only by approximating the matrix T

(s+1)
i:n . As a result, the

actual preconditioner Bℓ can also be written as

Bℓ =

(
R(k)

11

T

R(k)

12

T

R(k)
22

T

)(
R(k)

11 R(k)

12

R(k)
22

)
=: RTR , (3.6)

with R(k)

12 = Q(s−1)QT i:n for some T i:n , and with some R(k)
22 . The form of the R(k)

12 block
further implies, in the same way as for (3.5),

R(k)

12

T

(R(k)
12 − R̃(k)

12 ) = T i:n
T
QT
(
T

(s)
i:n −QT

(s+1)
i:n

)
= Omi×mi

. (3.7)

Note that this is an additional property of the considered preconditioner, and does not
follow from (3.5) .

3.2 Main result

The main result of this section is given in Theorem 3.3. It provides upper and lower bounds
on the largest and the smallest eigenvalues of R−TBk−1R

−1 , denoted, respectively, as λ
(k−1)
max

and λ
(k−1)
min . The bounds are expressed as given functions of the extreme eigenvalues λ

(k)
max

and λ
(k)
min of R−TBkR

−1 , and of the approximation accuracy

γk =
∥∥∥(R(k)

12 − R̃(k)
12

)
S̃
(k)
B

−1/2
∥∥∥ (3.8)
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of the kth approximation step; the matrices R(k)
12 , R̃(k)

12 and S̃
(k)
B are those defined in

Section 3.1. Since λ
(ℓ)
max = λ

(ℓ)
min = 1 , applying Theorem 3.3 for k = ℓ, . . . , 1 yields two-

sided bounds for λ
(0)
max = λmax(R

−TAR−1) and λ
(0)
min = λmin(R

−TAR−1) as a function of γk
k = 1, . . . , ℓ , and therefore also provides an upper bound on the condition number

κ(R−TAR−1) =
λmax(R

−TAR−1)

λmin(R−TAR−1)
(3.9)

of the preconditioned system, which is known to determine an upper bounds on the rate
of convergence of the preconditioned conjugate gradient algorithm [3, 36, 35].

The proof of Theorem 3.3 relies on the following lemma.

Lemma 3.2. Let Bk−1, Bk and Bℓ = RTR be given by (3.1), (3.3) and (3.6), respectively,

for some R(k)
11 , R(k)

12 , S
(k)
B , R̃(k)

12 , S̃
(k)
B , R(k)

12 and R(k)
22 satisfying (3.2) , (3.4) and (3.7) ,

and set

∆R(k) =

(
Omi×mi

R(k)
12 − R̃(k)

12

Omi×mi
Omi×mi

)
, (3.10)

where mi =
∑n

j=i mj and mi =
∑i−1

j=1mj . Then

Bk−1 = Bk +RT∆R(k) + ∆R(k) T R .

Proof. Note that (3.7) implies

RT∆R(k) =

(
R(k)

11

T

R(k)

12

T

∗

)(
Omi×mi

R(k)
12 − R̃(k)

12

Omi×mi
Omi×mi

)

=

(
Omi×mi

R(k)
11

T
(R(k)

12 − R̃(k)
12 )

Omi×mi
Omi×mi

)
.

The result then follows from

Bk−1 = Bk +

(
Omi×mi

R(k)
11

T
(R(k)

12 − R̃(k)
12 )

(R(k)
12 − R̃(k)

12 )T R(k)
11 Omi×mi

)
.

The main result is therefore as follows. Note that the resulting bounds are the

same as the one-level bounds in [25]. The key properties are (3.5) and (3.7) , and this
second property is what enables the extension of the one-level bound to the considered
preconditioner (since, as shown in [25], the property (3.5) alone is not sufficient for such
an extension).

Theorem 3.3 (main theorem). Let the assumptions of Lemma 3.2 hold for some Bk−1,
Bk and Bℓ = RTR being SPD, k = 1 , . . . , ℓ , and, moreover, assume that (3.5) holds.

Let λ
(k)
max and λ

(k)
min be the largest and the smallest eigenvalue of R−TBkR

−1 , k = 0 , . . . , ℓ ,

14



and define γk , k = 1 , . . . , ℓ, as in (3.8) . Then γk < 1 and, moreover, if λ
(k)
max ≥ 1 and

λ
(k)
min ≤ 1 , there holds

λ(k)
max ≤ λ(k−1)

max ≤ λ(k)
max + g(λ(k)

max, γk ) , (3.11)

λ
(k)
min ≥ λ

(k−1)
min ≥ λ

(k)
min − g(λ

(k)
min, γk ) , (3.12)

where

g(λ, γ) = max
β>0

2γβ − |λ− 1|β2

β2 + λ−1
. (3.13)

Proof. First, for any vector v of compatible dimensions Lemma 3.2 implies

vTR−TBk−1R
−1v = vTR−TBkR

−1v + 2 vT∆R(k)R−1v . (3.14)

Next, we focus on the matrices of the right-hand side. More specifically, since Bℓ = RTR
is SPD, it follows from (3.6) that R(k)

11 and R(k)
22 are regular and, further, that

R−1 =

(
R(k)

11

−1
− R(k)

11

−1
R(k)

12 R(k)
22

−1

R(k)
22

−1

)
.

As a consequence, (3.3) implies that

R−TBkR
−1 =

 Imi

(
R̃(k)

12 − R(k)

12

)
R(k)

22

−1

R(k)
22

−T
(
R̃(k)

12 − R(k)

12

)T
∗

 , (3.15)

whereas (3.10) yields

∆R(k)R−1 =

(
Omi×mi

(R(k)
12 − R̃(k)

12 ) R(k)
22

−1

Omi×mi
Omi×mi

)
. (3.16)

Our next step is a change of basis transformation to highlight the effect of orthogonal
approximations in (3.14). For this, let [ V∥ , V⊥ ] be an orthogonal matrix such that the

columns of V∥ span the same subspace as the columns of R(k)
12 − R̃(k)

12 . Further, let

V∥ =

(
V∥
)

, V⊥ =

(
V⊥

Imi

)
, V =

(
V∥ V⊥

)
, v∥ = V T

∥ v , v⊥ = V T
⊥ v .

Note that V is an orthogonal matrix and, hence, that

v = V∥v∥ + V⊥v⊥ . (3.17)

On the other hand, both (3.5) and (3.7) imply

(R̃(k)
12 − R(k)

12 )T (R(k)
12 − R̃(k)

12 ) = Omi×mi
,
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and, hence,

VT
∥ (R̃

(k)
12 − R(k)

12 ) = Or×mi
,

where r is the number of columns of V∥ .
Now, (3.15) together with the above equation implies

V T
∥ R−TBkR

−1V⊥ = Or×(mi+mi−r) , V T
∥ R−TBkR

−1V∥ = Ir . (3.18)

Similarly, (3.16) together with VT
⊥

(
R(k)

12 − R̃(k)
12

)
= O(mi−r)×mi

yields

∆R(k)R−1V∥ = O(mi+mi)×r and V T
⊥ ∆R(k)R−1 = O(mi+mi−r)×(mi+mi)

. (3.19)

Further, injecting (3.17) into (3.14), and subsequently applying (3.18) and (3.19) entails

vTR−TBk−1R
−1v

vTv
=

vTR−TBkR
−1v + 2 vT∆R(k)R−1v

vTv

=
vT
⊥V

T
⊥ R−TBkR

−1V⊥v⊥ + vT
∥ v∥ + 2 vT

∥ V
T
∥ ∆R(k)R−1V⊥v⊥

vT
∥ v∥ + vT

⊥V
T
⊥ V⊥v⊥

=
wTw + vT

∥ v∥ + 2 vT
∥ V

T
∥ ∆R(k)B

−1/2
k w

vT
∥ v∥ +wT (B

1/2
k R−1R−TB

1/2
k )−1w

, (3.20)

where w = B
1/2
k R−1V⊥v⊥ . Note that, by Courant-Fischer theorem [3, Lemma 3.13], the

extreme eigenvalues λ
(k−1)
max and λ

(k−1)
min of R−TBk−1R

−1 are obtained from any of the above
quotients by taking, respectively, the maximum and the minimum of these quotients over
all nonzero vectors v = V∥v∥ + V⊥v⊥ . On one hand, setting v∥ = 0 before maximiza-
tion/minimization yields the left inequalities (3.11), (3.12). On the other hand, using
(3.10) together with the fact that

B−1
k =

(
∗ ∗
∗ S̃

(k)
B

−1

)

entails
∆R(k)B−1

k ∆R(k) T = (R(k)
12 − R̃(k)

12 )T S̃
(k)
B

−1
(R(k)

12 − R̃(k)
12 ) ,

and, based on (3.8), further implies

ṽT
∥ ∆R(k)B

−1/2
k w ≤ γk ∥v∥∥ ∥w∥ .

Inserting this latter inequality as well as

∥w∥2/λ(k)
max ≤ wT

(
B

1/2
k R−1R−TB

1/2
k

)−1

w ≤ ∥w∥2/λ(k)
min
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into (3.20) and setting β = ∥w∥/∥v∥∥ then leads to

λ(k−1)
max ≤ max

β≥0

β2 + 1 + 2γkβ

β2 + 1/λ
(k)
max

,

λ
(k−1)
min ≥ min

β≥0

β2 + 1− 2γkβ

β2 + 1/λ
(k)
min

,

which, together with λ
(k)
max ≥ 1 and λ

(k)
min ≤ 1 , yields the right inequalities (3.11), (3.12).

Eventually, the fact that γk < 1 follows from the definition (3.8) of γk and the observa-
tion, stemming from (3.5), that

S̃
(k)
B − (R(k)

12 − R̃(k)
12 )T (R(k)

12 − R̃(k)
12 ) = S

(k)
B

is SPD.

3.3 Related results

Here we briefly summarize the key results related to the one-level bound. The results are
taken from [25], and the proofs can be found there.

The first result relates the approximation accuracy parameter γk to the approximation
error of the off-diagonal block in Euclidean norm. As already noted with (2.10), this
approximation error is in turn directly related to the approximation error of the orthogonal
low-rank approximations. Hence, using an absolute threshold parameter for the individual
orthogonal low-rank approximations allows to uniformly bound γk .

Proposition 3.1. Let the assumptions of Theorem 3.3 hold for k = 1, . . . , ℓ , and set
A = B0. Let SA be the exact Schur complement of A as defined by (2.4), (2.3) with i being

such that SA and S̃
(k)
B have the same dimension. Then

γk ≤
∥∥∥(R(k)

12 − R̃(k)
12 )S

−1/2
A

∥∥∥ ≤
∥∥∥R(k)

12 − R̃(k)
12

∥∥∥∥∥S−1
A

∥∥1/2
≤
∥∥∥R(k)

12 − R̃(k)
12

∥∥∥∥∥A−1
∥∥1/2 .

The next result shows that the rightmost bounds (3.11), (3.12) from Theorem 3.3 are
tight, and this for any number ℓ of approximation steps and any set of values γk < 1 ,
k = 1, ..., ℓ , of approximation accuracy. This follows from the fact that a particular one-
level scheme, which yields a block diagonal preconditioner, also fits into the present frame-
work of incomplete Cholesky factorization with orthogonal low-rank approximations. More
specifically, the block diagonal preconditioner is obtained from the incomplete Cholesky
factorization procedure described in Section 2.1 if after every factorization step i there is
one approximation step k (with, hence k = i) such that R̃(k)

12 = O .
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Proposition 3.2. For any set of positive values γ̃k < 1, k = 1, ..., ℓ , there exist an
SPD matrix A = A(γ̃1, · · · , γ̃ℓ) partitioned as in (2.1) such that the application of the
incomplete Cholesky factorization procedure described in Section 2.1 to A(γ̃1, · · · , γ̃ℓ−1)

with one approximation step k corresponding to R̃(k)
12 = O after each factorization step k ,

k = 1 , . . . , n , returns an upper triangular R , and there holds:

(a) γk = γ̃k , for k = 1 , . . . , ℓ ,

where γk is given by (3.8), with S̃
(k)
B defined by (3.4) and R(k)

12 , R̃(k)
12 defined as in

Section 2.1.

(b) setting λ
(k)
max = λmax(B

−1
ℓ Bk) and λ

(k)
min = λmin(B

−1
ℓ Bk) , where Bk , k = 0, . . . , ℓ , is

defined as in Section 2.1, there holds

λ(k−1)
max = λ(k)

max + g(λ(k)
max, γ̃k ) ,

λ
(k−1)
min = λ

(k)
min − g(λ

(k)
min, γ̃k ) ,

with g given by (3.13).

Eventually, we informally summarize the asymptotic behavior of the bounds (3.11) and
(3.12); a more formal presentation with further details can be found in [25]. Considering

first the case λ
(k)
max ≈ 1 and λ

(k)
min ≈ 1 , which arises for k close to ℓ (remember that

λ
(ℓ)
max = λ

(ℓ)
min = 1), we note that

λ(k−1)
max ≈ (1 + γk)λ

(k)
max , λ

(k−1)
min ≈ (1− γk)λ

(k)
min .

On the other hand, for λ
(k)
max ≫ 1 and 0 < λ

(k)
min ≪ 1 , which arises later in the process of

evaluation of the bounds,

λ(k−1)
max ≈ λ(k)

max + γ2
k , λ

(k−1)
min ≈ (1− γ2

k)λ
(k)
min .

The appearance of γ2
k instead of γk in this latter case impacts the sensitivity of the bound

on the value of the threshold parameter for the orthogonal low-rank approximations, since,
when γk is divided by 10, γ2

k is divided by 100.

4 Numerical results

In this section we report on numerical experiments with the considered incomplete Cholesky
preconditioner. More specifically, in Section 4.1 we describe the experimental setting and
give further details for the preconditioner. The description of, and the results for, model
PDE discretizations are given in Section 4.2; the results for the SuiteSparse problems are
given in Section 4.3.
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4.1 Setting

The considered preconditioner (named ICo below, for Incomplete Cholesky with orthogonal
approximations) corresponds to the description of Section 2 with the following details [26].
The preconditioner is implemented in C using double precision arithmetic; multithreaded
implementation is based on OpenMP tasks and essentially relies on the parallelism in-
herited from nested dissection block sparsity. The orthogonal low-rank approximations
are preformed using a truncated version of the rank revealing QR factorization. More
specifically, we use a modified version of BLAS DGEQP3 routine [2], which computes the
rank revealing QR factorization with column pivoting [16, Section 5.4.1]; the modifica-
tion ensures that the factorization process stops when the absolute Euclidean norm of the
columns of the non-factorized part of the block is below a given (absolute) thresholds ε .
Moreover, the low-rank approximation of a given matrix block is only kept if the memory
needed for the low-rank representation of the matrix is smaller than the memory required
for its dense representation; otherwise the matrix block is not approximated. The coarse
block partitioning is performed as described in Section 2.2 based on the node-based nested
dissection method implemented in Metis software (version 5.1.0) for the sequential version
of ICo, and the same method from mt-Metis software (version 0.6.0) for the OpenMP one.
The fine block partitioning is performed as described in Section 2.3 (see also [27]), with
target block size set to η = 32 . During the solution step, the preconditioner is combined
with conjugate gradient iteration.

The performance of the preconditioner is assessed through the comparison with other
solvers for SPD linear systems. These include the exact Cholesky factorization described
in Section 2.1 (referred to as CHOL) and based on which the considered preconditioner is
designed, the standalone (i.e., unpreconditioned) conjugate gradient iteration [3, 36, 35]
(referred to as CG), and the SPD variant of ILUPACK solver [6, 7], version 2.4 (referred to as
ILUPACK). For the model PDE problems we also consider AGMG algebraic multigrid solver
[29, 28], version 3.3.5-aca (referred to as AGMG). Note that ILUPACK solver is used with
default parameters, except for the ordering, for which Metis node-based nested dissection
is used; this latter choice intends to make the comparison less ordering-dependent.

Regarding the experimental setting, the right hand side for all the systems are ran-
domly generated based on the normal distribution N (0, 1) with a fixed seed. Unless stated
otherwise, the experiments with threshold-based solvers, such as ICo and ILUPACK, are
performed choosing the value of the threshold parameter among3 1 , 10±1 , 10±2 , . . . , for
which the total time to solution is the smallest; note that threshold values larger than 1 are
used for ICo, since it relies on an absolute threshold criterion. The iterative solvers (i.e.,
all solvers except CHOL) are used with zero vector as initial approximation, the stopping
criterion being the reduction by a factor of 106 of the residual norm4. Maximal number

3Except for Bump 2911 problem from SuiteSparse test set, introduced in Section 4.3, for which a more
refined value of the threshold parameter allows for a substantial improvement.

4Since ILUPACK uses a different stopping criterion to achieve a given solution accuracy, the value for
this latter criterion was adjusted for each problem to approximately correspond to the 106 reduction in
the residual norm.
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of iterations is 1, 000 for all the solvers, except CG, where 10, 000 iterations are accepted.
The reported times are wall clock times; they were obtained on a workstation with an Intel
Xeon E5-2620 processor (2.10GHz) and 128 GB RAM memory.

4.2 PDE problems

Although the preconditioner is of general purpose, we first assess its performance based on
model PDE discretizations. For simplicity, only the sequential version is considered in this
section. The considered discretizations correspond to two- and three-dimensional (2D and
3D) PDEs defined on, respectively, square (2D) and cube (3D) domains, and discretized,
respectively, on (nx + 2) × (nx + 2) (in 2D) and (nx + 2) × (nx + 2) × (nx + 2) (in 3D)
Cartesian grids. More specifically, problems POISSON2D and POISSON3D correspond to, re-
spectively, 5-point and 7-point finite difference discretization of Poisson problem −∆u = f
with homogeneous Dirichlet boundary conditions in two and three dimensions. Further,
LINEL2D and LINEL3D correspond to the displacement formulation of linear elasticity prob-
lem −2µ∇·(∇(s)u)−λ∇(∇·u) = f , f ∈ Rd , d = 2, 3 with homogeneous Dirichlet boundary
conditions on one of the 4 edges (in 2D) or one of the 6 faces (in 3D) of the domain, and
Neumann boundary conditions elsewhere on the boundary, discretized using lowest order
vector Lagrangian (P1)

d elements. Now, the problem coefficients µ and λ are constant
functions, and are further expressed as λ = Eν

/
((1 + ν)(1 − 2ν)) and µ = E

/
(2 + 2ν) ,

where E is Young’s modulus (here, a scaling factor, and therefore set to 1) and 0 < ν < 1/2
is the Poisson’s ratio. Eventually, EDGE2D and EDGE3D correspond to the curl-curl problem
∇×∇×u+10−2 u = f , f ∈ Rd , d = 2, 3 , with homogeneous Dirichlet boundary conditions
discretized using lowest order Whitney elements of the first kind on a square (in 2D) or a
cube (in 3D) mesh; the degrees of freedom are then associated to the grid edges.

The total (i.e., setup and solve) time to solution is reported in Figure 3 for the consid-
ered solvers and model PDE discretizations of increasing size; times for each problem are
represented on a separate graph. For LINEL2D and LINEL3D problems, experiments were
run for ν = 0.4 and ν = 0.49; there results for ν = 0.4 are similar to those of POISSON2D and
POISSON3D problems in terms of relative solver “ranking”, and are therefore not reported
here5.

Not every solver appear on each graph: AGMG does not converge for EDGE2D and EDGE3D

problems in 1, 000 iterations, CG fails to converge in 10, 000 iterations for LINEL2D (ν =
0.49) and EDGE2D problems, except for the smallest size, and ILUPACK time to solution is
over an hour even for the smallest EDGE3D problem.

Therefore, regarding the robustness of the solvers, we note that only ICo and CHOL are
able to solve large enough systems for all six problems. Moreover, ICo is always at least
as fast as CHOL, and it is notably faster for large POISSON3D and EDGE3D problems.

Focusing more specifically on incomplete factorizations, we note that ICo is globally
faster, but that ILUPACK is faster for the POISSON3D problem. This might seem disap-

5Note that linear elasticity problem in presence of Dirichlet boundary conditions is spectrally equiva-
lent to the associated vector Poisson problem, as follows from the second Korn’s inequality [9], and the
equivalence coefficients depend on ν .
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Figure 3: Total times to solution for the considered solvers and model PDE discretizations
as a function of the number of nonzero entries of the system matrix. The measured times
correspond to graph marks; marks are further interconnected with a line to highlight a
trend.
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pointing at first. However, it should be noted that pointwise dropping used in ILUPACK

is particularly suitable for diagonally dominant matrices from POISSON2D and POISSON3D

problems and, moreover, the multilevel nature of ILUPACK is similar to that of multigrid
methods, which are considered to be reference solvers for these problems; this latter point
is well illustrated by the results of AGMG. On the other hand, the design of ICo is not
oriented towards diagonally dominant matrices.

Incidentally, we note that CG is fairly competitive for the considered model 3D problems.

4.3 SuiteSparse problems

We now report the results for the SuiteSparse test set. This test set is composed of all but
two SPD matrices of the SuiteSparse matrix collection [11] whose number of rows/columns
is larger then 105, as available on August 2, 2018 . The two exceptions are bmw7st_1 and
thermomech_TK , which are found to be too ill-conditioned (κ(A) ≈ 1015) for the considered
stopping criterion. If a matrix graph is found to have several connected components, the
test is performed on the largest one. The final set comprises 50 test problems, which are
listed in Appendix A. On the following graphs and in Appendix A, the problems are sorted
in the increasing order of their number nnz(A) of nonzero entries of the system matrix.
The time is given in seconds per million of nonzero entries of the system matrix.

In Figure 4 we report the total time to solution of ICo solver for the SuiteSparse test
set, as well as the contribution of the different steps performed by the solver to this total
time. The considered steps are the determination of block partition (which mainly includes
the call to the corresponding Metis/mt-Metis routine), symbolic factorization, numerical
factorization, and (iterative) solution. For this and the following figures, each abscissa
segment corresponds to an individual problem from the test set, and each bar based on
this segment is a reported value.

Regarding the total time to solution, for all problems it is below 10 seconds per million
of nonzero entries. Regarding the different steps, we note that block partition and/or
numerical factorization steps typically take most of the time for the small problems, whereas
for large problems, the time is dominated by numerical factorization an/or solution steps.

Next, Figure 5 reports the total time to solution for the sequential version of ICo

solver, as well as the OpenMP version with 2 and with 8 threads. The corresponding
bars in the diagram are superposed, with the dark green (dark grey) bar of the OpenMP
version using 8 threads partially covering (and always lower than) the green (grey) bar of
the version using 2 threads, which itself is partially covering (and always lower than) the
light green (light grey) bar of the sequential version. We note that OpenMP version with
2 threads allows for a notable speed-up with respect to the sequential version, and that
OpenMP version with 8 threads is even faster. However, the scalability is not perfect. This
latter observation is partially explained by the fact that only the parallelism of the nested
dissection block sparsity structure is used, but also by the degradation of the quality of
this block sparsity structure when using mt-Metis with multiple threads. Nevertheless,
the total time to solution for the version with 2 threads is below 7 seconds per million of
nonzero entries for all problems; it is below 5 seconds per million of nonzero entries for the
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Figure 4: Total time to solution (in seconds per million of nonzero entries of A) for ICo
solver and the problems from the SuiteSparse test set.
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Figure 5: Total time to solution (in seconds per million of nonzero entries of A) for the
sequential version of ICo, and for its OpenMP version with np=2 and np=8 threads.

version with 8 threads.
Regarding the comparison of ICo and ILUPACK solvers, the corresponding total times

to solution are reported in Figure 6. This and the following three figures are bar diagrams
which simultaneously report two parameters, which then correspond to superposed bars
of different color. More precisely, the semi-transparent green (light gray) bar is always
printed over the opaque blue (dark gray) bar; since the former bar is semi-transparent, the
latter bar is clearly visible even when it is completely covered by the other bar; the color
of the overlapping area is dark green (grey). Hence, if the blue bar is higher, as is the
case for the leftmost bar in Figure 6, the blue bar remains partly uncovered. However, if
the semi-transparent green bar is higher than the blue one, the result looks like the third
leftmost bar of the figure.

Whereas there is obviously no clear winner, the ICo solver has smaller solution time
for most of the problems, and the speed-up compared to ILUPACK reaches the factor of at
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most 38 . On the other hand, ILUPACK is faster for some large problems, and the speed-up
compared to ICo reaches the factor of 2.8 .

Next, Figures 7 and 8 report the comparison for the total time to solution between,
respectively, ICo and CHOL, and ICo and CG. Regarding the comparison between ICo and
CHOL, we note that the results are comparable for small problems, ICo being a bit slower
on average; for large problems ICo is either a bit slower than CHOL, or significantly faster.
A slightly better performance of CHOL for some problems comes from the fact that the
refinement of large nested dissection blocks and the associated use of the hierarchical low-
rank approximation scheme from Section 2.3 do not pay off compared to the use of block-
matrix (BLAS3) operations with the original blocks. Regarding the comparison between
ICo and CG, we note that CG is almost always either slower or non converging (these two
situations are represented in the same way on this figure).

5 Conclusions

We have presented an incomplete Cholesky factorization preconditioner for the iterative so-
lution of large sparse symmetric positive definite (SPD) systems. The preconditioner uses
orthogonal low-rank approximations in an exact Cholesky factorization. On the theoretical
side, we show that the preconditioner is breakdown-free for any choice of the approxima-
tion tolerance and, moreover, we extend the scope of the one-level bound from [25] to
the considered preconditioner. The extension is achieved with the help of the additional
assumption (3.7), which is naturally satisfied by the considered preconditioner. On the
practical side, we consider an implementation of the preconditioner which is based on the
sparse Cholesky factorization exploiting nested dissection block partitioning. The incom-
plete factorization is obtained by refining large blocks of the nested dissection partitioning
and by further applying the hierarchical low-rank approximation scheme to these blocks.
Numerical experiments are performed with a sequential and OpenMP implementation of
the solver, and show that the approach is robust, and competitive with the state-of-the-art
incomplete factorization as implemented in ILUPACK.
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Appendix A

The list of the matrices in the SuiteSparse test set, ordered per number of nonzero entries
of the largest connected component, and using the names from the online SuiteSparse
database [11], is:

thermomech_TC, thermomech_dM*, G2_circuit, 2cubes_sphere, cfd2,
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Figure 6: Total time to solution (in seconds per million of nonzero entries of A) for ICo
and ILUPACK solvers.
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Figure 7: Total time to solution (in seconds per million of nonzero entries of A) for ICo
and CHOL solvers.
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shipsec8, Dubcova3, shipsec1, parabolic_fem, ship_003, offshore,
shipsec5, apache2, ecology2, tmt_sym, boneS01, G3_circuit, thermal2,
x104, hood, bmwcra_1, pwtk, BenElechi1, af_0_k101, af_1_k101,
af_2_k101, af_3_k101, af_4_k101, af_5_k101, af_shell3, af_shell4,
af_shell7, af_shell8, msdoor, bundle_adj, StocF-1465, Fault_639,
inline_1, PFlow_742*, Emilia_923, boneS10, ldoor, bone010,
Hook_1498, Geo_1438, Serena, audikw_1, Flan_1565, Bump_2911*, Queen_4147*.

The matrices marked with * had several connected components.
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[37] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed
aggregation for second and fourth order problems, Computing, 56 (1996), pp. 179–196.

[38] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A832–A860.

[39] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013),
pp. 197–227.

28

http://metronu.ulb.ac.be/ICo
http://metronu.ulb.ac.be/ICo
http://www.labri.fr/~pelegrin/scotch/


[40] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-structured
symmetric positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–
2920.

[41] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan, A
distributed-memory randomized structured multifrontal method for sparse direct so-
lutions, SIAM J. Sci. Comput., 39 (2017), pp. C292–C318.

[42] Q. Zheng, Y. Xi, and Y. Saad, Multicolor low-rank preconditioner for gen-
eral sparse linear systems, Numerical Linear Algebra with Applications, 27 (2020),
p. e2316.

29


	Introduction
	Preconditioner description
	Orthogonal low-rank approximations
	Sparsity
	Hierarchical approximations
	Complexity

	Analysis
	Preliminaries
	Main result
	Related results

	Numerical results
	Setting
	PDE problems
	SuiteSparse problems

	Conclusions

