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1 Introduction
We consider the problem of domain approximation in finite element methods for Maxwell’s equa-
tions on curved domains, i.e., when affine or polynomial meshes fail to cover the domain of interest
exactly, forcing to approximate the domain by a sequence of (potentially curved) polyhedra arising
from inexact meshes. In particular, we aim at finding conditions on the quality of these approxi-
mations that ensure convergence rates of the discrete solutions—in the approximate domains—to
the continuous one in the original domain. This analysis is classical in the context of the Laplace
equation [15] but has not been studied in the Maxwell case. In [4], we showed the effects of
numerical integration on the convergence of the curl-conforming finite element method (FEM)
for Maxwell variational problems and found necessary conditions on quadrature rules to ensure
error convergence rates both in affine and curved meshes. However, we discarded the error terms
associated with domain mesh approximation.

When approximating solutions to variational problems on a given original domain by solutions
to analogous problems on approximate (computational) domains, the choice of error measure is
not straightforward as approximate and exact solutions do not share the same domain. Indeed,
several choices for error measures can be considered: comparisons between extensions of continuous
or discrete solutions to a hold-all domain [9, 10, 15, 41]; mismatch measured at the intersection
between the original and computational domains [27, 38, 23, 40, 42]; mapping of solutions from
computational to the original domains or vice-versa [3, 19, 28]; and finally, in [14, 17] the error is
measured in a Hilbert space common to solutions on the approximate and original domains.

In the present note, our main results are condensed in theorems 4.18, 4.20, 5.8, and 5.9 in which
we estimate the convergence of Maxwell solutions in a series of approximate domains {D̃i}i∈N to
the continuous solution in a given original domain—denoted D, and approximated by the sequence
{D̃i}i∈N—in two different ways. Following [28], theorem 4.18 estimates the error through curl-
conforming pull-backs mapping fields in approximate domains {D̃i}i∈N to fields in the original
one D (cf. [25, Sec. 2.5]). Alternatively, and in the spirit of [15], theorem 4.20 bounds the error
of approximate solutions to an extension of the solution in the original domain D, allowing for
its evaluation in each approximate domain in the sequence even though one can not ensure that
D̃i ⊆ D for any i ∈ N without additional assumptions. Then, theorems 5.8 and 5.9 correspond
to discrete analogues to theorems 4.18 and 4.20, respectively. Moreover, our findings allow for a
straightforward combination with our earlier results in [4], and so theorems 5.12 and 5.13 corre-
spond to fully discrete versions of theorems 5.8 and 5.9, respectively, by incorporating the effects
of numerical integration on error convergence rates.

The structure of the manuscript is as follows. In section 2 we set notation and introduce the
Maxwell variational problems considered throughout, as well as basic parameter and overarching
assumptions. In section 3, we introduce finite elements on curved meshes as in [15] and introduce
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elementary results concerning the continuity and approximation properties of the classical curl-
conforming interpolation operator (see [30, Sec. 5.5]). Section 4 introduces the issue of solving
Maxwell variational problems on approximate domains at the continuous level; a viewpoint which
is then directly applied to the discrete level in section 5. Then, section 6 displays a simple numerical
example confirming our findings followed by concluding remarks in Section 7. Appendices provide
proofs of various technical lemmas and results.

2 General definitions and Maxwell problem statement
2.1 General notation
Set ı =

√
−1. For d ∈ N, we denote the canonical vectors in Rd as {ei}di=1 and the inner product

between two elements x and y in Rd is written x ·y. Let Ω be an open bounded Lipschitz domain
in Rd with boundary ∂Ω. For m ∈ N0 := N ∪ {0}, Cm(Ω) denotes the set of complex-valued
functions with m-continuous derivatives on Ω, while Cm0 (Ω) is the subset of elements in Cm(Ω)
with compact support in Ω. Infinitely smooth functions with compact support in Ω belong to
D(Ω) :=

⋂∞
m=0 Cm0 (Ω). For k ∈ N0 and q ∈ N, Pk(Ω;Cq) is the space of polynomials of degree

less than or equal to k from Ω to Cq. P̃k(Ω;Cq) denotes the space of homogeneous polynomials
of degree k from Ω to Cq. For p ≥ 1 and s ∈ R, Lp(Ω) and W p,s(Ω) are the class of p-integrable
functions on Ω and the standard Sobolev spaces of order s, respectively. If p = 2, we employ the
standard notation Hs(Ω) := W 2,s(Ω).

Norms and semi-norms over a general Banach space Y are indicated by subscripts. However,
the norm and semi-norm of Hs(Ω) will be written as ‖·‖s,Ω and |·|s,Ω, respectively. The topological
dual of the Banach space Y will be denoted as Y ′. For a Hilbert spaceX, we write its inner product
as (·, ·)X , and its duality pairing as 〈·, ·〉X′×X . Again, we make an exception for Hs(Ω) and write
its inner and duality products as (·, ·)s,Ω, and 〈·, ·〉s,Ω, respectively. These are understood in the
sesquilinear sense.

General scalar-valued functions and function spaces are differentiated from their vector-valued
counterparts by the use of boldface symbols for the latter. Components of vector-valued functions
are identified by subscript, e.g., V2 = V · e2. For a square matrix A ∈ Cn×n, with n ∈ N, we
denote its induced matrix norm by ‖A‖Cn×n , its determinant by det(A), its transpose by A>, its
cofactor matrix by Aco and its inverse by A−1 = det(A)−1Aco, when invertible. The Jacobian
matrix of a differentiable function U : Rn → Cn is dU : Rn → Cn×n. Moreover, I : Cn → Cn is
the identity map while I ∈ Rn×n denotes the identity matrix, so that d I = I.

Finally, norms of vector-valued functions in W p,s(Ω), for p ≥ 1 and s ∈ R, are computed as
the p-sum of the W p,s(Ω)-norms of their components, e.g., ‖U‖pW p,s(Ω) =

∑d
i=1‖Ui‖

p
Wp,s(Ω) for

p ∈ [1,∞) and the customary modification when p = ∞. Norms for matrix-valued functions are
computed analogously. For a multi-index α = (α1, . . . , αd)> ∈ Nd0, we write |α| =

∑d
i=1 αi and

xα =
∏n
i=1 xαi

i . For n ∈ N, we write the set of integers {1, 2, 3, . . . , n} as {1 : n}

2.2 Functional spaces
Let Ω be an open and bounded Lipschitz domain in R3. We introduce the following functional
spaces of vector-valued functions:

H(curl; Ω) :=
{
U ∈ L2(Ω) : curl U ∈ L2(Ω)

}
,

H(curl curl; Ω) :=
{
U ∈H(curl; Ω) : curl curl U ∈ L2(Ω)

}
,

together with the inner product on H(curl; Ω):

(U,V)H(curl;Ω) := (U,V)0,Ω + (curl U, curl V)0,Ω ,

2



so that H(curl; Ω) is Hilbert [30, Sec. 3.5.3]. For s > 0, let us define the scale of smooth spaces
[30, Sec. 3.5.3] useful to characterize the regularity of Maxwell solutions:

Hs(curl; Ω) := {U ∈Hs(Ω) : curl U ∈Hs(Ω)} ,

with norm and semi-norm given by

‖U‖Hs(curl;Ω) :=
(
‖curl U‖2s,Ω + ‖U‖2s,Ω

) 1
2 , |U|Hs(curl;Ω) :=

(
|curl U|2s,Ω + |U|2s,Ω

) 1
2
.

We also require appropriate trace spaces [11, 13, 30]. As in [11], we introduce two Hilbert spaces
of tangential vector fields on ∂Ω and their duals:

H
1
2
‖ (∂Ω) := {n× (U× n) : U ∈H

1
2 (∂Ω)}, H

1
2
⊥(∂Ω) := {U× n : U ∈H

1
2 (∂Ω)},

H
− 1

2
‖ (∂Ω) :=

(
H

1
2
‖ (∂Ω)

)′
and H

− 1
2
⊥ (∂Ω) :=

(
H

1
2
⊥(∂Ω)

)′
.

where n is the outward unit normal vector on ∂Ω. Trace spaces on H(curl; Ω) are then defined
through first order differential operators on ∂Ω:

H
− 1

2
div (∂Ω) := {U ∈H

− 1
2
‖ (∂Ω) : div∂Ω U ∈ H− 1

2 (∂Ω)},

H
− 1

2
curl(∂Ω) := {U ∈H

− 1
2
⊥ (∂Ω) : curl∂Ω U ∈ H− 1

2 (∂Ω)},

where div∂Ω and curl∂Ω are the divergence and scalar curl surface operators, respectively (cf. [12]
and [33, Sec. 2.5.6] for detailed definitions). Moreover, it holds that (cf. [12, Thm. 2])

H
− 1

2
curl(∂Ω) =

(
H
− 1

2
div (∂Ω)

)′
.

We define the following trace operators

γD : H(curl; Ω)→H−
1
2 (∂Ω), γ×D : H(curl; Ω)→H−

1
2 (∂Ω),

γN : H(curl curl; Ω)→H
− 1

2
div (∂Ω),

as the unique continuous extensions of their actions on U ∈ C∞(Ω) given by

γDU := n× (U|∂Ω × n), γ×DU := n× U|∂Ω and γNU := n× curl U|∂Ω ,

dubbed the Dirichlet, flipped Dirichlet trace and Neumann traces, respectively. Range spaces are
characterized as

Im(γD) = H
− 1

2
curl(∂Ω), Im(γ×D ) = H

− 1
2

div (∂Ω).

Moreover, for U and V ∈H(curl,Ω), the following Green identity holds

(U, curl V)Ω − (curl U,V)Ω = −〈γ×DU, γDV〉∂Ω,

where 〈·, ·〉∂Ω denotes the duality between H
− 1

2
div (∂Ω) and H

− 1
2

curl(∂Ω) (cf. [30, Sec. 3] and [11]).
The subset of H(curl; Ω)-elements satisfying zero boundary conditions is defined through the

flipped Dirichlet trace as

H0(curl; Ω) := {U ∈H(curl; Ω) : γ×DU = 0 on ∂Ω}.

By continuity of the flipped Dirichlet trace, H0(curl; Ω) is a closed subspace of H(curl; Ω).
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2.3 Maxwell variational problems
Let D ⊂ R3 be an open, bounded domain with boundary Γ := ∂D of class CM for some M ∈ N.
For a circular frequency ω > 0 and time dependency eıωt, the time-harmonic Maxwell equations
on D read

curl E + ıωµH = 0,
ıωεE− curl H = −J,

(2.1)

where E and H belong to H(curl; D) and represent the electric and magnetic fields, respectively.
The magnetic permeability µ and electric permittivity ε are assumed to be symmetric matrix-
valued functions with coefficients in L∞(D), and J ∈ L2(D) is an imposed current in D.

The system eq. (2.1) is converted into a second order system for E or H by eliminating the
remaining field, requiring pointwise invertibility assumptions on either ε or µ depending on the
specific choice. Without loss of generality, we follow [4] and consider the system for the electric
field only, assuming the existence of a pointwise inverse of µ. Thus,

H = ı
1
ω
µ−1 curl E,

from where

curlµ−1 curl E− ω2εE = −ıωJ. (2.2)

The system is completed by imposing boundary conditions on traces of E, e.g.,

γ×DE = gD, or n× (µ−1 curl E) = gN ,

for gD ∈H
− 1

2
div (∂Ω) or gN ∈H

− 1
2

curl(∂Ω).
We proceed by considering the system eq. (2.2) with perfect electric conductor (PEC) boundary

conditions, i.e., homogeneous (flipped) Dirichlet boundary conditions given by γ×DE = 0. The
associated sesquilinear and antilinear forms on H0(curl; D) for the Maxwell PEC cavity problem,
respectively, are

Φ(U,V) :=
∫

D
µ−1 curl U · curl V− ω2εU ·V dx and F(V) := −ıω

∫
D

J ·V dx, (2.3)

which are continuous on H0(curl; D) if we assume µ−1 has coefficients in L∞(D). Then, the
problem under consideration reads:
Problem 2.1 (Continuous variational problem). Find E ∈H0(curl; D) such that

Φ(E,V) = F(V),

for all V ∈H0(curl; D).
In this work, we are concerned with the approximation of D, the original domain, by compu-

tational domains {D̃i}i∈N and its consequences on the FEM error convergence rates. Hence, we
take for granted the necessary conditions for the unique solvability of Problem 2.1.
Assumption 2.2 (Wellposedness). We assume the sesquilinear form Φ in (2.3) satisfies the
following conditions:

|Φ(U,V)| < C1‖U‖H(curl;D)‖V‖H(curl;D) ∀ U, V ∈H0(curl; D),
sup

U∈H0(curl;D)\{0}
|Φ(U,V)| > 0 ∀ V ∈H0(curl; D) \ {0},

and

inf
U∈H0(curl;D)\{0}

(
sup

V∈H0(curl;D)\{0}

|Φ(U,V)|
‖U‖H(curl;D)‖V‖H(curl;D)

)
≥ C2,

for positive constants C1 and C2.
We denote the unique solution of Problem 2.1 as E ∈ H0(curl; D). Lastly, for examples of

problems satisfying Assumption 2.2 we refer to [5, 21, 29, 30].
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3 Curl-conforming finite elements
We begin by introducing the reference tetrahedron from which all meshes will be constructed.

Definition 3.1 (Reference element). We define K̆ as the tetrahedron with vertices 0, e1, e2 and
e3, and refer to it as the reference element or reference tetrahedron.

We also recall our smoothness assumptions on our original domain—stated in section 1—,
requiring D to be of class CM for M ∈ N.

Assumption 3.2. The bounded domain D is of class CM for M ∈ N.

Assumption 3.2 is required to ensure convergence rates of approximate domains to D built by
polynomial interpolation [28]. We point out that one could easily adjust the following analysis to
piecewise smooth domains.

3.1 Curl-conforming finite element spaces on straight and curved meshes
As in [4], we introduce1 Tp a family of quasi-uniform straight meshes of D, written τp

hi
, with

hi > 0 for all i ∈ N hi → 0 as i grows to infinity, constructed by straight tetrahedrons and indexed
by their mesh-sizes, i.e., Tp := {τp

hi
}i∈N. Throughout, τp

h denotes an arbitrary mesh in Tp. An
arbitrary tetrahedron in any of the meshes of Tp is denoted Kp, and we assume each tetrahedron
Kp to be constructed from K̆ by an affine mapping, denoted TKp : K̆ → Kp. The polyhedral
domain covered by τp

h is denoted Dp
h with boundary Γp

h := ∂Dp
h.

Now, for each polyhedral mesh τp
h ∈ Tp, we introduce τh as the approximated curved mesh

constructed from τp
h, in the sense that it shares its nodes with τp

h but is composed of curved
tetrahedrons. As before, we introduce the family of curved meshes as T := {τhi

}i∈N.
For a given Kp ∈ τp

h we refer to the element of τh that shares its nodes with Kp as K and
consider bijective mappings TK : K̆ 7→ K to be polynomial of degree K ∈ N, with K < M and
fixed throughout. Also, we refer to an arbitrary mesh in T by τh and the domain covered by τh
by Dh with boundary Γh := ∂Dh.

Assumption 3.3 (Assumptions on Tp and T.). The meshes in Tp are assumed to be affine, quasi-
uniform and such that their boundary nodes are located on Γ and the polyhedral domains {Dp

hi
}i∈N

approximate D. The family of approximate meshes T is assumed to be K-regular, i.e., for each
K ∈ τh, the mappings TK are CK+1-diffeomorphisms that belong to PK(K̆;R3) for some integer
K <M, with M as in Assumption 3.2. Moreover, they satisfy

sup
x∈K̆
‖dnTK(x)‖ ≤ Cnhn and sup

x∈K
‖dn

(
T−1
K

)
(x)‖ ≤ C−nh−n ∀ n ∈ {1 : K + 1}, (3.1)

where Cn and C−n are positive constants independent from the mesh-size for all n ∈ {1 : K +
1}. Therein, dnTK is the Fréchet derivative of order n of TK and ‖dnT̃K(x)‖ is the induced
norm, with functional spaces omitted for brevity, and the curved domains {Dhi

}i∈N approximate
D. Furthermore, we assume that det(dTK(x)) > 0 for all x ∈ K̆ and that there exists some
positive θ ∈ R, independent of h > 0, such that for all K ∈ τh, it holds that

1
θ
≤ det(dTK(x))

det(dTK(y)) ≤ θ ∀ x,y ∈ K̆.

Our assumptions on Tp follow from [15] and are satisfied by constructions of curved meshes
by polynomial approximations of the domain D (cf. [28]). Figure 1 displays a 2D example of our
setting.

The sense in which we assume the approximate domains to converge to D will be made clear in
the following section. Note that we have limited the polynomial degree of our approximate domains

1The superindex p stands for polyhedral.
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D

D
p

h

τ
p

h

(a) Polygonal mesh of D.

D

Dh

τh

(b) Curved mesh of D.

Figure 1: Two-dimensional example of a smooth original domain D, with associated straight
(polygonal) and curved meshes, τp

h ∈ Tp
h of D (fig. 1a) and τh ∈ T of D (fig. 1b), together with

respective approximated domains Dp
h and Dh. Note that τp

h and τh share same nodes and that
curved edges do not necessarily match the boundary of D.

by the smoothness of D (by imposing K <M where D is of class CM) since no gain is derived from
additional orders of approximation. Moreover, for a multi-index α ∈ N3

0, Assumption 3.3 implies
the following estimates:

sup
x∈K̆

∣∣∣∣ ∂α∂xαTK,i(x)
∣∣∣∣ ≤ Ch|α| and sup

x∈K

∣∣∣∣ ∂α∂xαT
−1
K,i(x)

∣∣∣∣ ≤ Ch−|α| ∀ i ∈ {1 : 3}, (3.2)

ch3 ≤ |det(dTK(x))| ≤ Ch3 ∀ x ∈ K̆, (3.3)

where c and C are positive generic constants—not necessarily equal in each appearance—indepen-
dent of K and the mesh-size. The estimates in (3.2) follow from norm equivalence over finite-
dimensional spaces and (3.1), while (3.3) follows from (3.2) by straightforward computation
(cf. Lemma 8 in [4]).

With the above definitions, we consider finite elements as triples (K,PK ,ΣK), with K ∈ τh,
PK a space of polynomials over K and ΣK := {σKi }nΣ

i=1, nΣ ∈ N, a set of linear functionals acting
on PK (cf. [30]). Let k ∈ N refer to the polynomial degree of the curl-conforming (Nédélec) finite
element space on the reference tetrahedron K̆ defined as

P c
K̆

:= Pk−1(K̆;C3)⊕ {p ∈ P̃k(K̆,C3) : x · p(x) = 0}. (3.4)

Finite element spaces on arbitrary tetrahedrons K (straight or curved) are defined via a curl-
conforming pull-back as follows

P c
K := {p : ψcK(p) ∈ P c

K̆
} where ψcK(V) := dT>K (V ◦ TK). (3.5)

The pull-back in eq. (3.5) defines an isomorphism between H(curl;K) and H(curl; K̆) and sat-
isfies (cf. [25, Lem. 2.2] and [30])

curlψcK(V) = dT co
K curl V ◦ TK .

We refer to [30, Sec. 5.5] for the definition of degrees of freedom for the reference finite element
space in eq. (3.4).The curl-conforming discrete spaces on τh ∈ T are then constructed as

P c(τh) := {Vh ∈H0(curl; Dh) : Vh|K ∈ P c
K ∀ K ∈ τh} , (3.6)

where Dh is the domain covered by τh.

3.2 Curl-conforming interpolation on curved meshes
We now focus on proving continuity and approximation properties for the classical curl-conforming
interpolation operator on curved meshes. We shall denote the reference curl-conforming finite
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element by (K̆,P c
K̆
,Σc

K̆
) and let us introduce {φσ}σ∈Σc

K̆
as the basis of P c

K̆
associated with the

degrees of freedom Σc
K̆

so that for any pair of degrees of freedom σ, σ′ ∈ Σc
K̆
, it holds that

σ(φσ′) =
{

1, if σ = σ′,

0, if σ 6= σ′.

For further details, we refer to [30, Sec. 5.5].

Definition 3.4 (Local interpolation operator). Let s ∈ N. We define the canonical interpolation
operator on K̆

r̆ : Hs(curl; K̆)→ P c
K̆

as the operator mapping U ∈ Hs(curl; K̆) to the unique element in P c
K̆

having the same degrees
of freedom as U, i.e.,

r̆(U) :=
∑
σ∈Σc

K̆

σ(U)φσ.

For any τh ∈ T and any K ∈ τh we denote the canonical interpolation operator on K as rK ,
mapping U ∈Hs(curl;K) to P c

K as follows

rK :
{
Hs(curl;K)→ P c

K ,

U 7→ (ψcK)−1(r̆(ψcK(U))).

Assumption 3.5. From here onwards, we assume that k ≤ K.

The next results are proven in appendix B.

Proposition 3.6. Let Assumptions 3.3 and 3.5 hold. For K ∈ τh and U ∈Hs(curl;K) for some
s ∈ {1 : k}, one has that

‖U− rK(U)‖H(curl;K) ≤ Chs‖U‖Hs(curl;K),

where C > 0 is independent of K, U and τh ∈ T.

Proposition 3.7. Let Assumptions 3.3 and 3.5 hold. For K ∈ τh and U ∈ Hs(curl;K) with
s ∈ {1 : k}, one can show that

‖rK(U)‖Hs(curl;K) ≤ c‖U‖Hs(curl;K),

where c > 0 is independent of K, U and τh ∈ T.

Definition 3.8 (Global interpolation operator). Let s ∈ N. For all τh ∈ T define the canonical
interpolation operator on the entire mesh τh as

Πh : Hs(curl; Dh)→ P c(τh),

i.e., the operator mapping U ∈ Hs(curl; Dh) to the unique element in P c(τh) having the same
degrees of freedom as U element by element:

Πh(U)|K = rK(U) ∀K ∈ τh.

The global interpolation operator follows [30, Sec. 5.5] and enjoys results analogous to propo-
sitions 3.6 and 3.7, which we omit since we will require more specialized versions later on.
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4 Variational problems on approximate domains: continu-
ous problem

We now focus on the solution of Problem 2.1 on a countable family of domains D := {D̃i}i∈N
that approximate the original domain D. Specifically, we are interested in computing the rate of
convergence of solutions on each domain D̃ ∈ D to E in D. Rather than immediately considering
the approximate domains defined by meshes in T, we study the problem in a more general setting,
so as to derive conditions on D transferable to our meshes in T. We will return to our original
discrete problem—identifying D̃i with Dhi

—in Section 5. Moreover, since we are to consider
Problem 2.1 for domains in D, which need not be contained in D, we require the data µ, ε and
J of Problem 2.1 to have extensions to a hold-all domain, denoted DH , containing D and each
domain in D.
Assumption 4.1 (Extension of parameters). There exists an open and bounded Lipschitz domain
DH , referred to as the hold-all domain, such that D ⊂ DH and D̃ ⊂ DH for all D̃ ∈ D. Both
µ and ε are complex symmetric matrix-valued functions with coefficients in L∞(DH) and µ has
a pointwise inverse (µ−1) almost everywhere on DH , with coefficients in L∞(DH) as well. The
imposed current J may be extended to DH so that F in (2.3) may be extended to H0(curl; DH)′.

We consider H0(curl; D) and H0(curl; D̃) to be closed subspaces of H(curl; DH) by identi-
fying elements in H0(curl; D) and H0(curl; D̃) with their extension by 0 to DH . We may then
continuously extend the sesquilinear form in eq. (2.3) as follows:

Φ(U,V) :=
∫

DH

µ−1 curl U · curl V− ω2εU ·V dx ∀ U,V ∈H0(curl; DH) (4.1)

while the right-hand side F in eq. (2.3) is extended to H0(curl; DH)′ by Assumption 4.1, e.g., by
taking an L2(DH)-extension of J.

Problem 4.2 (Continuous variational problem on inexact domains). Find Ẽ ∈H0(curl; D̃) such
that

Φ(Ẽ,V) = F(V),

for all V ∈H0(curl; D̃).

As before, we assume Problem 4.2 is well posed on each D̃ ∈ D, with uniform constants.
Assumption 4.3 (Wellposedness on D). We assume the sesquilinear form in eq. (4.1) to satisfy
the following conditions:

|Φ(U,V)| < C1‖U‖H(curl;D̃)‖V‖H(curl;D̃) ∀ U, V ∈H0(curl; D̃),

sup
U∈H0(curl;D̃)\{0}

|Φ(U,V)| > 0 ∀ V ∈H0(curl; D̃) \ {0},

and

inf
U∈H0(curl;D̃)\{0}

(
sup

V∈H0(curl;D̃)\{0}

|Φ(U,V)|
‖U‖

H(curl;D̃)‖V‖H(curl;D̃)

)
≥ C2,

for all D̃ ∈ D, with positive constants C1 and C2 independent of D̃ ∈ D.

Example 4.4. Taking µ−1 and ε in L∞(DH ;C3×3) and such that

inf
x∈DH

Re
(
eıθµ(x)−1) , inf

x∈DH

Re
(
−eıθε(x)

)
≥ α > 0

for some θ ∈ [0, 2π) and α > 0 is enough to ensure the conditions in Assumption 4.3 ( cf. [5, 21]).

For general D̃ ∈ D, we denote the unique solution of Problem 4.2 as Ẽ ∈H0(curl; D̃), respec-
tively, Ẽi ∈H0(curl; D̃i) for each i ∈ N.
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4.1 On the convergence of domains
We introduce several different notions of convergence of a sequence of domains to a limit, so that
our conditions on the sequence D are clearly defined.

Definition 4.5 (Mosco convergence). We say D approximates D in the sense of Mosco if the
following conditions hold:

(a) For every U ∈H0(curl; D) there exists a sequence {Ui}i∈N, with Ui ∈H0(curl; D̃i) for all
i ∈ N, such that Ui converges to U strongly in H(curl; DH).

(b) Weak limits in H0(curl; DH) of every sequence {Ui}i∈N satisfying Ui ∈ H0(curl; D̃i) for
all i ∈ N, belong to H0(curl; D).

Note that we have identified each U ∈H0(curl; D̃) with its extension by zero to H0(curl; DH).

The notion of Mosco convergence originated in the study of variational inequalities [31, 32]
with applications to partial differential equations found in [14, 17, 34]. The original definition
of Mosco convergence corresponds to the convergence of the spaces H0(curl; D̃i) to H(curl; D)
rather than to the convergence of the domains D̃i to D, but we choose the latter convention since
both are equivalent in our context.

Lemma 4.6. Let Assumptions 2.2, 4.1, and 4.3 hold and let E and Ẽi denote the unique solutions
of Problems 2.1 and 4.2, respectively. Assume D approximates D in the sense of Mosco. Then,
{Ẽi}i∈N converges to E in H(curl;DH).

Proof. Let {Ei}i∈N be a sequence as in item (a) in definition 4.5, strongly converging to E in
H(curl; DH). Then, by Assumption 4.3, for each i ∈ N there exists Vi ∈ H0(curl; D̃i), with
‖Vi‖H(curl;D̃H) = 1, such that

C2

2 ‖Ẽi −Ei‖H(curl;DH) ≤
∣∣∣Φ(Ẽi −Ei,Vi)

∣∣∣ = |F(Vi)− Φ(Ei,Vi)| , (4.2)

where the positive constant C2 is as in Assumption 4.3. Moreover, since the sequence {Vi}i∈N is
bounded it has a weakly convergent subsequence—still denoted {Vi}i∈N—to a limit point V ∈
H0(curl; D) due to item (b) in definition 4.5, so that

lim
i→∞

F(Vi) = F(V) and lim
i→∞

Φ(Ei,Vi) = Φ(E,V),

and the result follows by taking the limit as i grows to infinity in (4.2).

Notice that it is not straightforward to derive convergence rates of approximate solutions Ẽi to
E, since we cannot estimate ‖E−Ei‖H(curl;DH) in lemma 4.6 without further assumptions on D.
However, the notion of Mosco convergence gives minimum conditions to ensure strong convergence
of the approximate solutions.2

Definition 4.7 (Hausdorff convergence). We say D approximates D in the sense of Hausdorff if

lim
i→∞

dH(DH \ D̃i,DH \D) = 0,

where dH(·, ·) denotes the Hausdorff metric between closed subsets of R3, defined as

dH(Ω1,Ω2) := max
{

sup
x∈Ω1

dist(x,Ω2), sup
y∈Ω2

dist(y,Ω1)
}
,

for two closed subsets Ω1 and Ω2 of R3.
2The conditions in definition 4.5 are further studied in [17] and Lemma 2.7 in [14], for example.
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Lemma 4.8 (Lemmas 3 and 4 in [34]). Suppose D approximates D in the sense of Hausdorff and
that D and all D̃ ∈ D are Lipschitz continuous domains with uniform Lipschitz constant. Then,
D approximates D in the sense of Mosco.

lemma 4.8 shows that uniform point-wise approximation—together with mild assumptions on
the regularity of D and D—implies Mosco convergence, and so it provides us with sufficient—
geometric—conditions that ensure the strong convergence of {Ẽi}i∈N to E. Still, the notion is too
weak for us to compute meaningful estimates as it gives almost no information on the domains D̃
in D. Instead of the previous definitions of convergence of domains, we shall consider the following
(stronger) notion, which appears in [18, 37] in the context of shape optimization.

Definition 4.9 (Convergence in the sense of transformations). We say D approximates D in the
sense of transformations of order n ∈ N0 if there exist bijective transformations {Ti}i∈N such that:

Ti : DH → DH , Ti|D̃i
: D̃i → D, Ti,T−1

i ∈W
n,∞(DH)

lim
i→∞
‖Ti − I‖W n,∞(DH) + ‖T−1

i − I‖W n,∞(DH) = 0.

For any transformation T satisfying the previous conditions for a domain D̃ ∈ D, we denote the
associated discrepancy between D and D̃, subject to the transformation T, as

dn(DH ,T) := ‖T− I‖W n,∞(DH) + ‖T−1 − I‖W n,∞(DH).

It is straightforward to see that convergence in the sense of transformations of order zero implies
Hausdorff convergence and that convergence of order one implies, together with the Lipschitz
continuity of D, the results of lemma 4.8. We continue our analysis under the following assumption.

Assumption 4.10 (Assumptions on D). We assume that the countable family D approximates
D in the sense of transformations of order n = 1. Moreover, we assume the respective family of
transformations {Ti}i∈N is such that

d1(DH ,Ti) < 1, d1(DH ,Ti+1) < d1(DH ,Ti), (4.3)
ϑ−1 ≤ ‖det(dTi)‖L∞(DH), ‖dTi‖L∞(DH ;C3×3), ‖dTi

co‖L∞(DH ;C3×3),≤ ϑ,
ϑ−1 ≤ ‖det(d(T−1

i ))‖L∞(DH), ‖d(T−1
i )‖L∞(DH ;C3×3), ‖d(T−1

i )co‖L∞(DH ;C3×3),≤ ϑ,
(4.4)

for some ϑ > 1 and for all i ∈ N.
We will further assume, for simplicity, that all determinants det(dT) are positive almost ev-

erywhere on DH .

Remark 4.11. The conditions in eqs. (4.3) and (4.4) only restrict the quality of “bad” approxi-
mations of D, as convergence in the sense of transformations of order one implies

lim
i→∞
‖det(dTi)‖L∞(DH), ‖dTi‖L∞(DH ;C3×3), ‖dTi

co‖L∞(DH ;C3×3) = 1,

lim
i→∞
‖det(d(T−1

i ))‖L∞(DH), ‖d(T−1
i )‖L∞(DH ;C3×3), ‖d(T−1

i )co‖L∞(DH ;C3×3) = 1.

Moreover, by the norm equivalence over finite-dimensional spaces—and some algebra in the last
case— it holds that

‖dTi − I‖L∞(DH), ‖dT−1
i − I‖L∞(DH ;C3×3), ‖dTco

i − I‖L∞(DH ;C3×3) ≤ Cd1(DH ,Ti), (4.5)

where C > 0 is independent of i ∈ N.

As aforementioned, we will assess the quality of the solutions of Problem 4.2 as approximations
to the solution of Problem 2.1 in two different ways:

(a) through isomorphisms Ψi : H0(curl; D) → H0(curl; D̃i) to measure ‖ΨiE − Ẽi‖H(curl;D̃i)

as i grows towards infinity—equivalently, ‖E−Ψ−1
i Ẽi‖H(curl;D)—; and,
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(b) through an appropriate extension to DH of E, allowing us to measure ‖E− Ẽi‖H(curl;D̃i)
as

i grows towards infinity.

We now introduce a curl-conforming pull-back that will act as the mentioned isomorphism
between H0(curl; D̃) and H0(curl; D).

Lemma 4.12 (Lemma 2.2 in [25]). For D̃ ∈ D, let T : D̃ → D be a continuous, bijective and
bi-Lipschitz mapping from D̃ to D, so that T ∈W 1,∞(D̃) and T−1 ∈W 1,∞(D). Then, T induces
an isomorphism between H0(curl; D) and H0(curl; D̃), given by

Ψ :
{
H0(curl; D)→H0(curl; D̃)

U 7→ dT>(U ◦T)
.

Moreover, it holds that

curl Ψ(U) = dTco(curl U ◦T) ∈ L2(D̃).

Since T and T−1 possess analogous properties, the results of lemma 4.12 hold for T−1 as well.
Hence, we shall denote the inverse of the mapping Ψ : H0(curl; D) → H0(curl; D̃) by Ψ−1, for
which one has

Ψ−1 :
{
H0(curl; D̃)→H0(curl; D)

U 7→ d(T−1)>(U ◦T−1)
,

curl Ψ−1(U) = d(T−1)co(curl U ◦T−1) ∈ L2(D̃).

From here onwards, and for general D̃ ∈ D, we refer to the isomorphism introduced in
lemma 4.12 as Ψ : H0(curl; D) → H0(curl; D̃)—respectively, Ψi : H0(curl; D) → H0(curl; D̃i)
for each i ∈ N.

Lemma 4.13. Let Assumption 4.10 hold. Then, 1the following bounds are satisfied

‖ΨiU‖H(curl;D̃i)
≤ C‖U‖H(curl;D) and ‖Ψ−1

i V‖H(curl;D) ≤ C‖V‖H(curl;D̃i)
,

for all U ∈ H0(curl; D) and all V ∈ H0(curl; D̃i), where the positive constant C depends on
ϑ > 1 introduced in Assumption 4.10, but not on i ∈ N.

Proof. Fix i ∈ N and let U ∈H0(curl; D). Then, by Assumption 4.10, one has

‖ΨiU‖20,D̃i
=
∫

D̃i

‖ΨiU(x)‖2C3 dx =
∫

D̃i

‖dT>i U ◦T(x)‖2C3 dx

≤
∫

D̃i

‖dT>i (x)‖2C3×3‖U ◦T(x)‖2C3 dx ≤ Cϑ2
∫

D̃i

‖U ◦T(x)‖2C3 dx

= Cϑ2
∫

D
‖U(x)‖2C3 det(d(T−1

i (x))) dx ≤ Cϑ3‖U‖20,D,

where the positive constant C follows from the norm equivalence over finite dimensional spaces.
An analogous computation yields

‖curl ΨiU‖20,D̃i
≤ Cϑ3‖curl U‖20,D.

From where the estimate for Ψi follows straightforwardly. The estimate for Ψ−1
i is retrieved by

repeating the arguments exposed above.

The next results follow from arguments similar to [37, Prop. 2.32] and will be of use throughout
(cf. [7, Lem. 5.1]), and whose proofs are provided in appendix C.
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Lemma 4.14. Let Υ and Ω be open Lipschitz domains in R3 such that Υ is convex and Ω ⊂ Υ.
Let T be a continuous, bijective and bi-Lipschitz transformation—so that T and T−1 belong to
W 1,∞(Υ)—mapping Υ onto itself. Then, it holds that

‖U ◦T− U‖L∞(Ω) ≤ ‖T− I‖L∞(Υ)‖U‖W 1,∞(Υ),

for all U ∈W 1,∞(Υ).

Lemma 4.15. Let Υ and Ω be open Lipschitz domains in R3 such that Υ is convex and Ω ⊂
Υ. Let T be a continuous, bijective and bi-Lipschitz transformation—T and T−1 belong to
W 1,∞(Υ)—mapping Υ onto itself and such that

sup
x,y∈Υ
x6=y

‖(T(x)− x)− (T(y)− y)‖R3

‖x− y‖R3
≤ κ < 1 and ϑ−1 ≤ ‖det(dT)‖L∞(Υ) ≤ ϑ, (4.6)

for some κ ∈ (0, 1) and ϑ > 1. Then, one has

‖U ◦T−U‖0,Ω ≤ (ϑ 1
2 + 1)‖T− I‖sL∞(Υ)‖U‖s,Υ,

for all U ∈Hs(Υ), with 0 ≤ s ≤ 1.

4.2 Convergence of solution pull-backs in approximate domains
We begin by estimating the convergence to zero of the following approximation error:

‖ΨiE− Ẽi‖H(curl;D̃i)
,

through an application of Strang’s lemma [35, Thm. 4.2.11]. As in [5, 25], we note that if E ∈
H0(curl; D) is the unique solution of Problem 2.1, then ΨE ∈H0(curl; D̃) is the unique solution
of a modified Maxwell problem on D̃ arising from transferring the sesquilinear and antilinear forms
Φ(·, ·) and F(·) from D to D̃ by a change of variables (cf. in [5, Sec. 2.5.2]). Specifically, for D̃ ∈ D,
we introduce the modified sesqulinear and antilinear forms as

Φ̂(U,V) := Φ(Ψ−1U,Ψ−1V) and F̂(V) := F(Ψ−1V), (4.7)

for all U,V ∈H0(curl; D̃).

Problem 4.16. (Modified variational problem on D̃) Find Ê ∈H0(curl; D̃) such that

Φ̂(Ê,V) = F̂(V) ∀V ∈H0(curl; D̃).

Proposition 4.17. Let Assumptions 2.2 and 4.10 hold and let E denote the solution of Prob-
lem 2.1. Then, ΨE ∈H0(curl; D̃) is the unique solution of Problem 4.16.

Proof. Take U,V ∈ H0(curl; D̃). Then, with C1 > 0 as in Assumption 2.2 and C > 0 as in
lemma 4.13, we have that

|Φ̂(U,V)| =
∣∣Φ(Ψ−1U,Ψ−1V)

∣∣ ≤ C1‖Ψ−1U‖H(curl;D)‖Ψ−1V‖H(curl;D)

≤ C1C
2‖U‖

H(curl;D̃)‖V‖H(curl;D̃),

and

|F̂(V)| =
∣∣F(Ψ−1V)

∣∣ ≤ ‖F‖H0(curl;D)′‖Ψ−1V‖H(curl;D) ≤ C‖F‖H0(curl;D)′‖V‖H(curl;D̃).

12



Moreover, since Ψ : H0(curl; D)→H0(curl; D̃) is an isomorphism, for every U ∈H0(curl; D̃) it
holds that

sup
V∈H0(curl;D̃)\{0}

|Φ̂(U,V)|
‖U‖

H0(curl;D̃)‖V‖H0(curl;D̃)

≥ C−2 sup
V∈H0(curl;D̃)\{0}

|Φ(Ψ−1U,Ψ−1V)|
‖Ψ−1U‖

H0(curl;D̃)‖Ψ
−1V‖

H0(curl;D̃)
≥ C−2C2,

where the positive constant C2 is as in Assumption 2.2 and C > 0 comes from lemma 4.13.
Moreover, for every V ∈H0(curl; D̃) \ {0} we have that

sup
U∈H0(curl;D̃)\{0}

|Φ̂(U,V)| = sup
U∈H0(curl;D)\{0}

|Φ(U,Ψ−1V)| > 0.

Hence, since Φ̂(·, ·) satisfies the inf-sup conditions, we can conclude that Problem 4.16 is well posed
and has a unique solution in H0(curl; D̃) [35, Sec. 2.1.6]. Moreover, since E ∈H0(curl; D) solves
Problem 2.1 there holds that

Φ̂(ΨẼ,V) = Φ(Ẽ,Ψ−1V) = F(Ψ−1V) = F̂(V),

for all V ∈H0(curl; D̃), and so ΨE ∈H0(curl; D̃) is the unique solution of Problem 4.16.

Theorem 4.18. Let Assumptions 2.2, 4.1, 4.3, and 4.10 hold and let E and Ei denote the unique
solutions of Problems 2.1 and 4.2 on D̃i for each i ∈ N. Moreover, assume that µ−1, ε and J have
coefficients in W 1,∞(DH). Then, it holds that

‖ΨiE− Ẽi‖H(curl;D̃i)
≤ Cd1(DH ,Ti)(‖E‖H(curl;D) + ‖J‖W 1,∞(DH)),

where C depends on ω, µ, ε and J but is independent of i ∈ N.

Proof. Fix i ∈ N, recall the sesquilinear and antilinear forms in eq. (4.7) and let U, V ∈
H0(curl; D̃i). We begin by noticing that the sesquilinear and antilinear forms in (4.7) may be
written as

Φ̂i(U,V) =
∫

D̃i

µ−1
Ti

curl U · curl V− ω2εTi
U ·V dx and F̂i(V) = −ıω

∫
D̃i

JTi
·V dx,

where

µTi
:= det(dTi) dT−1

i (µ ◦Ti) dT−>i , εTi
:= det(dTi) dT−1

i (ε ◦Ti) dT−>i ,

JTi
:= det(dTi) dT−1

i (J ◦Ti).

Then, one has that∣∣∣Φ(U,V)− Φ̂i(U,V)
∣∣∣ ≤ ∣∣∣∣∫

D̃i

(µ−1 − µ−1
Ti

) curl U · curl V dx
∣∣∣∣+ ω2

∣∣∣∣∫
D̃i

(ε− εTi
)U ·V dx

∣∣∣∣
≤ C

(
‖µ−1 − µ−1

T ‖L∞(DH ;C3×3) + ω2‖ε− εT‖L∞(DH ;C3×3)
)
‖U‖

H(curl;D̃)‖V‖H(curl;D̃)

≤ Cd1(DH ,Ti)(‖ε‖W 1,∞(DH ;C3×3) + ‖µ−1‖W 1,∞(D;C3×3))‖U‖H(curl;D̃i)
‖V‖

H(curl;D̃i)
,

(4.8)

where C > 0 in the first inequality follows from the norm equivalence on finite-dimensional spaces
and is independent of i ∈ N. The last bound is derived by applying lemma 4.14 and Assump-
tion 4.10, whereby the positive constant C depends on ϑ > 1 in Assumption 4.10.

Analogously, we have that

|F(V)− F̂i(V)| ≤ Cd1(DH ,Ti)‖J‖W 1,∞(DH)‖V‖H(curl;D̃i)
,
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where C > 0 is independent of i ∈ N. Finally, by Assumption 4.3 and proposition 4.17, it holds
that

C̃s‖ΨiE− Ẽi‖H(curl;D̃i)
≤ sup

V∈H0(curl;D̃i)\{0}

|Φ(ΨiE− Ẽi,V)|
‖V‖

H(curl;D̃i)

≤ sup
V∈H0(curl;D)\{0}

|Φ(ΨiE,V)− Φ̂i(ΨiE,V)|+ |F̂i(V)− F(V)|
‖V‖

H(curl;D̃i)
.

≤ Cd1(DH ; Ti)
[
(ω2‖ε‖W 1,∞(DH ;C3×3) + ‖µ−1‖W 1,∞(D;C3×3))‖ΨiE‖H(curl;D̃i)

+ ω‖J‖W 1,∞(DH))
]
,

and the claimed estimate then follows by lemma 4.13.

4.3 Convergence to an extended solution over DH

Throughout this section, we aim at deriving convergence rate estimates for the approximation
error

‖E− Ẽi‖H(curl;D̃i)

To this end, we will require E to be extended to DH with some higher regularityHr(curl; DH), for
some r ∈ (0, 1]—see Assumption 4.19 below. Our results in section 4.2 require no such assumption.

Assumption 4.19 (Extension to DH). E ∈ H0(curl; D)—the solution of Problem 2.1—may be
extended to Hr(curl; DH), with r ∈ (0, 1]. We slightly abuse notation by referring to the extension
of E as E as well. Furthermore, we assume the hold-all domain DH to be convex.

For an example of an extension operator from H1(curl; D) to H1(curl; DH) under the condi-
tion that D be a domain of class C2 (cf. [24, Thm. 2]).

Theorem 4.20. Let Assumptions 2.2, 4.1, 4.3, 4.10, and 4.19 hold and let E and Ẽi denote
respectively the unique solutions of Problems 2.1 and 4.2 on D̃i for all i ∈ N. Then, it holds that

‖E− Ẽi‖H(curl;D̃i)
≤ C

[
(d1(DH ,Ti) + d0(DH ,Ti)r)‖E‖Hr(curl;DH) + d1(DH ,Ti)‖J‖W 1,∞(DH)

]
,

(4.9)

for all i ∈ N, where the positive constant C depends on ω, µ, ε and J but is independent of i ∈ N.

Proof. Fix i ∈ N and recall Ψi : H0(curl; D) → H0(curl; D̃i) as in lemma 4.12. Then, by the
triangle inequality, one has

‖E− Ẽi‖H(curl;D̃i)
≤ ‖E−ΨiE‖H(curl;D̃i)

+ ‖ΨiE− Ẽi‖H(curl;D̃i)
, (4.10)

where E is chosen to be extended by Assumption 4.19. We start by bounding the first term in the
right-hand side of eq. (4.10) thanks to lemma 4.15:

‖E−ΨiE‖0,D̃i
= ‖E− dT>i E ◦Ti‖0,D̃i

≤ ‖dT>i − I‖L∞(DH)‖E‖0,DH
+ (ϑ 1

2 + 1)‖dT>i ‖L∞(DH)‖Ti − I‖rL∞(DH)‖E‖r,DH

≤
(
‖dT>i − I‖L∞(DH) + (ϑ 1

2 + 1)ϑ‖Ti − I‖rL∞(DH)

)
‖E‖r,DH

.

Simarly, we have that

‖curl(E−ΨiE)‖0,D̃i
≤
(
‖dTco

i −I‖L∞(DH)+(ϑ 1
2 +1)ϑ‖Ti−I‖rL∞(DH)

)
‖curl E‖r,DH

,
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so that, by Assumption 4.10, we have that

‖E−Ψi(E)‖2
H(curl;D̃i)

= ‖E−Ψi(E)‖2
0,D̃i

+ ‖curl E− curl Ψi(E)‖2
0,D̃i

≤ C2
(
d1(DH ,Ti) + (ϑ 1

2 + 1)ϑd0(DH ,Ti)r
)2 (
‖E‖2r,DH

+ ‖curl E‖2r,DH

)
≤ C2(ϑ 1

2 + 1)2ϑ2 (d1(DH ,Ti) + d0(DH ,Ti)r)2 ‖E‖2Hr(curl;DH),

where C arises from eq. (4.5) and is independent of i ∈ N. Furthermore, the second term in the
right-hand side of eq. (4.10) may be bounded by direct application of theorem 4.18, yielding

‖E− Ẽi‖H(curl;D̃i)
≤ C (d1(DH ,Ti) + d0(DH ,Ti)r)

· ‖E‖Hr(curl;DH) + Cd1(DH ,Ti)(‖E‖H(curl;D) + ‖J‖W 1,∞(DH)).

The stated result follows by reordering the terms in the last equation.

5 Variational problems on approximate domains: discrete
problem

We now analyze the discrete version of Problem 4.2, and consider the family of approximate
domains D corresponding to curved domains {Dhi}i∈N introduced in section 3, i.e., Dhi ≡ D̃i.
This discrete setting is signaled by denoting an arbitrary element of D by Dh instead of D̃.
We also recall the discrete space P c

0 (τh) in eq. (3.6) as the space of curl-conforming piecewise
polynomials of degree k ∈ N with null flipped-Dirichlet trace on Γ.

Assumption 5.1 (Discrete inf-sup conditions). Assume the sesquilinear form in eq. (4.1) to satisfy
the following conditions:

inf
U∈P c

0 (τh)\{0}

(
sup

V∈P c
0 (τh)\{0}

|Φ(U,V)|
‖U‖H(curl;Dh)‖V‖H(curl;Dh)

)
≥ C2,

inf
V∈P c

0 (τh)\{0}

(
sup

U∈P c
0 (τh)\{0}

|Φ(U,V)|
‖U‖H(curl;Dh)‖V‖H(curl;Dh)

)
≥ C3, (5.1)

for all τh ∈ T (Dh ∈ D), where the positive constants C2 and C3 are independent of the mesh-size
h.

Problem 5.2 (Discrete variational problem on inexact domains). Find Eh ∈ P c
0 (τh) such that

Φ(Eh,V) = F(V),

for all V ∈ P c
0 (τh).

Assumption 5.1 ensures uniqueness and existence of solutions of Problem 5.2, whose solutions
are denoted Eh ∈ P c

0 (τh) for general τh ∈ T and Ehi
∈ P c

0 (τhi
) for each i ∈ N, respectively. Note

that the condition in eq. (5.1) is stronger than required for the purposes of proving the unique
solvability of Problem 5.2. This stronger condition is necessary to prove a discrete analogue of
proposition 4.17 (see proposition 5.6) via a perturbation argument.

5.1 Convergence of domains in a discrete setting
Let us start with the following result, regarding the approximation of functions in H0(curl; D)
by discrete functions in P c

0 (τh). Here, once again we identify elements of H0(curl; D) and
H0(curl; Dh) with their zero-extensions to DH .
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Lemma 5.3. Suppose D approximates D in the sense of Hausdorff and that D and all Dh ∈ D
are Lipschitz continuous domains with uniform Lipschitz constant in D. Then, it holds that

(a) For every U ∈H0(curl; D) there exists a sequence {Ui}i∈N with Ui ∈ P c
0 (τhi

) for all i ∈ N,
such that Ui converges to U strongly in H0(curl; DH).

(b) Weak limits of every sequence {Ui}i∈N, with Ui ∈ P c
0 (τhi

), belong to H0(curl; D).

Proof. item (a): Take U ∈ H0(curl; D) and set an arbitrary ε > 0. By density of C∞0 (D) in
H0(curl; D), there exists some Ũε ∈ C∞0 (D) such that ‖Ũε−U‖H0(curl;DH) ≤ ε

2 . Moreover, there
exists some iε ∈ N such that supp(Ũε) ⊂ Dhi for all i > iε (cf. proof of Lemma 3 in [34, Sec. 3]),
and another i′ε ∈ N such that ‖Πhi

Ũε − Ũε‖H(curl;DH) ≤ ε
2 for all i > i′ε. Then, it holds that

‖ΠhiŨε −U‖H(curl;DH) ≤ ε,

for all i > i′ε. Repeating the procedure above for a decreasing sequence of ε > 0 allows the
construction of a strongly convergent sequence to U ∈H0(curl; D) (cf. [14, Lem. 2.4]).

item (b): Follows from lemma 4.8 by the inclusion P c
0 (τhi

) ⊂H0(curl; Dhi
).

In order to obtain convergence rates of finite element solutions to E—thereby proving discrete
analogues to theorems 4.18 and 4.20—we need one further assumption on the transformations
{Ti}i∈N.

Assumption 5.4. For each element of the family {Ti}i∈N mapping Dhi to D, as given in As-
sumption 4.10, we assume that the transformations and their inverses belong to WK+1,∞(K) for
each tetrahedron K in their corresponding mesh, i.e., for each i ∈ N, we assume that

Ti|K ∈WK+1,∞(K)

for all K ∈ τhi
, and that

lim
i→∞

max
K∈τhi

‖Ti|K − I‖WK,∞(K) + max
K∈τhi

‖T−1
i |K − I‖WK,∞(K) = 0,

max
K∈τhi

‖Ti|K‖WK+1,∞(K) + max
K∈τhi

‖T−1
i |K‖WK+1,∞(K) ≤ cT,

for all i ∈ N, where cT is a positive constant independent of i ∈ N. Moreover, the family {Ti}i∈N
satisfies the following bound:

d0(DH ,Ti) ≤ ChK+1
i and d1(DH ,Ti) ≤ ChKi , (5.2)

for K ∈ {1 : M− 1} as in Assumption 3.3, with C > 0 independent of i ∈ N.

Assumption 5.4 is justified by constructions of mappings {Ti}i∈N in the context of curved
meshes in finite elements (cf. [28, Prop. 2 and 3] for properties of these mappings and Sections 3 and
5 therein for their construction satisfying Assumptions 3.3 and 5.4). Also, Assumption 3.2 related
to smoothness requirements on D to be of class CM, has no direct relevance on the coming proofs
of our discrete approximation results. Indeed, the smoothness of the domain only plays a role in
proving decay rates such as eq. (5.2) in practical constructions of the transformations {Ti}i∈N,
which we have assumed through Assumption 5.4. Nonetheless, we opt to enforce Assumption 3.2 in
our coming results to emphasize its necessity for the construction of the transformations {Ti}i∈N
and, therefore, our main results.

5.2 Discrete convergence of solution pull-backs in approximate domains
We now extend the results in section 4.2 to our discrete setting, i.e. we estimate the error

‖ΨiE−Ehi
‖H(curl;Dhi

),

as i grows towards infinity, where Ψi : H0(curl; D)→H0(curl; Dhi
) was introduced in lemma 4.12.
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Problem 5.5 (Modified discrete variational problem on Dh). Find Êh ∈ P c
0 (τh) such that

Φ̂(Êh,V) = F̂(V) ∀V ∈ P c
0 (τh).

Proposition 5.6. Let Assumptions 2.2, 3.3, 4.10, and 5.1 hold. Moreover, assume that µ−1, ε
and J have coefficients in W 1,∞(DH). Then, Problem 5.5 is well posed for all sufficiently small
h > 0.

Proof. The continuity of Φ̂(·, ·) and F̂(·) on P c
0 (τh) follows from the proof of proposition 4.17 and

the conformity of the finite element space, i.e. P c
0 (τh) ⊂H0(curl; Dh). The inf-sup conditions on

Φ̂(·, ·) follow by a perturbation argument through eq. (4.8) and our assumptions3.

In order to estimate the convergence rates for approximations of Ehi
to ΨiE as i ∈ N grows

to infinity, one needs to show that ΨiE preserves the smoothness of E to some degree.

Lemma 5.7. Let Assumptions 3.3 and 5.4 hold. Let U ∈ H0(curl; D) ∩Hs(curl; D) for some
s ∈ {1 : K} and let K ∈ τh be an arbitrary tetrahedron of the mesh τh ∈ T. Then, for Ψ :
H0(curl; D) → H0(curl; Dh) as introduced in lemma 4.12, there holds that ΨU ∈ Hs(curl;K)
and that

‖Ψi(U)‖Hs(curl;K) ≤ ϑ
1
2C‖U‖Hs(curl;Ti(K)),

where the positive constant C depends on cT in Assumption 5.4 but not on the mesh-size or
U ∈H0(curl; D) ∩Hs(curl; D).

Proof. The result is a direct consequence of [15, Lem. 1] or [16, Lem. 3] together with our assump-
tions.

Theorem 5.8. Let Assumptions 2.2, 3.2, 3.3, 4.1, 4.3, 4.10, 5.1, and 5.4 hold, let E and Ehi de-
note the unique solutions of Problems 2.1 and 5.2, respectively, and assume that E ∈Hs(curl; D)
for some s ∈ {1 : k}. Furthermore, let µ−1, ε and J have coefficients in W 1,∞(D). Then, there
exists some i ∈ N such that, for all i > i, it holds that

‖ΨiE−Ehi
‖H(curl;D) ≤ C(hsi‖E‖Hs(curl;D) + hKi ‖J‖W 1,∞(DH)), (5.3)

where C > 0 depends on ω, µ, ε and J but is independent of i ∈ N.

Proof. Fix i ∈ N large enough so that the results of proposition 5.6 hold true and let Êi ∈ P c
0 (τhi

)
denote the solution of Problem 5.5. Then, one can write

‖ΨiE−Ehi
‖H(curl;Dhi

) ≤ ‖ΨiE− Êhi
‖H(curl;Dhi

) + ‖Êhi
−Ehi

‖H(curl;Dhi
).

Lemma 5.7 implies that ΨiE ∈Hs(curl;K) for all K ∈ τhi
, with

‖Ψi(E)‖Hs(curl;K) ≤ C‖E‖Hs(curl;Ti(K)),

for C positive independent of i ∈ N. Since ΨiE ∈ H0(curl; Dhi) is the solution of Problem 4.16
(see proposition 4.17), Theorem 5.41 in [30] yields

‖ΨiE− Êhi
‖H(curl;Dhi

) ≤ Chis
 ∑
K∈τhi

‖ΨiE‖2Hs(curl;K)

 1
2

≤ Chis
 ∑
K∈τhi

‖E‖2Hs(curl;Ti(K))

 1
2

≤ Chis‖E‖Hs(curl;D),

3See, for example, the proof of [35, Thm. 4.2.11]
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where the positive constant C is not necessarily equal in each appearance. Furthermore, by a
reasoning analogous to that in theorem 4.18, followed by an application of lemma 4.13 together
with Assumption 5.4 and the wellposedness of Problem 5.5 (also, see proposition 4.17), we have
that

‖Êhi −Ehi‖H(curl;Dhi
) ≤ Cd1(DH ,Ti)(‖Êhi‖H(curl;Dhi

) + ‖J‖W 1,∞(DH)) ≤ ChKi ‖J‖W 1,∞(DH)

where again C may vary, but remains hi-independent. The result in eq. (5.3) is then deduced by
a simple combination of the above estimates.

5.3 Discrete convergence to an extended solution over DH

We now transfer our results in section 4.3 to our discrete setting.

Theorem 5.9. Let Assumptions 2.2, 3.2, 3.3, 4.1, 4.3, 4.10, 4.19, 5.1, and 5.4 hold, let E and Ehi

denote the unique solutions of Problems 2.1 and 5.2 and assume that E ∈ Hs(curl; D) for some
s ∈ {1 : k}. Furthermore, let µ−1, ε and J have coefficients in W 1,∞(D). By Assumption 4.19
E ∈ Hr(curl; DH) for some r ∈ (0, 1]. Then, there exists some i ∈ N such that, for all i > i, it
holds that

‖E−Ehi
‖H(curl;Dhi

) ≤ C
[
(hKi +hr(K+1)

i )‖E‖Hr(curl;DH)+hsi‖E‖Hs(curl;D)+hKi ‖J‖W 1,∞(DH)

]
,

where C > 0 depends on ω, µ, ε and J, but is independent of i ∈ N.

Proof. Fix i ∈ N large enough so that the results of proposition 5.6 hold true. The triangle
inequality yields

‖E−Ehi‖H(curl;Dhi
) ≤ ‖E−ΨiE‖H(curl;Dhi

) + ‖ΨiE−Ehi‖H(curl;Dhi
).

From the proof of theorem 4.20, it follows that

‖E−ΨiE‖H(curl;Dhi
) ≤ C (d1(DH ,Ti) + d0(DH ,Ti)r) ‖E‖Hr(curl;DH),

which, together with Assumption 5.4, gives

‖E−ΨiE‖H(curl;Dhi
) ≤ C

(
hKi + h

r(K+1)
i

)
‖E‖Hr(curl;DH),

where C is a positive constant depending only on ϑ in Assumption 4.10. Moreover, a direct
application of theorem 5.8 leads to

‖ΨiE−Ehi
‖H(curl;Dhi

) ≤ C(hsi‖E‖Hs(curl;D) + hKi ‖J‖W 1,∞(DH)),

where the positive constant C follows from theorem 5.8. The result then follows by a straightfor-
ward combination of previous estimates.

5.4 A fully discrete estimate
We now deduce convergence estimates for the fully discrete Maxwell variational problem under
consideration by incorporating our findings in [4]. To this end, let us introduce quadrature rules
for the numerical approximation of Problem 5.2.

Definition 5.10 (Quadratures). For L ∈ N, let {w̆l}Ll=1 ⊂ R be a set of quadrature weights and
let {b̆l}Ll=1 ⊂ K̆ be a set of corresponding quadrature points. Then, we introduce the following
linear operator over C(K̆),

QK̆ :


C(K̆)→ C

φ 7→
L∑
l=1

w̆lφ(b̆l)
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Moreover, we say QK̆ is exact on polynomials of degree n ∈ N0 if and only if

QK̆(φ) =
∫
K̆

φ(x) dx ∀ φ ∈ Pn(K̆;C).

Quadratures on arbitrary mesh elements K ∈ τh are defined from a quadrature on K̆ through
the mappings in Assumption 3.3 as follows

QK(φ) := QK̆(det(dTK)φ ◦ TK). (5.4)

Then, for three distinct quadrature rules over K̆—denoted as Q1
K̆
, Q2

K̆
and Q3

K̆
and which shall be

specified later on—we introduce the numerical approximations of the sesquilinear and antilinear
forms in (2.3) as

Φh(Uh,Vh) :=
∑
K∈τh

Q1
K(µ−1 curl Uh · curl Vh) +Q2

K(−ω2εUh ·Vh), (5.5)

Fh(Vh) :=
∑
K∈τh

Q3
K(−ıωJ ·Vh), (5.6)

for all Uh and Vh in P c
0 (τh), where QiK is constructed from Qi

K̆
through (5.4) for all i ∈ {1 : 3}.

Problem 5.11 (Fully discrete problem). Find Ẽh ∈ P c
0 (τh) such that

Φh(Ẽh,Vh) = Fh(Vh),

for all Vh ∈ P c
0 (τh).

5.4.1 Fully discrete convergence of solution pull-backs in approximate domains

We now present a fully discrete version of theorem 5.8, stating the approximation properties of the
solution of Problem 5.11 to the pull-back of the solution of Problem 2.1. To limit the number of
parameters with effects on the convergence rate, we restrict ourselves to the case of isoparametric
finite elements (K = k).
Theorem 5.12. Let all the assumptions in theorem 5.8 hold and take K = k. Additionally, let us
assume that there holds that

J ∈W s,q(DH) and εi,j , (µ−1)i,j ∈W s,∞(DH) ∀ i, j ∈ {1 : 3},

for some q > min(2, s/3), where s ∈ {1 : k} is as in theorem 5.8, as well as the following conditions
on the quadrature rules defining Φh(·, ·) and Fh(·) in eqs. (5.5) and (5.6), respectively,

• Q1
K̆

is exact for polynomials of degree 2k + s− 3 and

• Q2
K̆

and Q3
K̆

are exact for polynomials of degree 3k + s− 3.
Then, there exists some i ∈ N such that for all i ∈ N with i > i, Problem 5.11 is uniquely solvable
and its solution, denoted Ẽhi , satisfies

‖ΨiE− Ẽhi
‖H(curl;Dhi

) ≤ Chsi
(
‖E‖Hs(curl;D) + ‖J‖W s,q(DH) + ‖J‖W 1,∞(DH)

)
,

where the positive constant C is independent of the mesh-size.
Proof. Fix i ∈ N as in the proof of theorem 5.8 and let Ehi ∈ P c

0 (τhi) denote the solution of
Problem 5.2. Performing small modifications of [4, Thm. 4] (cf. proof of [35, Thm. 4.2.11]), it
follows that

‖ΨiE− Ẽhi
‖H(curl;Dhi

) ≤ C

[
‖Ψi(E)−Ehi

‖H(curl;Dhi
) + ‖Πhi

(ΨiE)−Ehi
‖H(curl;Dhi

)

+hsi

 ∑
K∈τhi

‖Πhi
(ΨiE)‖2Hs(curl;K)

 1
2

+ hsi‖J‖W s,q(DH)

]
,
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where C > 0 depends on the problem’s parameters, including the constants in Assumptions 4.3
and 5.1, but it is independent of i ∈ N. theorem 5.8 then yields

‖Ψi(E)−Ehi
‖H(curl;Dhi

) ≤ Chsi (‖E‖Hs(curl;D) + ‖J‖W 1,∞(DH)),

with C from theorem 5.8 independently of i ∈ N. The continuity of the global interpolation
operator (proposition 3.7 and definition 3.8) leads to

‖Πhi
(Ψi(E))−Ehi

‖H(curl;Dhi
) = ‖Πhi

(Ψi(E)−Ehi
)‖H(curl;Dhi

) ≤ C‖Ψi(E)−Ehi
‖H(curl;Dhi

),

where the positive constant C is as in proposition 3.7 and is also independent of i ∈ N. Moreover,
by proposition 3.7 and lemma 5.7, for every K ∈ τhi

it holds that

‖Πhi
(Ψi(E))‖Hs(curl;K) =‖rK(Ψi(E))‖Hs(curl;K)≤C‖Ψi(E)‖Hs(curl;K)≤C‖E‖Hs(curl;Ti(K)),

so that ∑
K∈τhi

‖Πhi(Ψi(E))‖2Hs(curl;K) ≤ C
2‖E‖2Hs(curl;D),

where C > 0 follows from proposition 3.7 and lemma 5.7. The estimate follows by an application
of lemma 4.13.

5.4.2 Fully discrete convergence to an extended solution over DH

We continue by presenting the corresponding fully discrete version of theorem 5.13, stating the
convergence of the solution of Problem 5.11 to a smooth extension of the solution of Problem 2.1.
For simplicity (as before) we consider only the case of isoparametric finite elements (K = k).

Theorem 5.13. Let all the assumptions in theorem 5.9 hold and take K = k. Moreover, assume
that there holds that

J ∈W s,q(DH) and εi,j , (µ−1)i,j ∈W s,∞(DH) ∀ i, j ∈ {1 : 3},

for some q > min(2, s/3), where s ∈ {1 : k} is as in theorem 5.13, as well as the following
conditions on the quadrature rules defining Φh(·, ·) and Fh(·) in eqs. (5.5) and (5.6), respectively,

• Q1
K̆

is exact for polynomials of degree 2k + s− 3 and

• Q2
K̆

and Q3
K̆

are exact for polynomials of degree 3k + s− 3.

Then, there exists some i ∈ N such that for all i ∈ N with i > i, Problem 5.11 is uniquely solvable
and its solution, denoted Ẽhi

, satisfies

‖E− Ẽhi
‖H(curl;Dhi

)≤C(ϑ)(hK+hr(K+1))‖E‖Hr(curl;DH)+C(ϑ,T)hsi‖E‖Hs(curl;D)+Chsi ,

where positive constants C(ϑ) and C(T) depend only on ϑ and T, respectively, and C is a positive
constant independent of the mesh-size.

Proof. Fix i ∈ N as in the proof of theorem 5.9. By the triangle inequality, we have that

‖E− Ẽhi
‖H(curl;Dhi

) ≤ ‖E−ΨiE‖H(curl;Dhi
) + ‖ΨiE− Ẽhi

‖H(curl;Dhi
),

and the result follows by an application of lemma 4.15 and theorem 5.12 (also see the proof of
theorem 4.20).
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6 Numerical Results
We test our main results on a simple numerical example. For simplicity, and in order to study only
the effects of domain approximation quality on the convergence rate of the finite element method,
we consider the exact domain D to be the ball with radius 1 centered at the origin, i.e.

D := {x ∈ R3 : ‖x‖R3 < 1}.

Since D is a convex domain, the approximate domains in D may be chosen to be contained in
D, so that D ≡ DH in Assumption 4.19 and no extension of the solution E ∈ H0(curl; D) of
Problem 2.1 outside of D is required. Hence, our following results consider the error measurement
as in section 5.3 only.

We consider the coercive variational problem onH0(curl; D) given by the following sesquilinear
and antilinear forms:

Φ(U,V) :=
∫

D
(µ0I)−1 curl U · curl V− ω2(ε0I)U ·V dx and F(V) := −ıω

∫
D

J ·V dx,

where ε0 := 1, µ0 := 2, ω := 1 and J := ı[J1, J2, J3]>, with

J1(x) := x1 − π2

8 x1x2 cos
(
π
2 ‖x‖

2
R3

)
,

J2(x) := x2 +
(

1
4 + π2

8 (x2
1 + x2

3)
)

cos
(
π
2 ‖x‖

2
R3

)
+ π

4 sin
(
π
2 ‖x‖

2
R3

)
,

J3(x) := x3 − π2

8 x2x3 cos
(
π
2 ‖x‖

2
R3

)
.

Under the above choices, the exact solution to Problem 2.1 is

E(x) :=
[
x1, x2 + 1

4 cos
(
π
2 ‖x‖

2
R3

)
, x3
]>
. (6.1)

The various meshes used throughout our experiments were constructed using GMSH [22], while
Problem 5.2 was solved using GETDP version 3.4.0 [20].

6.1 Approximate domains
Let us consider two different sequences of meshes of different order. The first sequence considers
meshes constructed from straight tetrahedrons only (K = 1), while the second sequence considers
meshes consisting of second order elements curved tetrahedrons (K = 2). fig. 2 shows the first
three meshes of first and second order. For more details on the conditions satisfied by the second
order mesh elements, we refer to [26].

6.2 Convergence results
We employ first and second order curl-conforming elements on both straight and curved (order 2)
meshes in order to test the results exposed in Theorem 5.9. To that end, we measure the error

‖E−Ehi‖H(curl;Dhi
)

as i ∈ N grows towards infinity, where E ∈H0(curl; D) is as in (6.1) (the solution to Problem 2.1)
and Ehi ∈ H0(curl; Dhi) denotes the solution to Problem 5.2. fig. 3 displays the convergence
of the solution to Problem 5.2 to the continuous one when using a first-order curl-conforming
approximation (k = 1) together with first and second order mesh elements (K = 1 and K = 2,
respectively). fig. 4, on the other hand, displays the convergence of the solution to Problem 5.2 to
the continuous solution when using a second-order curl-conforming approximation (i.e. k = 1) on
the same meshes as before.
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Figure 2: First three meshes of order K = 1, followed by the first three meshes of order K = 2.
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Figure 3: Error convergence in H(curl; Dhi)-norm of solutions to Problem 5.2 with respect to
that of Problem 2.1 using first order curl-conforming finite elements on straight (K = 1) and
curved (K = 2) meshes. In both cases, we observe the expected linear behavior with respect to
the mesh-size .

22



102 103 104 105 106

Degrees of Freedom

10−3

10−2

10−1

100

H
(c

ur
l;D

h i
) E

rro
r

k= 2, �= 1 k= 2, �= 2 −1.5 × 1
3 −2 × 1

3

Figure 4: Error convergence in H(curl; Dhi
)-norm of solutions to Problem 5.2 with respect to

that of Problem 2.1 using second-order curl-conforming finite elements on straight (K = 1) and
curved (K = 2) meshes. A pre-asymptotic regime is observed in both cases after which the latter
achieves the expected second order—with respect to hi—convergence rate, while the former case
only attains a degenerated rate of roughly order 1.5 with respect to the mesh-size due to the
low-order approximation of the boundary of D.

7 Conclusions
For the family of Maxwell variational problems here considered, theorems 4.18 and 4.20 provide
sufficient conditions on the family of approximate domains {D̃i}i∈N to ensure convergence rates
of: (i) pull-backs of continuous solutions in approximate domains to those in the original one; and,
(ii) continuous solutions in approximate domains to smooth extensions of the exact solution. the-
orem 5.8 extend these results to their discrete counterparts to then include the effects of numerical
integration for a fully discrete analysis in theorem 5.12, based on our previous work [4].

Our results on curved meshes established various properties of (local) interpolation on curved
meshes and pull-backs ψc in (3.5). These correspond to lemmas A.2 and A.3 and propositions 3.6
and 3.7, which are of independent interest. Also the simple numerical examples in section 6 confirm
our findings. Observe the failure of second-order polynomials to achieve second-order convergence
rates to the solution on straight meshes in fig. 4.

We left out the issue of demonstrating the regularities of the electric field that are required
in order to ensure different rates of convergence (cf. [1] for globally smooth boundaries). How-
ever, results ensuring arbitrary degrees of regularity in domains with corners and allowing for an
application of the results as in [8], are, to the best of our knowledge, unavailable for Maxwell’s
equations.

Finally, we were able to consider integer degrees of regularity only in theorems 5.9 and 5.13
(s ∈ {1 : k}). This stems from the same deficiency in lemma A.2 and further improvements are left
as future work as well as extensions to more specific and varied Maxwell variational problems such
as problems in periodic media, FEM/BEM couplings and applications in uncertainty quantification
[6, 5, 36].
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A Technical results concerning curl-conforming finite ele-
ments

Lemma A.1. Let Assumption 3.3 hold and take s ∈ {0 : K + 1} and K ∈ τh. Then, for any
Ŭ ∈ Hs(K̆) and with U := Ŭ ◦ T−1

K , it holds that U ∈ Hs(K) and that,

|Ŭ |s,K̆ ≤ C inf
x∈K̆
|det(dTK(x))|−

1
2 hs‖U‖s,K , (A.1)

where the constant C > 0 is independent of K and h. Analogously, for any U ∈ Hs(K) and with
Ŭ := U ◦ TK , it holds that Ŭ ∈ Hs(K̆) and

|U |s,K ≤ C sup
x∈K̆
|det(dTK(x))|

1
2 h−s‖Ŭ‖s,K̆ , (A.2)

with a positive constant C as before.

Proof. The statement in eq. (A.1) is nothing more than Lemma 1 in [15], while eq. (A.2) follows
by replacing T−1

K with TK in Lemma 1 in [15], together—in both cases—with Assumption 3.3 and
eq. (3.1). Note that Lemma 3 in [16] ensures that the constants in eqs. (A.1) and (A.2) depend
only on s.

Lemma A.2. Let Assumption 3.3 hold. For all K ∈ τh and all V ∈ Hs(curl;K) with s ∈ {0 :
K + 1}, it holds that

|ψcK(V)|s,K̆ ≤ Ch
s− 1

2 ‖V‖s,K and |curlψcK(V)|s,K̆ ≤ Ch
s+ 1

2 ‖curl V‖s,K , (A.3)

for a positive constant C independent of K ∈ τh and h. Also, for all V ∈ Hs(curl; K̆) it holds
that ∣∣(ψcK)−1(V)

∣∣
s,K
≤ Ch 1

2−s‖V‖s,K̆ and
∣∣curl(ψcK)−1(V)

∣∣
s,K
≤ Ch−(s+ 1

2 )‖curl V‖s,K̆ ,

for a positive constant C as before.

Proof. We will prove only the estimates in eq. (A.3), as those for the inverse of the pull-back follow
analogously by noticing that

(ψcK)−1(V) = dT−>K (V ◦ T−1
K ) and curl(ψcK)−1(V) = (dT−1

K )co curl V ◦ T−1
K ,

showcasing the same structure and satisfying analogous properties, despite the different signs in
the powers of h.

Take V ∈ Hs(K) for any K ∈ τh and s ∈ N0. Let AK = (aij)3
i,j=1 ∈W∞,K+1(K;C3×3), be

either dT>K or dT co
K . By definition, it holds that

|AKV ◦ TK |s,K̆ =

 3∑
i=1

∣∣∣∣∣∣
3∑
j=1

aijVj ◦ TK

∣∣∣∣∣∣
2

s,K̆


1
2

.

Moreover, for i ∈ {1 : 3}, by Titu’s lemma [2, Sec. 1.2] we have that∣∣∣∣∣∣
3∑
j=1

aijVj ◦ TK

∣∣∣∣∣∣
2

s,K̆

≤ 3
3∑
j=1
|aijVj ◦ TK |2s,K̆ ,
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and, for any pair i, j ∈ {1 : 3}, it holds that

|aijVj ◦ TK |2s,K̆ =
∑
|α|=s

∥∥∥∥ ∂α∂xα (aijVj ◦ TK)
∥∥∥∥2

0,K̆
≤ C

∑
|α1|≤s

|α2|=s−|α1|

∥∥∥∥ ∂α1

∂xα1
aij

∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆

(A.4)

≤ C
∑
|α1|≤s

|α2|=s−|α1|

∥∥∥∥ ∂α1

∂xα1
aij

∥∥∥∥2

L∞(K̆)

∥∥∥∥ ∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆
,

where the positive constant C in eq. (A.4) follows from the Cauchy-Schwarz inequality and depends
only on s. For the particular choice Ak = dT>K , eq. (3.2) ensures the existence of a uniform constant
C > 0, independent of K and the mesh-size, such that∑

|α1|≤s
|α2|=s−|α1|

∥∥∥∥ ∂α1

∂xα1
aij

∥∥∥∥2

L∞(K̆)

∥∥∥∥ ∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆
≤ C

∑
|α1|≤s

|α2|=s−|α1|

h2(|α1|+1)
∥∥∥∥ ∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆

= C

s∑
m=0

h2m+2 |Vj ◦ TK |2s−m,K̆ ≤ C
(

inf
x∈K̆

det(dTK(x))
)−1

h2s+2‖Vj‖2s,K ,

where C now includes the constant in lemma A.1. The estimate for ψcK(V) is retrieved by the
bound in eq. (3.3).

For AK = dT co
K , we proceed analogously

∑
|α1|≤s

|α2|=s−|α1|

∥∥∥∥ ∂α1

∂xα1
aij

∥∥∥∥2

L∞(K̆)

∥∥∥∥ ∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆
≤C

∑
|α1|≤s

|α2|=s−|α1|

h2(|α1|+2)
∥∥∥∥ ∂α2

∂xα2
Vj ◦ TK

∥∥∥∥2

0,K̆
(A.5)

= C

s∑
m=0

h2m+4 |Vj ◦ TK |2s−m,K̆ ≤ C
(

inf
x∈K̆

det(dTK)
)−1

h2s+4‖Vj‖2s,K ,

where eq. (A.5) is deduced from eq. (3.2) and the cofactor matrix definition. The bound for
curlψcK(V) then follows as before.

Lemma A.3. Let Assumption 3.3 hold and let U ∈ Hs(curl; K̆) for s ∈ {1 : k}. Then, for any
l ∈ {1 : s} it holds that,

‖U− r̆(U)‖l,K̆ ≤ C
(
|U|s,K̆ + |curl U|s,K̆

)
and ‖curl U− curl r̆(U)‖l,K̆ ≤ C |curl U|s,K̆ ,

for a positive constant C > 0 independent of U ∈Hs(curl; K̆).

Proof. Take s ∈ {1 : k} and l ∈ {1 : s}. We will prove only the estimate

‖U− r̆(U)‖l,K̆ ≤ C
(
|U|s,K̆ + |curl U|s,K̆

)
,

since the remaining estimate follows by analogous arguments. Let U ∈Hs(curl; K̆) and take any
φ ∈ Pk−1(K̆;C3). Then, by the invariance of the canonical interpolation operator, we have that

‖U− r̆(U)‖l,K̆ = ‖(I−r̆)(U + φ)‖l,K̆ ≤ ‖U + φ‖l,K̆ + ‖r̆(U + φ)‖l,K̆ . (A.6)

Lemma 5.38 in [30] then allows us to bound the degrees of freedom of (U + φ) through the
Hs(curl; K̆)-norm (since s ≥ 1). Specifically, we have that

‖r̆(U + φ)‖l,K̆ ≤ C
(
‖U + φ‖s,K̆ + ‖curl(U + φ)‖s,K̆

)
, (A.7)
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where C may depend on l ∈ {1 : s} and s ∈ {1 : k}, but is independent of U and φ. A combination
of eqs. (A.6) and (A.7), together with the fact that l ≤ s, yields

‖U− r̆(U)‖l,K̆ ≤ C
(
‖U + φ‖s,K̆ + ‖curl(U + φ)‖s,K̆

)
, (A.8)

where C is not necessarily the same as before, but is still independent of U and φ. Since eq. (A.8)
holds for any φ ∈ Pk−1(K̆;C3) we may take the infimum of its right-hand side over Pk−1(K̆;C3),
which we may then bound by [30, Thm. 5.5], to obtain

‖U− r̆(U)‖l,K̆ ≤ C
(
|U|s,K̆ + |curl U|s,K̆

)
,

for a positive constant C as before.
The estimate

‖curl U− curl r̆(U)‖l,K̆ ≤ C |curl U|s,K̆ ,

follows by analogous arguments employing Lemma 5.40 in [30] and [30, Lem. 5.15] in lieu of [30,
Lem. 5.38].

B Proofs of propositions 3.6 and 3.7
Proof of proposition 3.6. For U ∈Hs(curl;K), we first estimate the L2-portion of the norm:

‖U− rK(U)‖0,K ≤ sup
x∈K̆

det(dTK(x))
1
2 sup

x∈K̆
‖dT−1(x)‖‖ψcK(U)− r̆(ψcK(U))‖0,K̆ . (B.1)

By Lemma A.3, one has

‖ψcK(U)− r̆(ψcK(U))‖0,K̆ ≤ c
(
|ψcK(U)|s,K̆ + |curlψcK(U)|s,K̆

)
,

where c is a positive constant independent of K ∈ τh and h. By Lemma A.2, it holds that

‖ψcK(U)− r̆(ψcK(U))‖0,K̆ ≤ c
(
hs−

1
2 ‖U‖s,K + hs+

1
2 ‖curl U‖s,K

)
,

and combining the last equation with eqs. (3.1), (3.3), and (B.1) yields the estimate

‖U− rK(U)‖0,K ≤ c
(
hs‖U‖s,K + hs+1‖curl U‖s,K

)
≤ chs‖U‖Hs(curl;K),

where the positive constant c is as before. We continue with the estimate for the curl. Proceeding
as before, we have that

‖curl U− curl rK(U)‖0,K≤ sup
x∈K̆

det(dTK(x))−
1
2 sup

x∈K̆
‖dT (x)‖‖curlψcK(U)− curl r̆(ψcK(U))‖0,K

≤ c sup
x∈K̆

det(dTK(x))−
1
2 sup

x∈K̆
‖dT (x)‖ |curlψcK(U)|s,K̆ ,

where the last inequality follows from Lemma A.3. Lemma A.2, together with eq. (3.1) and
eq. (3.3), leads to

‖curl U− curl rK(U)‖0,K ≤ chs‖dT (x)‖‖curl U‖s,K .

The combination of the L2- and curl-estimates yield the approximation result.
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Proof of proposition 3.7. Take U ∈Hs(curl;K). Then, it holds that

‖rK(U)‖Hs(curl;K) ≤ ‖rK(U)−U‖Hs(curl;K) + ‖U‖Hs(curl;K).

Moreover,

‖rK(U)−U‖Hs(curl;K) = ‖(ψcK)−1(r̆(ψcK(U))− ψcK(U))‖Hs(curl;K). (B.2)

From Lemma A.2, for l ∈ {0 : s}, it follows that∣∣(ψcK)−1(r̆(ψcK(U))− ψcK(U))
∣∣
l,K
≤ ch 1

2−l‖r̆(ψcK(U))− ψcK(U)‖l,K̆ ,

and a sequential application of Lemmas A.2 and A.3 yields

‖r̆(ψcK(U))− ψcK(U)‖l,K̆ ≤ c
(
hs−

1
2 ‖U‖s,K + hs+

1
2 ‖curl U‖s,K

)
,

so that

‖rK(U)−U‖s,K ≤ c‖U‖Hs(curl;K). (B.3)

We may proceed analogously and bound the curl portion of the norm as

‖curl rK(U)− curl U‖Hs(K) ≤ c‖curl U‖s,K . (B.4)

Then, combining the results in eqs. (B.2) to (B.4) completes the proof.

C Proofs of lemmas 4.14 and 4.15
Proof of lemma 4.14. Take U as a smooth function in Υ, i.e. u ∈ C∞(Υ). Then, for all x ∈ Ω, it
holds that

U ◦T(x)− U(x) =
∫ 1

0
∇U((1− t)x + tT(x)) · (T(x)− x) dt.

Observe that (1− t)x + tT(x) ∈ Υ, for all t ∈ [0, 1], and define Tt(x) := (1− t)x + tT(x). Then,
the convexity of Υ implies Tt(x) ∈ DH for all x ∈ DH . Moreover, one has

|U ◦T(x)− U(x)| =
∣∣∣∣∫ 1

0
∇U(Tt(x)) · (T(x)− x) dt

∣∣∣∣
≤ ‖T− I‖L∞(Υ)

∫ 1

0
‖∇U(Tt(x))‖L∞(Ω) dt ≤ ‖T− I‖L∞(Υ)‖U‖W 1,∞(Υ).

The statement follows by taking the supremum over x ∈ Ω and by density of C∞(Υ) in W 1,∞(Υ).

Proof of lemma 4.15. We start by proving the statement for s = 0. Set T as required, then for
any U ∈ L2(Υ) it holds that

‖U ◦T−U‖0,Ω ≤ ‖U‖0,Ω + ‖U ◦T‖0,Ω ≤ ‖U‖0,Ω + ϑ
1
2 ‖U‖0,T(Ω) ≤ (ϑ 1

2 + 1)‖U‖0,Υ.

Now we prove for s = 1. Take U as a smooth function in Υ, i.e. U ∈ C∞(Υ). Then, for all
x ∈ Ω one has

U ◦T(x)−U(x) =
∫ 1

0
dU((1− t)x + tT(x)) · (T(x)− x) dt.
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Note that (1 − t)x + tT(x) ∈ Υ for all t ∈ [0, 1] and Tt(x) := (1 − t)x + tT(x) satisfies all the
conditions in eq. (4.6). In particular, we have that

‖x− y‖R3 ≤ ‖Tt(x)−Tt(y)‖R3 + t‖(T(x)− x)− (T(y)− y)‖R3

≤ ‖Tt(x)−Tt(y)‖R3 + tκ‖x− y‖R3 ,

implying the invertibility of Tt : Ω→ Tt(Ω). Moreover,

‖U ◦T−U‖20,Ω =
∫

Ω
‖U ◦T(x)−U(x)‖2R3 dx =

∫
Ω

∥∥∥∥∫ 1

0
dU(Tt(x)) · (T(x)− x) dt

∥∥∥∥2

R3
dx

≤
∫

Ω

∫ 1

0
‖dU(Tt(x)) · (T(x)− x)‖2R3 dtdx (Jensen’s inequality)

≤ ‖T− I‖2L∞(Υ)

∫
Ω

∫ 1

0
‖dU(Tt(x))‖2R3×3 dtdx

= ‖T− I‖2L∞(Υ)

∫ 1

0

∫
Tt(Ω)

‖dU(x)‖2R3×3det(dTt(x))−1 dx dt ≤ ϑ‖T− I‖2L∞(Υ)‖U‖21,Υ,

so that

‖U ◦T−U‖0,Ω ≤ ϑ
1
2 ‖T− I‖L∞(Υ)‖U‖1,Υ ≤ (ϑ 1

2 + 1)‖T− I‖L∞(Υ)‖U‖1,Υ.

The statement for s = 1 follows by density of C∞(Υ) in H1(Υ). The result for real s ∈ (0, 1)
follows by applying real interpolation in Sobolev spaces (cf. [39, Lem. 22.3]).

References
[1] G.S. Alberti and Y. Capdeboscq. Elliptic regularity theory applied to time harmonic

anisotropic Maxwell’s equations with less than Lipschitz complex coefficients. SIAM J. Math.
Anal., 46(1):998–1016, 2014.

[2] Titu Andreescu and Bogdan Enescu. Mathematical Olympiad Treasures. Birkhäuser Boston,
2012.

[3] D. N. Arnold and S. W. Walker. The Hellan–Herrmann–Johnson method with curved ele-
ments. SIAM J. on Numer. Anal., 58(5):2829–2855, 2020.

[4] R. Aylwin and C. Jerez-Hanckes. The effect of quadrature rules on finite element solutions of
Maxwell variational problems. Numer. Math., 2021.

[5] R. Aylwin, C. Jerez-Hanckes, C. Schwab, and J. Zech. Domain uncertainty quantification in
computational electromagnetics. SIAM/ASA J. Uncertain. Quantif., 8(1):301–341, 2020.

[6] Rubén Aylwin, Carlos Jerez-Hanckes, and José Pinto. On the properties of quasi-periodic
boundary integral operators for the Helmholtz equation. Integral Equations and Operator
Theory, 92(2):1–41, 2020.

[7] Ivo Babuška and Jan Chleboun. Effects of uncertainties in the domain on the solution of
Dirichlet boundary value problems. Numerische Mathematik, 93(4):583–610, feb 2003.

[8] Ivo Babuška and Benqi Guo. Optimal estimates for lower and upper bounds of approxi-
mation errors in the p-version of the finite element method in two dimensions. Numerische
Mathematik, 85(2):219–255, apr 2000.

[9] P. K. Bhattacharyya and N. Nataraj. On the combined effect of boundary approximation
and numerical integration on mixed finite element solution of 4th order elliptic problems with
variable coefficients. ESAIM: Math. Model. and Numer. Anal., 33(4):807–836, 1999.

28



[10] J. H. Bramble and J. T. King. A robust finite element method for nonhomogeneous Dirichlet
problems in domains with curved boundaries. Math. Comput., 63(207):1–17, 1994.

[11] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl,Ω) in Lipschitz domains. J.
Math. Anal. Appl., 276(2):845–867, 2002.

[12] A. Buffa and R. Hiptmair. Galerkin boundary element methods for electromagnetic scattering.
In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng.,
pages 83–124. Springer, Berlin, 2003.

[13] A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element methods for
Maxwell transmission problems in Lipschitz domains. Numer. Math., 95(3):459–485, 2003.

[14] S.N. Chandler-Wilde, D.P. Hewett, A. Moiola, and J. Besson. Boundary element methods
for acoustic scattering by fractal screens. Numer. Math., pages 1–53, 2021.

[15] P. G. Ciarlet and P. A. Raviart. The combined effect of curved boundaries and numerical
integration in isoparametric finite element methods. In The mathematical foundations of
the finite element method with applications to partial differential equations, pages 409–474.
Elsevier, 1972.

[16] P. G. Ciarlet and P. A. Raviart. Interpolation theory over curved elements, with applications
to finite element methods. Comput. Methods Appl. Mech. Eng., 1(2):217–249, 1972.

[17] D. Daners. Dirichlet problems on varying domains. J. Differ. Equ., 188(2):591–624, 2003.

[18] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2011. Metrics, analysis, differential calculus, and optimization.

[19] D. A. Di Pietro and J. Droniou. A third Strang lemma and an Aubin–Nitsche trick for
schemes in fully discrete formulation. Calcolo, 55(3):40, 2018.

[20] P. Dular and C. Geuzaine. GetDP reference manual: the documentation for GetDP, a general
environment for the treatment of discrete problems.

[21] A. Ern and J.L. Guermond. Analysis of the edge finite element approximation of the Maxwell
equations with low regularity solutions. Comput. Math. Appl., 75(3):918–932, 2018.

[22] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D finite element mesh generator
with built-in pre-and post-processing facilities. International journal for numerical methods
in engineering, 79(11):1309–1331, 2009.

[23] E. Hernández and R. Rodríguez. Finite element approximation of spectral problems with
Neumann boundary conditions on curved domains. Math. Comput., 72(243):1099–1115, 2003.

[24] Ralf Hiptmair, Jingzhi Li, and Jun Zou. Convergence analysis of finite element methods for
H(curl; Ω)-elliptic interface problems. Numer. Math., 122(3):557–578, 2012.

[25] C. Jerez-Hanckes, C. Schwab, and J. Zech. Electromagnetic wave scattering by random
surfaces: Shape holomorphy. Math. Model. Meth. Appl. Sci., 27(12):2229–2259, 2017.

[26] A. Johnen, J.-F. Remacle, and C. Geuzaine. Geometrical validity of curvilinear finite elements.
Journal of Computational Physics, 233:359–372, jan 2013.

[27] M. Lee, S. Choo, and S. Chung. Curved domain approximation in Dirichlet’s problem. J.
Korean Math. Soc., 40(6):1075–1083, 2003.

[28] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving
curved boundaries. SIAM J. Numer. Anal., 23(3):562–580, 1986.

29



[29] P. Monk and D. Leszek. Discrete compactness and the approximation of Maxwell’s equations
in R3. Math. Comput., 70(234):507–523, 2001.

[30] Peter Monk. Finite element methods for Maxwell’s equations. Oxford University Press, 2003.

[31] U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Adv. Math.,
3(4):510–585, 1969.

[32] U. Mosco. An introduction to the approximate solution of variational inequalities. In Con-
structive Aspects of Functional Analysis, pages 497–682. Springer, 1971.

[33] Jean-Claude Nédélec. Acoustic and Electromagnetic Equations. Springer New York, 2001.

[34] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer Berlin Heidelberg, 1984.

[35] S. A. Sauter and C Schwab. Boundary element methods, volume 39 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2011. Translated and expanded from
the 2004 German original.

[36] Gerardo Silva-Oelker, Rubén Aylwin, Carlos Jerez-Hanckes, and Patrick Fay. Quantifying
the impact of random surface perturbations on reflective gratings. IEEE Transactions on
Antennas and Propagation, 66(2):838–847, 2017.

[37] J. Sokolowski and J.P. Zolesio. Introduction to Shape Optimization. Springer Berlin Heidel-
berg, 1992.

[38] G. Strang and A. E. Berger. The change in solution due to change in domain. In Proceedings
of the Symposia in Pure Mathematics, volume 23, pages 199–205. as, 1973.

[39] L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3. Springer
Science & Business Media, 2007.

[40] V. Thomée. Polygonal domain approximation in Dirichlet’s problem. IMA J. Appl. Math.,
11(1):33–44, 02 1973.

[41] M. Vanmaele and A. Ženíšek. The combined effect of numerical integration and approxima-
tion of the boundary in the finite element method for eigenvalue problems. Numer. Math.,
71(2):253–273, 1995.

[42] M. Zlámal. Curved elements in the finite element method. II. SIAM J. Numer. Anal.,
11(2):347–362, 1974.

30


	1 Introduction
	2 General definitions and Maxwell problem statement
	2.1 General notation
	2.2 Functional spaces
	2.3 Maxwell variational problems

	3 Curl-conforming finite elements
	3.1 Curl-conforming finite element spaces on straight and curved meshes
	3.2 Curl-conforming interpolation on curved meshes

	4 Variational problems on approximate domains: continuous problem
	4.1 On the convergence of domains
	4.2 Convergence of solution pull-backs in approximate domains
	4.3 Convergence to an extended solution over Lg

	5 Variational problems on approximate domains: discrete problem
	5.1 Convergence of domains in a discrete setting
	5.2 Discrete convergence of solution pull-backs in approximate domains
	5.3 Discrete convergence to an extended solution over Lg
	5.4 A fully discrete estimate
	5.4.1 Fully discrete convergence of solution pull-backs in approximate domains
	5.4.2 Fully discrete convergence to an extended solution over Lg


	6 Numerical Results
	6.1 Approximate domains
	6.2 Convergence results

	7 Conclusions
	A Technical results concerning curl-conforming finite elements
	B Proofs of Lg
	C Proofs of Lg

