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CHARACTERISTIC DEPENDENCE OF SYZYGIES OF RANDOM

MONOMIAL IDEALS

CAITLYN BOOMS, DANIEL ERMAN, AND JAY YANG

Abstract. When do syzygies depend on the characteristic of the field? Even for well-
studied families of examples, very little is known. For a family of random monomial ideals,
namely the Stanley–Reisner ideals of random flag complexes, we prove that the Betti num-
bers asymptotically almost always depend on the characteristic. Using this result, we also
develop a heuristic for characteristic dependence of asymptotic syzygies of algebraic varieties.

1. Introduction

The minimal free resolution of an ideal can depend on the characteristic of the ground
field. Known examples include certain monomial ideals [12, 25], Veronese embeddings of
Pr [2,22], and determinantal ideals [20]. This paper is motivated by a desire to understand if
dependence on the characteristic is a common or rare phenomenon. To make such a question
precise, we can restrict to specific families, such as:

Question 1.1. For which d ≥ 1 does the minimal free resolution of the d-uple embedding of
Pr depend on the characteristic? Does it happen for all d ≫ 0? Or does it happen rarely?

Question 1.2. Let ∆ ∼ ∆(n, p) be a random flag complex (see §2.3). As n → ∞, what is
the probability that the minimal free resolution of the Stanley–Reisner ideal of ∆ depends on
the characteristic?

We do not offer new results on Question 1.1, though we discuss in §1.1 how questions like
this motivated our work. Our main result is Theorem 1.3, which answers Question 1.2 and
shows that in this context, dependence on the characteristic is quite common.

To analyze dependence on characteristic, we will say that the Betti table of the Stanley–
Reisner ideal of ∆ has ℓ-torsion if this Betti table is different when defined over a field of
characteristic ℓ than it is over Q. See §2 for further details on notation. We prove:

Theorem 1.3. Let ∆ ∼ ∆(n, p) be a random flag complex with n−1/6 ≪ p ≤ 1− ǫ for ǫ > 0.

(1) With high probability as n → ∞, the Betti table of the Stanley–Reisner ideal of ∆
depends on the characteristic.

(2) More specifically, if we fix any m ≥ 2, then with high probability as n → ∞, the Betti
table of the Stanley–Reisner ideal of ∆ has ℓ-torsion for every prime ℓ dividing m.

The proof of Theorem 1.3 (2), which implies part (1), proceeds as follows. By Hochster’s
formula [7, Theorem 5.5.1], it suffices to show that some induced subcomplex of ∆ has m-
torsion in its homology. For each m, we modify Newman’s construction [26, §3] to build a
flag complex Xm with a small number of vertices and with m-torsion in H1(Xm). We then
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Madison with funding from the Wisconsin Alumni Research Foundation.
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apply a variant of Bollobás’s theorem on subgraphs of a random graph [5, Theorem 8] to
prove that Xm appears as an induced subcomplex of ∆ with high probability as n → ∞,
yielding Theorem 1.3.

The most common example of characteristic dependence is Reisner’s example, coming
from a triangulation of RP2 [7, §5.3]. Other previous research on characteristic independence
of monomial ideals includes [21, 25, 30] for edge ideals and [12, Theorem 5.1] for monomial
ideals with component-wise linear resolutions.

Theorem 1.3 also fits into an emerging literature on random monomial ideals. This began
with [14], which outlined an array of frameworks for random monomial ideals, including
models related to random simplicial complexes such as [10, 23]. The average Betti table of
a random monomial ideal is analyzed in [13], while [29] examines threshold phenomena in
random models from [14]. Banerjee and Yogeshwaran study homological properties of the
edge ideals of Erdős–Rényi random graphs in [3]. There is also [18], which uses random
monomial methods to demonstrate some asymptotic syzygy phenomena from [15, 17]. And
finally, Theorem 1.3 is thematically connected with [24], which analyzes torsion homology in
random simplicial complexes (whereas Theorem 1.3 analyzes the simpler question of finding
m-torsion in the homology of some induced subcomplex of ∆(n, p)).

1.1. Asymptotic syzygies and heuristics. One of our main motivations for studying
Question 1.2 is a belief that this will provide heuristic insights into more geometric questions
like Question 1.1. We now explain this connection in more detail.

The study of asymptotic syzygies, as introduced by Ein and Lazarsfeld in [17], examines the
overarching behavior of syzygies of algebraic varieties under increasingly ample embeddings.
Specifically, Ein and Lazarsfeld fixed a smooth variety X with a very ample line bundle A
and considered the syzygies of X embedded by dA for d ≫ 0. They proved an asymptotic
nonvanishing result which showed that the limiting behavior essentially only depended on
dimX. Other researchers then found comparable limiting behavior for other families from
geometry [16, 31] and combinatorics [9, 18]. In a similar vein, [15] conjectured that the
syzygies of smooth varieties should asymptotically converge to a normal distribution, in an
appropriate sense; that conjecture was verified for the combinatorial families in [18].

In short, work on asymptotic syzygies suggests that the overarching behavior will be sim-
ilar across many geometric and combinatorial examples. This is the context in which Ques-
tions 1.1 and 1.2 are connected. Whereas Ein and Lazarsfeld identified behavior in geometric
settings which carried over to combinatorial settings, we look in the opposite direction: could
a combinatorial result shed light on asymptotic syzygies in geometric examples?1

The study of ℓ-torsion is ripe for such a heuristic due to the lack of results and the difficulty
of computing the Betti numbers of higher dimensional varieties. For instance, for Veronese
embeddings of Pr, the only results on ℓ-torsion are for the 2-uple embedding (exploiting the
combinatorial description of [27]): Andersen’s thesis [2] shows that the Betti table of the
2-uple embedding of Pr has 5-torsion for any r ≥ 6, and Jonsson generalized this to produce
ℓ-torsion for ℓ = 3, 5, 7, 11, and 13 and for various r [22]. See [6, 20] for similar results.
But even for d-uple embeddings of Pr, there are no examples of torsion when d > 2 and no
conjectures for any fixed r ≥ 2.

1A similar idea appears in [15], where a random model based on Boij-Söderberg theory is used to generate
quantitative conjectures about the entries of Betti tables.
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The random flag complex model used in this paper was previously studied in work of Erman
and Yang [18, Theorem 1.3], and they showed that if n−1/(r−1) ≪ p ≪ n−1/r, then the Betti
table of the Stanley–Reisner ideal of ∆(n, p) exhibits some of the asymptotic behavior of r-
dimensional varieties from [17]. We view Theorem 1.3, which holds for n−1/(r−1) ≪ p ≪ n−1/r

when r ≥ 7, as providing a heuristic for ℓ-torsion in the asymptotic syzygies of a smooth
variety X of dimX ≥ 7. For concreteness, in the case of Pr, we conjecture:

Conjecture 1.4. Let r ≥ 7. For any d ≫ 0, the Betti table of Pr under the d-uple embedding
depends on the characteristic.

Conjecture 1.5. Let r ≥ 7. As d → ∞, the number of primes ℓ such that the Betti table of
Pr under the d-uple embedding has ℓ-torsion is unbounded.

We will discuss some related conjectures and questions, in more detail, in §7.

This paper is organized as follows. In §2, we review notation and background, including
on Betti numbers, Hochster’s formula, and random flag complexes. §3 contains our main
construction in which we construct an explicit flag complex Xm with m-torsion in homology;
see Theorem 3.1. In §4, we apply a minor variant of Bollobás’s theorem on subgraphs of a
random graph to show that, with high probability, Xm appears as an induced subcomplex
of ∆(n, p) for any n−1/6 ≪ p ≤ 1− ǫ where ǫ > 0 and m ≥ 2. In §5, we analyze the case of
2-torsion more closely, using the techniques from §4 to expand known results from [11]. In
§6, we combine results from §4 with Hochster’s formula to prove Theorem 1.3. Finally, in
§7, we discuss questions about ℓ-torsion in asymptotic syzygies.

Acknowledgments. We thank Christine Berkesch, Kevin Kristensen, Rob Lazarsfeld, An-
drew Newman, Victor Reiner, Gregory G. Smith, and Melanie Matchett Wood for helpful
conversations. We thank Claudiu Raicu and Steven Sam for thoughtful comments on an
early draft.

2. Background and Notation

2.1. Torsion in Betti tables. Throughout this paper we will analyze graded algebras, all
of which have the following form: there is an ideal J in a polynomial ring T with coefficients
in Z, where T/J is flat over Z, and we are interested in specializations (T/J)⊗Z k to various
fields k. Our results focus on graded algebras that arise as the Stanley–Reisner rings of
simplicial complexes. But there are many other potential examples, such as the coordinate
rings of Veronese embeddings of projective space, Grassmanians, toric varieties, and so on.
The central questions of this paper are concerned with when the Betti numbers of such
algebras depend on the characteristic of k.

Let J be a monomial ideal in T = Z[x1, . . . , xn]. For a field k, the algebraic Betti numbers
of (T/J)⊗Z k are given by

βi,j((T/J)⊗Z k) := dimk Tor
T⊗Zk
i ((T/J)⊗Z k, k)j .

The collection of all of these Betti numbers is called the Betti table. Since field extensions
are flat, Betti numbers are invariant under field extensions and will therefore be the same
for any field of the same characteristic. Semicontinuity implies that βi,j((T/J) ⊗Z Q) ≤
βi,j((T/J)⊗Z Fℓ). We say that the Betti table of J has ℓ-torsion if this inequality is strict
for some i, j, and we say that the Betti table of J depends on the characteristic if it has
ℓ-torsion for some prime ℓ.

3
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Figure 1. In the graphs shown above, H is a subgraph of G, but it is not the
induced subgraph on the vertex set {1, 2, 3} since H is missing the diagonal
edge connecting vertices 1 and 3.

Remark 2.1. Let J be an ideal in T = Z[x1, . . . , xn] which is flat over Z. Let S = T ⊗Z Fℓ =
Fℓ[x1, . . . , xn] and I = JS. By a standard argument, it follows that

dimFℓ
TorSi (S/I,Fℓ)j = dimFℓ

(TorTi (T/J,Z)j ⊗Z Fℓ) + dimFℓ
(TorZ1 (Tor

T
i+1(T/J,Z)j ,Fℓ)).

In particular, the Betti table of J has ℓ-torsion if and only if one of the TorTi+1(T/J,Z)j has
ℓ-torsion as an abelian group.

2.2. Graphs and simplicial complexes. For a simplicial complex X, we write V (X),
E(X), and F (X) for the set of vertices, edges, and (2-dimensional) faces of X, respectively.
We use |∗ | to denote the number of elements in these sets. The degree of a vertex v, denoted
deg(v), is the number of edges in X containing v. We write maxdeg(X) for the maximum
degree of any vertex of X, and we write avg(X) for the average degree of a vertex in X.

For a pair of graphs H,G, we write H ⊂ G if H is a subgraph of G. We write H
ind
⊂ G if

H is an induced subgraph of G, that is, if the vertices of H are a subset of the vertices of G
and the edges of H are precisely the edges connecting those vertices within G (see Figure 1).
We use similar definitions and notations for a simplicial complex ∆′ to be a subcomplex (or
an induced subcomplex) of another complex ∆. If α ⊂ V (∆), then we let ∆|α denote the
induced subcomplex of ∆ on α.

The following definitions, adapted from [5] and [8], will be used in sections 4, 5, and 6.

Definition 2.2. The essential density of a graph G is

m(G) := max

{
|E(H)|

|V (H)|
: H ⊂ G, |V (H)| > 0

}
,

and G is strictly balanced if m(H) < m(G) for all proper subgraphs H ⊂ G.

For a field k, a simplicial complex ∆ on n vertices has a corresponding Stanley–Reisner
ideal I∆ ⊂ S = k[x1, . . . , xn]. Since these I∆ are squarefree monomial ideals, Hochster’s
formula [7, Theorem 5.5.1] relates the Betti table of S/I∆ to topological properties of ∆,
providing our key tool for studying this Betti table for various fields k. An immediate
consequence of Hochster’s formula is the following fact, which characterizes when these Betti
tables are different over a field of characteristic ℓ than over Q.

Fact 2.3. For a simplicial complex ∆, the Betti table of the Stanley–Reisner ideal I∆ has
ℓ-torsion if and only if there exists a subset α ⊂ V (∆) such that ∆|α has ℓ-torsion in one of
its homology groups.

2.3. Monomial ideals from random flag complexes. Recall that a flag complex is a
simplicial complex obtained from a graph by adjoining a k-simplex to every (k + 1)-clique
in the graph, which is called taking the clique complex. Therefore, a flag complex is entirely
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determined by its underlying graph. We write ∆ ∼ ∆(n, p) to denote the flag complex which
is the clique complex of an Erdős–Rényi random graph G(n, p) on n vertices, where each
edge is attached with probability p. If α ⊂ V (∆), then we note that ∆|α is also flag. The
properties of random flag complexes have been analyzed extensively, with [23] providing an
overview. As discussed in the introduction, the syzygies of Stanley–Reisner ideals of random
flag complexes were first studied in [18].

2.4. Probability. We use the notation P[∗] for the probability of an event. If Xn is a
sequence of random variables, then we say that the event Xn = x0 occurs with high

probability as n → ∞ if P[Xn = x0] → 1 as n → ∞. For a random variable X, we use
E[X ] for the expected value of X and Var(X) for the variance of X.

For functions f(x) and g(x), we write f ≪ g if lim
x→∞

f/g → 0. We use f ∈ O(g) if there is a

constant N where |f(x)| ≤ N |g(x)| for all sufficiently large values of x, and we use f ∈ Ω(g)
if there is a constant N ′ where |f(x)| ≥ N ′|g(x)| for all sufficiently large values of x.

3. Constructing a flag complex with m-torsion in homology

The goal of this section is to prove the following result:

Theorem 3.1. For every m ≥ 2, there exists a two-dimensional flag complex Xm such that
the torsion subgroup of H1(Xm) is isomorphic to Z/mZ and maxdeg(Xm) ≤ 12.

This result is the foundation of our proof of Theorem 1.3 as we will show that this specific
complex Xm appears as an induced subcomplex of ∆(n, p) with high probability as n → ∞
under the hypotheses of that theorem.

Here is an overview of our proof of Theorem 3.1, which is largely based on ideas from [26].
Given an integer m ≥ 2, we write its binary expansion as m = 2n1 + · · ·+2nk with 0 ≤ n1 <
· · · < nk. Note that k is the Hamming weight of m and nk = ⌊log2(m)⌋. With this setup,
the “repeated squares presentation” of Z/mZ is given by

Z/mZ = 〈γ0, γ1, . . . , γnk
| 2γ0 = γ1, 2γ1 = γ2, . . . , 2γnk−1 = γnk

, γn1
+ · · ·+ γnk

= 0〉.

We will construct a two-dimensional flag complex Xm such that the torsion subgroup of
H1(Xm) has this presentation. To do so, we follow Newman’s “telescope and sphere” con-
struction in [26], where Y1 is the telescope satisfying

H1(Y1) ∼= 〈γ0, γ1, . . . , γnk
| 2γ0 = γ1, 2γ1 = γ2, . . . , 2γnk−1 = γnk

〉,

Y2 is the sphere satisfying

H1(Y2) ∼= 〈τ1, . . . , τk | τ1 + · · ·+ τk = 0〉,

and Xm is created by gluing Y1 and Y2 together to yield a complex with the desired H1-group.
Because we want our construction to be a flag complex with maxdeg(Xm) ≤ 12, we cannot
simply quote Newman’s results. Instead, we must alter the triangulations to ensure that
Y1, Y2, and Xm are flag complexes. Then, we must further alter the construction to reduce
maxdeg(Xm). However, each of our constructions is homeomorphic to each of Newman’s
constructions.

Notation 3.2. Throughout the remainder of this section we assume that m ≥ 2 is given.
We write m = 2n1 + · · ·+ 2nk with 0 ≤ n1 < · · · < nk. To simplify notation, we also denote
Xm by X for the remainder of this section.
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Figure 2. Building block for the telescope construction with i =
0, 1, . . . , (nk − 1).

3.1. The telescope construction. The telescope Y1 that we construct will be homeomor-
phic to the Y1 that Newman constructs in [26, Proof of Lemma 3.1] for the d = 2 case. We
start with building blocks which are punctured projective planes; in contrast with [26], our
blocks are triangulated so that each is a flag complex. Explicitly, for each i = 0, . . . , (nk−1),
we produce a building block which is a triangulated projective plane with a square face
removed, with vertices, edges, and faces as illustrated in Figure 2. Our building blocks dif-
fer from Newman’s in order to ensure that Y1 and the final simplicial complex X are flag
complexes; for instance, we need to add extra vertices v′8i, . . . , v

′
8i+7.

We construct Y1 by identifying edges and vertices of these nk building blocks as labeled.
The underlying vertex set is V (Y1) = {v0, v1, v2, . . . , v4nk+3, v

′
0, v

′
1, . . . , v

′
8nk−1}, so we have

|V (Y1)| = 12nk +4. Since each building block has 44 edges, 4 of which are glued to the next
building block, and 28 faces, we have |E(Y1)| = 40nk + 4 and |F (Y1)| = 28nk. In addition,
observe that the vertices of highest degree are those in the squares in the “middle” of the tele-
scope, such as vertex v4 when nk ≥ 2. In this case, v4 is adjacent to v5, v7, v

′
0, v

′
1, v

′
7, v

′
8, v

′
15, v

′
11,

and v′12, so deg(v4) = 9. By the symmetry of Y1, we have that maxdeg(Y1) = 9 when nk ≥ 2,
and maxdeg(Y1) = 6 when nk = 1 (when m = 2 or 3).

To compute H1(Y1), we simply apply the identical argument from [26]. We order the
vertices in the natural way, where vj > vk if j > k, similarly for the v′ℓ, and where v′ℓ > vj
for all ℓ, j. We let these vertex orderings induce orientations on the edges and faces of
Y1. For each i = 0, . . . , nk, denote by γi the 1-cycle of Y1 represented by [v4i, v4i+1] +
[v4i+1, v4i+2] + [v4i+2, v4i+3] − [v4i, v4i+3]. Then 2γi − γi+1 is a 1-boundary of Y1 for each
i = 0, . . . , (nk−1), and, as in Newman’s construction, we have that H1(Y1) can be presented
as 〈γ0, γ1, . . . , γnk

| 2γ0 = γ1, 2γ1 = γ2, . . . , 2γnk−1 = γnk
〉.

3.2. The sphere construction. The sphere part Y2 is a flag triangulation of the sphere S2

that has k square holes such that the squares are all vertex disjoint and nonadjacent. Our Y2

will be homeomorphic to the Y2 that Newman constructs in [26] for the d = 2 case, but our
construction involves a few different steps. First, we will show that for any integer k ≥ 1,
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there exists a flag triangulation Ti of S2 (here i = ⌊k−1
4
⌋) with at least k faces such that

maxdeg(Ti) ≤ 6. Then, we will insert square holes on k of the faces of Ti, while subdividing

the edges, and call the resulting flag complex T̃i. Finally, we describe a process to replace

each vertex of degree 14 in T̃i with two degree 9 vertices so that the resulting complex, Y2, has
maxdeg(Y2) ≤ 12. Throughout these constructions, we will have four cases corresponding

to the value of k mod 4, and we carefully keep track of the degrees of each vertex in Ti, T̃i,
and Y2 for each case.

3.2.1. Ti and flag bistellar 0-moves. We begin by constructing an infinite sequence T0, T1, . . .
of flag triangulations of S2 such that maxdeg(Ti) ≤ 6 for all i. To do so, we adapt the bistellar
0-moves used in [26, Lemma 5.6]. Let T0 be the 3-simplex boundary on the vertex set
{w0, w1, w2, w3}. Note that each vertex of T0 has degree 3. We will construct the remaining
Ti inductively. To build T1, first remove the face [w1, w2, w3] and edge [w1, w3]. Then,
add two new vertices w4 and w5 as well as new edges [w0, w4], [w1, w4], [w3, w4], [w1, w5],
[w2, w5], [w3, w5], and [w4, w5]. Taking the clique complex will then give T1. See Figure 3.

Essentially, this process is the same as making the face [w1, w2, w3] into a square face
[w1, w2, w3, w4], removing that square face, taking the cone over it, and then ensuring that
the resulting complex is a flag triangulation of S2. We will call such a move a flag bistellar

0-move. Each Ti+1 for i ≥ 0 will be obtained from Ti by performing a flag bistellar 0-
move on the face [w2i+1, w2i+2, w2i+3] of Ti. Explicitly, to construct Ti+1, remove the face
[w2i+1, w2i+2, w2i+3] and the edge [w2i+1, w2i+3]. Then, add new vertices w2i+4 and w2i+5 and
new edges [w2i, w2i+4], [w2i+1, w2i+4], [w2i+3, w2i+4], [w2i+1, w2i+5], [w2i+2, w2i+5], [w2i+3, w2i+5],
[w2i+4, w2i+5], and take the clique complex to get Ti+1. Note that each flag bistellar 0-move
adds 2 vertices, 6 edges, and 4 faces. Since |V (T0)| = 4, |E(T0)| = 6, and |F (T0)| = 4, this
means that |V (Ti)| = 2i+ 4, |E(Ti)| = 6i+ 6, and |F (Ti)| = 4i+ 4.

Further, Table 1 summarizes the degrees of the vertices in each Ti. To compute the degrees

Ti Degree Vertices
T0 3 w0, w1, w2, w3

T1 4 w0, w1, w2, w3, w5, w6

T2 4 w0, w1, w6, w7

5 w2, w3, w4, w5

Ti 4 w0, w1, w2i+2, w2i+3

i ≥ 3 5 w2, w3, w2i, w2i+1

6 w4, . . . , w2i−1

Table 1. Degrees of the vertices in Ti.

of vertices in Ti for i ≥ 3, observe that when the new vertices w2i+2 and w2i+3 are added,
they have degree 4 in Ti. For each of the next two iterations of the flag bistellar-0 move,
the degree of these vertices increases by one, resulting in degree 6 in Ti+2. In the remaining
triangulations Tj with j ≥ i+ 3, these vertices are not affected. Therefore, maxdeg(Ti) ≤ 6
for each i.

From this infinite sequence of flag triangulations of S2 with bounded degree, we are in-
terested in the particular Ti with i = ⌊k−1

4
⌋ to use in our construction of Y2, where k is the

Hamming weight of m as in Notation 3.2. Note that this Ti has vertex set {w0, . . . , w2i+3}
7
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w4

w6
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T2

Figure 3. The first few flag triangulations of S2 using flag bistellar 0-moves.

and has 4⌊k−1
4
⌋ + 4 faces. Let δ be the integer 0 ≤ δ ≤ 3 where δ ≡ −k mod 4. Then Ti

has exactly k + δ faces.

3.2.2. Constructing T̃i. Next, we insert square holes in the first k faces of Ti and subdivide
the remaining faces in such a way that the squares will be vertex disjoint and nonadjacent.

First, we will insert square holes in k of the faces of Ti, making sure to triangulate the
resulting faces and take the clique complex so that our simplicial complex remains flag. Let
[wr, ws, wt] with r < s < t be the jth of these k faces with respect to a fixed ordering of
the faces (where j ranges from 1 to k). We remove this face and subdivide the edges by
adding new vertices w′

r,s, w
′
r,t, and w′

s,t and new edges [wr, w
′
r,s], [ws, w

′
r,s], [wr, w

′
r,t], [wt, w

′
r,t],

[ws, w
′
s,t], and [wt, w

′
s,t]. Then, we add vertices u4j−4, u4j−3, u4j−2, and u4j−1 to form a square

inside the original face with indices increasing counterclockwise. Moreover, we add edges

[wr, u4j−4], [wr, u4j−1], [u4j−4, w
′
r,s], [u4j−3, w

′
r,s], [ws, u4j−3]

[u4j−3, w
′
s,t], [u4j−2, w

′
s,t], [wt, u4j−2], [u4j−2, w

′
r,t], [u4j−1, w

′
r,t].

After applying this process, we take the clique complex. The result of this operation on face
[wr, ws, wt] is depicted in Figure 4 (left).

The remaining δ faces of Ti will simply be subdivided and triangulated before taking the
clique complex. Explicitly, this means that after removing the face [w2i+1, w2i+2, w2i+3] and
its edges, we add vertices w′

2i+1,2i+2, w
′
2i+1,2i+3, and w′

2i+2,2i+3 and edges

[w2i+1, w
′
2i+1,2i+2], [w2i+2, w

′
2i+1,2i+2], [w2i+1, w

′
2i+1,2i+3],

[w2i+3, w
′
2i+1,2i+3], [w

′
2i+1,2i+2, w

′
2i+1,2i+3], [w2i+2, w

′
2i+2,2i+3],

[w2i+3, w
′
2i+2,2i+3], [w

′
2i+1,2i+2, w

′
2i+2,2i+2], [w

′
2i+1,2i+3, w

′
2i+2,2i+3].

This subdivision of face [w2i+1, w2i+2, w2i+3] is shown in Figure 4 (right). We do similarly for
the faces [w2i−1, w2i+2, w2i+3] and [w2i, w2i+1, w2i+3], if necessary. The clique complex of this
construction is a flag complex which is homeomorphic to S2 with k distinct points removed.
Call this complex T̃i.

Let’s consider the degrees of the vertices of T̃i. We have that deg(w′
s,t) = 6 for all s, t and

deg(uℓ) ∈ {4, 5} for all ℓ, where the “top” uℓ have degree 4 and the “bottom” uℓ have degree
5. To determine the degrees of the wj vertices, we need to consider their degrees in Ti and
how their degrees increase during the subdivision and square face removal processes. As we

are interested in bounding the maximum degree of the vertices of T̃i, we need only consider
the case when δ = 0 and all k faces of Ti have a square hole. Table 2 gives the degrees of

each of the wj vertices in T̃i when δ = 0.
8
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u4j−3
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w2i+2 w2i+3

w′
2i+1,2i+2

w′
2i+2,2i+3

w′
2i+1,2i+3

Figure 4. Example of square insertion done on k faces of Ti (left), and sub-
divided triangulation on remaining faces (right).

T̃i Degree Vertices
6 w2, w3

T̃0 7 w1

(k = 4) 9 w0

8 w4, w5

T̃1 9 w2, w3

(k = 8) 10 w1

12 w0

8 w6, w7

T̃2 10 w1

(k = 12) 11 w4, w5

12 w0, w2, w3

8 w2i+2, w2i+3

T̃i 10 w1

i ≥ 3 11 w2i, w2i+1

(k = 4i+ 4) 12 w0, w2, w3

14 w4, . . . , w2i−1

Table 2. Degrees of the vertices in T̃i when k ≡ 0 mod 4.

To verify the degrees of the wj in T̃i when i ≥ 3, we consider how the degrees of the

vertices change as i increases. Between T̃i−1 and T̃i (with δ = 0 for both), the only vertices
that change degree are w2i−2, w2i−1, w2i, w2i+1, each of which increase degree by 3. This is
because they each get one new edge from the Ti flag bistellar 0-move and two new edges
from the square removal triangulation process (since each vertex is the smallest indexed and
hence the “top” vertex of one new triangular face). Further, the new vertices w2i+2, w2i+3 in

T̃i have degree 8, and they increase degree by 3 in the next two iterations, resulting in degree

14 in T̃i+2 and all future iterations.
9



The above argument shows that regardless of m and k, maxdeg(T̃i) ≤ 14, where i = ⌊k−1
4
⌋.

Furthermore, the only vertices that could have degree 14 are w4, . . . , w2i−1, each of which is
separated from the others by a w′

s,t vertex, which only has degree 6. We want to know exactly

which vertices in T̃i have degree 14, for all possible k with i ≥ 3, because we plan to alter
these vertices to decrease maxdeg(T̃i). Note that as δ increases from 0 to 3, the degree of
each wj vertex is nonincreasing. When k = 4i+4 and δ = 0, Table 2 gives that w4, . . . , w2i−1

have degree 14. When k = 4i + 3 and δ = 1, the face [w2i+1, w2i+2, w2i+3] is subdivided
instead of having a square removed, but this does not change the degrees of w4, . . . , w2i−1,
so these all still have degree 14. When k = 4i + 2 and δ = 2, the faces [w2i+1, w2i+2, w2i+3]
and [w2i−1, w2i+2, w2i+3] are subdivided. Therefore, w2i−1 has two fewer edges than in the
previous case since w2i−1 is the smallest indexed vertex in [w2i−1, w2i+2, w2i+3] and so would
have two “top” uℓ adjacent to it if this face had a square removed from it. So, in this case,

w4, . . . , w2i−2 have degree 14 and w0, w2, w3, w2i−1 have degree 12 in T̃i. Finally, if k = 4i+1
and δ = 3, then additionally the face [w2i, w2i+1, w2i+3] is subdivided, which means that the
degree 12 and 14 vertices are the same as in the previous case.

3.2.3. Replacing degree 14 vertices to construct Y2. Having identified the vertices of T̃i of the
highest degree, we now describe a process by which we will replace each vertex of degree 14

by two vertices of degree 9 in order to ensure that maxdeg(T̃i) ≤ 12 for all k (and i). The
resulting flag complex, given by taking the clique complex of this construction, will be the

final Y2, and it will be homeomorphic to T̃i. The process is summarized by Figure 5 and
described in detail in the following paragraphs.

Suppose wj is a vertex of degree 14 in T̃i. Locally, on a small neighborhood of wj , T̃i is
homeomorphic to a 2-manifold. Since deg(wj) = 14, wj is surrounded by six triangular faces
coming from Ti, all of which have had a square removed. By our construction, two of these
squares (which are in adjacent triangular faces) have both of their “top” uℓ vertices connected
to wj, but the other four squares just have a single edge connecting one of their “bottom” uℓ

vertices to wj. So, wj has six w′
s,t neighbors and eight uℓ neighbors, which form a 14-sided

polygon with wj as its “star” point. Choose two w′
s,t vertices which are across from each other

in this 14-sided polygon, say w′
a,b and w′

c,d. Next, we will remove wj and all of the 14 faces that
it is contained in. Then, we add vertices wj1 and wj2 in place of wj and add edges in such a
way that deg(wj1) = deg(wj2) = 9, there are edges [wj1 , wj2], [wj1, w

′
a,b], [wj1, w

′
c,d], [wj2, w

′
a,b],

and [wj2 , w
′
c,d], and the 14-sided polygon is triangulated with 16 triangles. This process

only changes the degree of w′
a,b and w′

c,d, each of which now have degree 7. Therefore, the
maximum degree of wj1, wj2, and the 14 vertices in the polygon is 9 (since deg(uℓ) ∈ {4, 5}
and deg(w′

s,t) = 6). To illustrate this construction, we consider the case when k = 20. Then

i = 4, δ = 0, and deg(w7) = 14 in T̃4. Figure 5 depicts this process when w′
a,b = w′

3,7 and
w′

c,d = w′
7,11.

After repeating the above process for each degree 14 vertex in T̃i, we take the clique
complex and call the resulting flag complex Y2. Observe that this process increases the
number of vertices by 1, the number of edges by 3, and the number of faces by 2 each time
a degree 14 vertex in T̃i is replaced. Also, note that maxdeg(Y2) ≤ 12 for all m.

Now, we give the wj , w
′
s,t, and uℓ vertices their natural orderings and say that w′

s,t > wj

and w′
s,t > uℓ for all ℓ, s, t, and j, and then let these vertex orderings induce orientations

on the edges and faces of Y2 (as shown in Figure 3). Counting the vertices, edges, and
10
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Figure 5. Replacing a degree 14 vertex in T̃4 when k = 20.

faces of Y2 we have that if 0 ≤ k ≤ 12, then there were no degree 14 vertices to remove, so
|V (Y2)| = 6k + 2δ + 2, |E(Y2)| = 17k + 6δ, and |F (Y2)| = 10k + 4δ. If k ≥ 13, then i ≥ 3

and at least one degree 14 vertex was removed to construct Y2 from T̃i. Table 3 gives the
number of vertices, edges, and faces of Y2 for all values of k ≥ 13.

k δ |V (Y2)| |E(Y2)| |F (Y2)|

4i+ 4 0 13
2
k − 4 37

2
k − 18 11k − 12

4i+ 3 1 13
2
k − 3

2
37
2
k − 21

2
11k − 7

4i+ 2 2 13
2
k 37

2
k − 6 11k − 4

4i+ 1 3 13
2
k + 5

2
37
2
k + 3

2
11k + 1

Table 3. Number of vertices, edges, and faces in Y2 when k ≥ 13.

3.2.4. Homology of Y2. Since Y2 is an oriented flag triangulation of S2 with k square holes,
each of which are vertex disjoint and nonadjacent, our Y2 is homeomorphic to Newman’s Y2

in the d = 2 case of [26, Lemma 5.7], and we can apply the same argument to compute the
homology of Y2. We denote the 1-cycles that are the boundaries of the k square holes by
τ1, . . . , τk. Explicitly, for j = 1, . . . , k, we define

τj := [u4j−4, u4j−3] + [u4j−3, u4j−2] + [u4j−2, u4j−1]− [u4j−4, u4j−1].

Then, by our construction, each τj is a positively-oriented 1-cycle in H1(Y2), and exactly as
in [26, Proof of Lemma 5.7], we have that H1(Y2) = 〈τ1, . . . , τk|τ1 + · · ·+ τk = 0〉.

3.3. Construction of X and proof of Theorem 3.1. Now we attach Y1 and Y2 together
to form the two-dimensional flag complex X such that the torsion subgroup of H1(X) is
isomorphic to Z/mZ. This part essentially follows [26, §3], though we must confirm that the
resulting complex is flag and satisfies the desired bound of vertex degree.

11



Proof of Theorem 3.1. For a given m, let Y1 and Y2 be the complexes constructed in the previ-
ous subsections. Let S denote the subcomplex of Y2 induced by the 4k vertices u0, . . . , u4k−1.
Since the square holes in Y2 are vertex-disjoint and have no edges between any two of them,
S is a disjoint union of k square boundaries. Let f : S → Y1 be the simplicial map defined,
for j = 1, . . . , k, by

u4j−4 7→ v4nj
, u4j−3 7→ v4nj+1, u4j−2 7→ v4nj+2, u4j−1 7→ v4nj+3.

Following [26, §3], let X = Y1 ⊔f Y2 and observe that this is a simplicial complex by the
same argument as Newman gives. In addition, X is a flag complex because Y1 and Y2 are
flag, and we subdivided the edges of Y1 and Y2 to avoid the possibility that X might contain
a 3-cycle which doesn’t have a face. Furthermore, in X the squares τj and γnj

are identified
by f for j = 1, . . . , k, and, as in [26],

H1(X) ∼= Zk−1 ⊕ Z/mZ,

where Z/mZ has the repeated squares representation given by

〈γ0, γ1, . . . , γnk
| 2γ0 = γ1, 2γ1 = γ2, . . . , 2γnk−1 = γnk

, γn1
+ · · ·+ γnk

= 0〉.

Finally, using our counts for the number of vertices, edges, and faces of Y1 and Y2 and with
δ defined as above, if 0 ≤ k ≤ 12, we have

|V (X)| = 2k+12nk +6+2δ, |E(X)| = 13k+40nk +4+6δ, and |F (X)| = 10k+28nk +4δ.

If k ≥ 13, then Table 4 gives the number of vertices, edges, and faces in X (where i = ⌊k−1
4
⌋).

k δ |V (X)| |E(X)| |F (X)|

4i+ 4 0 5
2
k + 12nk

29
2
k + 40nk − 14 11k + 28nk − 12

4i+ 3 1 5
2
k + 12nk +

5
2

29
2
k + 40nk −

13
2

11k + 28nk − 7

4i+ 2 2 5
2
k + 12nk + 4 29

2
k + 40nk − 2 11k + 28nk − 4

4i+ 1 3 5
2
k + 12nk +

13
2

29
2
k + 40nk +

11
2

11k + 28nk + 1

Table 4. Number of vertices, edges, and faces in X when k ≥ 13.

Additionally, recall that maxdeg(Y1) ≤ 9 and maxdeg(Y2) ≤ 12. Since in X we are only
identifying the squares of Y2 with k of the squares of Y1, to find the maximum degree of any
vertex of X, we need only check the degrees of the identified vertices. In Y1, we know that
deg(vj) ≤ 9 for each j, and in Y2, we know that deg(uℓ) ∈ {4, 5} for each ℓ. Let vj and
uℓ be vertices that are identified in X. Since two of their adjacent edges in the squares are
identified as well, in X we see that deg(vj) = deg(uℓ) ≤ 12. Thus, maxdeg(X) ≤ 12. �

We also note the following corollary:

Corollary 3.3. For every finite abelian group G there is a two-dimensional flag complex X
such that the torsion subgroup of H1(X) is isomorphic to G and maxdeg(X) ≤ 12.

Proof. Let G = Z/m1Z ⊕ Z/m2Z ⊕ · · · ⊕ Z/mrZ with m1|m2| · · · |mr be an arbitrary finite
abelian group. By Theorem 3.1, there exist two-dimensional flag complexes Xmi

such that
the torsion subgroup of H1(Xmi

) is isomorphic to Z/miZ and maxdeg(Xmi
) ≤ 12. If X is

the disjoint union of all the Xmi
, then X satisfies the hypotheses of the corollary. �

12



4. Appearance of subcomplexes in ∆(n, p)

The goal of this section is to show that, for attaching probabilities p in an appropriate
range, the flag complex Xm from Theorem 3.1 will appear with high probability as an induced
subcomplex of ∆(n, p). See §2 for the relevant definitions and notation used throughout this
section. Here is our main result:

Proposition 4.1. Let m ≥ 2, and let Xm be as in Theorem 3.1. If ∆ ∼ ∆(n, p) is a random

flag complex with n−1/6 ≪ p ≤ 1−ǫ for some ǫ > 0, then P

[
Xm

ind
⊂ ∆(n, p)

]
→ 1 as n → ∞.

Our proof of this result will rely on Bollobás’s theorem on the appearance of subgraphs of
a random graph, which we state here for reference.

Theorem 4.2 (Bollobás [5]). Let G′ be a fixed graph, let m(G′) be the essential density of
G′ defined in Definition 2.2, and let G(n, p) be the Erdős-Rényi random graph on n vertices
with attaching probability p. As n → ∞, we have

P [G′ ⊂ G(n, p)] →

{
0 if p ≪ n−1/m(G′)

1 if p ≫ n−1/m(G′)
.

Since any flag complex is determined by its underlying graph, we can almost apply this
to prove Proposition 4.1. However, Proposition 4.1 (and our eventual application of it
via Hochster’s formula to Theorem 1.3) requires Xm to appear as an induced subcomplex,
whereas Bollobás’s result is for not necessarily induced subgraphs. The following proposition,
which is likely known to experts, shows that so long as p is bounded away from 1, this
distinction is immaterial in the limit.

Proposition 4.3. Let G′ be a fixed graph, let m(G′) be the essential density of G′ defined in
Definition 2.2, and let G(n, p) be the Erdős-Rényi random graph on n vertices with attaching
probability p. Suppose p = p(n) ≤ 1− ǫ for some ǫ > 0. Then as n → ∞, we have

P

[
G′ ind

⊂ G(n, p)

]
→

{
0 if p ≪ n−1/m(G′)

1 if p ≫ n−1/m(G′)
.

Proof. Since an induced subgraph is a subgraph, if P[G′ ⊂ G(n, p)] → 0, then

P

[
G′

ind
⊂ G(n, p)

]
→ 0. Thus, the first half of the threshold is a direct consequence of

Theorem 4.2, and all that needs to be shown is the second half of the threshold.
Suppose that p ≫ n−1/m(G′). We will mirror the proof of Bollobàs’s theorem from [19,

Theorem 5.3] (originally due to [28]), which relies on the second moment method. Let
Λ(G′, n) be the set containing all of the possible ways that G′ can appear as a induced
subgraph of G(n, p). Thus, an element H ∈ Λ(G′, n) corresponds to a subset of the n
vertices and specified edges among those vertices such that the resulting graph is a copy of
G′. We want to count the number of times G′ appears as an induced subgraph of G(n, p).
For each H ∈ Λ(G′, n), we let 1H be the corresponding indicator random variable, where
1H = 1 occurs in the event that restricting G(n, p) to the vertices of H is precisely the
copy of G′ indicated by H . Note that the random variables 1H are not independent, as two
distinct elements from Λ(G′, n) might have overlapping vertex sets. If we let NG′ be the
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random variable for the number of copies of G′ appearing as induced subgraphs in G(n, p),

then we have NG′ =
∑

H∈Λ(G′,n)

1H .

Our goal is to show that P[NG′ ≥ 1] → 1, or equivalently that P[NG′ = 0] → 0. Since
NG′ is non-negative, the second moment method as seen in [1, Theorem 4.3.1] states that

P[NG′ = 0] ≤
Var(NG′ )

E[NG′ ]2
, so it suffices to show that

Var(NG′ )

E[NG′ ]2
→ 0. To start, we will bound

the expected value. To simplify notation throughout the following computation, we let
v = |V (G′)| and e = |E(G′)| denote the number of vertices and edges of G′.

E[NG′] =
∑

H∈Λ(G′,n)

E[1H ]

=
∑

H∈Λ(G′,n)

pe(1− p)(
v
2)−e

= Ω(nv) · pe(1− p)(
v

2)−e.

Now let us repeat this with the variance instead.

Var(NG′) =
∑

H,H′∈Λ(G′,n)

E[1H1H′ ]− E[1H ]E[1H′]

=
∑

H,H′∈Λ(G′,n)

P[1H = 1 and 1H′ = 1]−P[1H = 1]P[1H′ = 1]

=
∑

H,H′∈Λ(G′,n)

P[1H = 1] (P[1H′ = 1 | 1H = 1]−P[1H′ = 1])

= pe(1− p)(
v

2)−e
∑

H,H′∈Λ(G′,n)

P[1H′ = 1 | 1H = 1]−P[1H′ = 1]

If H and H ′ don’t share at least two vertices, 1H and 1H′ are independent of each other. So
we can restrict to the case where they share at least two vertices, which gives

= pe(1− p)(
v

2)−e
v∑

i=2

∑

H,H′∈Λ(G′,n)
|V (H)∩V (H′)|=i

P[1H′ = 1 | 1H = 1]−P[1H′ = 1].

We now come to the key observation, which is also at the heart of the proof in [19, Theo-
rem 5.3]: P[1H′ = 1 | 1H = 1] is maximized if those edges and non-edges in H are exactly
those that are required by H ′. Thus, by applying the fact that any subgraph of G′ with i
vertices, has at most i ·m(G′) edges and at most

(
i
2

)
non-edges we get the following bound

for H,H ′ ∈ Λ(G′, n) sharing i vertices:

P[1H′ = 1 | 1H = 1] ≤ P[1H′ = 1] · p−i·m(G′)(1− p)−(
i
2)

14



From here, it is a standard computation. Substituting this back into the previous equation
and simplifying, we get

Var(NG′) ≤ pe(1− p)(
v
2)−e

v∑

i=2

∑

H,H′∈Λ(G′,n)
|V (H)∩V (H′)|=i

P[1H′ = 1]
(
p−i·m(G′)(1− p)−(

i
2) − 1

)

≤
(
pe(1− p)(

v
2)−e

)2
v∑

i=2

O
(
n2v−i

) (
p−i·m(G′)(1− p)−(

i
2) − 1

)
.

And since p is bounded away from 1 and 1− p is bounded away from 0, we get

≤
(
pe(1− p)(

v

2)−e
)2

v∑

i=2

O
(
n2v−ip−i·m(G′)

)
.

Finally, applying the second moment method gives

P[NG′ = 0] ≤
Var(NG′)

E[NG′]2
=

v∑

i=2

O
(
n2v−ip−i·m(G′)

)

Ω(n2v)
=

v∑

i=2

O
(
n−ip−i·m(G′)

)
.

Since p ≫ n−1/m(G′), we conclude that npm(G′) → ∞, and therefore, P[NG′ = 0] → 0. It

follows that P

[
G′

ind
⊂ G(n, p)

]
→ 1. �

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Recall that Xm is the complex from Theorem 3.1, and let Hm be
its underlying graph. Moreover, the underlying graph of ∆(n, p) is the Erdős-Rényi random
graph G(n, p). Since a flag complex is uniquely determined by its underlying graph, it suffices

to show that P

[
Hm

ind
⊂ G(n, p)

]
→ 1.

Since maxdeg(Hm) ≤ 12, every subgraph has average degree at most 12. Thus, the
essential density m(Hm) satisfies m(Hm) ≤ 6. Since p ≫ n−1/6, we have p ≫ n−1/m(Hm).

Applying Proposition 4.3 gives P

[
Hm

ind
⊂ G(n, p)

]
→ 1; thus, P

[
Xm

ind
⊂ ∆(n, p)

]
→ 1. �

Remark 4.4. Explicitly computing the essential density m(Hm) seems difficult in general,
and our chosen bound m(Hm) ≤ 6, which is determined by the fact that 6 = 1

2
maxdeg(Xm),

is likely too coarse. It would be interesting to see a sharper result on m(Hm), as this could
potentially provide a heuristic for decreasing the bound on r in Conjecture 1.4. Might it
even be the case that m(Hm) is half the average degree, 1

2
avg(Hm)?

In any case, 1
2
avg(Hm) at least provides a lower bound on m(Hm). Due to the detailed

nature of the constructions in §3, we can estimate this value. Let k ≥ 13 and m ≫ 0 so
that nk = ⌊log2(m)⌋ will be much larger than δ. By Table 4, the number of vertices will be
approximately 5

2
k + 12nk and the number of edges will be approximately 29

2
k + 40nk. The

smallest the ratio of edges to vertices can be is when nk ≫ k, in which case the ratio will be
approximately 31

3
. A similar computation holds for k ≤ 12 and for m ≫ 0. We can conclude

that m(Hm) ≥ 31
3
− ǫ, where ǫ is a positive constant that goes to 0 as m → ∞. �
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Figure 6. A minimal flag triangulation of RP 2, denoted by ∆(G).

5. A detailed analysis of 2-torsion

The goal of this section is to provide a more detailed analysis of what happens in the case
of 2-torsion (when m = 2 in Proposition 4.1). In [11], Costa, Farber, and Horak analyze
the 2-torsion of the fundamental group of ∆(n, p). Their results, specifically Theorem 7.2,
give that if n−11/30 ≪ p ≪ n−1/3−ǫ where 0 < ǫ < 1

30
is fixed, then H1(∆(n, p)) has 2-torsion

with high probability as n → ∞. Since our aim is to show that there is 2-torsion with high
probability in the homology of an induced subcomplex of ∆(n, p), rather than in the global
homology, we are able to extend their threshold to n−11/30 ≪ p ≤ 1− ǫ where ǫ > 0. We use
the same techniques as in §4, but instead of using X2 from Theorem 3.1, we use a known flag
triangulation of RP 2 that minimizes the number of vertices and where we can easily compute
its essential density. This gives the less restrictive threshold of p ≫ n−11/30 in the 2-torsion
case as opposed to p ≫ n−1/6 in the general case. In [4, Figure 1], the authors found two
(nonisomorphic) minimal flag triangulations of RP 2, each of which have 11 vertices and 30
edges and differ by a single bistellar 0-move; one of these is used in [11], and the other, which
we use in this section, is depicted in Figure 6.

For the remainder of this section, let G denote the underlying graph of this flag triangu-
lation of RP 2, which we denote by ∆(G). To understand the probability that ∆(G) appears
as an induced subcomplex of ∆(n, p), we need to compute the essential density m(G).

Lemma 5.1. For the graph G underlying the flag triangulation of RP 2 exhibited in Figure 6,
the essential density m(G) is 30/11.

Proof. This amounts to an exhaustive computation, which is summarized in Table 5. In
particular, Table 5 identifies the maximal number of edges that a subgraph H ⊂ G on
|V (H)| vertices can have, for each |V (H)| ≤ 11. One can see from the table that m(G) is
maximized by the entire graph, and thus m(G) = |E(G)|/|V (G)| = 30/11. �

Lemma 5.1 shows that the graph G is strongly balanced in the sense of Definition 2.2.
While we expect the essential density of our complexes Xm to be lower than the coarse bound
of 1

2
maxdeg(Xm) (see Remark 4.4), we note that in the case of the graph G, this difference

is not very large. In fact, we have 1
2
maxdeg(G) = 3 and m(G) = 30/11 ≈ 2.72. Combining
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|V (H)| max{|E(H)|} V (H) max
{

|E(H)|
|V (H)|

}

1 0 {v1} 0

2 1 {v1, v2}
1
2

3 3 {v1, v2, v6} 1

4 5 {v1, v2, v5, v6}
5
4

5 7 {v1, v2, v4, v5, v6}
7
5

6 10 {v1, v4, v7, v8, v9, v11}
5
3

7 13 {v1, v2, v4, v7, v8, v9, v11}
13
7

8 17 {v1, v2, v4, v6, v7, v8, v9, v11}
17
8

9 21 {v1, v2, v3, v4, v6, v7, v8, v9, v11}
7
3

10 25 {v1, v2, v3, v4, v5, v6, v7, v8, v9, v11}
5
2

11 30 {v1, . . . , v11}
30
11

Table 5. With G as the underlying graph of the complex in Figure 6, this
table computes the maximal number of edges of subgraphs H ⊂ G with varying
number of vertices.

Lemma 5.1 and Theorem 4.2 we obtain an analogue of Proposition 4.1.

Proposition 5.2. If ∆ ∼ ∆(n, p) is a random flag complex with n−11/30 ≪ p ≤ 1 − ǫ for

some ǫ > 0, then P

[
∆(G)

ind
⊂ ∆(n, p)

]
→ 1 as n → ∞.

Proof. The proof is nearly identical to that of Proposition 4.1, so we omit the details. �

Question 5.3. It would be interesting to know whether p ≫ n−11/30 is a sharp threshold for
the appearance of 2-torsion in the homology of any induced subcomplex of ∆(n, p). While [11,
Theorem 7.1] shows that the global homology has no torsion if p ≪ n−11/30, it is possible that
some induced subcomplex of ∆(n, p) has 2-torsion. A closely related question is whether there
exists a flag complex X with 2-torsion homology and a smaller essential density than 30/11.

6. Torsion in the Betti tables associated to ∆

We now prove Theorem 1.3. The hard work was done in the previous sections.

Proof of Theorem 1.3 (2). Assume n−1/6 ≪ p ≤ 1 − ǫ and let ∆ ∼ ∆(n, p). Let Xm be as
constructed in the proof of Theorem 3.1. By Proposition 4.1, ∆ contains Xm as an induced
subcomplex with high probability as n → ∞. Since H1(Xm) has m-torsion, Hochster’s
formula (see Fact 2.3) gives that the Betti table of the Stanley–Reisner ideal of ∆ has ℓ-
torsion for every prime ℓ dividing m. �

We can also apply the more detailed study of 2-torsion from §5 to obtain a result on the
appearance of 2-torsion in the Betti tables of random flag complexes.
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Proposition 6.1. Let ∆ ∼ ∆(n, p) be a random flag complex with n−11/30 ≪ p ≤ 1 − ǫ for
some ǫ > 0. With high probability as n → ∞, the Betti table of the Stanley–Reisner ideal of
∆ has 2-torsion.

Proof. The proof is the same as the proof of Theorem 1.3, but utilizing Proposition 5.2 in
place of Proposition 4.1. �

As a generalization of Question 5.3, it would be interesting to understand a precise thresh-
old on the attaching probability p such that the Betti table of the Stanley–Reisner ideal of
∆ does not depend on the characteristic. A related question is posed in Question 7.3.

Remark 6.2. Our constructions are based entirely on torsion in the H1-groups, and thus we
obtain Betti tables where the entries in the second row of the Betti table (the row of entries
of the form βi,i+2) depend on the characteristic. Since Newman’s work also produces small
simplicial complexes where the Hi-groups have torsion for any i ≥ 1 [26, Theorem 1], one
could likely apply the methods of §3 to produce thresholds for where the other rows of the
Betti table would depend on the characteristic, and it might be interesting to explore the
resulting thresholds.

7. Further Questions

In the this final section, we discuss some further questions about torsion for flag complexes
and for the asymptotic syzygies of geometric examples.

Question 7.1. Can one find new examples of Veronese embeddings of Pr, or of any other
reasonably simple variety (Grassmanian, toric variety, etc.), whose Betti tables depend on
the characteristic? For a given ℓ, can one produce a specific example of a variety whose Betti
table has ℓ-torsion?

We find it especially surprising that there are no known examples of 2-torsion for d-uple
embeddings of Pr. Focusing on the case of projective space, the following question is open:

Question 7.2. What is the minimal value of r such that the Betti table of the d-uple em-
bedding of Pr depends on the characteristic for some d? (It is known that 2 ≤ r ≤ 6.)

An analogous question, in the context of random monomial ideals, would be as follows:

Question 7.3. Let m ≥ 2. For a random flag complex ∆ ∼ ∆(n, p), what is the threshold
on p such that the Betti table of the Stanley–Reisner ideal of ∆ has m-torsion with high
probability as n → ∞?

A closely related result is [11, Theorem 8.1], which implies that for any given odd prime
ℓ, the Betti table of the Stanley–Reisner ideal of ∆ (with high probability as n → ∞) has
no ℓ-torsion when p ≪ n−1/3−ǫ where ǫ > 0 is fixed.

Remark 7.4. We know of two natural ways that one could improve the threshold for p in
Theorem 1.3. First, one could perform a more detailed study of the essential density m(Hm),
as that value is surely lower than our chosen bound 1

2
maxdeg(Xm). Second, one could aim to

produce flag complexes X ′
m with torsion homology (not necessarily in H1) whose underlying

graphs have a lower essential density than Hm. Of course, following the heuristic discussed in
the introduction, any such improvement of the threshold for p in Theorem 1.3 would suggest
a corresponding improvement of the bound on r in Conjectures 1.4 and 1.5.
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In a different direction, one might ask about how large n needs to be before we expect to
see that the Betti table associated to ∆ has ℓ-torsion.

Question 7.5. Fix a prime ℓ and ǫ > 0. Let ∆ ∼ ∆(n, p) be a random flag complex with
n−1/6 ≪ p ≪ 1− ǫ. For a constant 0 < δ < 1, approximately how large does n need to be to
guarantee that

P [ Betti table associated to ∆ has ℓ-torsion ] ≥ 1− δ?

It would be interesting to even answer this question for 2-torsion, where the thresholds
from [11, Theorems 7.1 and 7.2] make the question seemingly quite tractable. An analogous
question for Veronese embeddings of projective space would be the following:

Question 7.6. Fix a prime ℓ and integer r ≥ 2. Can one provide lower/upper bounds on
the minimal value of d such that the Betti table of the d-uple embedding of Pr has ℓ-torsion?

Of course, one could ask similar questions, replacing Pr by other varieties. We could also
turn to even more quantitative questions related to Conjecture 1.5 as well.

Question 7.7. Fix a prime ℓ and an integer r ≥ 2. Can one describe the set of d ∈ Z such
that the Betti table of the d-uple embedding of Pr has ℓ-torsion? Can one bound or estimate
the density of this set?
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