
Fast solution of fully implicit Runge-Kutta and

discontinuous Galerkin in time for numerical PDEs,

Part II: nonlinearities and DAEs∗

Ben S. Southworth† Oliver A. Krzysik‡ Will Pazner§

October 7, 2021

Abstract
Fully implicit Runge-Kutta (IRK) methods have many desirable accuracy and

stability properties as time integration schemes, but high-order IRK methods are
not commonly used in practice with large-scale numerical PDEs because of the
difficulty of solving the stage equations. This paper introduces a theoretical and
algorithmic framework for solving the nonlinear equations that arise from IRK
methods (and discontinuous Galerkin discretizations in time) applied to nonlin-
ear numerical PDEs, including PDEs with algebraic constraints. Several new lin-
earizations of the nonlinear IRK equations are developed, offering faster and more
robust convergence than the often-considered simplified Newton, as well as an ef-
fective preconditioner for the true Jacobian if exact Newton iterations are desired.
Inverting these linearizations requires solving a set of block 2× 2 systems. Under
quite general assumptions, it is proven that the preconditioned 2 × 2 operator’s
condition number is bounded by a small constant close to one, independent of the
spatial discretization, spatial mesh, and time step, and with only weak dependence
on the number of stages or integration accuracy. Moreover, the new method is
built using the same preconditioners needed for backward Euler-type time step-
ping schemes, so can be readily added to existing codes. The new methods are
applied to several challenging fluid flow problems, including the compressible Euler
and Navier Stokes equations, and the vorticity-streamfunction formulation of the
incompressible Euler and Navier Stokes equations. Up to 10th-order accuracy is
demonstrated using Gauss IRK, while in all cases 4th-order Gauss IRK requires
roughly half the number of preconditioner applications as required by standard
SDIRK methods.

1 Introduction

1.1 Fully implicit Runge-Kutta

Consider the method-of-lines approach to the numerical solution of partial differential
equations (PDEs), where we discretize in space and arrive at a system of ordinary

∗BSS was supported by Lawrence Livermore National Laboratory under contract B639443, and as
a Nicholas C. Metropolis Fellow under the Laboratory Directed Research and Development program
of Los Alamos National Laboratory. OAK acknowledges the support of an Australian Government
Research Training Program (RTP) Scholarship.

†Theoretical Division, Los Alamos National Laboratory, U.S.A. (southworth@lanl.gov), http://

orcid.org/0000-0002-0283-4928
‡School of Mathematics, Monash University, Australia (oliver.krzysik@monash.edu), https://

orcid.org/0000-0001-7880-6512
§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, U.S.A.

(pazner1@llnl.gov)

1

ar
X

iv
:2

10
1.

01
77

6v
3

 [
m

at
h.

N
A

]
 5

 O
ct

 2
02

1

southworth@lanl.gov
http://orcid.org/0000-0002-0283-4928
http://orcid.org/0000-0002-0283-4928
oliver.krzysik@monash.edu
https://orcid.org/0000-0001-7880-6512
https://orcid.org/0000-0001-7880-6512
pazner1@llnl.gov

differential equations (ODEs) in time,

Mu′(t) = N (u, t) in (0, T], u(0) = u0, (1)

where M is a mass matrix and N : RN×R+ 7→ RN is a discrete, time-dependent, nonlin-
ear operator depending on t and u (including potential forcing terms). Note, PDEs with
an algebraic constraint, for example, the divergence-free constraint in Navier Stokes, in-
stead yield a system of differential algebraic equations (DAEs). DAEs require separate
treatment and are addressed in Section 6. Now, consider time propagation of (1) using

an s-stage Runge-Kutta scheme, characterized by the Butcher tableaux
c0 A0

bT0
, with

Runge-Kutta matrix A0 = {aij} ∈ Rs×s, weight vector bT0 = (b1, . . . , bs)
T , and abscissa

c0 = (c1, . . . , cs).
Runge-Kutta methods update the solution using a sum over stage vectors,

un+1 = un + δt

s∑
i=1

biki, where (2)

0 = Mki −N
(
un + δt

s∑
j=1

aijkj , tn + δtci

)
. (3)

For nonlinear PDEs, N is linearized using, for example, a Newton or a Picard lin-
earization, and each nonlinear iteration then consists of solving the linearized system of
equations. In most cases, such a linearization is designed to approximate (or equal) the
Jacobian of (3). Applying the chain rule to (3) for the partial ∂(Mki−Ni)/∂kj , we see
that the linearized system takes the form

M 0
. . .

0 M

− δt
a11L1 ... a1sL1

...
. . .

...
as1Ls ... assLs

k1

...
ks

 =

f1...
fs

 , (4)

where Li ∈ RN×N denotes a linearization of the nonlinear function corresponding to

the ith stage vector, Ni := N
(
un + δt

∑s
j=1 aijkj , tn + δtci

)
, and −fi corresponds to

(3) evaluated at the previous nonlinear iterate for {ki} (i.e., fi is the negative residual
of (3) from the previous iterate). We emphasize that the spatially linearized operators,
Li, should be fixed for a given block row of the full linearized system, as in (4). Moving
forward, we let L refer to a general, spatially linearized operator when the stage index
is not relevant.

The difficulty in fully implicit Runge-Kutta methods (which we will denote IRK)
lies in solving the Ns × Ns block linear system in (4). This paper focuses on the
parallel simulation of numerical PDEs, where N is typically very large and L is highly
ill-conditioned. In such cases, direct solution techniques to solve (4) are not a viable
option, and fast, parallel iterative methods must be used. However, IRK methods are
rarely employed in practice due to the difficulties of solving (4). Even for relatively
simple parabolic PDEs where −L is symmetric positive definite (SPD), (4) is a large
nonsymmetric matrix with significant block coupling. For nonsymmetric matrices L that
already have inter-variable coupling that arise in systems of PDEs, traditional iterative
methods are even less likely to yield acceptable performance in solving (4).

Remark 1 (Discontinuous Galerkin (DG) in time). For completeness, here we repeat the
discussion from the companion paper [46] regarding the relation of DG discretizations in
time to IRK methods. After linearization, DG discretizations in time give rise to linear

2

algebraic systems of the form
δ11M δ1sM

. . .

δs1M δssM

− δt
t11L1 ... t1sL1

...
. . .

...
ts1Ls ... tssLs

u1

...
us

 =

r1...
rs

 . (5)

The coefficients tij correspond to a temporal mass matrix, the coefficients δij correspond
to a DG weak derivative with upwind numerical flux, and the unknowns ui are the
coefficients of the polynomial expansion of the approximate solution (for example, see
[1, 25, 29, 43]). Both of the coefficient matrices {tij}, {δij} are invertible. It can be
seen that the algebraic form of the DG in time discretization is closely related to the
implicit Runge-Kutta system (4) and, in fact, (5) can be recast in the form of (4) using
the invertibility of the matrix {δij}. In particular, the degree-p DG method using (p+1)-
point Radau quadrature, which is exact for polynomials of degree 2p, is equivalent to the
Radau IIA collocation method [29], which is used for many of the numerical results in
Section 7. Thus, although the remainder of this paper focuses on fully implicit Runge-
Kutta, the algorithms developed here can also be applied to DG discretizations in time
on fixed slab-based meshes.

1.2 Outline

In [46], robust and effective preconditioning techniques are developed for the solution
of fully implicit Runge Kutta methods and DG discretizations in time applied to linear
numerical PDEs. This paper builds on ideas from [46] to address nonlinearities and
DAEs.

First, new ways to approximate (4) are introduced in Section 3, which can be used as
preconditioners for solving (4) exactly, or as a modified linearization. The new approach
only requires the solution of a block 2× 2 set of equations for each pair of stages, rather
than the fully coupled s×s system in (4). Moreover, unlike many of the simplified New-
ton approaches seen previously in the literature, the new approach can yield convergence
comparable to true Newton iterations (or be used as a very effective preconditioner of
the true Jacobian).

Section 4 then introduces block preconditioners for the 2 × 2 systems, where the
preconditioned Schur-complement (which effectively defines convergence of fixed-point
and Krylov iterations applied to the larger 2×2 system [47]) is proven to have a condition
number bounded by a small order-one constant. The preconditioner is asymptotically
optimal, that is, the condition number is bounded independent of mesh spacing and time
step, and has only weak dependence on the order of integration/number of stages. The
theory is quite general, relying on only basic stability assumptions from Section 2.2, and
the block preconditioning only requires an effective preconditioner for systems along the
lines of γM − δtL, exactly as would be used, e.g., for SDIRK methods. A self-contained
algorithm description is provided in Section 5.

Numerical results for several challenging nonlinear fluid flow problems are provided
in Section 7. These include the compressible Euler equations, for which we solve a model
isentropic vortex problem, and the compressible Navier–Stokes equations, for which we
consider wall-resolved high Reynolds number flow over a NACA airfoil. Additionally,
we consider two test cases using the incompressible Euler and Navier–Stokes equations
in vorticity-streamfunction formulation. After spatial discretization, these equations
result in a system of index-1 differential algebraic equations (DAEs), illustrating the
applicability of the IRK linearizations and preconditioners to systems of equations with
algebraic constraints.

The methods are implemented with the MFEM [2] library and available at https:

//github.com/bensworth/IRKIntegration.

3

https://github.com/bensworth/IRKIntegration
https://github.com/bensworth/IRKIntegration

2 Background

2.1 Why fully implicit and previous work

Aside from the difficulty of solving (4) rapidly for large, ill-conditioned {Li}, IRK meth-
ods have a number of desirable properties in practice. For stiff PDEs, the observed ac-
curacy of Runge-Kutta methods can be limited to ≈ min{p, q+ 1}, for integration order
p and stage-order q [15, 24]. For index-2 DAEs, the order of accuracy is formally limited
to that of the stage order, q [15]. Diagonally implicit Runge Kutta (DIRK) methods are
most commonly used in practice for numerical PDEs due to ease of implementation, but
DIRK methods have a maximum order of p = s or p = s + 1 with reasonable stability
properties [15, Section IV.6],[24] and, moreover, are limited to stage-order q = 1 [41]
(or q = 2 for ESDIRK methods with one explicit stage [24]). In contrast, IRK methods
can have order as high as p = 2s for s stages and stage-order q = s. Advantages of
IRK methods (in a discretization sense) for the system of DAEs that arise in incom-
pressible Navier Stokes can be seen in [42], where high-order accuracy can be obtained
in the pressure variable without additional projections, splittings, or staggered grids.
For PDEs where DIRK methods are ineffective, linear multistep methods, in particular
BDF schemes, can offer improved accuracy and are often used in practice. However,
A-stable implicit multistep methods can have at most order two, and the stability re-
gion of higher-order methods moves progressively farther away from the imaginary axis,
which is particularly problematic for advection-dominated flows. Multistep methods also
introduce their own difficulties in initializing (or restarting after discontinuities) with
high-order accuracy, due to their multistep nature [7, Chapter 4], whereas Runge-Kutta
methods naturally start with high-order accuracy. Furthermore, neither linear multistep
nor explicit Runge Kutta methods can be generally symplectic (i.e., for non-separable
problems) [17]. Although DIRK methods can be symplectic, they are limited to at most
4th order and, moreover, known methods above second order are impractical due to
negative diagonal entries of A0 (leading to a negative shift rather than positive shift of
the spatial discretization) [24]. IRK methods are able to satisfy conditions for symplec-
ticty of arbitrary order, and even moderate-order symplectic integration requires IRK
methods.

It should be noted that IRK methods are by no means new, and many papers have
considered the efficient implementation of IRK integration in various contexts. Much of
the early work was focused on ODEs and minimizing the number of LU decompositions
that must be computed. Most of these works use a simplified Newton method, where it
is assumed that Li = Lj for all i, j, and either consider the solution of the simplified sys-
tem (4) (see, e.g., [6, 8, 19, 21, 50]), or introduce/analyze a modified nonlinear iteration
or time stepping scheme (see, e.g., [10, 11, 13, 14, 18, 20]). Some of the first works to
consider IRK methods for PDEs were the sequence of papers [32, 33, 48], which analyze
block triangular and diagonal preconditioners for the (linear) diffusion and biodomain
equations in the Sobolev setting, and demonstrate that the preconditioned operators
are well-conditioned. Other papers have demonstrated success with various IRK pre-
conditioning strategies for parabolic type problems as well [4, 9, 26, 39, 45], with the
method in [4] also demonstrating success in practice on linear hyperbolic problems. Nev-
ertheless, very few works have considered the true nonlinear setting for numerical PDEs
(that is, not simplified Newton) and, to our knowledge, no works have provided analysis
of preconditioning (4) for non-parabolic problems. This work addresses both of these
issues.

Remark 2 (Growing interest in IRK). While writing this paper, at least three preprints
have been posted studying the use of IRK methods for numerical PDEs. Two papers
develop new block preconditioning techniques for parabolic PDEs [22, 37] ([22] also ap-

4

peals to the Schur decomposition as used in this paper), and one focuses on a numerical
implementation of IRK methods with the Firedrake package [12].

2.2 A preconditioning framework and stability

Similar to [34, 46], methods developed in this paper appeal to pulling (A0 ⊗ I) out of
the matrix in (4), yielding an equivalent problemA−10 ⊗M − δt

L1

. . .

Ls

 (A0 ⊗ I)

k1

...
ks

 =

f1...
fs

 . (6)

Off-diagonal blocks in the reformulated system (6) now consist of mass matrices, rather
than differential operators, which simplifies the development and analysis of precon-
ditioning, and also reduces the number of sparse matrix-vector operations with {Li}.
Algorithms developed in this paper rely on the following assumption regarding eigen-
values of A0 and A−10 :

Assumption 1. Assume that all eigenvalues of A0 (and equivalently A−10) have positive
real part.

Recall that if an IRK method is A-stable, irreducible, and A0 is invertible (which
includes DIRK, Gauss, Radau IIA, and Lobatto IIIC methods, among others), then
Assumption 1 holds [15]; that is, Assumption 1 is straightforward to satisfy in practice.

The second assumption we make for analysis in this paper is derived from stability
of ODE solvers applied to numerical PDEs using the method-of-lines. The Dalhquist
test problem extends naturally to this setting, where we are interested in the stability
of the linearized operator L, for the ODE(s) u′(t) = Lu, with solution etLu. In [38],
necessary and sufficient conditions for stability are derived as the ε pseudo-eigenvalues
of δtL being within O(ε) + O(δt) of the stability region as ε, δt → 0. Here we relax
this assumption to something that is more tractable to work with by noting that the
ε pseudo-eigenvalues are contained within the field of values to O(ε) [49, Eq. (17.9)],
where the field of values is defined as

W (L) := {〈Lx,x〉 : ‖x‖ = 1} . (7)

This motivates the following assumption for the analysis done in this paper:

Assumption 2. Let L be a linearized spatial operator, and assume that W (L) ≤ 0 (that
is, W (L) is a subset of the closed left half plane).

Note that if L is normal, then Assumption 2 is equivalent to the real parts of the
eigenvalues of L being in the closed left-half plane since W (L) is the convex hull of the
eigenvalues.

As discussed in [46], note that the field of values has an additional connection to
stability. From [49, Theorem 17.1], we have that ‖etL‖ ≤ 1 for all t ≥ 0 if and only
if W (L) ≤ 0. This is analogous to the “strong stability” discussed by Leveque [27,
Chapter 9.5], as opposed to the weaker (but still sufficient) condition ‖etL‖ ≤ C for all
t ≥ 0 and some constant C. In practice, Assumption 2 often holds when simulating
numerical PDEs, and in Section 4 it is proven that Assumption 1 and 2 guarantee the
preconditioning methods proposed here yield a preconditioned Schur complement with
a small, bounded, order-one condition number, within the larger 2×2 systems discussed
in Section 1.2.

5

3 Nonlinear iterations

Let λ± := η± iβ denote an eigenvalue (pair) of A−10 , where, under Assumption 1, η > 0.
For ease of notation, in this section and Section 4, we will scale both sides of (6) by

a block diagonal operator, with diagonal blocks M−1, and define L̂i := δtM−1Li, for
i = 1, ..., s. In practice we do not directly form L̂, as M−1 is often a dense matrix.
Rather, it is a theoretical tool to simplify notation; in practice we must apply and
precondition standard time-dependent operators of the form (γM − δtLi).

3.1 Simplified Newton

Suppose Li = Lj for all i, j (as in a simplified Newton method). Then, the linear system
for stage vectors (6) (diagonally scaled by M−1) can be written in condensed Kronecker
product notation (

A−10 ⊗ I − I ⊗ L̂
)

(A0 ⊗ I)k = (Is ⊗M−1)f . (8)

Now, let A−10 = Q0R0Q
T
0 be the real Schur decomposition of A−10 , where Q0 is real-

valued and orthogonal, and R0 is a block upper triangular matrix, where each block
corresponds to an eigenvalue (pair) of A−10 . Real-valued eigenvalues have block size one,

and complex eigenvalues η ± iβ are in 2× 2 blocks,

[
η φ

−β2/φ η

]
, for some constant φ.

Pulling out a Q0 ⊗ I and QT0 ⊗ I from the left and right of (8) yields the equivalent
linear system (

R0 ⊗ I − I ⊗ L̂
)

(R−10 QT0 ⊗ I)k = (QT0 ⊗ I)(Is ⊗M−1)f . (9)

The left-most matrix is now block upper triangular, which can be solved using block
backward substitution, and requires inverting each diagonal block. Diagonal blocks
corresponding to real-valued eigenvalues η take the form (ηI − L̂), and are amenable
to standard preconditioning techniques as used, e.g., for backward Euler. While 2 × 2

diagonal blocks corresponding to complex eigenvalues take the form

[
ηI − L̂ φI

−β
2

φ I ηI − L̂

]
.

Effective block preconditioners for such matrices are developed in Section 4, including
theory guaranteeing the (inner) preconditioned Schur complement has a small, bounded,
order-one condition number.

Remark 3 (Real Schur decomposition). A real Schur decomposition is not new to
Runge-Kutta literature and is most notably used in the RADAU code [16]. The key
contribution here for the simplified Newton setting is proving a robust and general way
to precondition the resulting operators in the context of numerical PDEs (see Section 4).
Moreover, the real Schur decomposition applied to the simplified Newton setting after
pulling out an A−10 ⊗ I provides the key motivation for the development of more general
nonlinear iterations introduced in the following section.

3.2 General nonlinear iterations

Note that most nonlinear iterations, including Newton, Picard, and other fixed-point it-
erations, can all be expressed as linearly preconditioned nonlinear Richardson iterations.
For nonlinear functional F(x) = 0, such an iteration takes the form

xk+1 = xk + P−1F(xk). (10)

6

For preconditioner P := −J [xk] given by the (negative) Jacobian of F(x) evaluated
at xk, (10) yields a Newton iteration. For P given by a zero-th order linearization of
F(x) (the nonlinear operator evaluated at xk), (10) yields a Picard iteration. In gen-
eral, thinking of nonlinear iterations as linear preconditioners for nonlinear Richardson
iterations (10) naturally allows for various levels of approximation, which is the focus of
this section.

Now let us return to (6) for Li 6= Lj , but extract the real Schur decomposition as in

Section 3.2. Continuing with the simplified representation L̂i := δtM−1Li, this yields
the linear systemR0 ⊗ I − (QT0 ⊗ I)

L̂1

. . .

L̂s

 (Q0 ⊗ I)

 (R−10 QT0 ⊗ I)k = (QT0 ⊗ I)f . (11)

Picard and Newton iterations both require the solution of such a system each iteration
(see P−1 in (10)). Here we propose approximations to the solution of (11) that are (i)
solvable using techniques similar to the simplified Newton setting in Section 3.1, and (ii)
yield nonlinear convergence close to a true Newton or Picard iteration. In principle, these
approximations can also be iterated to convergence in the linear sense, yielding a precise
Newton or Picard iteration, but here we opt to apply the approximation directly as the
nonlinear preconditioner, resolving the error between the approximation and an exact
Newton/Picard iteration in the outer nonlinear iteration. Similar to inexact Newton
methods, such approaches are often more efficient in practice than the corresponding
exact methods.

To develop effective approximations, we are particularly interested in the operator

P̂ := (QT0 ⊗ I)

L̂1

. . .

L̂s

 (Q0 ⊗ I) =

d
T
1,1L̂ · · · dT1,sL̂
...

...

dTs,1L̂ · · · dTs,sL̂

 , (12)

where dTk,` =
(

(QT0)k,1(Q0)1,`, . . . , (Q
T
0)k,s(Q0)s,`

)
∈ Rs is a scalar row vector, L̂ =

(L̂1; . . . ; L̂s) is a block column vector of the linearized operators, and

dTk,`L̂ =

s∑
i=1

(dk,`)iL̂i.

Note that the vector dk,` represents the element-wise product between the kth row of
QT0 and the `th column of Q0. By the orthogonality of Q0, we have

∑s
i=1(dk,`)i = δk,`,

where δk,` is the Kronecker delta. Thus, when L̂i = L̂j , (12) is block diagonal, given

by I ⊗ L̂. Due to the off-diagonal zero sums, here we claim that (12) can be well-
approximated by some block-diagonal matrix or block upper triangular matrix. Adding
R0 ⊗ I to such an approximation then yields an approximation to (11), which can be
easily inverted using block backward substitution.

As an example, consider the matrix P̂ from (12) for the two-stage Gauss and Radau

IIA methods in bracket notation (to three digits of accuracy) where {a1, a2} 7→ a1L̂1 +

a2L̂2:

Gauss(4):

[
{1, 0} {0, 0}
{0, 0} {0, 1}

]
, Radau IIA(3):

[
{0.985, 0.015} {0.121,−0.121}
{0.121,−0.121} {0.015, 0.985}

]
.

(13)

7

Note that there is no approximation in two-stage Gauss because the operator (12) is
already block diagonal, that is, it is straightforward to apply a true Newton or Picard
iteration to two-stage Gauss using analogous block-preconditioning techniques as used
for simplified Newton. For two-stage Radau IIA, we see that the diagonal blocks are al-
most defined by the (linearized) operator evaluated at a single time step, which provides
a natural and simple approximation. The off-diagonal blocks are simply the difference
between successive stages, 0.121(L̂1 − L̂2). Such entries could be included in the pre-
conditioning for the upper triangular portion of the matrix (adding a few additional
matrix-vector products and some memory usage), or simply ignored altogether under

the assumption that 0.121(L̂1 − L̂2) is “small” relative to the diagonal blocks in some
sense. Even for reasonably stiff problems, the operator often does not change substan-
tially between two stages. Large changes in the operator between temporal stages are
often an indication that the time step is too large to adequately resolve the nonlinear
behavior of the equations. Similar structure as discussed for the two-stage methods
holds for other methods as well.

Motivated by the above discussion, we consider Newton-like methods (or more gen-
erally some fixed-point iteration as in (10)) which use approximate Jacobians having

a (block) sparsity pattern contained within that of R0 ⊗ I. That is, we replace the P̂
operator (12) in the true Jacobian (11) with a block upper triangular approximation

P̃ ≈ P̂ . Recall by constructing P̃ to be block upper triangular, we can then invert the
resulting operator R0⊗I−P̃ via block backward substitution, preconditioning each 1×1
or 2 × 2 diagonal block similar to the simplified Newton setting in Section 3.1 (formal
details on preconditioning are introduced in Section 4). In addition to the simplified
Newton method discussed in Section 3.1, we propose the following three (successively
more accurate) approximations to (12). As an example, for each of the following ap-

proximations, the matrix P̃ derived from P̂ in (13) for the 2-stage Radau IIA(3) scheme
is also shown.

0. Simplified Newton: As in Section 3.1, apply a simplified Newton method by eval-

uating L at the same time point for all stages. That is, P̃ = I ⊗ L̂k for some
k.

Radau IIA(3): P̃ =

[
L̂k 0

0 L̂k

]
.

1. Newton-like(1): Truncate P̂ (12) to be block diagonal and lump the coefficients

of each diagonal term di,i to the largest one so that each diagonal block of P̃

contains only one matrix from L̂. That is, the ith diagonal block of P̃ is L̂k,
where k = arg max

(
|(di,i)1|, . . . , |(di,i)s|

)
.

Radau IIA(3): P̃ =

[
L̂1 0

0 L̂2

]
.

2. Newton-like(2): Truncate P̂ (12) to be block diagonal. That is, the ith diagonal

block of P̃ is dTi,iL̂.

Radau IIA(3): P̃ =

[
0.985L̂1 + 0.015L̂2 0

0 0.015L̂1 + 0.985L̂2

]
.

3. Newton-like(3): Truncate P̂ (12) inside the block upper triangular sparsity pattern
of R0 ⊗ I. This option adds a number of matrix-vector products, but is also the

8

best approximation to an exact Newton or Picard iteration (and corresponds to
an exact Newton iteration for 2-stage methods).

Radau IIA(3): P̃ =

[
0.985L̂1 + 0.015L̂2 0.121L̂1 − 0.121L̂2

0.121L̂1 − 0.121L̂2 0.015L̂1 + 0.985L̂2

]
.

Of course there are other combinations possible, including using, e.g., Newton-like(1) as
a preconditioner for Newton-like(3), but we do not elaborate for the sake of space.

4 Linear preconditioning theory

The methods derived in Section 3 use block backward substitution which requires solving
2× 2 block systems along the lines of[

ηI − dT1,1L̂ φI − dT1,2L̂
−β

2

φ I − d
T
2,1L̂ ηI − dT2,2L̂

]
, (14)

with the off-diagonal blocks only including non-identity terms for method 3 from Sec-
tion 3.2. As discussed previously, we expect the non-identity off-diagonal terms to typi-
cally be small. This section consider block preconditioning of the general linear problem
that arises in methods (0), (1), and (2), or methods (3) by neglecting non-identity

off-diagonal coupling in (14) arising from the dT1,2L̂ and dT2,1L̂ terms:[
ηI − L̂1 φI

−β
2

φ I ηI − L̂2

]
, (15)

for some η > 0, φ 6= 0. Note, excusing the slight abuse of notation, for ease of notation
we have let L̂i = dTi,iL̂ denote the approximate operator from linearization method (0),
(1), and (2), or (3), rather the direct linearization about the kth stage vector as used
elsewhere in this paper. In practice the block preconditioning methods developed in
this section have proven equally robust on systems resulting from nonlinear method (3)
as those resulting from methods (1) and (2) (for which the theory applies), indicating
that (15) is a suitable proxy for (14) for theoretical purposes. In (15) it is assumed that

W (L̂i) ≤ 0 for i = 1, 2 (Assumption 2).1 We will solve (15) using Krylov methods with
block lower-triangular preconditioners of the form

LP :=

[
ηI − L̂1 0

−β
2

φ I Ŝ

]−1
, (16)

where Ŝ is some approximation to the Schur complement of (15), which is given by

S := ηI − L̂2 + β2(ηI − L̂1)−1. (17)

When applying GMRES to block 2 × 2 operators preconditioned with a lower (or
upper) triangular preconditioner as in (16), convergence is exactly defined by conver-

gence of GMRES applied to the preconditioned Schur complement, Ŝ−1S [47]. If Ŝ = S
is exact, exact convergence on the larger 2 × 2 system is guaranteed in two iterations
(or one iteration with block LDU). This section focuses on the development of robust

1Note that for nonlinear method (2), we are taking a weighted sum of operators that satisfy As-
sumption 2. Due to the non-negativity of the weights, the summation also satisfies Assumption 2.

9

preconditioners for the Schur complement (17). In particular, we develop a precondi-
tioner for S such that the preconditioned operator has a bounded condition number,
independent of L̂1 and L̂2, and with only weak dependence on the order of time integra-
tion. The preconditioner is also asymptotically optimal in the sense that the condition
number is bounded independent of mesh spacing and time step. The analysis derived
herein is based on the assumption that a small, bounded condition number corresponds
to better preconditioners for nonsymmetric matrices.

As a result of Assumption 2, the second term in (17), (ηI − L̂1)−1 is a compact

operator adding a small positive perturbation to ηI − L̂2. To that end, we approximate
it with an identity perturbation and consider preconditioners of the form

Ŝγ := γI − L̂2 (18)

for some γ > 0. Section 4.1 considers the simpler case of L̂1 = L̂2, deriving tight
bounds on the conditioning of the preconditioned operator as well as an optimal choice
of γ 7→ γ∗ that minimizes the maximum condition number taken over all L̂. Section 4.2
then extends the theory to the more general L̂1 6= L̂2. Under an additional assumption
that L̂1 and L̂2 are “close” in some sense, the condition number of the preconditioned

operator is bounded via cond(Ŝ−1γ∗ S) ≤ 2 + β2

η2 , which is only a factor of two larger than

the tight bounds derived for L̂1 = L̂2.
In practice, we typically do not want to apply (ηI − L̂1)−1 or Ŝ−1γ exactly for each

iteration of the preconditioner (16). It is well-known in the block-preconditioning com-
munity that a few iterations of an effective preconditioner, such as multigrid, to represent
the inverse of diagonal blocks in (16) typically yields convergence on the larger 2 × 2
operator just as fast as if performing direct solves, at a fraction of the cost. Thus, in prac-
tice we propose a block-triangular preconditioner similar to (16), but which only applies

some approximation to the diagonal block inverses, (ηI−L̂1)−1 and Ŝ−1 := (γ∗I−L̂2)−1

for a specific γ∗ introduced in the following section.

4.1 L̂1 = L̂2

Consider right preconditioning the Schur complement with preconditioner (γI − L̂2)−1.
The preconditioned Schur complement takes the form

Pγ :=
[
ηI − L̂2 + β2(ηI − L̂1)−1

]
(γI − L̂2)−1 (19)

=
[
(η2 + β2)I − η(L̂1 + L̂2) + L̂2L̂1

]
(ηI − L̂1)−1(γI − L̂2)−1.

Making the simplification L̂1 = L̂2 = L̂, Pγ takes the simplified form

Pγ =
[
(η2 + β2)I − 2ηL̂+ L̂2

]
(ηI − L̂)−1(γI − L̂)−1. (20)

The following theorem (restated from [46, Th. 5]) tightly bounds the condition number
of a slightly more general operator than the preconditioned Schur complement (20),
and proves the optimality of a certain γ∗ ∈ (0,∞) in term of minimizing the maximum

condition number over all L̂. The corollary following it provides tight bounds on the
condition number of (20) for the optimal choice of γ = γ∗. Although the resulting condi-
tioning here is slightly worse than can be achieved with the method designed specifically
for linear PDEs [46, Cor. 6], Table 1 shows that for up to 10th-order integration, at
worst the preconditioned Schur complement has condition number on the order of 2–3.

10

Theorem 1 (Tight bounds on condition number, L̂1 = L̂2 [46]). Let L̂ be real valued

and suppose Assumptions 1 and 2 hold, that is, η > 0 and W (L̂) ≤ 0. Let Pδ,γ denote
the preconditioned operator

Pδ,γ := [(ηI − L̂)2 + β2I](δI − L̂)−1(γI − L̂)−1, δ, γ ∈ (0,∞), (21)

in which [(ηI−L̂)2 +β2I] is preconditioned with (δI−L̂)−1(γI−L̂)−1, for δ, γ ∈ (0,∞).

Let κ(Pδ,γ) denote the two-norm condition number of Pδ,γ , and define γ∗ by γ∗ := η2+β2

δ .
Then

κ(Pδ,γ∗) ≤ 1

2η

(
δ +

η2 + β2

δ

)
. (22)

Moreover, (i) bound (22) is tight when considered over all L̂ that satisfy Assumption 2

in the sense that ∃ L̂ such that (22) holds with equality, and (ii) γ = γ∗ is optimal in

the sense that, without further assumptions on L̂, γ∗ minimizes a tight upper bound on
κ(Pδ,γ), with γ∗ = argminγ∈(0,∞) maxL̂ κ(Pδ,γ).

Corollary 1 (Condition-number bounds, independent of L̂). The maximum `2 condi-

tion number of the preconditioned operator (20) over all L̂ that satisfy Assumption 2,
is minimized over γ ∈ (0,∞) by

γ∗ = η +
β2

η
. (23)

Furthermore, the maximum condition number of (20) when γ = γ∗ is tightly bounded

for all L̂ by

κ(Pγ∗) ≤ 1 + β2

2η2 . (24)

Proof. The preconditioned operator (20) is equivalent to the more general operator (21)
analyzed in Theorem 1 with δ = η. Upon letting δ = η, the value of γ∗ (23) follows by
definition from Theorem 1 and the bound on κ(Pγ∗) (24) follows from (22).

Table 1 provides condition number bounds from Corollary 1 and (24) for Gauss,
Radau IIA, and Lobatto IIIC Runge-Kutta methods.

Stages
2 3 4 5

λ±1,2 λ1 λ±2,3 λ±1,2 λ±3,4 λ1 λ±2,3 λ±4,5
Gauss 1.17 1.00 1.46 1.80 1.05 1.00 2.18 1.14

Radau IIA 1.25 1.00 1.65 2.11 1.06 1.00 2.60 1.16

Lobatto IIIC 1.50 1.00 2.11 2.76 1.07 1.00 3.44 1.19

Table 1: Bounds on κ(Pγ∗) from Corollary 1 and (24) for Gauss, Radau IIA, and Lobatto
IIIC integration, with 2–5 stages. Each column within a given set of stages corresponds
to either a real eigenvalue, λ1 = η, or a conjugate pair of eigenvalues, e.g., λ±2,3 = η± iβ,

of A−10 .

Remark 4 (Symmetric definite and skew symmetric operators). Using eigenvalue anal-
yses, it is possible to derive tight upper bounds on the condition number of (20) for all

γ ∈ (0,∞) when L̂ is symmetric negative semi-definite (SNSD) or skew symmetric
(SS) (see [4] for related derivations). These tight upper bounds achieve equality for

11

all γ ∈ (0,∞) as the spectrum of L̂ becomes dense in [0,∞) for SNSD L̂, and dense

in (−i∞, i∞) for SS L̂. In each case, the tight upper bounds are minimized over all
γ ∈ (0,∞) when γ = γ∗, for γ∗ given by (23), which is perhaps unsurprising given
Corollary 1. At the minimum γ = γ∗, the tight bound for the SNSD case is

κ(Pγ∗) ≤
1

2

(
1 +

√
1 + β2/η2

)
,

and for the SS case it is equal to that in (24), due to the general bound of (24) achieving

equality for a matrix L̂ having eigenvalues {0,±i
√
η2 + β2}.

4.2 L̂1 6= L̂2

This section considers the more general case of L̂1 6= L̂2. Similar to Theorem 1 and
Corollary 1, Theorem 2 derives an upper bound on condition number of the right-
preconditioned Schur complement as in (19), with γ∗ as in (23).2 The proof we derived

requires an additional assumption regarding the relation of L̂1 and L̂2, namely that
〈L̂1w, L̂2w〉 ≥ 0. It is worth pointing out that we do not believe this assumption is

necessary for the result to hold, particularly for the discretization of PDEs where L̂1

and L̂2 are structured and correspond to the same operator evaluated at successive
Runge-Kutta stages. However, we have been unable to find a more general proof that
does not use this assumption. Under this additional assumption, Theorem 2 proves that
the condition number of the preconditioned Schur complement for L̂1 6= L̂2 is at most 2×
larger than as proven for L̂1 = L̂2 in Corollary 1. By Table 1, it is clear the conditioning
is still bounded by a small, order-one constant, even for 10th-order integration.

Theorem 2 (Conditioning of preconditioned operator). Suppose Assumptions 1 and 2

hold, that is, η > 0 and W (L̂1),W (L̂2) ≤ 0. Additionally, assume that 〈L̂1w, L̂2w〉 ≥ 0.

Let Pγ denote the right-preconditioned Schur complement (19), with γ = γ∗ := η2+β2

η

as in (23). Let κ(Pγ∗) denote the two-norm condition number of Pγ∗ . Then

κ(Pγ∗) ≤ 2 +
β2

η2
. (25)

Proof. See Appendix A.

5 Algorithm description

Before moving on to discuss DAEs and numerical results, here we provide a comprehen-
sive description of the IRK algorithm. First, we introduce some practical notation and
the operators that would arise in practice (rather than the analysis tools of scaling by
M−1), and then the algorithm is given in Algorithm 1. To simplify the presentation,

assume that s is even, and A−10 has s/2 complex-conjugate eigenvalue pairs {ηi±iβi}s/2i=1;
it is straightforward to modify the following description for the alternative case of one
real-valued eigenvalue.

Recall that previously we introduced the operator L̂ = δtM−1L to simplify notation.
In practice, rather than solving an approximate Jacobian system that involves this
operator, we solve one that has first been scaled by I ⊗ M . That is, we invert the
approximate Jacobian R0 ⊗M − (I ⊗M)P̃ rather than R0 ⊗ I − P̃ which is based on

(11). Consider decomposing the approximate Jacobian R0⊗M−(I⊗M)P̃ into the sum

2Considering right preconditioning is a theoretical tool to facilitate the proof of Theorem 2, but in
practice left and right preconditioning have both proven effective.

12

of a block diagonal matrix D having 2× 2 blocks, and a strictly block upper triangular
matrix U having 2× 2 blocks:

R0 ⊗M − (I ⊗M)P̃ = D + U =

D1 U1,2 U1,3 · · · U1,s/2
0 D2 U2,3 · · · U2,s/2

0
. . .

...
. . .

. . .
...

0 Ds/2

 . (26)

The particular structure of these matrices is governed by which of the Newton-like meth-
ods is used. For Newton-like methods 0, 1, and 2, U is equal to the strictly (block) upper
triangular component of R0⊗M , while for Newton-like method 3 it is equal to the strictly
(block) upper triangular component of R0 ⊗M − (QT0 ⊗ I)diag(δtL1, . . . , δtLs)(Q0 ⊗ I)
(see (12)). The structure of the diagonal blocks Di in (26) are equal to those in (14)
with each row simply scaled by M :

Di :=

ηiM − δteT2i−1,2i−1L φiM − δteT2i−1,2iL

−β
2
i

φi
M − δteT2i,2i−1L ηiM − δteT2i,2iL

 , i ∈ {1, . . . s/2}, (27)

where eTa,bL ≈ dTa,bL, with the particular approximation governed by which of the
Newton-like methods is used.

Recall that a lower triangular, Schur-complement-based preconditioner (16) is used
to precondition the Krylov solution of the blocks (27). In general, after scaling by M ,
this preconditioner takes the form

LPi :=

ηiM − δteT2i−1,2i−1L 0

−β
2
i

φi
M − δteT2i,2i−1L γiM − δteT2i,2iL

−1 . (28)

Importantly, when computing the action of this preconditioner at every Krylov iteration,
the exact inverses of the inner blocks are approximated with an inexact preconditioner.
Recall here that γi is some constant, for example, γi = ηi (the naive choice), or γi =
ηi+β

2
i /ηi (the optimal choice). In Line 9 of Algorithm 1, the syntax x← krylov(A,b, B)

means to apply a Krylov solver the system Ax = b that is left or right preconditioned
by B ≈ A−1.

6 Differential algebraic equations

This section considers differential algebraic equations (DAEs) that result from the spa-
tial discretization of a time-dependent PDE with an algebraic (non-time-dependent)
constraint. DAEs account for many interesting physical problems, with obvious exam-
ples including the many variations in incompressible flow that arise in fluid dynamics
and plasma physics. Special treatment is also required for the time integration of DAEs,
and this section discusses how to extend methods developed in this paper to DAEs.

DAEs arising from numerical PDEs take the general form

Mut = N (u,w, t),

0 = G(u,w, t),
(29)

where M is a mass matrix and N and G nonlinear functions of the time-dependent
variable, u, the constraint variable, w, and time. Time propagation using Runge-Kutta

13

Algorithm 1 Advance un to un+1 using Newton-like solve on stage equations (3):
f(k) = 0, where k = (k1, . . .ks). Assume s even, and A−10 has s/2 complex-conjugate
eigenvalue pairs.

// Define f (`) := f(k(`))

1: ` ← 0 . Nonlinear iteration index
2: Initialize k(`) with initial guess for k

// Nonlinear iterations
3: while ‖f (`)‖ larger than tolerance do

// Solve (D + U)(R−10 QT0 ⊗ I)δk = −(QT0 ⊗ I)f (`) by solving

// (D + U)δ̂k = −f̂ (`) via block backward substitution
4: f (`) ← (QT0 ⊗ I)f (`) . Scale RHS vector

5: for i = s/2→ 1 do . Solve for δ̂k2i−1, δ̂k2i

6:

[
z2i−1
z2i

]
←

[
−f (`)2i−1
−f (`)2i

]
. RHS of equations 2i− 1 and 2i

// Subtract previously computed solutions to RHS
7: if i < s/2 then

8:

[
z2i−1
z2i

]
←
[
z2i−1
z2i

]
−
[
Ui,i+1 · · · Ui,s/2

]

[
δk2i+1

δk2i+2

]
...[

δks−1
δks

]

// Solve 2× 2 system on diagonal

9:

[
δk2i

δk2i−1

]
← krylov

(
Di,

[
z2i

z2i−1

]
, LPi

)
10: δk ← (Q0R0 ⊗ I)δk . Scale solution by inverse of R−10 QT0 ⊗ I
11: k(`+1) ← k(`) + δk . Update stage vectors
12: ` ← `+ 1 . Update nonlinear iteration index

// Nonlinear iteration has converged
13: k ← k(`+1) . Accept Newton solution

14: un+1 ← un + δt
s∑
i=1

biki . IRK solution at tn+1 using (2)

14

integration then takes a similar form to (2), where

un+1 = un + δt

s∑
i=1

biki, wn+1 = wn + δt

s∑
i=1

bi`i,

and stage vectors {ki} and {`i} are given as the solution of the nonlinear set of equations
[7, Ch. 4]

Ni := Mki −N

un + δt

s∑
j=1

aijkj ,wn + δt

s∑
j=1

aij`j , tn + ciδt

 = 0,

Gi := −G

un + δt

s∑
j=1

aijkj ,wn + δt

s∑
j=1

aij`j , tn + ciδt

 = 0.

(30)

The linear case: To start, consider a linear set of DAEs, where (29) can be ex-
pressed as the linear set of equations[

Mut
0

]
=

[
Lu Lw
Gu Gw

] [
u
w

]
+

[
f(t)
g(t)

]
. (31)

Then, the equations defining stage vectors (30) can be expressed as a large block linear
system,

[
M

0

]
0

. . .

0

[
M

0

]
− δt

a11

[
Lu Lw
Gu Gw

]
... a1s

[
Lu Lw
Gu Gw

]
...

. . .
...

as1

[
Lu Lw
Gu Gw

]
... ass

[
Lu Lw
Gu Gw

]

k1

`1
...
ks
`s

 =

f1
g1

...
fs
gs

 ,
(32)

where fi = (f(ti + ciδt) + Luun + Lwwn) and gi = (g(ti + ciδt) + Guun + Gwwn). In
this case, (32) can be reduced to the Kronecker-product form(

I ⊗
[
M

0

]
− δtA0 ⊗

[
Lu Lw
Gu Gw

])
K = F.

The nonlinear case: Now consider general nonlinear DAEs (29) that arise in the
context of numerical PDEs. Linearizing (30) results in a linear set of equations similar
to (32), but with linearized operator that depends on stages. Similar to the nonlinear
ODE case (see Section 1.1), it is generally the case that the 2× 2 linearized operator is
fixed for a given stage (i.e., block row of the matrix), a natural result of the chain rule
applied to (30). Pulling out A0 ⊗ I as in the ODE setting yields a block linear system
of the form

A−1
0 ⊗

[
M 0
0 0

]
− δt

[
L(1)
u L(1)

w

G(1)u G(1)w

]
0

. . .

0

[
L(s)
u L(s)

w

G(s)u G(s)w

]

(A0 ⊗ I)

k1

`1
...
ks
`s

 =

f1
g1

...
fs
gs

 . (33)

Inverting (33) corresponds to the application of P−1 in the nonlinear Richardson iter-
ation (10) applied to solving the nonlinear stage equations (30). Note, in a nonlinear
iteration, the operator in (33) is usually updated each iteration to reflect the latest
nonlinear iterate.

15

Solving linear systems: Now, techniques developed in Section 3 can be applied to
solve or approximate (33) as a single step in the larger nonlinear iteration to solve (30).
For DAEs, the 2×2 block systems that arise after applying the real Schur decomposition
(as discussed in Section 4) are now 4× 4 systems of the form

ηM − δtL(i)
u −δtL(i)

w φM 0

−δtG(i)u −δtG(i)w 0 0

−β
2

φ M 0 ηM − δtL(i+1)
u −δtL(i+1)

w

0 0 −δtG(i+1)
u −δtG(i+1)

w

ki
`i

ki+1

`i+1

 =

fi
gi
fi+1

gi+1

 . (34)

For index-1 DAEs, where the algebraic constraint can be formally eliminated from
the problem (although it is often not practical to do so), Assumption 2 naturally applies
to the reduced time-dependent problem. Then, the block preconditioning techniques and
theory developed in Section 4 can be formally applied when the algebraic constraint is
inverted to high accuracy within each preconditioner application. Inexact application
of the constraint makes Assumption 2 less certain, but for index-1 DAEs we expect the
methods developed here to remain effective with approximate inner inverses.

In the more general setting, such as index-2 DAEs, preconditioning (34) and the cor-
responding Schur complement requires more problem-specific analysis than the theory
developed for ODEs in Section 4. In particular, Assumption 2 does not necessarily hold
for the larger linear system that includes time-dependent variables and constraints (the
obvious example being indefinite saddle-point systems that often arise in incompressible
fluid dynamics). However, Section 7.2 considers a Picard iteration of incompressible
Navier Stokes in vorticity-stream-function form (an index-1 DAE), where (34) can be
reordered to be block triangular, and the theory and preconditioning developed in Sec-
tion 4 can be applied directly to the leading 2 × 2 block representing time-dependent
variables (ki and ki+1).

7 Numerical results

In this section, we apply the solvers and preconditioners developed above to several
fluid flow problems. The solvers and spatial discretizations were implemented using the
MFEM finite element library [2]. All numerical results will use the constant γ = γ∗ (23)
unless otherwise specified.

7.1 Compressible Euler & Navier–Stokes equations

Consider the compressible Navier–Stokes equations, given by

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (35)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi
=
∂τij
∂xj

for i = 1, 2, 3, (36)

∂

∂t
(ρE) +

∂

∂xj
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(uiτij), (37)

using the convention that repeated indices are implicitly summed. In the above, ρ is the
density, ui is the ith component of the velocity, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
, (38)

16

Table 2: Error and convergence rates for Euler vortex problem.

Gauss 2 Gauss 4 Gauss 6
δt Error Rate Error Rate Error Rate

2.50× 10−2 5.89× 10−3 — 5.29× 10−4 — 1.65× 10−5 —
1.25× 10−2 1.18× 10−3 2.32 2.75× 10−5 4.26 2.35× 10−7 6.14
6.25× 10−3 2.82× 10−4 2.07 1.64× 10−6 4.07 3.69× 10−9 5.99

Radau 3 Radau 5 Radau 7

2.50× 10−2 1.19× 10−3 — 8.48× 10−5 — 1.92× 10−6 —
1.25× 10−2 1.62× 10−4 2.88 2.78× 10−6 4.92 1.68× 10−8 6.84
6.25× 10−3 2.17× 10−5 2.90 9.23× 10−8 4.91 2.16× 10−10 6.28

Lobatto 2 Lobatto 4 Lobatto 6

2.50× 10−2 2.45× 10−3 — 2.76× 10−4 — 1.30× 10−5 —
1.25× 10−2 1.12× 10−3 1.13 2.39× 10−5 3.53 2.52× 10−7 5.69
6.25× 10−3 3.93× 10−4 1.88 2.39× 10−6 3.67 4.42× 10−9 5.83

where µ is the viscosity coefficient, and Pr is the Prandtl number. We assume that the
pressure p is given by the equation of state p = (γ − 1)ρ

(
E − 1

2ukuk
)
, where γ = 1.4 is

the adiabatic gas constant. We obtain the compressible Euler equations from equations
(35–37) by setting the viscosity coefficient µ = 0. For the viscous problems, we introduce
an additional isentropic assumption of the form p = Kργ , for a given constant K. This
simplification is described in [23] and results in a reduced system of equtions.

7.1.1 Isentropic Euler vortex

For a first test case, we consider the model problem of an inviscid isentropic vortex
[44, 51]. The spatial domain is Ω = [0, 20] × [−7.5, 7.5]. The vortex, initially centered
at (x0, y0), is advected with the freestream velocity at an angle of θ. The exact solution
for this problem is given analytically by

u = u∞

(
cos(θ)− ε((y − y0)− vt)

2πrc
e
f(x,y,t)

2

)
, ρ = ρ∞

(
1− ε2(γ − 1)M2

∞

8π2
ef(x,y,t)

) 1
γ−1

,

v = u∞

(
sin(θ)− ε((x− x0)− ut)

2πrc
e
f(x,y,t)

2

)
, p = p∞

(
1− ε2(γ − 1)M2

∞

8π2
ef(x,y,t)

) γ
γ−1

.

In the above, f(x, y, t) = (1− ((x− x0)− ut)2 − ((y− y0)− vt)2)/r2c , and M∞, ρ∞, and
p∞ are the freestream Mach number, density, and pressure, respectively. The freestream
velocity is given by (u, v) = u∞(cos(θ), sin(θ)). The parameters for this test case are
given by ε = 15, rc = 1.5, M∞ = 0.5, θ = arctan(1/2), u∞ = 1, ρ∞ = 1. We discretize
this problem using a high-order DG method with Roe numerical fluxes [40]. The spatial
domain is discretized with a structured triangular mesh with 532 elements. The DG
finite element space is chosen to use piecewise polynomials of degree 4.

We first verify the temporal order of accuracy by fixing the spatial discretization
computing a baseline solution using an explicit fourth-order Runge–Kutta method with
δt = 5× 10−5. Then, the solutions computed using the implicit Runge–Kutta methods
are compared to the baseline solution to estimate the observed order of convergence for
these problems. The results are presented in Table 2. The expected rates of convergence
are observed for Gauss, Radau, and Lobatto methods, of orders 2 through 7.

We next study the effectiveness of the solvers and preconditioners for the resulting al-
gebraic systems of equations. We make use of an element-wise block ILU preconditioner

17

Table 3: Convergence results for Euler vortex test case, showing Newton iterations
required for a single time step with δt = 2× 10−2, and total preconditioner applications
per time step.

SDIRK Gauss
Order 1 2 3 4 2 4 6 8 10

Newton its. 3 3 3 3 3 3 5 5 5

Precond. applications 20 26 45 59 15 36 103 162 169

Radau Lobatto
Order 3 5 7 9 2 4 6 8

Newton its. 3 5 5 5 3 8 5 6

Precond. applications 44 121 168 205 66 225 210 292

Table 4: Convergence results for Euler vortex test case. Average Krylov iterations are
shown for 2× 2 systems, denoted “Kry.”.

Gauss Radau Lobatto
Order 4 6 8 10 3 5 7 9 2 4 6 8

Newton its. 3 5 5 5 3 5 5 5 3 8 5 6

Kry. (γ = η) 7.7 12.6 12.5 14.9 9.0 16.8 15.5 20.6 13.7 24.4 25.3 35.2
Kry. (γ = γ∗) 6.0 8.4 8.1 7.6 7.3 10.2 8.4 9.3 11.0 12.0 10.5 11.2

with minimum discarded fill ordering that has been shown to be effective for convection-
dominated fluid problems [36]. In Table 3, we present the number of nonlinear iterations
required to converge with a representative time step of δt = 2× 10−2, together with the
total number of preconditioner applications in one step. In these tests, a relative nonlin-
ear tolerance of 10−9 was used, and each linear system was solved using GMRES with
a relative tolerance of 10−5. Each Krylov iteration for the SDIRK methods corresponds
to a single preconditioner application. For the fully implicit IRK methods, one Krylov
iteration for a 1× 1 system corresponds to one preconditioner application, whereas for
a 2 × 2 system, one Krylov iteration corresponds to two preconditioner applications.
We note that the second- and fourth-order Gauss methods require fewer total precon-
ditioner applications when compared with the equal-order SDIRK methods. Similarly,
the third-order Radau IIA method requires one fewer preconditioner application when
compared with the third-order SDIRK method. The Lobatto methods are significantly
more expensive than the equal-order Gauss methods for this test case.

Finally, in Section 7.1.1 we study the effect of the choice of the coefficient γ appearing
in the linear preconditioner (16). We compare the naive choice of γ = η to the improved
choice of γ = γ∗, where γ∗ is as in Corollary 1. This choice is shown to be optimal in
the case where L̂1 = L̂2. Although this assumption does not hold in this case because
the equations are fully nonlinear, we still observe significantly improved iteration counts
with this choice of γ, consistent with Theorem 2.

7.1.2 Flow over NACA airfoil

As a more challenging test case, we consider the Reynolds number 40,000 flow over a
NACA0012 airfoil. The angle of attack is 30◦ and the farfield Mach number is 0.1.

18

Figure 1: Snapshot of vorticity for Reynolds 40,000 flow over NACA airfoil.

The domain is discretized using a triangular mesh with 3154 elements, and the spatial
discretization is a high-order discontinuous Galerkin method using compact stencils for
the second order (viscous) terms with polynomial degree p = 3 [35]. No-slip boundary
conditions are enforced at the surface of the airfoil, and farfield boundary conditions
at all other domain boundaries. The main challenge associated with this problem is
the resolution of the thin boundary layer at the surface of the airfoil that results from
the no-slip condition. This boundary layer is resolved using a layer of anisotropically
stretched elements near the surface of the airfoil. These elements result in a highly
restrictive CFL stability condition, motivating the use of implicit time integration for
this problem. A time accurate time step of δt = 5 × 10−2 is chosen for this problem.
This time step is several orders of magnitude larger than the largest stable explicit time
step. The number of nonlinear iterations and preconditioner applications required for
convergence are shown in Table 5. The nonlinear tolerance was chosen to be 10−9,
and each linear system was solved using GMRES with a relative tolerance of 10−5. As
in the previous case, each Krylov iteration for the SDIRK methods corresponds to a
single preconditioner application. For the IRK methods, one Krylov iteration for a 1×1
system corresponds to one preconditioner application, whereas for a 2 × 2 system, one
Krylov iteration corresponds to two preconditioner applications. As we observed in the
case of the Euler vortex, the Gauss and Radau fully implicit Runge–Kutta methods of
2, 3, and 4 converge with fewer total preconditioner applications than the equal-order
SDIRK method.

Additionally, we use this test case to compare four potential solver strategies, corre-
sponding to those enumerated in Section 3.2. The first solver (Solver 0) uses a simplified
Newton nonlinear iteration, where the Jacobian matrix from the first stage is used for
all stages. This has the advantage that the number of Jacobian matrix assemblies per
nonlinear iteration is reduced; however, in general, the quadratic convergence of New-
ton’s method is not maintained, typically resulting in an increased number of nonlinear
iterations. The remaining solvers (Solvers 1, 2, and 3) use exactly computed Jacobian
matrices at all temporal stages, and each solver corresponds to a different approxima-
tion P̃ ≈ P̂ , as described in Section 3.2. With increasing quality of the approximation,
we expect the solver to converge more rapidly, however each iteration will generally be
more expensive to compute. In Figure 2 we compare the number of nonlinear itera-
tions, number of matrix-vector products (determined by the convergence of the Krylov
solvers), number of Jacobian assemblies, and total wall-clock runtime for these solver
configurations (runtimes are measured using a Linux workstation with 16 Intel Xeon
Gold 2.10 GHz CPUs and 124 GB memory). From these results, we see that for this
problem, the nonlinear iterations based on better approximations lead to overall faster
runtimes, despite the higher per-iteration cost. However, we note that this performance
is often problem-dependent. In particular, for smaller time steps and less stiff problems,
the simplified Newton method can be more efficient because few Jacobian assemblies
are required, and the increase in nonlinear iterations over Solvers 1, 2, and 3 is typically

19

Table 5: Nonlinear iterations and preconditioner applications for the NACA airfoil test
case, with time step δt = 5× 10−2, using Newton-like Solver 3 with a relative tolerance
of 10−9.

SDIRK Gauss
Order 1 2 3 4 2 4 6 8 10

Newton its. 5 5 5 5 5 5 8 8 8

Precond. applications 173 200 359 481 128 244 557 732 830

Radau Lobatto
Order 3 5 7 9 2 6 8

Newton its. 5 9 9 9 5 15 17

Precond. applications 314 728 926 1061 454 1670 1995

0

10

20

30

40
33.8

21.7 21.6 21.6

R
u
n
ti
m
e
(s
)

0

5

10 9
8 8 8

J
ac
ob

ia
n
as
se
m
b
li
es

0

5

10 9

4 4 4

N
ew

to
n
it
er
at
io
n
s

0

50

100

150
148

76 76 76

M
at
ri
x
-v
ec
to
r
p
ro
d
u
ct
s

Gauss 4

0

20

40

47.1

33.3 35.2

25.4

R
u
n
ti
m
e
(s
)

0

5

10

12 12 12

8

J
ac
ob

ia
n
as
se
m
b
li
es

0

5

10

12

6 6

4

N
ew

to
n
it
er
at
io
n
s

0

100

200

227

125 125

87

M
at
ri
x
-v
ec
to
r
p
ro
d
u
ct
s

Radau 3

Solver 0 Solver 1 Solver 2 Solver 3

0

20

40

47.1

33.3 35.2

25.4

R
u
n
ti
m
e
(s
)

0

5

10

12 12 12

8
J
ac
ob

ia
n
as
se
m
b
li
es

0

5

10

12

6 6

4

N
ew

to
n
it
er
at
io
n
s

0

100

200

227

125 125

87

M
at
ri
x
-v
ec
to
r
p
ro
d
u
ct
s

Radau 3

Solver 0 Solver 1 Solver 2 Solver 3

Figure 2: Performance for four solver configurations on the NACA test case with δt =
2× 10−2.

less significant.

7.2 Incompressible Euler & Navier–Stokes in vorticity-streamfunction
form

As an example of an index-1 DAE, we consider the vorticity-streamfunction formulation
of the 2D incompressible Euler equations [28], given by

∂ω

∂t
+∇ · (uω) = 0, and ∆ψ = ω, (39)

where the velocity u is defined by u = ∇⊥ψ, for ∇⊥ = (−∂y, ∂x). Here, ω is the
vorticity, and ψ is a scalar field known as the streamfunction, which is used to naturally
enforce the divergence-free constraint on the velocity. Note that this formulation can
be easily extended to the 2D incompressible Navier–Stokes equations with the addition
of a viscosity term, replacing left left-hand term of equation (39) with ∂ω

∂t +∇ · (uω) =
1
Re∆ω, where Re is the Reynolds number. For a fixed velocity u, the left-hand term
in equation (39) is a scalar advection equation for ω, which we discretize using an
upwind discontinuous Galerkin method. If the streamfunction ψ is in H1, then the
velocity u = ∇⊥ψ is automatically continuous across element interfaces, and therefore

20

the standard upwind numerical flux is well-defined. We therefore discretize ∆ψ using a
standard H1-conforming finite element method. Equal-order finite element spaces are
chosen for ω and ψ. In the case of the Navier–Stokes equations, we discretize the viscous
term added to the right-hand side, 1

Re∆ω, using a standard interior penalty DG method
[3].

After performing the discretization, this system of equations can be written as[
Mdgωt

0

]
=

[
K(ψ) 0
Mmix A

] [
ω
ψ

]
, (40)

where Mdg represents the DG mass matrix, Mmix is the mixed DG-H1 mass matrix,
K(ψ) is the discretized advection (or advection–diffusion) operator (depending the ve-
locity u as a function of ψ), and A is the H1-conforming diffusion operator. A Picard
linearization of (40) will result in a block-triangular system that is of the same form
as (40), but using an iteratively lagged advection operator. We use nonlinear method
(1) from Section 3.2, where we lump the sum of operators on diagonal blocks to the
dominant operator and ignore non-identity off-diagonal coupling. For this problem,
tests indicated that including additional diagonal terms or off-diagonal coupling (as in
methods (2) and (3)) requires slightly longer wall-clock times and do not offer signif-
icant reduction in nonlinear iterations. Then, in the notation of Section 6, we have

L(i)
u = K(ψ(i)), Lw = 0, Gu = Mmix, and Gw = A. The resulting 4 × 4 block system

that arises from IRK integration has the form
ηMdg − δtK(i) 0 φMdg 0
−δtMmix −δtA 0 0

−β
2

φ Mdg 0 ηMdg − δtK(i+1) 0

0 0 −δtMmix −δtA

ωi
ψi
ωi+1

ψi+1

 =

fi
gi
fi+1

gi+1

 . (41)

We consider two types of preconditioners for this system. The first is the block-
triangular preconditioner described in Section 4. In this case, the Schur complement
is approximated using (18), and the diagonal blocks are replaced by the appropriate
preconditioners. An alternative preconditioner is obtained by noticing that this system
can be reordered to obtain the block-triangular system

ηMdg − δtK(i) φMdg 0 0

−β
2

φ Mdg ηMdg − δtK(i+1) 0 0

−δtMmix 0 −δtA 0
0 −δtMmix 0 −δtA

ωi
ωi+1

ψi
ψi+1

 =

fi

fi+1

gi
gi+1

 . (42)

This block-triangular system can be solved using forward-substitution, first solving the
leading 2×2 block for the time-dependent variables, and then solving two (independent)
Poisson problems for the algebraic constraints (i.e. the streamfunctions).

Each of these approaches require preconditioning/inverting the diagonal blocks in
(41)/(42). Poisson problems are solved with optimal complexity using AMG precondi-
tioners. The advection diffusion equations defining vorticity are preconditioned using
nonsymmetric AMG based on approximate ideal restriction (AIR) [30, 31]. The leading
2 × 2 time-dependent vorticity equations are preconditioned using the block-triangular
preconditioners described in Section 4, coupled with AIR preconditioning for individual
systems. For the block triangular variation (42), the 2 × 2 diagonal blocks are solved
to high precision, while preconditioning diagonal blocks in (41) consists of one AIR
or AMG iteration. All linear and nonlinear iterations are solved to relative residual
tolerance of 10−9, typically yielding an absolute tolerance ∼ O(10−12).

To study the effectiveness of these preconditioners, we consider the double shear
layer problem [5]. The domain is taken to be the square [0, 2π] × [0, 2π], and periodic

21

t = 0 t = 5 t = 10 t = 15

Figure 3: Time evolution of vorticity for the double shear layer problem.

boundary conditions are enforced at the domain boundaries. The initial condition is
given by

ω(x, y, 0) =

{
δ cos(x)− 1

ρ sech2((y − π/2)/ρ) y ≤ π,
δ cos(x) + 1

ρ sech2((3π/2− y) y > π.

This test case is well-suited for high-order methods because the solution quickly develops
small-scale features, as shown in Figure 3. We use finite element spaces with polynomial
degree p = 3, mesh spacing h = 0.0025, and choose a time step of δt = 10−2 for all RK
schemes to consider scalability in integration order for fixed δt. Table 6 shows the total
number of preconditioner applications required per time step with Reynolds number Re
= 10. Rows indicated “Prec. applications” correspond to (41), and each preconditioner
application is defined as preconditioning a 2×2 block over [ωi,ψi] with one AIR iteration
and one AMG iteration (one for each diagonal block). The block triangular variation
(42) does a block forward solve on (42), and Table 6 presents the total number of AIR
and AMG iterations required for the forward solve, summed over all nonlinear iterations.
Note, because the time-dependent and algebraic blocks are solved separately in this case,
the number of AIR iterations (to solve for the vorticity) and AMG iterations (to solve
for the streamfunction) are not equal. These results were run on 288 cores on the Quartz
machine at Lawrence Livermore National Laboratory.

Table 6: Preconditioner applications for the double shear layer test case, with third-
order finite elements, mesh spacing h = 0.0025, time step δt = 10−2, and Re = 10. One
“Prec. application” corresponds to one AIR iteration and one AMG iteration.

SDIRK Gauss
Order 1 2 3 4 2 4 6 8 10

(41) Prec. applications 127 141 322 365 78 161 218 287 333

(42)
AIR iterations 127 141 322 365 78 365 538 731 1064
AMG iterations 127 141 322 365 78 368 562 766 1204

Radau Lobatto
Order 3 5 7 9 2 4 6 8

(41) Prec. applications 237 232 299 490 217 234 311 375

(42)
AIR iterations 451 603 841 989 421 697 2013 1405
AMG iterations 432 566 819 980 350 670 1580 1227

Note from Table 6 that the second and fourth order Gauss methods are significantly
more efficient than the corresponding equal-order SDIRK methods in terms of total
number of preconditioner applications, while the 10th-order Gauss method requires ap-
proximately as many (in fact, slightly less) preconditioner applications per time step as

22

the fourth-order SDIRK method. In all cases, the triangular nonlinear preconditioning
(42) requires many more iterations than the more general approach following the de-
velopment in this paper (41). This is largely because the linear preconditioning ends
up being more efficient when applied to the full system (41), rather than the reordered
system in (42). Moreover, linear iteration counts are almost equal for nonlinear methods
1, 2, and 3 (results are not shown for sake of space) from Section 3.2, indicating that
linear conditioning theory developed in Section 4.2 for systems that arise from nonlinear
methods (1) and (2) yields robust preconditioners for method (3) as well.

Table 7 demonstrates that the proposed methods are also robust across Reynolds
number, showing similar results as in Table 6, for the preconditioning in (41) with
Reynolds number 25,000. As before, Gauss methods require roughly half the precondi-
tioner applications as required by equal order SDIRK methods, while 4th-order SDIRK
requires almost as many preconditioner applications as 10th-order Gauss, and more than
8th-order Gauss and 7th-order Radau IIA.

Table 7: Preconditioner applications for the double shear layer test case, with third-
order finite elements, mesh spacing h = 0.0025, time step δt = 10−2, and Re = 25, 000.
One “Prec. application” corresponds to one AIR iteration and one AMG iteration.

SDIRK Gauss
Order 1 2 3 4 2 4 6 8 10

(41) Prec. applications 41 72 113 177 37 75 118 163 194

Radau Lobatto
Order 3 5 7 9 2 4 6 8

(41) Prec. applications 81 123 165 206 91 130 173 220

To assess the accuracy of IRK methods applied to this problem, we consider the
integration of the double shear layer problem over a longer time interval of [0, 10]. We
choose a Reynolds number of 100, and compute a reference solution by applying explicit
6th-order SDIRK integration with a small time step of δt = 10−4. We then apply
IRK methods with large time steps of δt ∈ {0.4, 0.2, 0.1} and observe the orders of
convergence in Table 8. As a consequence of the nonlinear solver tolerance of 10−11,
the observed order of convergence is reduced for the highest order methods and the
refinement δt = 0.2 7→ δt = 0.1. Nevertheless, we observe that each of the methods
indeed yield high-order accuracy using very large time steps, in most cases just under
their formal order of accuracy. Moreover, the leading error constants also appear to be
small, given we can obtain accuracy on the order of 10−9 − 10−10 with a step size of
δt = 0.2. Similar results have been observed on the Taylor Green vortex problem; here
we use the double shear layer problem to demonstrate high-order accuracy on a problem
with more interesting long-term dynamics.

8 Conclusions

This paper introduces a theoretical and algorithmic framework for the fast, parallel
solution of fully implicit Runge-Kutta methods in numerical PDEs. Multiple approxi-
mate linearizations are developed, and linear algebra theory is derived to guarantee fast
and effective block preconditioning techniques for the linearized systems, guaranteeing a
preconditioned Schur complement with condition number bounded by a small order-one
constant, and only requiring standard preconditioners as would be used for backward

23

Table 8: Error and convergence rates for double shear layer problem with Re= 10.

Gauss 4 Gauss 6 Gauss 8
δt Error Rate Error Rate Error Rate

0.4 1.98× 10−3 — 1.59× 10−4 — 4.13× 10−5 —
0.2 1.30× 10−4 3.93 9.08× 10−7 7.45 1.04× 10−8 11.95
0.1 8.15× 10−6 3.99 9.29× 10−9 6.61 1.05× 10−10 6.63

Radau 5 Radau 7 Radau 9

0.4 2.37× 10−4 — 3.96× 10−6 — 6.21× 10−8 —
0.2 8.35× 10−6 4.83 3.54× 10−8 6.81 1.42× 10−10 8.77
0.1 2.71× 10−7 4.94 2.93× 10−10 6.91 3.64× 10−11 1.96

Lobatto 4 Lobatto 6 Lobatto 8

0.4 2.42× 10−3 — 3.93× 10−5 — 6.15× 10−7 —
0.2 1.78× 10−4 3.76 7.23× 10−7 5.77 2.86× 10−9 7.75
0.1 1.18× 10−5 3.92 1.19× 10−8 5.91 3.62× 10−11 6.30

Euler time integration. The new methods are shown to achieve fast, high-order accuracy
on multiple different compressible and incompressible Navier Stokes and Euler problems.
Using low-order Gauss integration schemes with the new method consistently requires
about half the preconditioner applications as required by standard SDIRK schemes to
achieve the same accuracy, demonstrating that the new method can not only offer very
high-order accuracy (along with other benefits obtained by using fully implicit Runge-
Kutta), but also improve upon state-of-the-art low-order integration. Moreover, for the
incompressible Navier Stokes double shear layer problem in vorticity-streamfunction
form, one can apply 7th to 10th order Gauss or Radau IIA integration for a comparable
number of preconditioner applications as standard 4th-order SDIRK.

A Proof

Proof of Theorem 2. As in [46, Th. 5], the square of the condition number of Pγ is given
by

κ2(Pγ) = ‖Pγ‖2‖P−1γ ‖2 = max
v 6=0

‖Pγv‖2

‖v‖2
1

min
v 6=0

‖Pγv‖2

‖v‖2

. (43)

First, consider bounding ‖Pγ‖ for γ ≥ η. Expanding (19) yields an equivalent form

Pγ =
[
ηI − L̂2 + β2(ηI − L̂1)−1

]
(γI − L̂2)−1

= I − (γ − η)(γI − L̂2)−1 + β2(ηI − L̂1)−1(γI − L̂2)−1.

Then,

‖Pγ‖ ≤
∥∥∥I − (γ − η)(γI − L̂2)−1

∥∥∥+
β2

γη

∥∥∥(I − 1
η L̂1)−1

∥∥∥ ∥∥∥(I − 1
γ L̂2)−1

∥∥∥
≤
∥∥∥I − (γ − η)(γI − L̂2)−1

∥∥∥+
β2

γη
. (44)

24

The last inequality follows by noting

sup
v 6=0

‖(I − 1
γ L̂2)−1v‖2

‖v‖2
= sup

w 6=0

‖w‖2

‖(I − 1
γ L̂2)w‖2

= sup
w 6=0

‖w‖2

‖w‖2 − 2
γ 〈L̂2w,w〉+ 1

γ2 ‖L̂2w‖2
≤ 1,

because all terms in the denominator are nonnegative. For the first term in (44), note

that maximizing over v ∈ Rn and letting v 7→ (γI − L̂2)w,∥∥∥I − (γ − η)(γI − L̂2)−1
∥∥∥2 = sup

w 6=0

‖(γI − L̂2 − (γ − η)I)w‖2

‖(γI − L̂2)w‖2

= sup
w 6=0

η2‖w‖2 − 2η〈L̂2w,w〉+ ‖L̂2w‖2

γ2‖w‖2 − 2γ〈L̂2w,w〉+ ‖L̂2w‖2
.

By Assumptions 1 and 2, W (L̂2) ≤ 0 and η > 0, implying all terms in the numerator and
denominator are nonnegative. Moreover, by assumption γ ≥ η, implying all numerator
terms are bounded above by the matching denominator terms, which yields ‖I − (γ −
η)(γI − L̂2)−1‖ ≤ 1. Combining with (44) yields

‖Pγ‖ ≤ 1 +
β2

γη
. (45)

Now consider bounding ‖P−1γ ‖ from above. Consistent with (43), we do so by consid-

ering the minimum singular value, ‖P−1γ ‖ = 1
smin(Pγ) , where smin(Pγ) = minv 6=0

‖Pγv‖
‖v‖ .

Letting v 7→ (γI−L̂2)(ηI−L̂1)w in the ratio ‖Pγv‖/‖v‖, and expanding the numerator
(see inner term in (19)) yields

smin(Pγ)2 = min
w 6=0

∥∥∥[(η2 + β2)I − η(L̂1 + L̂2) + L̂2L̂1

]
w
∥∥∥2

‖(γI − L̂2)(ηI − L̂1)w‖2

= min
w 6=0

∥∥∥[(γI − L̂2)(ηI − L̂1) + (γ − η)L̂1 + (η2 + β2 − γη)I
]
w
∥∥∥2

‖(γI − L̂2)(ηI − L̂1)w‖2
.

Here, we make the strategic choice of γ such that the identity perturbation (η2 + β2 −
γη)I = 0, given by γ∗ := η2+β2

η (23). Expanding,

smin(Pγ∗)2 = min
w 6=0

∥∥∥[(γ∗I − L̂2)(ηI − L̂1) + β2

η
L̂1

]
w
∥∥∥2

‖(γ∗I − L̂2)(ηI − L̂1)w‖2

= min
w 6=0

1 +
β2

η
·
β2

η

∥∥∥L̂1w
∥∥∥2 + 2

〈
((γ∗I − L̂2)(ηI − L̂1)w, L̂1w

〉
‖(γ∗I − L̂2)(ηI − L̂1)w‖2

= 1− β2

η
·max
w 6=0

−2
〈

(γ∗I − L̂2)(ηI − L̂1)w, L̂1w
〉
− β2

η

∥∥∥L̂1w
∥∥∥2

‖(γ∗I − L̂2)(ηI − L̂1)w‖2
. (46)

Expanding the numerator in (46) yields

− 2
〈

(γ∗I − L̂2)(ηI − L̂1)w, L̂1w
〉
− β2

η

∥∥∥L̂1w
∥∥∥2
25

=

(
2γ∗ −

β2

η

)∥∥∥L̂1w
∥∥∥2 − 2γ∗η〈L̂1w,w〉 − 2〈L̂2(L̂1w), L̂1w〉+ 2η〈L̂1w, L̂2w〉

=
2η2 + β2

η

∥∥∥L̂1w
∥∥∥2 − 2(η2 + β2)〈L̂1w,w〉 − 2〈L̂2(L̂1w), L̂1w〉+ 2η〈L̂1w, L̂2w〉. (47)

Now consider the denominator:∥∥∥(γ∗I − L̂2)(ηI − L̂1)w
∥∥∥2 =

∥∥∥(γ∗ηI + L̂2L̂1)w − (ηL̂2 + γ∗L̂1)w
∥∥∥2

=
∥∥∥(γ∗ηI + L̂2L̂1)w

∥∥∥2 + η2‖L̂2w‖2 + γ2∗‖L̂1w‖2 + 2γ∗η〈L̂1w, L̂2w〉

− 2η
〈

(γ∗ηI + L̂2L̂1)w, L̂2w
〉
− 2γ∗

〈
(γ∗ηI + L̂2L̂1)w, L̂1w

〉
≥
∥∥∥(γ∗ηI + L̂2L̂1)w

∥∥∥2 + η2‖L̂2w‖2 + γ2∗‖L̂1w‖2 + 2γ∗η〈L̂1w, L̂2w〉

− 2η
∥∥∥(γ∗ηI + L̂2L̂1)w

∥∥∥∥∥∥L̂2w
∥∥∥− 2γ∗

〈
(γ∗ηI + L̂2L̂1)w, L̂1w

〉
=
(∥∥∥(γ∗ηI + L̂2L̂1)w

∥∥∥− η‖L̂2w‖
)2

+ γ2∗‖L̂1w‖2

− 2γ∗

〈
(γ∗ηI + L̂2L̂1)w, L̂1w

〉
+ 2γ∗η〈L̂1w, L̂2w〉

≥ γ2∗‖L̂1w‖2 − 2γ2∗η〈L̂1w,w〉 − 2γ∗〈L̂2(L̂1w), L̂1w〉+ 2γ∗η〈L̂1w, L̂2w〉. (48)

Notice that we now have matching terms in expressions for the numerator (47) and

denominator (48). Moreover, by assumption 〈L̂1w, L̂2w〉 ≥ 0, and thus all terms in (47)
and (48) are non-negative. Returning to the minimum singular value defined in (46) and
plugging in the numerator (47) and denominator bounds (48), we can bound the total
ratio by considering the maximum ratio between matching numerator and denominator
terms:

max
w 6=0

−2
〈

(γ∗I − L̂2)(ηI − L̂1)w, L̂1w
〉
− β2

η

∥∥∥L̂1w
∥∥∥2

‖(γ∗I − L̂2)(ηI − L̂1)w‖2

≤ max
w 6=0

2η2+β2

η

∥∥∥L̂1w
∥∥∥2 − 2(η2 + β2)〈L̂1w,w〉 − 2〈L̂2(L̂1w), L̂1w〉+ 2η〈L̂1w, L̂2w〉

γ2
∗‖L̂1w‖2 − 2γ2

∗η〈L̂1w,w〉 − 2γ∗〈L̂2(L̂1w), L̂1w〉+ 2γ∗η〈L̂1w, L̂2w〉

≤ max

{
η(2η2 + β2)

(η2 + β2)2
,

η

η2 + β2
,

η

η2 + β2
,

η

η2 + β2

}
=
η(2η2 + β2)

(η2 + β2)2
. (49)

Simplifying and plugging in to (46) yields

smin(Pγ∗)2 ≥ 1− β2

η
· η(2η2 + β2)

(η2 + β2)2
=

η4

(η2 + β2)2
. (50)

Applying ‖P−1γ ‖ = 1
smin(Pγ) , to (50) and combining with (45) yields

κ(Pγ∗) = ‖Pγ∗‖‖P−1γ∗ ‖ ≤
(

1 +
η2

η2 + β2

)
η2 + β2

η2
= 2 +

β2

η2
. (51)

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-817953).

26

Los Alamos National Laboratory report number LA-UR-20-30412. This document was pre-

pared as an account of work sponsored by an agency of the United States government. Neither

the United States government nor Lawrence Livermore National Security, LLC, nor any of their

employees makes any warranty, expressed or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommen-

dation, or favoring by the United States government or Lawrence Livermore National Security,

LLC. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States government or Lawrence Livermore National Security, LLC, and

shall not be used for advertising or product endorsement purposes.

References

[1] G. Akrivis, C. Makridakis, and R. H. Nochetto, Galerkin and Runge-Kutta
methods: unified formulation, a posteriori error estimates and nodal superconver-
gence, Numerische Mathematik, 118 (2011), pp. 429–456.

[2] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cer-
veny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stow-
ell, V. Tomov, J. Dahm, D. Medina, and S. Zampini, MFEM: a modular finite
element methods library, Computers & Mathematics with Applications, (2020).

[3] D. N. Arnold, An interior penalty finite element method with discontinuous ele-
ments, SIAM Journal on Numerical Analysis, 19 (1982), pp. 742–760.

[4] S. Basting and E. Bänsch, Preconditioners for the Discontinuous Galerkin time-
stepping method of arbitrary order, ESAIM: Mathematical Modelling and Numerical
Analysis, 51 (2017), pp. 1173–1195.

[5] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method
for the incompressible Navier–Stokes equations, Journal of Computational Physics,
85 (1989), pp. 257–283.

[6] T. A. Bickart, An Efficient Solution Process for Implicit Runge–Kutta Methods,
SIAM Journal on Numerical Analysis, 14 (1977), pp. 1022–1027.

[7] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of
initial-value problems in differential-algebraic equations, SIAM, 1995.

[8] J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT
Numerical Mathematics, 16 (1976), pp. 237–240.

[9] H. Chen, A splitting preconditioner for the iterative solution of implicit Runge-
Kutta and boundary value methods, BIT Numerical Mathematics, 54 (2014),
pp. 607–621.

[10] G. J. Cooper and J. C. Butcher, An iteration scheme for implicit Runge-Kutta
methods, IMA Journal of Numerical Analysis, 3 (1983), pp. 127–140.

[11] G. J. Cooper and R. Vignesvaran, A scheme for the implementation of implicit
Runge-Kutta methods, Computing, 45 (1990), pp. 321–332.

27

[12] P. E. Farrell, R. C. Kirby, and J. Marchena-Menendez, Irksome: Au-
tomating runge–kutta time-stepping for finite element methods, arXiv preprint
arXiv:2006.16282, (2020).

[13] S. González-Pinto, J. Montijano, and L. Rández, Iterative schemes for
three-stage implicit Runge-Kutta methods, Applied Numerical Mathematics, 17
(1995), pp. 363–382.

[14] S. González-Pinto, J. Montijano, and L. Rández, Improving the efficiency of
the iterative schemes for implicit Runge-Kutta methods, Journal of Computational
and Applied Mathematics, 66 (1996), pp. 227–238.

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems, (1996), pp. 118–130.

[16] E. Hairer and G. Wanner, Stiff differential equations solved by Radau methods,
Journal of Computational and Applied Mathematics, 111 (1999), pp. 93–111.

[17] E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical Integration,
Structure-Preserving Algorithms for Ordinary Differential Equations, (2002).

[18] W. Hoffmann and J. J. B. D. Swart, Approximating Runge-Kutta matrices by
triangular matrices, BIT Numerical Mathematics, 37 (1997), pp. 346–354.

[19] P. J. v. d. Houwen and J. J. B. d. Swart, Parallel linear system solvers for
Runge-Kutta methods, Advances in Computational Mathematics, 7 (1997), pp. 157–
181.

[20] L. O. Jay, Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods,
SIAM Journal on Numerical Analysis, 38 (2000), pp. 1369–1388.

[21] L. O. Jay and T. Braconnier, A parallelizable preconditioner for the iterative
solution of implicit Runge–Kutta-type methods, Journal of Computational and Ap-
plied Mathematics, 111 (1999), pp. 63–76.

[22] X. Jiao, X. Wang, and Q. Chen, Optimal and low-memory near-optimal pre-
conditioning of fully implicit runge-kutta schemes for parabolic pdes, arXiv preprint
arXiv:2012.12779, (2020).

[23] S. Kanner and P.-O. Persson, Validation of a high-order large-eddy simulation
solver using a vertical-axis wind turbine, AIAA Journal, 54 (2015), pp. 101–112.

[24] C. Kennedy and M. H. Carpenter, Diagonally Implicit Runge-Kutta Methods
for Ordinary Differential Equations. A Review, tech. report, 2016.

[25] P. Lasaint and P. Raviart, On a finite element method for solving the neutron
transport equation, Mathematical Aspects of Finite Elements in Partial Differential
Equations, (1974), pp. 89–123.

[26] J. V. Lent and S. Vandewalle, Multigrid Methods for Implicit Runge–Kutta
and Boundary Value Method Discretizations of Parabolic PDEs, SIAM Journal on
Scientific Computing, 27 (2005), pp. 67–92.

[27] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems, vol. 98, Siam, 2007.

[28] J.-G. Liu and C.-W. Shu, A high-order discontinuous Galerkin method for 2D
incompressible flows, Journal of Computational Physics, 160 (2000), pp. 577–596.

28

[29] C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher
order dissipative methods for evolution problems, Numerische Mathematik, 104
(2006), pp. 489–514.

[30] T. A. Manteuffel, S. Münzenmaier, J. Ruge, and B. S. Southworth, Non-
symmetric reduction-based algebraic multigrid, SIAM J. Sci. Comput., 41 (2019),
pp. S242–S268.

[31] T. A. Manteuffel, J. Ruge, and B. S. Southworth, Nonsymmetric alge-
braic multigrid based on local approximate ideal restriction (`AIR), SIAM J. Sci.
Comput., 40 (2018), pp. A4105–A4130.

[32] K. A. Mardal, T. K. Nilssen, and G. A. Staff, Order-Optimal Precondition-
ers for Implicit Runge–Kutta Schemes Applied to Parabolic PDEs, SIAM Journal
on Scientific Computing, 29 (2007), pp. 361–375.

[33] T. K. Nilssen, G. A. Staff, and K. Mardal, Order optimal preconditioners for
fully implicit Runge-Kutta schemes applied to the bidomain equations, Numerical
Methods for Partial Differential Equations, 27 (2011), pp. 1290–1312.

[34] W. Pazner and P.-O. Persson, Stage-parallel fully implicit Runge–Kutta solvers
for discontinuous Galerkin fluid simulations, Journal of Computational Physics, 335
(2017), pp. 700–717.

[35] J. Peraire and P.-O. Persson, The compact discontinuous Galerkin (CDG)
method for elliptic problems, SIAM Journal on Scientific Computing, 30 (2008),
pp. 1806–1824.

[36] P.-O. Persson and J. Peraire, Newton-GMRES preconditioning for discon-
tinuous Galerkin discretizations of the Navier–Stokes equations, SIAM Journal on
Scientific Computing, 30 (2008), pp. 2709–2733.

[37] M. M. Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone, A
new block preconditioner for implicit runge-kutta methods for parabolic pde, arXiv
preprint arXiv:2010.11377, (2020).

[38] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numerische
Mathematik, 62 (1992), pp. 235–267.

[39] T. Richter, A. Springer, and B. Vexler, Efficient numerical realization of
discontinuous Galerkin methods for temporal discretization of parabolic problems,
Numerische Mathematik, 124 (2013), pp. 151–182.

[40] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference
schemes, Journal of Computational Physics, 43 (1981), pp. 357–372.

[41] R. R. Rosales, B. Seibold, D. Shirokoff, and D. Zhou, Spatial manifesta-
tions of order reduction in runge-kutta methods for initial boundary value problems,
arXiv preprint arXiv:1712.00897, (2017).

[42] B. Sanderse, Energy-conserving Runge–Kutta methods for the incompressible
Navier–Stokes equations, Journal of Computational Physics, 233 (2013), pp. 100–
131.

[43] D. Schötzau and C. Schwab, Time Discretization of Parabolic Problems by the
HP-Version of the Discontinuous Galerkin Finite Element Method, SIAM Journal
on Numerical Analysis, 38 (2000), pp. 837–875.

29

[44] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws, in Lecture Notes in Mathematics,
Springer Berlin Heidelberg, 1998, pp. 325–432.

[45] I. Smears, Robust and efficient preconditioners for the discontinuous Galerkin
time-stepping method, IMA Journal of Numerical Analysis, (2016), p. drw050.

[46] B. S. Southworth, O. A. Krzysik, W. Pazner, and H. De Sterck, Fast
solution of fully implicit Runge-Kutta and discontinuous Galerkin in time for nu-
merical PDEs, part I: the linear setting, arXiv preprint arXiv:2101.00512, (2021).

[47] B. S. Southworth, A. A. Sivas, and S. Rhebergen, On fixed-point, Krylov,
and 2x2 block preconditioners for nonsymmetric problems, SIAM Journal on Matrix
Analysis and Applications, 41 (2020), pp. 871–900.

[48] G. A. Staff, K.-A. Mardal, and T. K. Nilssen, Preconditioning of fully
implicit Runge-Kutta schemes for parabolic PDEs, Modeling, Identification and
Control: A Norwegian Research Bulletin, 27 (2006), pp. 109–123.

[49] L. N. Trefethen and M. Embree, Spectra and pseudospectra: the behavior of
nonnormal matrices and operators, Princeton University Press, 2005.

[50] J. M. Varah, On the efficient implementation of implicit Runge-Kutta methods,
Mathematics of Computation, 33 (1979), pp. 557–557.

[51] Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,
H. Deconinck, R. Hartmann, K. Hillewaert, H. Huynh, and et al., High-
order CFD methods: current status and perspective, International Journal for Nu-
merical Methods in Fluids, 72 (2013), pp. 811–845.

30

	1 Introduction
	1.1 Fully implicit Runge-Kutta
	1.2 Outline

	2 Background
	2.1 Why fully implicit and previous work
	2.2 A preconditioning framework and stability

	3 Nonlinear iterations
	3.1 Simplified Newton
	3.2 General nonlinear iterations

	4 Linear preconditioning theory
	4.1 `39`42`"613A``45`47`"603AL"0362L1 = `39`42`"613A``45`47`"603AL"0362L2
	4.2 `39`42`"613A``45`47`"603AL"0362L1 =`39`42`"613A``45`47`"603AL"0362L2

	5 Algorithm description
	6 Differential algebraic equations
	7 Numerical results
	7.1 Compressible Euler & Navier–Stokes equations
	7.1.1 Isentropic Euler vortex
	7.1.2 Flow over NACA airfoil

	7.2 Incompressible Euler & Navier–Stokes in vorticity-streamfunction form

	8 Conclusions
	A Proof

