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Abstract. Entropy regularized Markov decision processes have been widely used in reinforcement learning.
This paper is concerned with the primal-dual formulation of the entropy regularized problems. Standard first-order
methods suffer from slow convergence due to the lack of strict convexity and concavity. To address this issue, we
first introduce a new quadratically convexified primal-dual formulation. The natural gradient ascent descent of
the new formulation enjoys a global convergence guarantee and exponential convergence rate. We also propose a
new interpolating metric that further accelerates the convergence significantly. Numerical results are provided to
demonstrate the performance of the proposed methods under multiple settings.
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1. Introduction.

1.1. Setup. Consider an infinite-horizon Markov decision process (MDP) [4, 35, 29] M =
(S,A, P, r, γ), where S is a set of states of the Markov chain and A is a set of actions. P is a
transition probability tensor with Pass′ being the probability of transitioning from state s to state
s′ when taking action a, r is a reward matrix with rsa being the reward obtained when taking
action a at state s, and γ ∈ (0, 1) is the discount factor. In this paper, we assume that the state
space S and the action space A are finite.

A policy π is a randomized strategy over the actions at each state, i.e., for each state s, πsa
is the probability of choosing action a at s. For a given policy, the value function vπ ∈ R|S| is a
vector defined as

(1.1) (vπ)s := E
∞∑
k=0

(
γkrskak

| s0 = s
)
,

where the expectation is taken over all possible trajectories {(sk, ak)}k≥0 starting from s0 = s
following the policy π. The value function vπ satisfies the well-known Bellman equation [4]

(1.2) (I − γPπ)vπ = rπ,

where (Pπ)ss′ :=
∑

a∈A πsaPass′ , (rπ)s :=
∑

a∈A πsarsa, and I is the identity operator. In a
Markov decision problem, the goal is to find the optimal policy π∗ such that

vπ∗(s) ≥ vπ(s), ∀s ∈ S,

for any other policy π. The corresponding optimal value function vπ∗ will also be referred to as
v∗ in this paper. The existence of v∗ and π∗ is guaranteed by the theory of MDP [29].

In recent studies, entropy regularization has been widely used in MDP problems to encourage
exploration and enhance the robustness [27, 10, 12, 2, 1, 24, 7, 42]. With the entropy regularization,
the value function is defined by

(1.3) (vπ)s := E
∞∑
k=0

(
γk(rskak

− τ log πskak
) | s0 = s

)
,

where τ > 0 is the regularization coefficient. vπ satisfies the regularized Bellman equation

(1.4) (I − γPπ)vπ = rπ − τhπ,
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2 H. LI, H. YU, L. YING, AND I. DHILLON

where hπ is a vector in R|S| with each entry (hπ)s given by the negative Shannon entropy of
(πsa)a∈A

(hπ)s =
∑
a∈A

πsa log πsa.

Here we overload the notation vπ for the regularized value function and for the rest of the paper vπ
shall always denote the regularized value function (1.3) unless otherwise specified. For the entropy
regularized MDP (see [12]), there exists a unique optimal policy π∗, such that

v∗(s) := vπ∗(s) ≥ vπ(s), ∀s ∈ S,(1.5)

for any other policy π.
Without loss of generality, the reward rsa is assumed to be nonnegative throughout this

paper. This can be guaranteed by adding to the rewards a sufficiently large constant C. Note
that such a uniform shift keeps the optimal policy π∗ unchanged and shifts v∗ by a constant C

1−γ .

1.2. Primal-dual formulation. Entropy regularized MDPs enjoy regularized linear pro-
gramming formulations, in the primal, dual, and primal-dual forms. In this paper, we are con-
cerned with the primal-dual formulation (see, for example, [27, 41]):

min
v∈R|S|

max
u∈R|S|×|A|

∑
s∈S

esvs +
∑

s∈S,a∈A

usa(rsa − ((I − γPa)v)s)− τ
∑

s∈S,a∈A

usa log(usa/ũs),

where ũs :=
∑

a∈A usa. The policy π is related to u via the relationship

πsa = usa/ũs.

The main advantage of working with the primal-dual formulation is that the transition matrix
Pa appears linearly in the objective function of the primal-dual problem. This linearity brings
an important benefit when a stochastic gradient method is used to solve the primal-dual formula-
tion: an unbiased estimator of the transition matrix Pa guarantees an unbiased estimator for the
gradient-based update rule. This avoids the famous double-sampling problem [35] that affects any
formulation that performs a nonlinear operation to the transition matrix Pa. Examples of these
affected formulations include the primal formulation, where a nonlinear max or exponentiation
operator is applied to Pa, and the dual formulation, where the inverse of I − γPπ is needed. From
this perspective, the primal-dual formulation is convenient in the model-free setting, where the
transition probability tensor can only be estimated from samples and is thus inherently noisy.

In what follows, we shall simplify the notation by denoting Ka = I − γPa and Kπ = I − γPπ.
With this simplification, the primal-dual problem can be rewritten more compactly as

(1.6) min
v

max
u

∑
s

esvs +
∑
sa

usa(rsa − (Kav)s)− τ
∑
sa

usa log(usa/ũs).

Though theoretically appealing, the primal-dual formulation (1.6) often poses computational
challenges because it is a minimax optimization. Newton-type methods are often impractical
to apply because either Pa is only accessible via samples or its size is too large for practical
inversion. A close look at the objective function of (1.6) suggests that it is linear with respect
to both the value function v and the dual variable u in the radial direction. This lack of strict
convexity/concavity makes it difficult for the first-order methods to converge.

1.3. Contributions. To overcome this difficulty, this paper proposes a quadratically convex-
ified reformulation of (1.6) that shares the same solution with (1.6) and an interpolating natural
gradient ascent descent method that significantly speeds up the convergence. More specifically,
the main contributions of this paper are listed as follows:

• We propose a new quadratically convexified primal-dual formulation in which the linear
weighted sum eTv of (1.6) is replaced with a quadratic term α

2 ∥v∥
2. The surprising feature

is that the solution (v∗, u∗) is unchanged and is independent of the hyperparameter α > 0.
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We prove that the vanilla natural gradient ascent descent (NGAD) of this quadratically
convexified problem enjoys a Lyapunov function [23] and converges linearly. To the best
of our knowledge, this is the first quadratically convexified primal-dual formulation of
Markov decision problems.

• We propose an interpolating natural gradient ascent descent (INGAD) by introducing
a new interpolating metric for the u variable. The corresponding Lyapunov function is
constructed and the convergence of the new dynamics is proved. The acceleration is
verified by numerical tests under multiple settings.

1.4. Related work. Regarding the primal-dual formulation, the first primal-dual learning
algorithm is given in [39]. A follow-up work [38] leverages the binary-tree data structure and
adaptive importance sampling techniques to reduce the complexity. The convergence result for
these two papers is however only for the average of all the policies rather than the policy obtained
in the last iteration. In these papers, no regularization is used in the formulation and no pre-
conditioner is used in the iterative update scheme. As a comparison, the current paper proves a
last-iteration convergence result with the help of the Lyapunov method and entropy regulariza-
tion, and derives an interpolating metric that accelerates the algorithm. Various studies have been
carried out following the primal-dual formulation in [39]. For example, a modified form with the
Q-function is proposed in [20], and the corresponding primal-dual type algorithm is derived. An
extension to the infinite-horizon average-reward setting is provided in [37], but only the average-
case convergence result is given. A later work [8] further extended this method to the function
approximation setting. A comprehensive review of the primal-dual methods in the average reward
setting is given in a recent thesis [13], and a generalization to the general utility maximization
formulation is provided. The primal-dual method has also been used to find risk-sensitive policies,
for example, in [43], where a risk function is integrated into the primal-dual objective through
the dual variable. In the optimization literature, the primal-dual formulation is often called the
saddle point problem: for example, [34] considers a linear relaxation version of the saddle-point
problem in [37] to address large-scale problems. However, it is worth noting that no (entropy)
regularization is used in the papers mentioned above, which is able to make the landscape of the
optimization problem smoother and is thus a crucial element of recent linear convergence results
[7, 22, 19]. Linear convergence results can be developed with the presence of precondition. For
example, in [18], the authors show that the natural policy gradient method with an exact evalua-
tion of the gradient has a linear convergence rate after sufficiently many gradient steps, where the
convergence rate relies on an advantage function gap. Without regularization or preconditioners,
gradient-type methods can take exponential time to converge [21].

Besides the primal-dual formulations, the discussion below briefly touches on the primal and
the dual formulations. For the entropy regularized Markov decision process, the primal formulation
[41] takes the form

(1.7) vs = τ log

(∑
a

exp

(
rsa + γ

∑
s′ Pass′vs′

τ
,

))
,

which leads to a value iteration algorithm. Let φ(v) : R|S| → R|S| be the fixed-point map such that
φ(v)s = τ log

(∑
a∈A exp

(
τ−1(rsa + γ

∑
s′∈S Pass′vs′)

))
. By calculating the derivative matrix, we

have

∥Dφ(v)∥∞ = max
s

∑
s′

|(Dφ(v))ss′ | = max
s

∑
s′

γ
∑

a Pass′ exp
(
τ−1(rsa + γ

∑
s′′ Pass′′vs′′)

)∑
a exp (τ

−1(rsa + γ
∑

s′′ Pass′′vs′′))
= γ.

Hence φ is a contraction map and converges to a fixed point, which is the solution to (1.7) at a
linear rate O(γT ), where T is the number of iterations. After obtaining the optimal value function
v, the corresponding policy π is given by [41]:

πsa =
exp

(
τ−1

(
rsa + γ

∑
s′∈S Pass′vs′

))∑
a exp

(
τ−1

(
rsa + γ

∑
s′∈S Pass′vs′

)) = exp

(
τ−1

(
rsa −

∑
s′

(I − γPa)ss′vs′

))
.(1.8)
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4 H. LI, H. YU, L. YING, AND I. DHILLON

As a result of the aforementioned double-sampling problem, the value-iteration algorithm based
on (1.7) is mainly used in the model-based setting, but due to the nice properties of φ, it appears
as an important ingredient in various other algorithms. For example, in [3] and [30], the authors
use the function φ as an alternative softmax operator and form a Q-learning type algorithm, and
in [26], the function φ appears as a result of the inner optimization of an entropy regularized
trust region-type formulation and is used to form the loss function. In [10], the mean squared
regularized Bellman error is employed to establish the optimization problem.

An alternative way to solve a regularized Markov decision problem in the model-based setting
is the dual formulation [41], in which one seeks a policy π that solves the following optimization
problem:

max
π

eTvπ := eT(I − γPπ)
−1(rπ − τhπ),(1.9)

where e ≻ 0 is a weight vector. By the existence and uniqueness of the optimal value function and
optimal policy and the optimality (1.5), it is clear that any choice of e leads to the optimal policy
and the optimal value function. A variety of policy gradient algorithms can be used to solve the
dual problem. Examples include [40, 36, 15, 32, 31, 33], to mention only a few. Recently, [22]
proposes a quasi-Newton policy gradient algorithm, where an approximate Hessian of the objective
function in (1.9) is used as a preconditioner for the gradient, resulting in a quadratic convergence
rate by better fitting the problem geometry.

The word primal-dual also appears in other types of formulations where the dual variables do
not represent the policy. For example, in [11], the authors apply the natural policy gradient method
to constrained MDPs (CMDPs), where the dual variables are the multipliers of the constraints.
Similarly, in [9], the dual variables come from the constraints in CMDPs. In this paper, the
Lyapunov method is used to give a theoretical analysis of the natural gradient flow of the method
we propose. The idea of Lyapunov methods has also been applied to discrete time control problems
[17, 16] and to discrete Markovian systems [25]. Recently it has also been used to address the
safety problem, where safety usually appears as additional constraints in the model [28, 9, 5], and
the Lyapunov function is usually defined on the state space and is used explicitly in the policy
iteration or in finding the controller.

1.5. Notations. For a vector x ∈ Rd, diag(x) denotes a diagonal matrix with size d× d and
the k-th diagonal element being xk, 1 ≤ k ≤ d. For u ∈ R|S||A|, we denote the ((s− 1)|A|+ a)-th
element as usa. While us· denotes the vector in R|A| with the a-th element being usa, u·a denotes
the vector in R|S| with the s-th element being usa. The states of the MDP are typically referred
to with s, s′, and s′′ while the actions are referred to by a and a′. The vector with length d and
all elements equal to 1 is denoted by 1d, and the subscript d is often omitted when there is no
ambiguity. The d-by-d identity matrix is denoted by Id, again with the subscript d often omitted
when there is no ambiguity. For a matrix B, BH denotes its Hermitian transpose. If a scalar
function is applied to a vector, then the result is defined element-wise unless otherwise specified,
e.g., for x ∈ Rd, exp(x) ∈ Rd with exp(x)k = exp(xk) for 1 ≤ k ≤ d.

1.6. Contents. The rest of the paper is organized as follows. Section 2 derives the quadrat-
ically convexified primal-dual formulation, proves its equivalence with (1.6), and shows that the
vanilla NGAD of the new formulation converges linearly using a Lyapunov function method.
Section 3 introduces an interpolating metric by leveraging the flexibility of the underlying metric
described by the block diagonal part of the Hessian. The convergence rate of the INGAD based on
this new interpolating metric is significantly improved. We also provide a Lyapunov-style proof for
global convergence and an analysis of the exponential convergence rate in the last-iterate sense.
Finally, section 4 demonstrates the numerical performance of these proposed natural gradient
methods.

2. Quadratically convexified primal-dual formulation.

This manuscript is for review purposes only.
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2.1. Formulation. In what follows, we use E0(v, u) to denote the objective of the standard
entropy regularized primal-dual formulation

min
v

max
u

E0(v, u) :=
∑
s

esvs +
∑
sa

usa(rsa − (Kav)s)− τ
∑
sa

usa log
usa
ũs

.(2.1)

Since it is linear in v and linear along the radial direction of u, first-order optimization meth-
ods typically experience slow convergence. To address the issue in the v variable, we propose a
quadratically convexified primal-dual formulation:

min
v

max
u

E(v, u) :=
α

2

∑
s

v2s +
∑
sa

usa(rsa − (Kav)s)− τ
∑
sa

usa log
usa
ũs

.(2.2)

Though these two formulations look quite different, they are indeed equivalent when rsa > 0 in
the following sense.

• They share the same optimal value function v∗.
• The optimal dual variable u∗ differs only by an s-dependent scaling factor. This implies
that the optimal policy π∗

sa ≡ u∗sa/ũ∗s are the same.
One geometric way to see this equivalence is to go through the associated primal formulations

min
v
eTv, s.t. ∀s, vs ≥ τ log

(∑
a∈A

exp

(
rsa + γ

∑
s′ Pass′vs′

τ

))
,(2.3)

and

min
v

α

2
∥v∥2, s.t. ∀s, vs ≥ τ log

(∑
a∈A

exp

(
rsa + γ

∑
s′ Pass′vs′

τ

))
.(2.4)

Figure 1 illustrates the primal formulations of a randomly generated MDP with |S| = |A| = 2,
where the yellow region represents the feasible set and the red dot represents the optimal value v∗.
Due to the key assumption rsa ≥ 0, the feasible set lies in the first quadrant. From the contour
plots of the objective function eTv and ∥v∥2 shown by the dotted curves, it is clear that both of
them are minimized at v∗ when constrained to the feasible set.

The following theorem states this equivalence formally, with its proof given in section 6.

Theorem 2.1. For an infinite-horizon discounted MDP with finite state space S, finite action
space A and nonnegative reward r, we have the following properties:
(a) There is a unique solution (v∗, u◦) to the primal-dual problem:

min
v

max
u

E0(v, u) =
∑
s

esvs +
∑
sa

usa

(
rsa −

∑
s′

Kass′vs′

)
− τ

∑
sa

usa log
usa
ũs

,

where v∗ is the optimal value function defined by (1.5) and
u◦
sa

ũ◦
s

gives the optimal policy π∗
sa.

(b) There is a unique solution (v∗, u∗) to the quadratically convexified problem:

min
v

max
u

E(v, u) =
α

2

∑
s

v2s +
∑
sa

usa

(
rsa −

∑
s′

Kass′vs′

)
− τ

∑
sa

usa log
usa
ũs

,

where v∗ is the optimal value function, and
u∗
sa

ũ∗
s

coincides with the optimal policy π∗
sa.

Remark 2.2. With the same method as the one used for the proof of Theorem 2.1, one can
show that the conclusions of Theorem 2.1 still hold if the term α

2

∑
s v

2
s in the formulation (2.2)

is replaced with a strictly increasing convex function of v. The intuition provided in Figure 1 also
applies.

This manuscript is for review purposes only.



6 H. LI, H. YU, L. YING, AND I. DHILLON

Fig. 1. This plot heuristically demonstrates the correctness of the quadratically convexified primal-dual formu-
lation on a randomly generated MDP with |S| = |A| = 2. The yellow region represents the feasible set of the primal
problem (2.3), whose boundary corresponds to the solution to equation (1.7) and is shown by the blue and green
curves. The red dot denotes the optimal value v∗. The cyan and orange dotted curves are contour lines of ∥v∥2
and eTv, respectively. It can be seen from this plot that the solution to the quadratically convexified formulation
(2.4) is also v∗.

2.2. Natural gradient ascent descent. As mentioned earlier, the gradient-based methods
for the primal-dual formulation (2.1) suffer from slow convergence, partly due to the linearity of
E0(v, u) in v. Since the quadratically convexified scheme (2.2) gives the same value function v∗

and policy π∗ as the original primal-dual problem (2.1), we work instead with (2.2) and propose
an NGAD algorithm.

The first-order derivatives of the new objective function E(v, u) are

∂E

∂vs′
= αvs′ −

∑
sa

Kass′usa, s′ ∈ S,

∂E

∂usa
=

(
rsa −

∑
s′

Kass′vs′

)
− τ log usa

ũs
, (s, a) ∈ S ×A.

(2.5)

The diagonal blocks of the second-order derivatives ∂2E
∂v2 and ∂2E

∂u2 are

∂2E

∂vs∂vs′
= αδss′ , (s, s′) ∈ S × S

∂2E

∂usa∂us′a′
= −τδss′

(
δaa′

usa
− 1

ũs

)
, (s, s′, a, a′) ∈ S2 ×A2.

(2.6)

Of the two diagonal blocks above, ∂2E
∂v2 is easy to invert since it is diagonal with positive diagonal

entries, whereas ∂2E
∂u2 is the sum of a diagonal part and a low-rank part. In the natural gradient

dynamics below, we only keep the first part of ∂2E
∂u2 , namely −τδss′δaa′/usa (or more compactly

−τdiag(1/u) in the matrix form). The resulting NGAD flow is:

dvs′

dt
= − 1

α

(
αvs′ −

∑
sa

Kass′usa

)
, s′ ∈ S,

dusa
dt

= −1

τ
usa

(
τ log

usa
ũs
−

(
rsa −

∑
s′

Kass′vs′

))
, (s, a) ∈ S ×A,

This manuscript is for review purposes only.
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or equivalently,

dvs′

dt
= −

(
vs′ −

1

α

∑
sa

Kass′usa

)
, s′ ∈ S,

dusa
dt

= −usa

(
log

usa
ũs
− 1

τ

(
rsa −

∑
s′

Kass′vs′

))
, (s, a) ∈ S ×A.

(2.7)

To analyze its convergence, we start by identifying a Lyapunov function of this dynamics. By
Theorem 2.1 there is a unique solution (v∗, u∗) to problem (2.2). Based on the solution (v∗, u∗),
define

(2.8) L(v, u) =
α

2

∑
s∈S

|vs − v∗s |2 + τ
∑

s∈S,a∈A

(
u∗sa log

u∗sa
usa

+ usa − u∗sa
)
.

The following lemma summarizes some key properties of L(v, u).

Lemma 2.3. L(v, u) ≥ 0 is strictly convex, and the unique minimum is (v∗, u∗), which satisfies
L(v∗, u∗) = 0. In addition, any sublevel set of L is bounded.

The next lemma states that L(v, u) is a Lyapunov function of (2.7).

Lemma 2.4. L(v, u) is a Lyapunov function for the dynamics (2.7), i.e., dL
dt ≤ 0 when dv

dt

and du
dt are defined in (2.7), and the only trajectory of the dynamics (2.7) satisfying dL

dt = 0 is
(v, u) = (v∗, u∗).

The proofs of these two lemmas are given in section 6.

Theorem 2.5. The dynamics of (2.7) converges globally to (v∗, u∗).

Proof. By Lemma 2.3, Lemma 2.4 and the Barbashin-Krasovskii-LaSalle theorem [14], the
dynamics of (2.7) is globally asymptotically stable, which means the NGAD dynamics converges
globally to (v∗, u∗).

To show the exponential convergence of (2.7), we follow Lyapunov’s indirect method, i.e., ana-
lyzing the linearization of (2.7) at (v∗, u∗) and demonstrating that the real part of the eigenvalues
of the corresponding matrix is negative. This result is the content of Theorem 2.6, with the proof
given in section 6.

Theorem 2.6. The dynamics of (2.7) converges at rate O(e−ct) to (v∗, u∗) for some c > 0.

Below we discuss the implementation of (2.7). By introducing usa = exp(θsa), (2.7) can be
rewritten as

dvs′

dt
= −

(
vs′ −

1

α

∑
sa

Kass′ exp(θsa)

)
, s′ ∈ S,

dθsa
dt

= −

(
θsa − log

(∑
a

exp(θsa)

)
− 1

τ

(
rsa −

∑
s′

Kass′vs′

))
, (s, a) ∈ S ×A.

(2.9)

With a learning rate η > 0, this leads to the update rule

vs′ ← (1− η)vs′ +
η

α

∑
sa

Kass′ exp(θsa), s′ ∈ S,

θsa ← (1− η)θsa + η log

(∑
a

exp(θsa)

)
+
η

τ

(
rsa −

∑
s′

Kass′vs′

)
, (s, a) ∈ S ×A.

(2.10)

The details of the algorithm are summarized in Algorithm 2.1.

This manuscript is for review purposes only.
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Algorithm 2.1 Standard NGAD for quadratically convexified formulation

Require: the MDP model M = (S,A, P, r, γ), initialization (vinit, θinit), convergence threshold
ϵtol, coefficient α > 0 for the quadratic term in (2.2), regularization coefficient τ , learning rate
η.

1: Initialize the value and parameters v = vinit, θ = θinit.
2: Calculate usa = exp(θsa), (s, a) ∈ S ×A.
3: Set q = 1 + ϵtol.
4: while q > ϵtol do
5: Calculate (vnew)s′ = (1− η)vs′ + η

α

∑
saKass′usa, s′ ∈ S.

6: Update θ by

θsa ← (1− η)θsa + η log
∑
a

usa +
η

τ

(
rsa −

∑
s′

Kass′(vnew)s′

)
, (s, a) ∈ S ×A.

7: Calculate (unew)sa = exp(θsa), (s, a) ∈ S ×A.
8: Calculate q = max{∥vnew − v∥/∥v∥, ∥unew − u∥/∥u∥}.
9: Update (v, u) by v ← vnew, u← unew.

10: end while

3. Interpolating natural gradient method. In subsection 2.2, NGAD is introduced using

the diagonal part of ∂2E
∂u2 . A natural question is whether the whole matrix ∂2E

∂u2 can be used. Under

the matrix notation, ∂2E
∂u2 in (2.6) takes the form

∂2E

∂u2
=

H1

. . .

H|S|

 , Hs = diag
(
(us·)

−1
)
− 1

ũs
1|A|1

T
|A|, s ∈ S.(3.1)

Since the Hessian matrix describes the local geometry of the problem, the standard NGAD in
Section subsection 2.2 can be viewed as approximating the Hessian diagonally

∂2E

∂u2
≈

diag
(
(u1·)

−1
)

. . .

diag
(
(u|S|·)

−1
)


and using its inversediag(u1·) . . .

diag(u|S|·)

 ≡
ũ1(diag(π1·)) . . .

ũ|S|(diag(π|S|·))


to precondition the gradient. However, Hs is in fact singular with Null(Hs) = Span(us·) and its
pseudoinverse readsũ1(diag(π1·)− π1·π

T
1·)

. . .

ũ|S|(diag(π|S|·)− π|S|·π
T
|S|·)

 .
If we had constructed the natural gradient method with this pseudoinverse, the component in the
1|A| direction would not have been updated in the dynamics.

The key idea is that one can interpolate between these two extreme cases, i.e., we propose to
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use

(3.2)

ũ1(diag(π1·)− cπ1·π
T
1·)

. . .

ũ|S|(diag(π|S|·)− cπ|S|·π
T
|S|·)


for 0 < c < 1 to precondition the gradient.

Under this interpolating metric (3.2), the new interpolating NGAD (INGAD) is given by

dvs′

dt
= −

(
vs′ −

1

α

∑
sa

Kass′usa

)
, s′ ∈ S,

dus·
dt

= −ũs
(
diag(πs·)− cπs·πT

s·
)(

log
us·
ũs
− 1

τ

(
rs· −

∑
s′

K·ss′vs′

))
, s ∈ S,

(3.3)

where us· ∈ R|A|. When c = 0, this dynamics reduces to (2.7).
A Lyapunov function of this dynamics can also be identified. Using the unique solution (v∗, u∗)

to (2.2), we define

Lc(v, u) =
α

2

∑
s

|vs − v∗s |2 + τ

(∑
sa

(
u∗sa log

u∗sa
usa

+ usa − u∗sa
)
+

c

1− c
∑
s

(
ũ∗s log

ũ∗s
ũs

+ ũs − ũ∗s
))

,

(3.4)

where the subscript c denotes the hyperparameter in the function. Some key properties of Lc(v, u)
are summarized in the following lemma.

Lemma 3.1. Lc(v, u) is convex and the unique minimum is Lc(v
∗, u∗) = 0. The sublevel sets

of Lc are bounded.

The next lemma states that Lc(v, u) is a Lyapunov function for (3.3).

Lemma 3.2. Lc(v, u) is a Lyapunov function for the dynamics (3.3), i.e., dLc

dt ≤ 0 when dv
dt

and du
dt are defined by (3.3), and the only trajectory of the dynamics (3.3) satisfying dLc

dt = 0 is
(v, u) = (v∗, u∗).

The proofs of these two lemmas can be found again in section 6.

Theorem 3.3. The dynamics of (3.3) converges globally to (v∗, u∗).

Proof. Similar to Theorem 2.5, by Lemma 3.1, Lemma 3.2 and the Barbashin-Krasovskii-
LaSalle theorem [14], the dynamics of (3.3) is globally asymptotically stable and hence converges
globally to (v∗, u∗).

The local exponential convergence of (3.3) can also be shown with Lyapunov’s indirect method.
This result is stated in Theorem 3.4.

Theorem 3.4. The dynamics of (3.3) converges at rate O(e−ct) to (v∗, u∗) for some c > 0.

Finally, we discuss the implementation of (2.7). By letting usa = exp(θsa), (3.3) can be
written as

dvs′

dt
= −

(
vs′ −

1

α

∑
sa

Kass′ exp(θsa)

)
, s′ ∈ S,

dθs·
dt

= −
(
I − c1 exp(θs·)

T

1T exp(θs·)

)(
θs· − log

∑
a

exp(θsa)1−
1

τ

(
rs· −

∑
s′

K·ss′vs′

))
, s ∈ S.

(3.5)
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With a learning rate η > 0, this becomes

vs′ ← (1− η)vs′ +
η

α

∑
sa

Kass′ exp(θsa), s′ ∈ S,

θs· ← θs· − η
(
I − c1 exp(θs·)

T

1T exp(θs·)

)(
θs· − log

∑
a

exp(θsa)1−
1

τ

(
rs· −

∑
s′

K·ss′vs′

))
, s ∈ S.

(3.6)

The details of the algorithm can be found in Algorithm 3.1 below.

Algorithm 3.1 INGAD for quadratically convexified formulation

Require: the MDP model M = (S,A, P, r, γ), initialization (vinit, θinit), convergence threshold
ϵtol, coefficient α > 0 for the quadratic term in (2.2), regularization coefficient τ , metric
coefficient 0 ≤ c < 1, learning rate η.

1: Initialize the value and parameters v = vinit, θ = θinit.
2: Calculate usa = exp(θsa), (s, a) ∈ S ×A.
3: Set q = 1 + ϵtol.
4: while q > ϵtol do
5: Calculate (vnew)s′ = (1− η)vs′ + η

α

∑
saKass′usa, s′ ∈ S.

6: Update θ by

θs· ← θs· − η
(
I − c1uTs·

1Tus·

)(
θs· −

(
log
∑
a

usa

)
1− 1

τ

(
rs· −

∑
s′

K·ss′(vnew)s′

))
, s ∈ S.

7: Calculate (unew)sa = exp(θsa), (s, a) ∈ S ×A.
8: Calculate q = max{∥vnew − v∥/∥v∥, ∥unew − u∥/∥u∥}.
9: Update (v, u) by v ← vnew, u← unew.

10: end while

4. Numerical results. In this section, we examine the performance of Algorithm 2.1 and
Algorithm 3.1 with several different examples. Subsection 4.1 compares Algorithm 2.1 and Algo-
rithm 3.1 in a complete-information case where the transition probabilities and the rewards are
known exactly. A comparison with an existing method in [42] is showcased in this setting as well.
The sample-based setting is investigated in subsection 4.2, where we give an adapted version of
INGAD with sample access, and test its performance on two different MDPs.

4.1. Experiments with complete information. Here we test the numerical performance
of the standard natural gradient in Algorithm 2.1 and the interpolating natural gradient in Al-
gorithm 3.1 in a complete information situation. The MDP used is from [42], where |S| = 200,
|A| = 50, and the transition probabilities and rewards are randomly generated. More specifically,
the transition probabilities are set as Pass′ = 1/20 for any s′ ∈ Ssa, where Ssa is a uniformly
randomly chosen subset of S such that |Ssa| = 20, and the reward rsa = UsaUs for (s, a) ∈ S ×A,
where Usa and Us are independently uniformly sampled from [0, 1].

A comparison of Algorithm 2.1 and Algorithm 3.1 is carried out using the same discount
rate γ = 0.99 and hyperparameters (ϵtol, α, τ) = (1 × 10−5, 0.1, 0.01). Since both algorithms are
explicit discretizations of the corresponding flow, a sufficiently small learning rate is needed to
ensure convergence. In the tests, the learning rates are set as η = 3× 10−4 for Algorithm 2.1 and
η = 8× 10−3 for Algorithm 3.1, which are both manually tuned to be close to the largest learning
rates such that convergence is achieved. For Algorithm 3.1, we set c = 0.98.

As a result, Algorithm 2.1 takes 59296 iterations to converge while Algorithm 3.1 takes 2213
iterations, demonstrating that the interpolating metric introduced in section 3 gives rise to an
acceleration of more than 1 magnitude. Plotted in Figure 2(a) and Figure 2(c) are the errors
of the value and policy with respect to the ground truth in the training process, which verifies
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(a) Error of the value function and policy
using Algorithm 2.1.

(b) The Lyapunov function.

(c) Error of the value function and policy
using Algorithm 3.1.

(d) The Lyapunov function.

Fig. 2. Comparison of Algorithm 2.1 and Algorithm 3.1. (a): Convergence of the value and policy during
training of Algorithm 2.1; (b): Lyapunov function (2.8); (c): Convergence of the value and policy during training
of Algorithm 3.1; (d): Lyapunov function (3.4). Blue curves in (a) and (c): The convergence of ∥π−π∗∥F /∥π∗∥F
in the training process. Orange curves in (a) and (c): The convergence of ∥v−v∗∥2/∥v∗∥2 in the training process.
A logarithmic scale is used for all vertical axes.

that Algorithm 3.1 achieves the same precision more than a magnitude faster than Algorithm 2.1.
Moreover, it can be observed from Figure 2(b) and Figure 2(d) that the Lyapunov function de-
creases monotonically in both cases, confirming the theoretical analyses in section 2 and section 3.

Comparison with PMD [42]. Next, we compare the performance of Algorithm 3.1 (IN-
GAD) with an existing method, namely the policy mirror descent (PMD) method used in [42].
The underlying MDP of the problem is the same as in subsection 4.1. For the hyperparameters of
INGAD, we take (Niter, α, c) = (2000, 0.1, 0.98). In order to make a fair comparison, the learning
rate is set as η = 8× 10−3, and the regularization coefficient is set as τ = 0.01 for both methods.
For the PMD method, we take the first 20000 iterations.

(a) Comparison of the error curves of the
value function.

(b) Comparison of the error curves of the
policy function.

Fig. 3. Comparison of Algorithm 3.1 with PMD [42]. (a): Convergence of the value function; (b): Conver-
gence of the policy. Blue curves: The convergence of ∥π − π∗∥F /∥π∗∥F in the training process. Orange curves:
The convergence of ∥v − v∗∥2/∥v∗∥2 in the training process. A logarithmic scale is used for all vertical axes.
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It can be seen from Figure 3 that Algorithm 3.1 admits a faster convergence than PMD.
For both the value function and the policy, Algorithm 3.1 achieves a higher precision in 2000
iterations than PMD with 20000 iterations. The final errors in the value function and policy are
approximately (0.0034, 0.0025) for INGAD and (0.39, 0.0049) for PMD.

Algorithm 4.1 INGAD for quadratically convexified formulation (sample version)

Require: the discount rate γ, initialization (vinit, θinit), convergence threshold ϵtol, maximum
number of iterations Niter, coefficient α > 0 for the quadratic term in (2.2), regularization
coefficient τ , metric coefficient 0 ≤ c < 1, the initial and the final learning rate (ηinit, ηend).

1: Initialize the value and parameters v = vinit, θ = θinit.
2: Calculate usa = exp(θsa), (s, a) ∈ S ×A.
3: Set q = 1 + ϵtol and i = 0.
4: Initialize a buffer B with N transition samples (s, a, s′, r).
5: while q > ϵtol and i < Niter do
6: Calculate ηi = (1 + i(Niterηend)

−1(ηinit − ηend))−1ηinit
7: Randomly sample a batch of samples from B with size Nb.
8: Estimate K̂(i) from the samples.

9: Calculate (vnew)s′ = (1− η)vs′ + η
α

∑
sa K̂

(i)
ass′usa, s′ ∈ S.

10: Update θ by

θs· ← θs· − η
(
I − c1uTs·

1Tus·

)(
θs· −

(
log
∑
a

usa

)
1− 1

τ

(
rs· −

∑
s′

K̂
(i)
·ss′(vnew)s′

))
, s ∈ S.

11: Calculate (unew)sa = exp((θnew)sa), (s, a) ∈ S ×A.
12: Calculate q = max{∥vnew − v∥/∥v∥, ∥unew − u∥/∥u∥}.
13: Update (v, u) by v ← vnew, u← unew.
14: i← i+ 1.
15: end while

4.2. Experiments with random samples. Finally, we test the INGAD algorithm on the
case where the transition probabilities are unknown. In each iteration, a size-Nb batch of samples
is used to estimate the transition probabilities and used for the INGAD update, as presented in
Algorithm 4.1. In order to stabilize the training dynamics, we use a decaying learning rate starting
with ηinit and ending with ηend. If ηinit = ηend, then the algorithm reduces to the constant learning
rate case. We first use the MDP introduced in subsection 4.1.

In this experiment, we adopt (γ,Niter, Nb, α, τ, c) = (0.9, 12000, 1 × 105, 0.1, 0.1, 0.9) and
(ηinit, ηend) = (0.001, 0.001). Altogether 1 × 108 samples are used in the training process. It
can be seen from Figure 4 that the approximate value function and policy given by Algorithm 4.1
converge to the ground truth and oscillate around it at the final stage. The final errors in the
value function and policy are approximately 0.015 and 0.030, respectively. It can also be seen from
Figure 4(b) that the Lyapunov function mostly decreases in the training process even though the
transition probabilities used are just unbiased estimators of the ground truth.

Experiment with the FrozenLake environment. In this part, the MDP we consider is
from the FrozenLake environment (see [6]). The environment describes the problem where the
player aims to walk on a frozen lake from one corner to another without falling into the holes.
In the example we use below, the map is an 8× 8 square grid with 10 randomly generated holes.
Therefore, the size of the state space is 64, and there are 4 actions, corresponding to the 4 directions
one can choose at each position. In order to model the low-friction property of ice, the transition
is not deterministic. More specifically, the agent has a 1/3 probability of moving in the intended
direction or the two perpendicular directions. An illustration of the lake map is given in Figure 5.

In the numerical experiment, we set (γ,Niter, Nb, α, τ, c) = (0.9, 80000, 2000, 0.1, 0.1, 0.9), and
(ηinit, ηend) = (0.002, 0.0002). The buffer size N and the batch-size Nb are chosen as 2× 106 and
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(a) Error of the value function and policy. (b) The Lyapunov function.

Fig. 4. Performance of Algorithm 4.1 for the MDP problem described in Subsection 4.1. (a): Convergence
of the value and policy during training of Algorithm 4.1; Blue curve: the convergence of ∥π − π∗∥F /∥π∗∥F in
the training process; Orange curve: the convergence of ∥v − v∗∥2/∥v∗∥2 in the training process. (b): Lyapunov
function (3.4). A logarithmic scale is used for all vertical axes.

Fig. 5. Map of the FrozenLake environment with size 8× 8 and 10 randomly generated holes. The green and
the orange boxes represent the starting position and the target position, respectively. The blue area represents the
positions with ice, while the grey spots indicate the positions of holes.

2000, respectively.

(a) Error of the value function and policy. (b) The Lyapunov function.

Fig. 6. Performance of Algorithm 4.1 for the 8× 8 FrozenLake problem. (a): Convergence of the value and
policy during training of Algorithm 4.1; Blue curve: the convergence of ∥π− π∗∥F /∥π∗∥F in the training process;
Orange curve: the convergence of ∥v − v∗∥2/∥v∗∥2 in the training process. (b): Lyapunov function (3.4). A
logarithmic scale is used for all vertical axes.

Similar to the previous example, both the error of the value function and the error of the
policy function reduce in the training process, indicating the effectiveness of Algorithm 4.1 given
sample access to the MDP. The oscillations represent the randomness in the samples gathered
in each batch. The final errors for the value and policy are 0.012 and 0.026, respectively. The
Lyapunov function also shows a clear decreasing trend along the training process.

5. Conclusion and discussion. In this paper, we focused on the primal-dual formulation
of entropy regularized Markov decision problems. We proposed a quadratically convexified primal-
dual formulation that makes the landscape of the objective function smoother and enables faster
numerical algorithms. We proved the equivalence of the quadratically convexified primal-dual

This manuscript is for review purposes only.



14 H. LI, H. YU, L. YING, AND I. DHILLON

formulation with the original primal-dual formulation. Leveraging the enhanced convexity of the
objective function, we proposed an NGAD method and proved its convergence properties using
the Lyapunov methods. We further introduced an INGAD algorithm that accelerates convergence
significantly. The efficiency and robustness of the proposed algorithms are demonstrated through
multiple numerical experiments.

For future directions, one can potentially extend the convergence analysis here to the finite
sample case with standard statistical methods. Another interesting direction to explore is the
application of other optimization techniques to the convexified formulation proposed here.

6. Proofs.

6.1. Proof of Theorem 2.1.

Proof of Theorem 2.1. First, we show that there exists a unique solution to (2.1). By [12],
there exists a unique optimal policy π∗ and a unique optimal value function v∗ = vπ∗ such that
(1.5), or equivalently, (1.7) and (1.8) hold. From [41], we know that this optimal value function
and policy (v∗, π∗) also yields a solution (v∗, u◦) to the primal-dual problem by u◦sa = π∗

sa(K
−T
π∗ e)s.

Also from [41] we know that any solution to the primal-dual formulation (2.1) satisfies v = v∗,
usa/ũs = π∗

sa, (s, a) ∈ S×A and ũ = K−T
π∗ e, which combined with the uniqueness of (v∗, π∗) shows

that the solution (v∗, u◦) to (2.1) is unique.
Next, we show that (v∗, u∗) satisfies the first-order condition of (2.2), where

u∗sa :=
ws

ũ◦s
u◦sa, w := αK−T

π∗ v∗.(6.1)

The first-order condition of (2.1) gives

es′ −
∑
sa

Kass′u
◦
sa = 0, ∀s′ ∈ S,

rsa −
∑
s′

Kass′v
∗
s′ − τ log(u◦sa/ũ◦s) = 0, ∀(s, a) ∈ S ×A.

(6.2)

Since es′ =
∑

saKass′u
◦
sa =

∑
s

∑
aKass′π

∗
saũ

◦
s =

∑
sKπ∗ss′ ũ

◦
s, we have ũ◦ = K−T

π∗ e = e +∑∞
k=1 γ

k(PT
π∗)ke, and thus ũ◦s ≥ es > 0 for all s ∈ S. Similarly, ws ≥ αv∗s for all s ∈ S since

w = αK−T
π∗ v∗. By (1.8), it is also known that π∗

sa > 0 for all (s, a) ∈ S × A, so (rπ∗ − τhπ∗)s > 0
for all s ∈ S since r is nonnegative. Again by an expansion of K−1

π∗ , one can show that v∗s =
K−1

π∗ (rπ∗ − τhπ∗) ≥ (rπ∗ − τhπ∗)s > 0. Hence u∗sa = ws

ũ◦
s
u◦sa > 0 is well-defined. In addition,

ũ∗ = w and

u∗sa
ũ∗sa

=
u◦sa
ũ◦s

= π∗
sa,(6.3)

As a result,

rsa −
∑
s′

Kass′v
∗
s′ = τ log

u◦sa
ũ◦s

= τ log
u∗sa
ũ∗sa

, ∀(s, a) ∈ S ×A.(6.4)

Moreover, one can show that

αv∗s′ = KT
π∗w =

∑
s

Kπ∗ss′
u∗sa
π∗
sa

=
∑
s

(∑
a

Kass′π
∗
sa

)
u∗sa
π∗
sa

=
∑
sa

Kass′u
∗
sa, ∀s′ ∈ S.(6.5)

Combining (6.4) and (6.5), we conclude that (v∗, u∗) is a solution to

αvs′ −
∑
sa

Kass′usa = 0, ∀s′ ∈ S,

rsa −
∑
s′

Kass′vs′ − τ log
usa
ũs

= 0, ∀(s, a) ∈ S ×A.
(6.6)
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This is the first-order stationary condition for the problem (2.2).
Finally, we show that (v∗, u∗) is the unique solution to (6.6). Assume that (v1, u1) and (v2, u2)

are both solutions to (6.6). If v1 ̸= v2, then E(v1, u1) < E(v2, u1) and E(v2, u2) < E(v1, u2) since
for any u, E(v, u) is strictly convex in v. On the other hand, for any v, E(v, u) is concave in u
(see for example [27] or [41]). So E(v1, u1) ≥ E(v1, u2) and E(v2, u2) ≥ E(v2, u1) and

E(v1, u1) ≥ E(v1, u2) > E(v2, u2) ≥ E(v2, u1) > E(v1, u1),

which is a contradiction, so we must have v1 = v2 instead. By the second equation in (6.6),

u1sa
ũ1s

= exp

(
τ−1(rsa −

∑
s′

Kass′v
1
s′)

)
= exp

(
τ−1

(
rsa −

∑
s′

Kass′v
2
s′

))
=
u1sa
ũ1s

,

thus π1 = π2, where π1
sa =

u1
sa

ũ1
s
, π2

sa =
u2
sa

ũ2
s
. Since (π1, v1) = (π2, v2), by the first equation in (6.6),

ũ1 = αK−T
π1
v1 = αK−T

π2
v2 = ũ2,

As a result,

u1sa = ũ1s ·
u1sa
ũ1s

= ũ2s ·
u2sa
ũ2s

= u2sa, ∀(s, a) ∈ S ×A,

and (v1, u1) = (v2, u2). Hence the solution to (6.6) is unique. Theerefore, (v∗, u∗) is the unique
solution to (6.6). By equation (6.3), the policy yielded by u∗ coincides with the optimal policy
π∗, which finishes the proof.

6.2. Proof of Lemma 2.3.

Proof of Lemma 2.3. From the definition of L we know that ∂2L
∂usa∂vs′

= 0. Moreover,

∂2L

∂vs∂vs′
= αδss′ ,

∂2L

∂usa∂us′a′
= τδ(s,a),(s′,a′)

u∗sa
u2sa

, (s, s′, a, a′) ∈ S2 ×A2,

which means that the Hessian matrix of L is a diagonal matrix with positive diagonal elements

on the domain R|S| × R|S|×|A|
+ . Hence L is strictly convex. Since the first-order condition:

∂L

∂vs
= α(vs − v∗s ) = 0,

∂L

∂usa
= τ

(
1− u∗sa

usa

)
= 0, (s, a) ∈ S ×A,(6.7)

has a unique solution (v, u) = (v∗, u∗), it is also the unique global minimum of L. Let

φs(x) =
1

2
α|x− v∗s |2, ψsa(x) = τ(u∗sa log u

∗
sa/x+ x− u∗sa).

By the calculation above, one can also show that φs and ψsa are strictly convex and non-negative.
Moreover, since lim

x→+∞
ψsa(x) = +∞, we have M(C) = max

sa
sup{x > 0 | ψsa(x) ≤ C} < +∞. As

a result, the sublevel set

{(v, u) | L(v, u) ≤ C} ⊂ {(v, u) | |vs′ − v∗s′ | ≤
√
2C/α, 0 < usa < M(C), s′ ∈ S, (s, a) ∈ S ×A}

is bounded.

6.3. Proof of Lemma 2.4. We first prove the following lemma.

Lemma 6.1. Define H : R|A|
+ → R by H(z) =

∑
a za log za− z̄ log z̄, where z̄ =

∑
a za, then H

is convex. Moreover, (z1 − z2) · (∇H(z1)−∇H(z2)) ≥ 0, and the equality is achieved if and only
if z2 = cz1 for some c > 0.
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Proof. The second-order derivatives of H read ∂2H
∂za∂za′

= δaa′
za
− 1

z̄ . By the Cauchy-Schwarz

inequality, for any x ∈ R|A|

∑
aa′

xa
∂2H

∂za∂za′
xa′ =

∑
aa′

xa

(
δaa′

za
− 1

z̄

)
xa′ =

∑
a

x2a
za
− 1

z̄

(∑
a

xa

)2

≥ 0.

Hence the Hessian matrix of H is positive semi-definite and H is convex. By convexity (z1 − z2) ·
(∇H(z1) −∇H(z2)) ≥ 0. Suppose now that equality holds. If z1 = z2, then clearly z2 = cz1 for
c = 1. If z1 ̸= z2, let h(t) = H(z1+t(z2−z1)), then h is also convex and h′(0) = (z2−z1)·∇H(z1) =
(z2 − z1) · ∇H(z2) = h′(1), so h′(t) = h′(0) for any t ∈ [0, 1], thus

0 = h′′(0) = (z2 − z1)T∇2H(z1)(z2 − z1).

Hence from the equality condition of the Cauchy-Schwarz inequality, we conclude z2 − z1 = c̃z1
and thus z2 = cz1 for some c, and we have c > 0 since z1, z2 ∈ R|A|

+ .

Proof of Lemma 2.4. By Theorem 2.1, (v∗, u∗) is also the unique solution to (6.6), so

αv∗s′ −
∑
sa

Kass′u
∗
sa = 0, s′ ∈ S,(

rsa −
∑
s′

Kass′v
∗
s′

)
− τ log u

∗
sa

ũ∗s
= 0, (s, a) ∈ S ×A.

(6.8)

Subtracting this from the dynamics (2.7) leads to

dvs′

dt
= −

(
(vs′ − v∗s′)−

1

α

∑
sa

Kass′(usa − u∗sa)

)
, s′ ∈ S,

dusa
dt

= −usa

((
log

usa
ũs
− log

u∗sa
ũ∗s

)
+

1

τ

∑
s′

Kass′(vs′ − v∗s′)

)
, (s, a) ∈ S ×A.

(6.9)

Taking the derivative of L gives

dL

dt
=− α

∑
s′

(vs′ − v∗s′)

(
(vs′ − v∗s′)−

1

α

∑
sa

Kass′(uas − u∗as)

)

− τ
∑
sa

usa − u∗sa
usa

· usa

((
log

usa
ũs
− log

u∗sa
ũ∗s

)
+

1

τ

∑
s′

Kass′(vs′ − v∗s′)

)

=− α
∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)
(
log

usa
ũs
− log

u∗sa
ũ∗s

)
,

(6.10)

where we have used (6.7). By Lemma 6.1,∑
sa

(usa − u∗sa)(log usa/ũs − log u∗sa/ũ
∗
s) =

∑
s

(us − u∗s) · (∇H(us)−∇H(u∗s)) ≥ 0,

where H is defined in Lemma 6.1. Therefore,

−α
∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)
(
log

usa
ũs
− log

u∗sa
ũ∗s

)
≤ 0.

By Lemma 6.1 the equality holds only when v = v∗ and usa = csu
∗
sa for cs > 0, (s, a) ∈ S × A.

Let
R = {(v, u) | −α

∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)(log usa/ũs − log u∗sa/ũ
∗
s) = 0},
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then R = {(v, u) | v = v∗, usa = csu
∗
sa, cs ∈ R+, s ∈ S}. We proceed to prove that the only

trajectory of (6.9) in R is (v, u) = (v∗, u∗). Since v = v∗ for any (v, u) ∈ R, dvs′
dt = 0 for any

s′ ∈ S. The following equality

0 =
∑
sa

Kass′(usa − u∗sa) =
∑
sa

Kass′(cs − 1)u∗sa

=
∑
sa

Kass′(cs − 1)ũ∗sπ
∗
sa =

∑
s

Kπ∗ss′(cs − 1)ũ∗s
(6.11)

means that, for any point (v, u) on the trajectory of (6.9) in R, KT
π∗((c−1)ũ∗) = 0. Here (c−1)ũ∗

is the vector with length |S| whose s-th element is (cs − 1)ũ∗s. Thus cs = 1 for any s ∈ S, and the
trajectory is a single point (v, u) = (v∗, u∗).

6.4. Proof of Theorem 2.6.

Proof of Theorem 2.6. The linearized dynamic of the standard natural gradient (2.7) is

dvs′

dt
= −

(
((vs′ − v∗s′)−

1

α

∑
sa

Kass′(usa − u∗sa)

)
, s′ ∈ S,

dusa
dt

= −u∗sa

(
1

τ

∑
s′

Kass′(vs′ − v∗s′) +
usa − u∗sa

u∗sa
− ũs − ũ∗s

ũ∗s

)
, (s, a) ∈ S ×A.

(6.12)

Define matrix K̃ by K̃(s−1)|A|+a,s′ = Kass′ , and let δv = v−v∗, δu = u−u∗. Then (6.12) becomes

d

dt

[
δv
δu

]
= −

[
I|S| − 1

αK̃
T

1
τ diag(u

∗)K̃ diag(u∗)M

] [
δv
δu

]
,(6.13)

where diag(u∗) is a diagonal matrix whose ((s− 1)|A|+ a)-th diagonal element is u∗sa. Here M is
a block-diagonal matrix defined as:

M =

M1

. . .

M|S|

 , Ms = diag
(
(u∗s)

−1
)
− 1

ũ∗s
1|A|1

T
|A|, s ∈ S,(6.14)

where diag
(
(u∗s)

−1
)
is a diagonal |A| × |A| matrix with the a-th diagonal element equal to 1/u∗sa.

Notice that M is symmetric and by the Cauchy-Schwarz inequality, for any x ∈ R|A|

∑
aa′

xaMsxa′ =
∑
a

x2a
u∗sa
− 1

ū∗s

(∑
a

xa

)2

≥ 0, s ∈ S.(6.15)

Hence Ms is positive semi-definite for all s and thus M is also positive semi-definite. Define
invertible matrix P as

P =

[√
τI|S| √

αdiag
(√
u∗
)] ,

where diag
(√
u∗
)
is a diagonal |S||A|× |S||A| matrix with the ((s−1)|A|+a)-th diagonal element

equal to
√
u∗sa. Denote the matrix in the linearized dynamics (6.13) as −J , i.e.,

J =

[
I|S| − 1

αK̃
T

1
τ diag(u

∗)K̃ diag(u∗)M

]
.

Then

P−1JP =

[
1√
τ
I|S|

1√
α
diag

(
(
√
u∗)−1

)] [ I|S| − 1
αK̃

T

1
τ diag(u

∗)K̃ diag(u∗)M

] [√
τI|S| √

αdiag
(√
u∗
)]

=

[
I|S| − 1√

ατ
K̃Tdiag

(√
u∗
)

1√
ατ

diag
(√
u∗
)
K̃ diag

(√
u∗
)
Mdiag

(√
u∗
)] .
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It suffices to show that the real part of the eigenvalues of P−1JP is positive. Denote P−1JP by
J̃ . Using the positive semi-definiteness of M , for any eigenpair (λ, x) of J̃ we can deduce

Re(λ) =
1

2

(
xHJ̃x

xHx
+
xHJ̃Hx

xHx

)

=
1

2xHx
xH

([
I|S| − 1√

ατ
K̃Tdiag

(√
u∗
)

1√
ατ

diag
(√
u∗
)
K̃ diag

(√
u∗
)
Mdiag

(√
u∗
)]

+

[
I|S|

1√
ατ
K̃Tdiag

(√
u∗
)

− 1√
ατ

diag
(√
u∗
)
K̃ diag

(√
u∗
)
Mdiag

(√
u∗
)])x

=
1

xHx
xH
[
I|S|

diag
(√
u∗
)
Mdiag

(√
u∗
)]x

≥ 0,

,(6.16)

where the superscript H denotes the Hermitian transpose. Now we proceed to show Re(λ) ̸= 0.

Let x =

[
x1
x2

]
, where x1 ∈ R|S|, x2 ∈ R|S||A|. If Re(λ) = 0, then

0 = xH
[
I|S|

diag
(√
u∗
)
Mdiag

(√
u∗
)]x = xH1 x1 + (diag(

√
u∗)x2)

HM(diag(
√
u∗)x2) ≥ 0,

thus x1 = 0 and the equality condition of the Cauchy-Schwarz inequality (6.15) must hold. Hence
(x2)sa = cs

√
u∗sa for some cs ∈ R, s ∈ S. We also know that cs is not all zero for s ∈ S; otherwise,

x2 = 0 and x = 0 is not an eigenvector. Thus

J̃x =

[
I|S| − 1√

ατ
K̃Tdiag

(√
u∗
)

1√
ατ

diag
(√
u∗
)
K̃ diag

(√
u∗
)
Mdiag

(√
u∗
)]x =

−1√
ατ

[
K̃Tdiag

(√
u∗
)
x2

0

]
,

which is not a scalar multiple of x unless K̃Tdiag
(√
u∗
)
x2 = 0. However, as(

K̃Tdiag
(√

u∗
)
x2

)
s′
=
∑
sa

Kass′csu
∗
sa =

∑
s

Kπ∗ss′csũ
∗
s, s′ ∈ S,

K̃Tdiag
(√
u∗
)
x2 = KT

π∗cũ∗ where cũ∗ denotes the elementwise product. Thus KT
π∗cũ∗ = 0 and

then cũ∗ = 0, contradicting with the fact that cs is not all zero. The contradiction means that
Re(λ) ̸= 0. Together with the inequality (6.16) we have Re(λ) > 0 for any eigenvalue λ of J .
Hence Re(λ) < 0 for any eigenvalue λ of −J , the matrix in the linearized dynamics (6.13). By
Lyapunov’s indirect theorem [14], (2.7) has locally exponential convergence.

6.5. Proof of Lemma 3.1.

Proof of Lemma 3.1. Similar to Lemma 2.3, we first note that ∂2L
∂usa∂vs′

= 0. Moreover,

∂2Lc

∂vs∂vs′
= αδss′ ,

∂2Lc

∂usa∂us′a′
= τδss′

(
δaa′

u∗sa
u2sa

+
cũ∗s

(1− c)ũ2s

)
, (s, s′, a, a′) ∈ S2 ×A2.

Hence the Hessian matrix of Lc is[
αI|S| 0
0 τdiag(u∗/u2) + cτ

1−cB

]
,

where (u∗/u2)sa = u∗sa/u
2
sa and B is a positive definite block-diagonal matrix:

B :=


ũ∗
1

ũ2
1
1|A|1

T
|A|

. . .
ũ∗
|S|

ũ2
|S|

1|A|1
T
|A|

 .(6.17)
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Thus the Hessian of Lc is positive definite and Lc is strictly convex. The derivatives of Lc are

∂Lc

∂vs
= α(vs − v∗s ), s ∈ S,

∂Lc

∂usa
= τ

(
usa − u∗sa

usa
+

c

1− c
ũs − ũ∗s
ũs

)
, (s, a) ∈ S ×A,

(6.18)

from which we can see that (v∗, u∗) is a solution to the first-order condition ∂Lc

∂v = 0, ∂Lc

∂u = 0.
Since Lc is strictly convex, it is also the unique minimizer of Lc. Now we prove that Lc has bounded
sublevel sets. Let ℓ(u) =

∑
s(ũ

∗
s log ũ

∗
s/ũs + ũs − ũ∗s). Then Lc(v, u) = L0(v, u) +

cτ
1−cℓ(u). Since

∂2ℓ
∂u2 = B is positive definite, ℓ is strictly convex. Moreover, ∂ℓ

∂usa
= (ũs − ũ∗s)/ũs equals to 0 when

u = u∗, so by the strict convexity of ℓ, u∗ is the unique minimizer of ℓ, and thus ℓ(u) ≥ ℓ(u∗) = 0.
Hence the sublevel set {(v, u) | Lc(v, u) ≤ C} ⊂ {(v, u) | L0(v, u) ≤ C}. Since the latter is
bounded according to Lemma 2.3, the sublevel set of Lc is also bounded.

6.6. Proof of Lemma 3.2.

Proof of Lemma 3.2. Plugging the first-order condition (6.8) for the exact solution (v∗, u∗)
into the interpolating natural gradient (3.3) results in

dvs′

dt
= −

(
(vs′ − v∗s′)−

1

α

∑
sa

Kass′(usa − u∗sa)

)
, s′ ∈ S,

dus·
dt

= −ũs
(
diag(πs·)− cπs·πT

s·
)((

log
us·
ũs
− log

u∗s·
ũ∗s

)
+

1

τ

∑
s′

K·ss′(vs′ − v∗s′)

)
, s ∈ S,

(6.19)

where πsa is defined as usa/ũs. A direct calculation shows that

(us· − u∗s·)/us· +
c

1− c
(ũs − ũ∗s)/ũs1|A| =

(
diag(1/πs·) +

c

1− c
1|A|1

T
|A|

)(
us· − u∗s·

ũs

)
(6.20)

Then

dL

dt
= −α

∑
s′

(vs′ − v∗s′)

(
(vs′ − v∗s′)−

1

α

∑
sa

Kass′(usa − u∗sa)

)

−τ
∑
s

[(
us· − u∗s·

ũs

)T(
diag(1/πs·) +

c

1− c
1|A|1

T
|A|

)
ũs
(
diag(πs·)− cπs·πT

s·
)

((
log

us·
ũs
− log

u∗s·
ũ∗s

)
+

1

τ

∑
s′

K·ss′(vs′ − v∗s′)

)]

= −α
∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)
(
log

uas
ũs
− log

u∗as
ũ∗s

)
,

(6.21)

where we have used the fact that(
diag(1/πs·) +

c

1− c
1|A|1

T
|A|

)(
diag(πs·)− cπs·πT

s·
)

= diag(1/πs·)diag(πs·) +
c

1− c
1|A|1

T
|A|diag(πs·)−

c2

1− c
1|A|1

T
|A|πs·π

T
s· − cdiag(1/πs·)πs·πT

s·

= I +

(
c

1− c
− c2

1− c
− c
)
1|A|π

T
s· = I

Therefore,
dLc

dt
= −α

∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)
(
log

uas
ũs
− log

u∗as
ũ∗s

)
,
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where the right-hand side coincides with that of (6.10). Hence dLc

dt = dL0

dt ≤ 0 by the proof of
Lemma 2.4. Let

R = {(v, u) | −α
∑
s′

(vs′ − v∗s′)2 − τ
∑
sa

(usa − u∗sa)(log usa/ũs − log u∗sa/ũ
∗
s) = 0}.

Then by the proof of Lemma 2.4, R = {(v, u) | v = v∗, usa = csu
∗
sa, cs ∈ R+, s ∈ S}. We proceed

to prove that the only trajectory of (6.19) in R is (v, u) = (v∗, u∗). Since v = v∗ for any (v, u) ∈ R,
dvs′
dt = 0 for s′ ∈ S. In addition, for any s′ ∈ S we have

0 =
∑
sa

Kass′(usa − u∗sa) =
∑
s

Kπ∗ss′(cs − 1)ũ∗s,

by the same calculation as (6.11). This means that for point (v, u) on the trajectory of (6.19) in
R, KT

π∗((c − 1)ũ∗) = 0, thus (c − 1)ũ∗ = 0 and cs = 1 for any s ∈ S. Since this is true for any
(v, u) on the trajectory, the trajectory is a single point (v, u) = (v∗, u∗).

6.7. Proof of Theorem 3.4.

Proof of Theorem 3.4. The linearized dynamic of the interpolating natural gradient (3.3) is

dvs′

dt
= −

(
((vs′ − v∗s′)−

1

α

∑
sa

Kass′(usa − u∗sa)

)
, s′ ∈ S,

dus·
dt

= −
(
diag(u∗s·)−

c

ũ∗s
u∗s·(u

∗
s·)

T

)(
1

τ

∑
s′

K·ss′(vs′ − v∗s′) +
us· − u∗s·
u∗s·

− ũs − ũ∗s
ũ∗s

1

)
, s ∈ S.

(6.22)

Define K̃ by K̃(s−1)|A|+a,s′ = Kass′ and let δv = v − v∗, δu = u− u∗. Then (6.22) becomes

d

dt

[
δv
δu

]
= −

[
I|S| − 1

αK̃
T

1
τGK̃ GM

] [
δv
δu

]
,(6.23)

where M is a block-diagonal matrix defined as in (6.14) and G is a block-diagonal matrixG1

. . .

G|S|

 ,(6.24)

withGs = diag(u∗s·)− c
ũ∗
s
u∗s·(u

∗
s·)

T. Notice thatGs is symmetric. By the Cauchy-Schwarz inequality

xTGsx =
∑
a

u∗sax
2
a −

c

ũ∗s

(∑
a

u∗saxa

)2

≥ 1

ũ∗s

(∑
a

u∗saxa

)2

− c

ũ∗s

(∑
a

u∗saxa

)2

=
1− c
ũ∗s

(∑
a

u∗saxa

)2

> 0, ∀x ∈ R|A|, x ̸= 0, ∀s ∈ S.

Thus G is positive definite, and we can define the positive definite square root F of G, i.e., F 2 = G.
Define an invertible matrix Q

Q =

[√
τI|S| √

αF

]
and denote the matrix in the linearized dynamics (6.23) as −J , i.e.,

J =

[
I|S| − 1

αK̃
T

1
τGK̃ GM

]
.
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Then

Q−1JQ =

[
1√
τ
I|S|

1√
α
F−1

] [
I|S| − 1

αK̃
T

1
τGK̃ GM

] [√
τI|S| √

αF

]
=

[
I|S| − 1√

ατ
K̃TF

1√
ατ
FK̃ FMF

]
.

It suffices to show that the real part of the eigenvalues of Q−1JQ is positive. Denote Q−1JQ by
J̃ . Using the positive semi-definiteness of FMF , for any eigenpair (λ, x) of J̃ we can deduce

Re(λ) =
1

2

(
xHJ̃x

xHx
+
xHJ̃Hx

xHx

)

=
1

2xHx
xH

([
I|S| − 1√

ατ
K̃TF

1√
ατ
FK̃ FMF

]
+

[
I|S|

1√
ατ
K̃TF

− 1√
ατ
FK̃ FMF

])
x

=
1

xHx
xH
[
I|S|

FMF

]
x ≥ 0.

(6.25)

It remians to show Re(λ) ̸= 0. Let x =

[
x1
x2

]
, where x1 ∈ R|S|, x2 ∈ R|S||A|. Then if Re(λ) = 0,

0 = xH
[
I|S|

FMF

]
x = xH1 x1 + (Fx2)

HM(Fx2) ≥ 0,

Thus x1 = 0, and the equality condition of the Cauchy-Schwarz inequality (6.15) must hold. Hence
(Fx2)sa = csu

∗
sa for some cs ∈ R, s ∈ S. We also know that cs is not all zero for s ∈ S; otherwise,

x2 = 0, so x = 0 is not an eigenvector. Thus

J̃x =

[
I|S| − 1√

ατ
K̃TF

1√
ατ
FK̃ FMF

]
x =

−1√
ατ

[
K̃TFx2

0

]
,

which is not a scalar multiple of x unless K̃TFx2 = 0. Since(
K̃TFx2

)
s′
=
∑
sa

Kass′csu
∗
sa =

∑
s

Kπ∗ss′csũ
∗
s, s′ ∈ S,

K̃TFx2 = KT
π∗cũ∗. Thus cũ∗ = 0, contradicting the fact that cs is not all zero. This contradiction

means that Re(λ) ̸= 0. Together with the inequality (6.16), Re(λ) > 0 for any eigenvalue λ of
J . Hence Re(λ) < 0 for any eigenvalue λ of −J , the matrix in the linearized dynamics (6.23).
Finally, by Lyapunov’s indirect theorem [14], (3.3) has locally exponential convergence.
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