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Abstract. In heat exchangers, an incompressible fluid is heated initially and
cooled at the boundary. The goal is to transfer the heat to the boundary as
efficiently as possible. In this paper we study a related steady version of this
problem where a steadily stirred fluid is uniformly heated in the interior and
cooled on the boundary. For a given large Péclet number, how should one
stir to minimize some norm of the temperature? This version of the problem
was previously studied by Marcotte, Doering et al. (SIAM Appl. Math ’18)
in a disk, where the authors used matched asymptotics to show that when
the Péclet number, Pe, is sufficiently large one can stir the fluid in a manner
that ensures the total heat is O(1/ Pe). In this paper we confirm their results
with rigorous proofs, and also provide an almost matching lower bound. For
simplicity, we work on the infinite strip instead of the unit disk and the proof
uses probabilistic techniques.

1. Introduction
A heat exchanger is a system used to transfer heat between a fluid and a heat

source or sink, for either heating or cooling. These are used for both heating
and cooling processes and have a broad range applications including combustion
engines, sewage treatment, nuclear power plants and cooling CPUs in personal
computers [WBZ92,QM02,VP14,SuHS+19,AK18,MDTY18,WWZ+18,DT19,LL20].

The temperature of the fluid in the heat exchanger evolves according to the
advection diffusion equation
(1.1) ∂tθ + v · ∇θ − κ∆θ = 0 in Ω ,

where Ω ⊆ Rd is the region occupied by the fluid. Here θ is the temperature of
the fluid, κ is the thermal diffusivity and v = v(x, t) is velocity field of the fluid.
Throughout this paper we will assume the fluid is incompressible and doesn’t flow
through the container walls. That is, we require
(1.2) ∇ · v = 0 in Ω , and v · n̂ = 0 on ∂Ω .

Some portion of the boundary of Ω may be insulated, and some portion may be
connected to a heat source/sink maintained at a constant temperature. Denoting
these pieces by ∂NΩ and ∂DΩ respectively, and normalizing so that the temperature
of the heat source/sink is 0, we study (1.1) with mixed Dirichlet/Neumann boundary
conditions

∂n̂θ = 0 on ∂NΩ , and θ = 0 on ∂DΩ .

This work has been partially supported by the National Science Foundation under grants
DMS-1814147, 1812609, and the Center for Nonlinear Analysis.
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2 IYER AND VAN

A problem of practical interest is to minimize some norm of the temperature
under a constraint on the stirring velocity field. Note, here we assume (1.1) is
a passive scalar equation – the velocity field v is prescribed and is not coupled
to the temperature profile. The active scalar case entails coupling v to θ via
the Boussinesq system and leads to Rayleigh–Bénard convection which has been
extensively studied [Ray16,SG88,Kad01,DOR06].

In order to simplify matters, we set κ = 1
2 , assume v is time independent, and

assume the initial temperature θ0 is identically 1. In this case we note that

T
def=
∫ ∞

0
θ(x, t) dt

satisfies the Poisson problem

(1.3) − 1
2∆T + v · ∇T = 1 ,

in Ω, with boundary conditions
(1.4) T = 0 on ∂DΩ , and ∂n̂T = 0 on ∂NΩ .

Now a simplified optimization problem of interest is minimize a norm of T under a
constraint on the advecting velocity field v.

In the recent paper [MDTY18], the authors studied this minimization problem
when Ω ⊆ R2 is a disk of radius 1, and ∂NΩ = ∅. Given p ∈ [1,∞) and U > 0, let
Vk,pU be the set of all W k,p velocity fields satisfying (1.2) such that
(1.5) ‖v‖Wk,p(Ω) 6 U ,

and define
Ek,pq (U ) def= inf

v∈Vk,p
U

‖T v‖Lq .

Here T v is simply the solution to (1.3)–(1.4), and we introduced the superscript v
to emphasize the dependence of T on v.

Physically when k = 0 and p = 2, the constraint (1.5) limits the kinetic energy of
the ambient fluid. If the domain Ω has an associated length scale of order 1, the
quantity U is the Péclet number — a non-dimensional ratio measuring the relative
strength of the advection to the diffusion. When the Péclet number is sufficiently
large, the authors of [MDTY18] use matched asymptotics to show

(1.6) E0,2
1 (U ) 6 O

( 1
U

)
,

and support their results with numerics.
In this paper we revisit this problem and aim to provide mathematically rigorous

proofs of the bounds in [MDTY18]. Making matched asymptotics rigorous arises
in many situations and has been extensively studied (see for instance [BLP78,
Kus84,Ngu89,Eva90,All92,PS08]). In this situation, however, the flow considered
in [MDTY18] leads to a degenerate homogenization problem, for which one can not
use standard techniques. Instead we reformulate the problem probabilistically and
use asymmetric large deviations estimates to handle the degenerate diffusivity.

To simplify the proofs, we study the problem in a horizontal strip instead of the
disk. For boundary conditions we cool the top of the strip, insulate the bottom,
and impose 2-periodic boundary conditions in the horizontal direction. To prove
the upper bound E0,p

q (U ) we only need to find a velocity field v ∈ V0,p
U for which

‖T v‖Lq 6 O(1/U ). A natural first guess would be to choose a velocity field that
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Figure 1. Tall and thin con-
vection rolls

Figure 2. Skewed tall and
thin convection rolls.

forms many tall and thin convection rolls, with height O(1), and width / amplitude
that depend on the Péclet number. This, however, turns out to be suboptimal, and
yields a bound that is worse than (1.6). To obtain the bound (1.6) one needs to
consider tall and thin convection rolls whose center is very close to the top of the
strip. This is the analogue of the velocity fields used in [MDTY18], and is shown
in 2.

To formulate our result precisely, let S = R× (0, 1) ⊆ R2 be an infinite horizontal
strip and ∂DS = R × {1} be the top boundary (where we impose homogeneous
Dirichlet boundary conditions), and ∂NS = R× {0} the bottom boundary (where
we impose homogeneous Neumann boundary conditions). We will impose 2-periodic
boundary conditions in the horizontal direction and identify the function spaces
H1(S) and L2(S) with H1(Ω) and L2(Ω), respectively, where Ω def= (0, 2)× (0, 1).

Theorem 1.1. there exists a constant C such that for q ∈ [1,∞],

(1.7) E0,∞
q (U ) > 1

CU
.

Furthermore, for every µ > 0, p, q ∈ [1,∞], we have

(1.8)


E0,p
q (U ) 6 C ln U

U
p ∈ [1, 2) ,

E0,p
q (U ) 6 Cµ ln U

U
2p

3p−2−µ
p ∈ [2,∞] ,

whenever the Péclet number, U , is sufficiently large.

For p, q <∞, upper bound in (1.8) is suboptimal. Indeed, forthcoming work of
Doering and Tobasco uses methods in [DT19] to show that

(1.9) E0,p
q (U ) 6 C

U
for every p, q ∈ [1,∞) ,

and some constant C = C(p, q) and all sufficiently large U . This is an improvement
of (1.8) by a logarithmic factor for p ∈ [1, 2), and an arbitrarily small algebraic
power for p = 2, and by a fixed algebraic power for p ∈ (2,∞). For q =∞, however,
the methods in [DT19] do not work. In this case we believe that the logarithmic
factor in (1.8) is necessary due to the presence of hyperbolic critical points, but we
are presently unable to prove this.
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We do not presently know how to prove any lower bound for E0,p
q (U ) when

p <∞. For p =∞, however, we can use the Eikonal equation to obtain the lower
bounded stated in (1.8) in general domains. We state this result next.

Proposition 1.2. Let d > 2, and Ω ⊆ Rd be a bounded domain with smooth
boundary ∂Ω. Decompose the boundary as ∂Ω = ∂DΩ ∪ ∂NΩ, with ∂DΩ 6= ∅. Then

(1.10) E0,∞
q (U ) > 1

CU
for every q ∈ [1,∞] ,

for some constant C = C(Ω), and all sufficiently large U .

Remark. As we will see in the proof (specifically from inequality (2.2), below), the
constant C = C(q,Ω) can be computed in terms of the Lq norm of the solution to
the Eikonal equation in Ω.

Next we study the behavior of E1,p
q (E ) when E is large. Physically this corresponds

to minimizing the Lq norm of the steady state temperature T under an enstrophy
constraint on the stirring velocity field. In this case it turns out that using standard
convection rolls (as shown in Figure 1) yields a better upper bound on E1,p

q (E ) than
the skewed tall and thin rolls (as shown in Figure 2). We note, however, that we
have no matching lower bound and the skewed tall and thin convection rolls may not
provide the optimal upper bound. Indeed, the branched flows introduced recently
by Doering and Tobasco [DT19] may provide the optimal bound in the enstrophy
constrained case. Unfortunately, due to their complicated geometry, they can not
be analyzed by the techniques we use. The best bound we can obtain is as follows.

Proposition 1.3. For every p, q ∈ [1,∞], there exists a finite constant C = C(q)
such that

(1.11) E1,p
q (E ) 6 C|ln E |13

E 2/5

whenever E is sufficiently large. One velocity field that attains this upper bound uses
convection rolls with height 1, width E−1/5 and amplitude E 3/5 (see Figure 1).

Even though there may be “non-convection roll” like flows that could improve
the upper bound (1.11), heuristics show that the bound (1.11) is the best one can
achieve amongst the class of all “convection roll” like flows. Moreover, for the tall
and thin convection rolls used in proof of Proposition 1.3 one has matching upper
and lower bounds on ‖T v‖L∞ , up to a logarithmic factor. Since such convection
rolls arise in the study of magma flow in the Earth’s mantle and various other
contexts [TS02,KJ03,GHZ11,YVL15,OM17], the techniques used in the proof of
Proposition 1.3 may be useful in some of these situations.

For a lower bound, clearly E1,∞
q (E ) > E0,∞

q (E ), and hence by Proposition 1.2 we
have

E1,∞
q (E ) > 1

CE
, for every q ∈ [1,∞] ,

for all sufficiently large E . We may be able to improve this by at most a logarithmic
factor using a detailed analysis of the behavior near saddle points. However, as
mentioned earlier, we do not know whether the upper bound (1.11) is optimal and
we are unable to obtain a matching lower bound.
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Plan of the paper. In Section 2 we prove the lower bounds in Theorem 1.1 and
Proposition 1.2. In Section 3, we use an elementary scaling argument to reduce
Proposition 1.3 to obtaining an upper bound on a degenerate cell problem (Propo-
sition 3.1). In Section 4 we prove Proposition 3.1 using probabilistic techniques,
modulo two lemmas concerning exit from / the return to the boundary layer. These
lemmas are proved in Sections 5 and 6. The proofs of these lemmas rely on certain
large deviations estimates which relegated to Appendix A. The proof of the upper
bound in Theorem 1.1 is similar to the proof of Proposition 3.1, and is presented in
Section 7.

Acknowledgements. The authors thank Charlie Doering, Jean-Luc Thiffeault,
Ian Tobasco and Noel Walkington for helpful discussions.

2. Lower bounds
In this section we prove the lower bound in Theorem 1.1 and the generalized

version in Proposition 1.2. The main idea in the proof is to consider an incompressible
flow that moves directly towards the cold boundary. Of course, this flow penetrates
the boundary of the domain and so is not an element of V0,∞

U . However, it can still
be used to build a sub-solution and prove the desired lower bound. Since the proof
in a strip is short and explicit, we present it first.

Proof of the lower bound in Theorem 1.1. Let
¯
T be the solution to

−1
2∂

2
y¯
T −U ∂y¯

T = 1

in the strip S with
¯
T = 0 ∂DS and ∂y¯

T = 0 on ∂NS. Explicitly solving this yields

(2.1)
¯
T (y) = e−2U

2U 2

(
1− e2U (1−y))+ 1− y

U

and hence ∂y¯
T 6 0.

We now claim that for any velocity field v such that v2 > −U , the function
¯
T is

a sub-solution to (1.3)–(1.4). Indeed,

−1
2∆

¯
T + v · ∇

¯
T = −1

2∂
2
y¯
T + v2∂y¯

T 6 −1
2∂

2
y¯
T + U ∂y¯

T = 1 .

The last inequality above followed from the fact that v2 > −U and ∂y¯
T 6 0.

Thus by the comparison principle, for every v ∈ V0,∞
U we must have 0 6

¯
T 6 T v.

Hence ‖T v‖Lq > ‖¯
T‖Lq and computing ‖

¯
T‖Lq using (2.1) yields the lower bound

in (1.8) as claimed. �

In general domains the sub-solution isn’t as explicit and needs to be constructed
using the Eikonal equation.

Proof of Proposition 1.2. Let v ∈ L∞(Ω), and T = T v be the solution of (1.3). For
any ε > 0 let T̃ ε,λ be the solution to the following viscous Hamilton-Jacobi equation{

λT̃ ε,λ − ε∆T̃ ε,λ + |∇T̃ ε,λ| = 1 , x ∈ Ω ,

T̃ ε,λ = 0 , x ∈ ∂Ω .
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Note that T̃ ε,λ > 0 as 0 is a subsolution to this equation. It is well known (see for
instance [Cal18,Tra21]) that for every λ > 0, T̃ ε,λ converges uniformly as ε→ 0 to
the viscosity solution of the equation{

λT̃ 0,λ + |∇T̃ 0,λ| = 1 , x ∈ Ω ,

T̃ 0,λ = 0 , x ∈ ∂Ω .

Now letting λ→ 0, T̃ 0,λ converges uniformly to the viscosity solution of the Eikonal
equation {

|∇T̃ 0,0| = 1 , x ∈ Ω ,

T̃ 0,0 = 0 , x ∈ ∂Ω .

We claim that
¯
T ε,λ

def= εT̃ ε,λ is a sub-solution of (1.3) provided ε 6 1/‖v‖L∞ .
Indeed,

−∆
¯
T ε,λ + v · ∇

¯
T ε,λ 6 −∆

¯
T ε,λ + ε‖v‖L∞ |∇T̃ ε,λ|

6 −∆
¯
T ε,λ + |∇T̃ ε,λ|+ λ

ε ¯
T ε,λ = −ε∆T̃ ε,λ + |∇T̃ ε,λ|+ λT̃ ε,λ = 1 .

Since
¯
T ε,λ = 0 on ∂Ω, and T v is nonnegative, the minimum principle implies

¯
T ε,λ 6

T v in Ω. This immediately implies
1
ε
‖T v‖Lq >

1
ε
‖
¯
T ε,λ‖Lq

ε→0−−−→ ‖T̃ 0,λ‖Lq
λ→0−−−→ ‖T̃ 0,0‖Lq .

Thus when ε is sufficiently small we have

‖T v‖Lq >
ε

2‖T̃
0,0‖Lq .

Consequently, if ‖v‖L∞ is sufficiently large, we can choose ε = 1
‖v‖L∞ and obtain

(2.2) ‖T v‖Lq >
1

2‖v‖L∞
‖T̃ 0,0‖Lq .

This immediately implies the bound (1.10) as claimed. �

3. Upper bound for enstrophy constrained convection rolls (Propo-
sition 1.3)
Our aim in this section is to prove Proposition 1.3. First note that by doubling

the domain and using symmetry and rescaling we can reduce the problem to
proving (1.11) on the domain

S2
def= R× (−1, 1) , with ∂NS2 = ∅ , ∂DS2 = R× {−1, 1} ,

and only using velocity fields v for which

(3.1) v1(x1,−x2) = v1(x1, x2) and v2(x1,−x2) = −v2(x1, x2) .

We will now prove the upper bound (1.11) by producing a velocity field v (depending
on E ) such that we have

(3.2) ‖T v‖L∞ 6 C|ln E |13
( 1

E

)2/5
,
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for all E sufficiently large. We do this by forming convection rolls with height 1,
width ε and amplitude Aε/ε2 for some small ε and large Aε (see Figure 1). Moreover,
as we will see shortly, ε and Aε should be chosen according to

(3.3) Aε
ε3 = E .

To construct v, consider a Hamiltonian H : R2 → R such that

H(x1,−1) = H(x1, 1) = 0 ,(3.4a)
H(x1,−x2) = −H(x1, x2) ,(3.4b)

H(x1 + 2, x2) = H(x1, x2) ,(3.4c)

for all (x1, x2) ∈ R2. To obtain convection rolls of width ε and height 1, we rescale
the horizontal variable. Define

(3.5) Hε(x1, x2) = H
(x1

ε
, x2

)
, and vε = Aε

ε
∇⊥Hε = Aε

ε

(
∂2H

ε

−∂1H
ε

)
,

and let Tε = T v
ε . By uniqueness of solutions to (1.3) we see that Tε satisfies

Tε(x1 + 2ε, x2) = Tε(x1, x2). Thus, it is natural to make the change of variables

(3.6) y1 = x1

ε
, y2 = x2 , and v = (v1, v2) = ∇⊥y H .

In these coordinates we see that Tk,ε satisfies

(3.7) Aεv · ∇yTε −
1
2∂

2
y1
Tε −

1
2ε

2∂2
y2
Tε = ε2 .

Examining (3.7) we see that in the horizontal direction the diffusion has strength 1.
However, since we impose periodic boundary conditions in this direction, there are
no boundaries that provide a cooling effect directly felt by the horizontal diffusion.
In the vertical direction, the diffusion coefficient is ε2, and so the cooling effect from
the Dirichlet boundary ∂S2 will be felt in the domain in time O(1/ε2). Since our
source (the right hand side of (3.7)) is also ε2, we expect that the diffusion alone
will ensure Tε is of size O(1) as ε→ 0. This would lead to the bound E1,p

q (E ) 6 C,
which is far from optimal.

We claim that the convection term reduces this bound dramatically. Indeed,
through convection one can travel an O(1) distance in the vertical direction in
time 1/Aε. Due to our no flow requirement v · n̂ = 0 on ∂S2, one can never reach
the boundary of S2 through convection alone. Thus, the cooling effect of the
boundary ∂S2 must propagate into the domain through a combination of the effects
of the slow vertical diffusion ε2∂2

y2
and the fast convection Aεv · ∇y. Our aim is to

estimate how much improvement this can provide over the crude O(1) bound that
can be obtained through diffusion alone. This is our next result.

Proposition 3.1. There exists a smooth Hamiltonian H satisfying (3.4a)–(3.4c),
and a constant C such that the following holds. For every ν > 0, and Aε chosen
such that Aε > 1/εν we have,

(3.8) ‖Tε‖L∞ 6 Cε2
(

1 + |ln ε|
13

ε
√
Aε

)
for all sufficiently small ε. Here Tε = T v

ε , and vε is given by (3.5).
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Remark 3.2. We believe the bound (3.8) is true for every smooth, non-degenerate
cellular flow v (with a constant C = C(v)), provided ν > 2. To obtain (3.8) for all
ν > 0, our proof requires the velocity field v to be exactly linear near the vertical
cell boundaries. We do not know whether (3.8) remains true for ν ∈ (0, 2) without
this assumption. We note, however, that choosing ν ∈ (0, 2) does not lead to an
improved bound as in this range the constant term on the right of (3.8) will eliminate
any benefit obtained from further increasing the amplitude.

Remark 3.3. For simplicity, the velocity field we construct to prove Proposition 3.1
will be chosen to be exactly linear near cell corners. This assumption is mainly
present as it leads to a technical simplification of the proof of Proposition 3.1.
Since the proof of Proposition 1.3 only requires us to produce one velocity field v
satisfying (3.2), we only state and prove Proposition 3.1 for a specific cellular flow,
instead of generic cellular flows.

We prove Proposition 3.1 using probabilistic techniques in the next section.
Proposition 1.3 follows immediately from Proposition 3.1 by scaling.

Proof of Proposition 1.3. By definition, we have

vε(x1, x2) = Aε
ε
∇⊥Hε(x1, x2) = Aε

ε2

(
εv1(y1, y2)
v2(y1, y2)

)
,

and hence
∇xvε = Aε

ε3

(
ε∂y1v1 ε2∂y2v1
∂y1v2 ε∂y2v2

)
Therefore, as ε→ 0, we have

E = ‖vε‖W 1,p = O
(Aε
ε3

)
.

Choosing Aε = 1/εν , we have for large enough E ,

(3.9) E = O
( 1
ε3+ν

)
and ε = O

( 1
E 1/(3+ν)

)
Combining this with (3.8), we have

‖Tε‖L∞ 6 C
(
ε2 + ε1+ν/2|ln ε|13

)
.

Rewriting this in terms of E using (3.9) and choosing ν = 2 shows

‖Tε‖L∞ 6 C
|ln E |13

E 2/5 .

This implies (1.11) as desired. �

4. Exit time from tall and thin cells (proof of Proposition 3.1)
Our aim in this section is to prove Proposition 3.1. For ease of notation we will

now write v = vε, T = Tε, A = Aε. Let Zε be a solution to the SDE

(4.1) dZεt = Av(Zε) ds+ σ dBt , where σ
def=
(

1 0
0 ε

)
.

Here B is a standard two dimensional Brownian motion. For convenience let
Zε = (Zε1 , Zε2), and let
(4.2) τε = inf{t | Zε2,t 6∈ (−1, 1)}
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be the first exit time of Zε from the strip S2. (Here the notation Zε2,t refers
to (Zε2)t, the value of the process Zε2 at time t.) By the Dynkin formula we
know Tε(z) = ε2Ezτε.

Before delving into the details of the proof of Proposition 3.1, we now briefly
explain the main idea. Consider many tracer particles evolving according to (4.1).
First, we note that particles near ∂S2 get convected away from ∂S2 in time O(1/A).
In this time, these particles can travel a distance of O(ε/

√
A) in the vertical

direction through diffusion. Thus, if we can ensure particles get to within a distance
of O(ε/

√
A) from ∂S2, then they will exit quickly with probability at least p0, for

some small p0 > 0 that is independent of ε.
We claim that in the boundary layer, every O(1/

√
A) seconds1 tracer particles

will pass within a distance of O(ε/
√
A) from ∂S. Every pass has an O(ε) probability

of being within ε/
√
A away from ∂S2, and so a probability O(ε) of exiting from

∂S2. This suggests

(4.3) sup
z∈S2

Ezτε 6 C
(

1 + ε√
A

+ (1− ε)2ε√
A

+ (1− ε)23ε√
A

+ · · ·
)

= C
(

1 + 1
ε
√
A

)
,

which is dramatically better than the crude O(1/ε2) bound obtained by using
diffusion alone.

A second look at the above argument suggests that (4.3) should have a logarithmic
correction. Indeed, the flow v has hyperbolic saddles at cell {−1, 0, 1} × Z which
causes a logarithmic slow down of particles close to it. As a result, we are able to
prove the following bound on Eτε.

Proposition 4.1. Let ν > 0 and A > 1/εν . There exists a cellular flow v and a
constant C such that

(4.4) sup
z∈S2

Ezτε 6 C
(

1 + | ln ε|
13

ε
√
A

)
,

holds for all sufficiently small ε.

Of course Proposition 4.1 immediately implies Proposition 3.1.

Proof of Proposition 3.1. Since T (z) = ε2Ezτε, the estimate (4.4) implies (3.8) as
desired. �

We now describe the flow v that will be used in Proposition 4.1. As remarked
earlier, we expect Proposition 4.1 to hold for any generic non-degenerate cellular
flow. However, the specific form we describe below simplifies many technicalities.
For notational convenience, we will now restrict our attention to the rectangle

(4.5) Ω′ def= (0, 2)× (−1, 1) .
Assumption 1: The function H : R2 → [−1, 1] is C2 with ‖H‖C2 6 100 and is

2-periodic in both x1 and x2. The level set {H = 0} is precisely (R× Z) ∪ (Z× R).
Moreover, H(1/2, 1/2) = 1, H(3/2, 1/2) = −1 and these both correspond to non-
degenerate critical points of H. All other critical points of H are hyperbolic and lie
on the integer lattice Z2.

1The diffusion may carry particles into the interior of the cell before they exit at ∂S2. These
particles will now take O(1/

√
A) time to return to the boundary layer, which is why the time

taken here is O(1/
√

A), and not the convection time O(1/A).
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Assumption 2: There exists c0 ∈ (0, 1/10) such that for

(4.6) Q0
def= (−2c0, 2c0)2

we have

(4.7) H(x1, x2) =


x1x2 (x1, x2) ∈ Q0 ,

(1− x1)x2 (x1, x2) ∈ Q0 + (1, 0) ,
x1(1− x2) (x1, x2) ∈ Q0 + (0, 1) ,
(1− x1)(1− x2) (x1, x2) ∈ Q0 + (1, 1) .

Assumption 3: There exists a constant h0 such that for x ∈ {|H| < h0} and
i ∈ {1, 2},

sign ∂2
iH = − signH .

Assumption 4: In the region {|H| 6 h0} ∩ (i+ (−c, c))× R, where i ∈ Z,

(4.8) ∂1v2 = −∂2
1H = 0 .

Apart from non-degeneracy and normalization, the main content of the first
assumption is that H only has one critical point in the interior of every square
of side length 1 with vertices on the integer lattice. This is the main geometric
restriction imposed on the Hamiltonian H. Assumptions 2–3 are not necessary,
but lead to technical simplifications of the proof. Finally, Assumption 4 is only
required for the exit time bounds we obtain (Lemma 4.2, below) to be valid when
A 6 1/ε2. Notice that in the proof of Proposition 1.3 we only use A ≈ 1/ε2, and so
Assumption 4 is not essential. We elaborate on this in Remark 4.3, below.

Now we split the proof of Proposition 4.1 into two steps: estimating the time
taken to reach the boundary layer, and then estimating the time taken to exit from
the boundary layer. In time 1/A, the process Zε will typically travel a distance of

δ
def= ε√

A
,

in the vertical direction. Given α > 0 define the boundary layer (see Figure 3) Bα
by

Bα = Bεα
def=
{
|H| < α√

A

}
.

Lemma 4.2. Let ν > 0 and suppose A > 1/εν . There exists a constant C such that

(4.9) sup
z∈B̄1

Ezτε 6
C|ln δ|13

ε
√
A

.

Here B̄1 denotes the closure of B1.

Remark 4.3. In the proof of Lemma 4.2 we will see that if H doesn’t satisfy
Assumption 4, then Lemma 4.2 is only valid if ν > 2 (see Remark A.5, below). It
turns out that choosing ν 6 2 provides no additional advantage in the proof of
Proposition 4.1. This is because when ν 6 2, the constant term on the right of (4.4)
dominates, and we get no improvement on Ezτε.

Lemma 4.4. For α > 0 define

(4.10) ηα = ηεα
def= inf

{
t > 0

∣∣ Zεt ∈ ∂Bα}
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Figure 3. Boundary layer B1 (dark blue) and boundary layer B5 (union of
light and dark blue).

be the first time the process Zεt hits ∂Bα. There exists a constant C, independent
of α, such that

sup
z∈Bcα

Ezηεα 6 C

for all sufficiently small ε. (Here Bcα is the complement of Bα.)

A proof of Lemma 4.4 using a blow-up argument can be found in [IS12]. We present
a different proof of this fact (in Section 6, below) by constructing a supersolution
based on the Freidlin averaging problem [FW12].

Momentarily postponing the proofs of Lemmas 4.2 and 4.4, we prove Proposi-
tion 4.1.

Proof of Proposition 4.1. If z 6∈ B1, the strong Markov property, Lemmas 4.2 and 4.4
imply

Ezτε = Ezηε1 + (τε − ηε1) = Ez
(
ηε1 + (τε − ηε1) | Fηε1

)
6 C + Ez sup

z′∈B̄1

Ez′τε 6 C
(

1 + |ln δ|
13

ε
√
A

)
.(4.11)

If z ∈ B1, then Lemma 4.2 directly implies (4.11). Thus in either case we have (4.4),
as desired. �

5. Exit from the Boundary layer (Lemma 4.2)
In this section, we will prove Lemma 4.2. We will fix ν > 0 and suppose A > 1/εν

as in the hypothesis of Lemma 4.2 through out this section. Furthermore, for
notational convenience, we will now drop the explicit ε dependence from Zε and A.

The main idea behind the proof of Lemma 4.2 is to focus our attention on
trajectories in the boundary layer B1, until they leave the bigger boundary layer B5.
Our first lemma estimates the chance of starting in B1 and exiting the strip S2,
before exiting the bigger boundary layer B5.

Lemma 5.1. There exists a constant C > 0, independent of ε, such that

(5.1) inf
z∈B1

P z(τε < ηε5) > Cε

|ln δ|12
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for all sufficiently small ε.
Our next lemma estimates the amount of time the process takes to exit the bigger

boundary layer B5 (the union of the light and dark blue regions in Figure 3).
Lemma 5.2. There exists a constant C such that

(5.2) sup
z∈B1

Ezηε5 6
C|ln δ|
A

for all sufficiently small ε.
Finally, we estimate the time taken for the process to return to the boundary

layer B1 starting from the boundary of the bigger boundary layer B5. Since tra-
jectories may travel further inward this step is slower in comparison and takes
O(|ln δ|/

√
A).

Lemma 5.3. There exists a constant C such that there exists an ε0, where

(5.3) sup
z∈∂B5

Ezηε1 6 C
|ln δ|√
A

for all ε < ε0.
Momentarily postponing the proofs of Lemmas 5.1–5.3, we prove Lemma 4.2.

Proof of Lemma 4.2. In this proof, the constant C may vary from line to line but
does not depend on ε. We first define two sequences of barrier stopping times,

σ′0 = 0 , σ̃0 = inf
{
t > σ′0

∣∣ Zεt ∈ ∂B5
}
,

σ′n = inf
{
t > σ̃n−1

∣∣ Zεt ∈ ∂B1
}
, σ̃n = inf

{
t > σ′n

∣∣ Zεt ∈ ∂B5
}
.

We have

Ezτε =
∫ ∞

0
P z
(
τε > t

)
dt

= Ez
∞∑
n=1

∫ σ′n

σ′
n−1

1{τε>t} dt 6
∞∑
n=1

Ez1{τε>σ′
n−1}(σ

′
n − σ′n−1)

=
∞∑
n=1

Ez1{τε>σ′
n−1}E

Zε(σ′n−1)σ′1

6
∞∑
n=1

P z(τε > σ′n−1) sup
z′∈∂B1

Ez′σ′1 .(5.4)

We will now estimate each term on the right.
First, by the strong Markov property and Lemmas 5.2–5.3 we have

(5.5) Ezσ′1 = Ez
(
σ̃0 + EZε(σ̃0)ηε1

)
6 Ez

(
ηε5 + sup

z′∈∂B5

Ez′ηε1

)
6
C|ln δ|√

A
.

for every z ∈ ∂B1. To estimate P z(τε > σ′n), we use Lemma 5.1 and the fact that
σ′1 > σ̃0 = ηε5 to obtain

sup
z∈∂B1

P z(τε > σ′1) 6 sup
z∈∂B1

P z(τε > ηε5) = 1− inf
z∈∂B1

P z(τε < ηε5) 6 1− Cε

(ln δ)12 .

Now, by the strong Markov property,
sup
z∈B1

P z
(
τε > σ′n

)
= sup
z∈B1

Ez
(
1{τε>σ′

n−1}E
Zε(σ′n−1)1{τε>σ′1}

)
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6 sup
z∈B1

Ez1{τε>σ′
n−1} sup

z′∈∂B1

P z′(τε > σ′1)

6
(

1− Cε

(ln δ)12

)
Ez1{τε>σ′

n−1} .

Hence by induction

(5.6) sup
z∈B1

P z
(
τε > σ′n

)
6
(

1− Cε

|ln δ|12

)n
,

for all n ∈ N.
Using (5.5) and (5.6) in (5.4) yields

Ezτε 6
C|ln δ|√

A

∞∑
n=0

(
1− Cε

|ln δ|12

)n
finishing the proof. �

5.1. Proof of Lemma 5.1. In this subsection, we will give the proof of Lemma 5.1.
Let the coordinate processes of Z be Z1 and Z2 respectively (i.e. Z = (Z1, Z2)).
Define γt to be the deterministic curve satisfying the ODE
(5.7) ∂tγt = Av(γt) .
We again need a few results to prove Lemma 5.1.

By symmetry and the reflection principle, when Z wanders into the lower half of
the domain (0, 2)× (−1, 0), its behavior is mirrored by −Z, which is again on the
upper half of the domain (0, 2)× (0, 1). Hence, without loss of generality, we may
restrict our attention to the upper half of the domain and all the lemmas below are
stated in this context.

The first result we state is a “tube lemma” estimating the probability that the
process Z stays within a small tube around the deterministic trajectories. This
is well studied and many such estimates can be found in the literature (see for
instance [FW12]). The standard estimates, however, work well for times of order
1/A. Due to the degeneracy, and the hyperbolic saddles near cell corners, we need
an estimate that works for time scales of order |ln δ|/A. We state this estimate here.

Lemma 5.4. Let z0 ∈ (0, 2)× (0, 1)∩
(
Q0/2+(j, k)

)
where (j, k) ∈ {0, 1, 2}×{0, 1}

and Q0 is as in (4.6). Let γ satisfy (5.7) with γ0 = z0, and define

(5.8) T
def= inf{t > 0 | |γ2,t − 1| 6 δ or |γ1,t − 1| = c0 or |γ2,t − 1| = c0} .

Then there exists ε0 so that for every ε < ε0,

P z0
(

sup
06t6T

|Zi,t − γi,t| 6
σii√
|ln δ|A

,∀i ∈ {1, 2}
)
>

C

|ln δ|2 .

Here we recall that σ11 = 1 and σ22 = ε are the diagonal entries in the matrix σ
in (4.1).

Remark 5.5. By a direct calculation, we can check that T 6 |ln δ|/A.

The proof of Lemma 5.4 uses the Girsanov theorem and is greatly simplified by
the fact that H is exactly quadratic near cell corners. Since it is similar to the
standard proofs, we present it in Appendix A.

Once Lemma 5.4 is established it quickly gives an estimate on the probability of
getting within a distance of O(1/

√
A) away from cell boundaries.
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Lemma 5.6. Let z0 ∈ B1 ∩ (0, 2) × (0, 1). There exist constants C,M > 0 such
that for small enough ε,

(5.9) P z0
(
λ0 < ηε4M

)
>

C

|ln δ|2 .

Here, λ0
def= inf

{
t > 0

∣∣ Zt ∈ {dist(z, ∂Ω′) 6M/
√
A}
}
.

Proof. Note first that by Taylor expansion of H, for small ε there exists M > 0
such that dist(z0, ∂Ω′) 6M/

√
A for all z0 outside the corners Q0/2 + (j, k), where

(j, k) ∈ {0, 1, 2} × {0, 1}. So now, we assume z0 ∈ Q0/2 + (j, k) for some (j, k) ∈
{0, 1, 2} × {0, 1}. For brevity, we only present the proof when z0 ∈ Q0/2, as the
other cases are identical.

If dist(z0, ∂Ω′) 6 1/
√
A we are done, so we now suppose z0 ∈ Q0/2 with

dist(z0, ∂Ω′) > 1/
√
A. Let γ be the deterministic trajectory defined by (5.7) with

γ0 = z0, and let T be as in (5.8). Note that since dist(z0, ∂Ω′) > 1/
√
A we can not

have |γ2,T − 1| 6 δ. Thus, either |γ1,T − 1| = c0 or |γ2,T − 1| = c0. In either case
there exists a constant M such that |γ2,T − 1| 6 M/

√
A or |γ1,T − 1| 6 M/

√
A,

respectively. Now using Lemma 5.4 we obtain (5.9) as desired. �

Remark 5.7. For notational convenience, we assume that M = 1 for the rest of the
paper.

Another consequence of Lemma 5.4 is a lower bound on the probability of reaching
O(δ) away from the top boundary before re-entering the cell interior.

Lemma 5.8. Let Qδtop = (1− 2c0, 1 + 2c0)× (1− 4δ, 1) be a box of height 4δ at the
top of the cell corner. Let λ def= inf{t > 0 | Zt ∈ Qδtop}. Then, there exists a constant
C > 0 such that

(5.10) inf
z0∈(1−δ,1+δ)×(1−c0,1)

P z0
(
λ < ηε4

)
>

C

(ln δ)2 .

Proof. Let T = inf
{
t > 0

∣∣ |γ2,t − 1| 6 δ
}
the time the deterministic process hits

the top boundary layer with width δ. By Lemma 5.4, there exists a constant C > 0
so that

P z0
(

sup
06t6T

|Zi,t − γi,t| 6
σii√
|ln δ|A

,∀i ∈ {1, 2}
)
>

C

(ln δ)2 .

As z0 ∈ (1− δ, 1 + δ)× (1− c0, 1), γ1,T ∈ (1− c0, 1 + c0). Therefore,{
sup

06t6T
|Zi,t − γi,t| 6

σii√
|ln δ|A

,∀i ∈ {1, 2}
}
⊆
{
ηε4 > λ

}
,

from which (5.10) follows. �

Next, we bound the probability of exiting from the top when trajectories start
in Qδtop.

Lemma 5.9. There exists a constant p0 > 0 such that

(5.11) inf
z0∈Qδtop

P z0
(
τε < ηε4

)
> p0 .

Proof. Let T̃ = 1/A. When A is sufficiently large, we note that givenX0 = z0 ∈ Qδtop,
there exists n > 1, independent of ε, such that the deterministic flow γt starting at
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z0 still remains in the top edge of the boundary layer {|H| 6 nδ}∩ (0, 2)× (1−nδ, 1)
for time T̃ . Define γ̃t by

∂tγ̃t = Au(γ̃t) ,
where u = (u1, u2) is chosen to satisfy the following condition γ̃t = (γ1,t, γ̃2,t), where
γ1,t is the first coordinate of γ, and γ̃2,t is some continuous function such that

γ̃2,0 = γ2,0 , |v2 − u2| 6 2nδ and γ̃2,T̃ > nδ .

An example of such γ̃ is γ̃t = (γ1,t, γ2,t + 2Anδt). By continuity of Z, we have

E3
def=
{

sup
06t6T̃

|Z2,t − γ̃2,t| 6 δ
}
⊂
{
τε < ηε4

}
.

Now a standard large deviation estimate will show that P z0(E3) > pε, for some
constant Cε that vanishes as ε→ 0. In order to prove Lemma 5.9, we need to remove
this ε dependence. We do this here using the fact that in this box |∂1v2| 6 O(ε),
and |v2 − u2| 6 O(δ). We claim that if we go through the standard large deviation
estimate with these additional assumptions, the constant pε can be made independent
of ε. Since the details are not too different from the standard proof, we carry them
out in Lemma A.3 in Appendix A, below. Hence, we see that there exists a constant
p0 (independent of z0, ε) so that

P z0(E3) > p0 ,

proving (5.11). �

Lemma 5.10. Let λ̃ def= inf
{
t > 0

∣∣ Zt ∈ (1− δ, 1 + δ)× (1− c0, 1)
}
. There exists a

constant C > 0 such that

(5.12) inf
z0∈{dist(z,∂Ω′)61/

√
A}

P z0
(
λ̃ < ηε4

)
>

Cε

(ln δ)8 .

Proof. We give the proof where z0 ∈ {dist(z, ∂Ω′) 6 1/
√
A} ∩ (0, 1) × (0, 1). The

analysis is similar for z0 ∈ {dist(z, ∂Ω′) 6 1/
√
A} ∩ (1, 2) × (0, 1). Define the

regions �1, . . . , �5 by

�1
def=
(

1− 1√
A
, 1 + 1√

A

)
×
( 1√

A
, 1− 1√

A

)
,

�2
def=
( 1√

A
, 1
)
×
(

0, 1√
A

)
,

�3
def=
(

0, 1√
A

)
×
(

0, 1− 1√
A

)
,

�4
def=
(

0, 1− 1√
A

)
×
(

1− 1√
A
, 1
)
,

�5
def=
(

1− 1√
A
, 0
)2
,

as shown in Figure 4. If dist(z0, ∂Ω′) 6 1/
√
A, then z0 must be in one of the

boxes �1, . . . , �5. Suppose first z0 ∈ �1. Let γ(t) is the deterministic trajectory
such that γ0 = z0, T0

def= inf
{
t > 0 : γ2,t = 1− c0/2

}
6 m/A for some m > 1, and

E4
def=
{

sup
06t6T0

|Z1,t − γ1,t| 6
2√
A
, sup
06t6T0

|Z2,t − γ2,t| 6
ε√
A
, |Z1,T0 | 6

ε

2
√
A
,
}
.
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Figure 4. ∂Bn and �i.

By continuity, we have that
E4 ⊂

{
λ̃ < ηε4

}
.

We claim

(5.13) P z0
(
λ̃ < ηε4

)
> P z0(E4) > Cε ,

where C > 0 independent of z0. The proof of (5.13) is presented with the other
tube lemmas we use in Appendix A. We in fact prove a more general estimate
(Lemma A.4 applied to the deterministic flow), from which (5.13) follows.

Now, let z0 ∈ �2, define �2R = �2∩[1−c0, 1]×[0, 2/
√
A], and let λ1 = inf

{
t > 0

∣∣
Zt ∈ �2R

}
. Proceeding as the case for�1 with γ(t) being the deterministic trajectory

so that γ(0) = z0, T1 = inf{t > 0 | γ1,t = c0/2}, we have

(5.14) P z0
(
λ1 < ηε4

)
> P z0

(
sup

06t6T1

|Zt − γt| 6
1√
A

)
> C .

To see why the last lower bound is true, we consider by Itô formula,

sup
06t6T1

Ez0 |Zt − γt|2 6 2A‖v‖C1

∫ T1

0
Ez0 sup

06t6T1

|Zt − γt|2 + (ε2 + 1)T1,

which, by Gronwall’s inequality and Assumption 1, implies

sup
06t6T1

Ez0 |Zt − γt|2 6 (1 + ε2)T1e
200T1 .

Inequality (5.14) follows by Chebychev’s inequality.
Now let λ′ = inf

{
t > 0

∣∣ Zt ∈ �1
}
. Using Lemmas 5.4 and Markov property,

there exists a constant C (independent of z0) so that

(5.15) P z0
(
λ′ < ηε4

)
> P z0

(
λ1 < ηε4

)
inf

z1∈�2R
P z1

(
λ′ < ηε4

)
>

C

(ln δ)2 .
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Combining (5.13), (5.15) and using the Markov property gives

P z0
(
λ̃ < ηε4

)
> P z0

(
λ′ < ηε4

)
inf

z1∈�1
P z1

(
λ̃ < ηε4

)
>

Cε

(ln δ)2 .

Repeating this argument again for �3, . . . , �5 we see that we obtain an extra
C/|ln δ|2 factor every time we pass a corner. Combining these estimates gives (5.12)
as claimed. �

We are now ready to give the proof for Lemma 5.1.

Proof of Lemma 5.1. Let z0 ∈ B1 and denote D1
def=
{

dist(z, ∂Ω′) 6 1/
√
A
}
, D2

def=
(1− δ, 1 + δ)× (1− c0, 1) and D3

def= (1− 2c0, 1 + 2c0)× (1− 4δ, 1). As ηε4 < ηε5 when
z0 ∈ B1, by Lemmas 5.6–5.10 and Markov property, we have that

P z0(τε < ηε5) > Ez01{τε<ηε5}1{λ<ηε5}1{λ0<ηε5}1{λ̃<ηε5}

= Ez01{λ0<ηε5}E
z0
(

1{τε<ηε5}1{λ̃<ηε5}1{λ<ηε5}
∣∣∣ Fλ0

)
= Ez01{λ0<ηε5}E

Zλ0

(
1{τε<ηε5}1{λ̃<ηε5}1{λ<ηε5}

)
> Ez01{λ0<ηε5} inf

z1∈D1
Ez1

(
1{λ<ηε5}1{λ̃<ηε5}1{τε<ηε5}

)
> Ez01{λ0<ηε5} inf

z1∈D1
Ez11{λ̃<ηε5} inf

z2∈D2
Ez21{λ<ηε5} inf

z3∈D3
Ez31{τε<ηε5}

>
Cε

|ln δ|12 ,

where C is independent of z0. Taking the infimum over z0, we achieve the desired
result. �

5.2. Proof of Lemma 5.2. In this subsection, we give a proof of Lemma 5.2. The
strategy then will be similar to that of the proof of Lemma 5.1 as will will estimate
the probability for a typical particle to successfully enter the inner region after each
time it goes around the boundary layer B5. To do this, we first need a few results.

Lemma 5.11. Let �̃1 = B5 ∩ {x2 ∈ [c0, 1− c0]}. There exists a constant p0 such
that

(5.16) inf
z0∈�̃1

P z0
(
ηε5 <

1
A

)
> p0 .

Proof. Since we restrict our attention to region of the boundary layer on the sides,
for each ε > 0 there exists an interval Rε with length |Rε| = 1/

√
A such that

dist
(
Rε × [c0, 1− c0] ,B5 ∩ {x2 ∈ [c0, 1− c0]}

)
= 1√

A
.

Let M be independent of ε such that

Rε × [c0, 1− c0] ∪
(
B5 ∩ {x2 ∈ [c0, 1− c0]}

)
⊆
(

1− M√
A
, 1 + M√

A

)
× [c0, 1− c0] ,

and z0 ∈ �̃1. By Lemma A.4 applied to the deterministic curve γ (given by (5.7))
with γ0 = z0, we have

P z0
(
ηε5 <

1
A

)
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> P z0
(

sup
06t61/A

|Z1,t−γ1,t| 6
M√
A
, sup
06t61/A

|Z2,t−γ2,t| 6
ε√
A
,Z1,T0 ∈ Rε

)
> p0 ,

where p0 is independent of z0 as desired. �

Lemma 5.12. Let λ̃2 = inf
{
t > 0

∣∣ Z2,t ∈ {c0, 1− c0}
}
and z0 ∈ B5 − �̃1. Then

(5.17) lim
ε→0

inf
B5−�̃1

P z0
(
λ̃2 6

5|ln δ|
A

)
> 1− C lnA

A1/4 .

Proof. Let q > 2 be some large number to be chosen later, and let z̃0 be the closest
point on {H = A−1/q} to z0. Let d̃ = A|z0 − z̃0| and γt be the deterministic curve
(defined by (5.7)) with γ0 = z̃0. Note that, by Assumptions 1–2,

(5.18) d̃

A
6

C

A1/2q .

By Itô formula, we have

Ez0 |Zt − γt|2 6
d̃2

A2 + 2A‖v‖C1

∫ t

0
Ez0 |Zs − γs|2 ds+ (1 + ε2)t .

By Gronwall’s inequality and Assumption 1, it follows that

Ez0 |Zt − γt|2 6
( d̃2

A2 + (1 + ε2)t
)
e200At .

Now, let T0 = inf{t > 0 : γ2,t ∈ (2c0, 1− 2c0)}, and note that T0 6 D lnA/(Aq) for
some constant D > 0. By (5.18), we have

P z0
(
|ZT0 − γT0 | >

c0
10

)
6

100
c20

( C

A2q + (1 + ε2)D lnA
Aq

)
e200D lnA/q

6 CA200D/q−1 lnA .

Picking q such that 200D/q − 1 < −1/2, we have

(5.19) P z0
(
|ZT0 − γT0 | <

c0
10

)
> 1− C lnA

A1/4 .

As q > 2 , T0 < 5|ln δ|/A. Therefore, by continuity of Z, it follows that{
Z2,T0 ∈ [2c0, 1− 2c0]

}
⊆
{
λ̃2 6

5|ln δ|
A

}
.

Combining this with (5.19), we deduce

lim
ε→0

inf
B5−�̃1

P z0
(
λ̃2 6

5|ln δ|
A

)
> 1− C lnA

A1/4 ,

as desired. �

We are now ready for the proof of Lemma 5.2.

Proof of Lemma 5.2. Step 1: We first claim that for each z0 ∈ B5 and ε > 0, there
exists a constant C > 0, independent of z0 and ε, such that

(5.20) P z0
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
> C .
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To prove this, suppose for contradiction there exists a sequence {zn, εn}∞n=1 such
that

(5.21) lim
n→∞

P zn
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
= 0 .

Let C0 be the lower bound in Lemma 5.11 and denote λ̃1 = inf
{
t > 0

∣∣ Zt ∈ �̃1
}
.

By Lemma 5.11 and the strong Markov property,

P zn
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
> Ezn

(
Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}1{
ηε5<λ̃1+1/A

} | Fλ̃1

))
= Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}EZλ̃1 1{
ηε5<1/A

})
> Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}) inf
z∈�̃1

Ez1{
ηε5<1/A

}
> C0P zn

(
sup

06t6λ̃1

|H(Zt)| 6
5√
A

; λ̃1 6
5|ln δ|
A

)
.

The second equality follows from the fact that ηε5 > λ̃1 under the event{
sup

06t6λ̃1

|H(Zt)| 6
5√
A

}
.

We claim that for large enough n, we have

P zn
(

sup
06t6λ̃1

|H(Zt)| 6
5√
A

; λ̃1 6
5|ln δ|
A

)
>

1
2 ,

which contradicts our assumption (5.21). To see that this lower bound is true, we
first note that zi 6∈ �̃1 by Lemma 5.11. Thus, we only consider the case zn ∈ B5−�̃1.

Recall λ̃2 = inf
{
t > 0

∣∣ Z2,t ∈ {c0, 1− c0}
}
. Observe that

1{sup06t6λ̃1
|H(Zt)|6 5√

A
}1{λ̃165|ln δ|/A}

= 1{sup06t6λ̃1
|H(Zt)|6 5√

A
}1{λ̃265|ln δ|/A} .

By (5.17) and (5.21) and, we can pick n large enough such that

P zn
(

sup
06t6λ̃1

|H(Zt)| 6
5√
A

; λ̃1 6
5|ln δ|
A

)
> P zn

(
sup

06t66|ln δ|/A
|H(Zt)| 6

5√
A

; λ̃2 6
5|ln δ|
A

)
>

1
2 .

This is a contradiction, proving (5.20) as desired.
Step 2: Once (5.20) is established, we can estimate Eηε5 as the expected time to
success of a Bernoulli trial using a similar argument as in the proof of Lemma 4.2.
Explicitly, let ∆t = 6|ln δ|/A, and observe that by (5.20),

P z0
(
ηε5 < ∆t

)
= P z0

(
sup

06t66|ln δ|/A
|H(Zt)| >

5√
A

)
> C .
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By the strong Markov property and estimate (5.20), we have that for i > 1,

P z0
(
ηε5 > i∆t

)
= Ez0Ez0

(
1{ηε5>i∆t}1{ηε5>(i−1)∆t} | F(i−1)∆t

)
= Ez01{ηε5>(i−1)∆t}E

Z(i−1)∆t1{ηε5>∆t}

6 Ez01{ηε5>(i−1)∆t} sup
z∈B5

Ez1{ηε5>∆t}

= Ez01{ηε5>(i−1)∆t}
(
1− inf

z∈B5
P z
(
ηε5 < ∆t

))
= Ez01{ηε5>(i−1)∆t}(1− C) 6 (1− C)i ,

where C is the constant in (5.20). Therefore,

Ez0ηε5 =
∫ ∞

0
P z0(ηε5 > t) dt 6

∞∑
i=1

∫ i∆t

(i−1)∆t
P z0

(
ηε5 > t

)
dt

6 ∆t
∞∑
i=0

P z0
(
ηε5 > i∆t

)
6 ∆t

∞∑
i=0

(1− C)i 6 6|ln δ|
(1− C)A ,

from which (5.2) follows immediately. �

5.3. Proof of Lemma 5.3. In this subsection, we restrict our attention to a
particular cell (0, 1)× (0, 1) as the analysis is similar for (1, 2)× (0, 1). Thus, assume
for simplicity that |H| = H. By Assumption 3, ∂2

iH 6 0 for i ∈ {1, 2}. Let z ∈ Bc1
and denote Uε(z) = Ezηε1. Then, Uε solves the following equation

(5.22)
{
−∂2

1Uε − ε2∂2
2Uε +Av · ∇Uε = 1 in (0, 1)2 − B1 ,

Uε = 0 on (0, 1)2 ∩ ∂B1 .

In order to prove Lemma 5.3, we construct an explicit supersolution to (5.22),
independent of ε. Recall by Lemma 4.4,

S
def= sup

ε>0
‖Uε‖L∞ <∞ .

Let d1 � 1 be a small constant that will be chosen later, and define

Λ =
{ 1√

A
6 |H| 6 d1

}
R2 = Λ ∩ {y ∈ [c0, 1− c0]} and R1 = Λ−R2 .

Denote by (θ, h) the curvilinear coordinate, where θ = Θ(x1, x2) is the “angle”
and h = H(x1, x2) the level of the Hamiltonian H (See Section 6). Let f (to be
specified later) be a smooth periodic function of Θ that satisfies

(5.23)
0 < inf f < sup f <∞ ,

−∞ < inf f ′(Θ) 6 sup f ′(Θ) < −1 on R1 ,

and sup|f ′′| <∞ .

Then, consider the function

φ = χ1 + χ2 ,

where
χ1 = − S

d1
H lnH and χ2 = −f(Θ)

AH
+ ‖f‖L

∞
√
A

.
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Figure 5. Λ, Ra
1 (green), Rb

1 (red) and R2 (blue).

By construction, φ(Θ, H) > 0 on Λ. We claim that for an appropriate f , φ is a
desired supersolution.

Lemma 5.13. Let Uε be the solution to equation (5.22). Then, there exists a
function f that satisfies the requirement (5.23) so that for small enough d1,

φ > Uε on Λ .

Postponing the proof of this lemma, we now give the proof of Lemma 5.3.

Proof of Lemma 5.3. By construction, on B5 − B1 and for small enough ε, we have
5√
A
6 d1. Therefore, when H = 5/

√
A,

φ 6 − S
d1

5√
A

ln
( 5√

A

)
+ ‖f‖L

∞
√
A
6
|ln δ|√
A
.

It follows that
Ezηε1 = U(z) 6 φ(z) 6 |ln δ|√

A
,

for every z ∈ ∂B5, as desired. �

Proof of Lemma 5.13. Step 1: Recall that v = ∇⊥H and H > 1/
√
A. We have

that
∇χ2 = −f

′(Θ)
AH

∇Θ + f(Θ)
AH2∇H ,

−∂2
1χ2 = 1

A

(f ′′(Θ)
H

(∂1Θ)2 − 2f
′(Θ)
H2 ∂1Θ∂1H + f ′(Θ)

H
∂2

1Θ
)

+ 1
A

(2f(Θ)
H3 (∂1H)2 − f(Θ)

H2 ∂2
1H
)

>
1
A

(f ′′(Θ)
H

(∂1Θ)2 − 2f
′(Θ)
H2 ∂1Θ∂1H + f ′(Θ)

H
∂2

1Θ
)
,

and
−∂2

2χ2 >
1
A

(f ′′(Θ)
H

(∂2Θ)2 − 2f
′(Θ)
H2 ∂2Θ∂2H + f ′(Θ)

H
∂2

2Θ
)
.
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Therefore, by (5.23) and H > 1/
√
A,

(5.24) − (∂2
1 + ε∂2

2)χ2 > −
2
A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A
.

Step 2: On the other hand,

∇χ1 = − S
d1

(1 + lnH)∇H

and
−∂2

1χ1 = S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H

We note that there exists a function ρ = ρ(x) > 0 that

∇Θ = ρ(x)∇⊥H = ρ(x)v(x) ,
and λ1 6 ρ 6 λ2 on

{
|H| 6 c0

}
for some 0 < λ1 < λ2. Therefore, by (5.24) and

H > 1/
√
A,

− ∂2
1φ− ε∂2

2φ+Av · ∇φ

>
S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
ρ(5.25)

− 2
A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A
.

Recall
R2 = Λ ∩ {z2 ∈ [c0, 1− c0]} and R1 = Λ−R2 .

We would like to estimate the above quantity in R1 and R2.
Step 3: For R1, we decompose this set further

Ra1 = R1 ∩ {c0 6 z1 6 1− c0} and Rb1 = R1 −Ra1 .

In Ra1 , there exists a constant C̃ such that |∇H|2 > C̃. Therefore, by (5.23), (5.25)
and H > 1/

√
A,

−∂2
1φ− ε∂2

2φ+Av · ∇φ > −f
′(Θ)|∇H|2

H
ρ− C‖f ′‖L∞

>
λ1C̃ infR1 |f ′(Θ)|

d1
− C‖f ′‖L∞ .

By (5.23), we could then pick d1 small, independent of ε, to make the following hold

−∂2
1φ− ε∂2

2φ+Av · ∇φ > 1
in Ra1 .

On the other hand, in Rb1, we have |∇H(z1, z2)|2 = z2
1 + z2

2 . Therefore, by
Cauchy-Schwarz inequality,

(5.26)
∣∣∣f ′(Θ) |∇H|

2

H

∣∣∣ = −f ′(Θ) |∇H|
2

H
= −f ′(Θ)z

2
1 + z2

2
z1z2

> 2 inf
R1
|f ′| .

Also, note that in Rb1 it holds that |∂iΘ∂iH| = (∂iH)2 for i = 1, 2. Thus, by (5.23)–
(5.26) and H > 1/

√
A, we choose f such that λ1 infR1 |f ′| > 2 and ε small enough

to get
− ∂2

1φ− ε∂2
2φ+Av · ∇φ
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> −f
′(Θ)|∇H|2

H
ρ− 2

A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A

> −f
′(Θ)|∇H|2

H
ρ− 2

A

∣∣∣f ′(Θ)|∇H|2

H2

∣∣∣− C√
A

=
∣∣∣f ′(Θ)|∇H|2

H

∣∣∣(ρ− 2
AH

)
− C√

A

> λ1 inf
R1
|f ′| − C√

A
> 1 .

Thus, we have just shown that there exists a function f that satisfies (5.23) so
that in R1,

−∂2
1φ− ε∂2

2φ+Av · ∇φ > 1 .

Step 4: In R2, there exist constants C1, C2 so that
0 < C2 6 C1|∇H|2 6 (∂1H)2 .

We then look at
− ∂2

1φ− ε∂2
2φ+Av · ∇φ

>
S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
ρ− C

>
S

d1
∂2

1H(lnH + 1) + S

d1

C1|∇H|2

H
− λ2‖f ′‖L∞(R2)

|∇H|2

H
− C

>
C2

C1d1

(SC1

d1
− λ2‖f ′‖L∞(R2)

)
− C .

Pick d1 smaller if needed to get
−∂2φ− ε∂2

2φ+Av · ∇φ > 1 in R2 .

Step 5: Combining Steps 3 and 4, we have shown that there exists a function f such
that

−∂2φ− ε∂2
2φ+Av · ∇φ > 1 in Λ .

By construction, φ > Uε on {H = d1} ∪ {H = 1√
A
}. The comparison principle then

tells us that
φ > Uε in Λ

as desired. �

6. Proof of Lemma 4.4
In this section, we give the proof of Lemma 4.4. This fact has been obtained in

more generality by PDE method by Ishii and Souganidis [IS12]. Our method proof,
still PDE-based, is different than that in [IS12]. Although the argument is new for
our particular situation, it is an adaptation of the method in [Kum18], where the
author studies the Freidlin problem for first order Hamilton-Jacobi equations.

It is convenient to work in the so-called curvilinear coordinates (h, θ), in one cell.
Let Q∗0 = (0, 1)2 − Γ0, where Γ0 is the closure of one trajectory of the gradient flow
of H starting on the boundary of the unit square. On Q∗0 we define the curvilinear
coordinates by setting h = H(x), θ = Θ(x), where Θ solves

∇Θ · ∇H = 0 ,
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in Q∗0, normalized so that the range of Θ is (0, 2π). In this coordinate system, h(x)
determines the level set of the Hamiltonian to which x belongs and θ describes the
position of x on this level set. Since ∇Θ and ∇⊥H are parallel, there must exist a
non-zero function ρ such that

∇Θ = ρ∇⊥H .

By reversing the orientation of Θ if needed, we may assume, without loss of
generality, that ρ > 0. Let J = ∂1H∂2Θ − ∂2H∂1Θ be the Jacobian of the
coordinate transformation, and note

J = ρ|∇H|2 , |∇Θ| = ρ|∇H| .

Let γ be the solution to (5.7) with γ0 = x, and T be the time period of γ. Note
T only depends on h = H(x), and is given by

(6.1) T (h) def= inf{t > 0 : γ(t, x) = x} =
∮
{H=h}

1
|∇H|

|d`| ,

where |d`| denotes the arc-length integral along the curve {H = h}.
Let S(x) def= inf{t | γ(t, x) ∈ Γ0} be the amount of time γ takes to to reach Γ0

starting from x. This time is not a continuous function of x. Therefore, in order to
make it continuous, we modify it to the following continuous function

(6.2) S̃(x) :=
{
S(x) if S(x) > Γ(H(x))/2,
−S(x) + Γ(H(x)) if S(x) < Γ(H(x))/2.

As we have restricted our attention to one cell, we can assume H ∈ [0, 1]. Define
the coefficients D1 and D2 on [0, 1] as follows

D1(h) = 1
T (h)

∮
{H=h}

|∂1H|2

|∇H|
|d`| ,(6.3a)

D2(h) = 1
T (h)

∮
{H=h}

∂2
1H

|∇H|
|d`| .(6.3b)

Note that by Gauss–Green theorem, we have

T (h)D1(h) = −
∫
{H>h}

∂2
1H(x) dx =

∫ h

1

∮
{H=h}

∂2
1H

|∇H|
|d`| dh .

Therefore,

(6.4) d

dh
(T (h)D1(h)) = T (h)D2(h) .

We are now ready to show the proof of Lemma 4.4.

Proof of Lemma 4.4. As before, we restrict our attention to a particular cell (0, 1)2

as the estimate is the same for other ones.
Step 1: Let Uε(x) def= Exτε0 and Ωε

def= (0, 1)2 − Bα. Then, Uε is the solution to the
equation

−1
2∂

2
1Uε −

ε2

2 ∂
2
2Uε +Av · ∇Uε = 1 on Ωε ,

with boundary condition
Uε = 0 on ∂Ωε .
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Lemma 4.4 will follow immediately from the uniform bound
sup
ε
‖Uε‖L∞(Ωε1) 6 C.

To see why this bound is true, let us consider the solution Ū to the ODE{
−D1(h)∂2

hŪ −D2(h)∂hŪ = 4 ,
Ū(0) = 4 .

Note that Ū is bounded. To see this, we use (6.4) to rewrite the equation

− 1
T (h)∂h

(
T (h)D1(h)∂hŪ

)
= 4 .

Observe that T (h)D1(h) ≈ O(1− h) and T (h)→ T0 > 0 as h→ 1; T (h) ≈ O(|ln h|)
and D1(h) ≈ O(1/|ln h|) as h → 0 (see Chapter 8.2 in [FW12]). Using these
asymptotics, we deduce

∂hŪ(h) = 4
T (h)D1(h)

∫ 1

h

T (s) ds , Ū(h) =
∫ h

0

4
T (s)D1(s)

∫ 1

s

T (r) drds ,

and
‖Ū‖W 1,∞ 6 C .

Step 2: Note that Ū ◦H is a function on Ω. Let
g = ∂2

1(Ū ◦H) ,
and we see that

ḡ(x) def= 1
T (H(x))

∫ T (H(x))

0
g(γ(t, x)) dt = −4 ,

where T is defined in (6.1). Define

ϕ(x) =
∫ S̃(x)

0
(ḡ(x)− g(γt(x))) dt ,

where S̃ is defined in (6.2). Note that
(6.5) v(x) · ∇ϕ(x) = g(x)− ḡ(x) = g(x) + 4 .
To see this, consider

ϕ(γ(s, x)) = −
∫ S̃(γ(s,x))

0

(
g(γ(t, γ(s, x)))− ḡ(γ(s, x))

)
dt

= −
∫ S̃(x)

s

(
g(γ(t, x))− ḡ(x)

)
dt .

Differentiate in s and evaluate at s = 0, we get (6.5).
Step 3: Let

Gε
def= Ū ◦H + 1

A
ϕ , Lε = −1

2∂
2
1 −

ε2

2 ∂
2
2 +Av · ∇ ,

and note

LεGε = −1
2∂

2
1(Ū ◦H)− 1

2A∂
2
1ϕ−

ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ+ g(x) + 4

= − 1
2A∂

2
1ϕ−

ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ+ 4 = eε + 4 ,
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where eε
def= − 1

2A∂
2
1ϕ− ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ. Since U is smooth and eε converge

uniformly to 0 as ε→ 0, there exists an ε0 such that for all ε 6 ε0, LεGε > 1 and
Gε > Uε on ∂Ωε. By the maximum principle, Gε > Uε on Ωε. Finally, observe that
supε‖Gε‖L∞ <∞, which implies what we want. �

7. Upper bound for energy constrained flows (Theorem 1.1)
In this section our aim is to prove the upper bound in Theorem 1.1. As in the

proof of Proposition 1.3, we will consider the doubled strip S2 = R× (−1, 1) with
Dirichlet boundary conditions, and only use velocity fields v satisfying (3.1). Our
aim is to find v ∈ V0,p

U satisfying (3.1) such that

‖T v‖L∞ 6
C ln U

U
,

for all sufficiently large U . The flow we use is an analog of the one used by Marcotte
et al. [MDTY18] adapted to the periodic strip, and is shown in Figure 2. It consists
of 1/ε convection rolls of width ε, height 1 skewed so that the center of the roll
is only δ away from the top boundary. Here ε, δ > 0 are small numbers that will
shortly be chosen in terms of the Péclet number U .

Let ν ∈ (0, 1), δ = ε2+ν and H : R2 → R be defined by

H(x1, x2) def= H1(x1)H2(x2) ,

where H1 : R→ R, H2 = H2,ε : [0, 1]→ R are Lipschitz functions such that

H1(x1 + 2) = H1(x1) , H2(−x2) = H2(x2) ,

H1(x1) =


x1 x1 ∈

[
0, 1

2

)
,

1− x1 x1 ∈
[1

2 ,
3
2

)
,

−2 + x1 x1 ∈
[3

2 , 2
)
.

and

H2(x2) =
{
x2 x2 ∈ [−1 + 2δ, 1− 2δ] ,
0 x2 = ±1 .

Moreover, we assume H1, H2 are such that H has only one non-degenerate critical
point in the square (0, 2)× (0, 1). Stream lines of such a Hamiltonian are shown in
Figure 2.

Given ε > 0, define the rescaled Hamiltonian Hε by

Hε(x1, x2) def= H
(x1

ε
, x2

)
, and set vε

def= Aε
ε
∇⊥Hε = Aε

ε

(
∂2H

ε

−∂1H
ε

)
.

Let Tε = T v
ε be the solution to (1.3)–(1.4) with drift vε.

By uniqueness of solutions we see that Tε satisfies Tε(x1 + 2ε, x2) = Tε(x1, x2).
Thus, we change variables and define

y1 = x1

ε
, y2 = x2 , and v = ∇⊥y H .

In these coordinates we see that Tε satisfies

(7.1a) Aεv · ∇yTε −
1
2∂

2
y1
Tε −

1
2ε

2∂2
y2
Tε = ε2 ,
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with boundary conditions
(7.1b) Tε(y1 + 2, y2) = Tε(y1, y2) , and Tε(y1, 1) = Tε(y1,−1) = 0 .

To estimate the size of Tε, consider the associated diffusion let Zε = (Zε1 , Zε2)
which solves the SDE (4.1). And let τε (defined in (4.2)) be the exit time of Z
from the doubled strip S2. By the Dynkin formula, we know Tε = ε2Eτε, and so
estimating Eτε will give us a bound on Tε. This is our next proposition.

Proposition 7.1. Given a Hamiltonian H in the above form, choose Aε = 1/εν ,
v = ∇⊥y H. There exists a constant C = C(ν) such that

(7.2) sup
z∈Ω′

Ezτε 6
C|ln ε|
Aε

.

for all sufficiently small ε.

The reason the bound (7.2) is as follows. In time O(|ln ε|/Aε), deterministic
trajectories of the flow v will move most interior points to O(δ) away from the ∂DS2.
In this region, the drift has speed O(Aε/δ) so particles in this region have O(δ/Aε)
time to diffuse vertically before getting carried away from the boundary ∂DS2.
Within this time, particles can diffuse a vertical distance of O(ε

√
δ/Aε). By choice

of δ = ε2/Aε, and so ε
√
δ/Aε = δ, and hence particles a distance O(δ) away from

∂DS2 exit S2 with non-zero probability, before being carried away from ∂DS2 by the
flow. Now using the strong Markov property we can estimate Eτε by the expected
time to success of repeated Bernoulli trials, leading to (7.2). Before carrying out
these details, we first show how it can be used to finish the proof of Theorem 1.1.

Proof of the upper bound in Theorem 1.1. Clearly it is enough to prove (1.8) for
q =∞. Let v be the flow from the Hamiltonian in Proposition 7.1 and Aε = ε−ν .
We note that

U = ‖vε‖Lp = O
(Aε
ε

( 1
εp

+ 1
δp−1

)1/p)
= O

(Aε
ε

( 1
εp

+ 1
ε(2+ν)(p−1)

)1/p)
= O(ε−q) ,

where

p′ =


2 + ν 1 6 p 6 2 + ν

1 + ν
,

1 + ν + (2 + ν)(p− 1)
p

p >
2 + ν

1 + ν
.

Let Tε be the solution to (7.1a)–(7.1b), and note that by Dynkin’s formula,
Tε = ε2Eτε. Thus, by Proposition 7.1

‖Tε‖L∞ 6
Cε2|ln ε|
Aε

6
C ln U

U (2+ν)/p′ .

If p < 2, then by choosing ν > 0 small enough we can ensure p 6 (2 + ν)/(1 + ν).
In this case 2 + ν = p′ and hence

‖Tε‖L∞ 6
C ln U

U
.

On the other hand, if p > 2, then for any µ > 0 we can choose ν > 0 small enough
to ensure

‖Tε‖L∞ 6
Cµ ln U

U
2p

3p−2−µ
,

finishing the proof. �
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It remains to prove Proposition 7.1. The key step is to show that starting from
any point in S2, the probability Zε hits the boundary ∂DS2 in time O(|ln ε|/Aε) is
bounded away from 0. This is our next lemma.

Lemma 7.2. Let Aε = ε−ν . There exists constants p0 = p0(ν) ∈ (0, 1) and
K = K(ν) ∈ N, independent of ε, such that

(7.3) inf
z∈Ω′

P z
(
τε 6

K|ln ε|
Aε

)
> p0 ,

for all sufficiently small ε > 0.

Using Lemma 7.2 one can prove Proposition 7.1 by treating the exit from the
strip as repeated Bernoulli trials.

Proof of Proposition 7.1. Letting ti = iK|ln ε|/Aε, we note

sup
z∈Ω′

P z(τε > ti) = sup
z∈Ω′

Ez(Ez(1τε>ti−11τε>ti | Fti−1))

= sup
z∈Ω′

Ez(1τε>ti−1PZti−1 (τε > (ti − ti−1)) 6 (1− p0) sup
z∈Ω′

P z(τε > ti−1) .

and hence
sup
z∈Ω′

P z(τε > ti) 6 (1− p0)i .

Consequently,

Ezτε =
∫ ∞

0
P z(τε > t) dt 6

∞∑
i=0

(ti+1 − ti)P z(τε > ti)

6
K|ln ε|
Aε

∞∑
i=0

(1− p0)i = K |ln ε|
p0Aε

,

for every z ∈ Ω′. This yields (7.2) as desired. �

It remains to prove Lemma 7.2, and this constitutes the bulk of this section. We
will subsequently assume Aε = ε−ν , and for notational convenience simply write A
instead of Aε.

Let κ1, defined by

(7.4) κ1
def= inf

{
t > 0

∣∣ Zεt ∈ (0, 2)× (1− 2δ, 1)
}
,

be the first time Zεt hits the set (0, 2)× (1− 2δ, 1).

Lemma 7.3. Let 0 < h0 � c0 be a small constant independent of ε, and define

Rh0 = Ω ∩
(
Bch0
∪ (1− c0, 1 + c0)× (c0, 1− c0)

)
.

Suppose h0 is small enough so that Bch0
∩ (1− c0, 1 + c0)× (c0, 1− c0) is nonempty.

There exists constants C0 > 0 and p1 ∈ (0, 1) such that

(7.5) inf
z0∈Rh0

P z0
(
κ1 6

C0

A

)
> p1 .

The proof of Lemma 7.3 is based on a standard tube lemma argument and is
presented in Appendix A.



BOUNDS ON THE HEAT TRANSFER RATE VIA PASSIVE ADVECTION 29

Lemma 7.4. Let h0 be as in Lemma 7.3, T0 = inf{t > 0 : γ2,t ∈ {2c0, 1 − 2c0}},
and T1 = min{T0, |lnA|/A}. Then

(7.6) inf
Bh0∩(0,2)×(0,c0)

P z0
(
ZT1 ∈ (1− 2c0, 1 + 2c0)× (c0, 1− c0)

)
> 1− C lnA

A1/2 ,

and
(7.7)

inf
Bh0∩(0,2)×(1−c0,1−2δ)

P z0
(
ZT1 ∈

(
(0, 2c0)∪ (2−2c0, 2)

)
× (c0, 1−c0)

)
> 1− C lnA

A1/2 .

Proof. We only show the proof for (7.6) as (7.7) holds also by symmetry. Let
q > 2 be some large number to be chosen later, and let z̃0 be the point in the set
{H ∈ (A−1/q, h0)} which is closest to z0. Let d̃ = A|z0 − z̃0| and γt be the solution
to (5.7), with γ0 = z̃0. Note that, if z0 is already in {H ∈ (A−1/q, h0)}, then d̃ = 0.
Also, by Assumption 1,

(7.8) d̃

A
6

C

A1/(2q) .

By Itô formula, we have

Ez0 |Zt − γt|2 6
d̃2

A2 + 2A‖v‖C1

∫ t

0
Ez0 |Zs − γs|2 ds+ (1 + ε2)t .

By Gronwall’s inequality, it follows that

Ez0 |Zt − γt|2 6
( d̃2

A2 + (1 + ε2)t
)
e2‖v‖C1At .

Now, let T = inf{t > 0 | γ2,t ∈ (2c0, 1− 2c0)}, and note that T 6 D lnA/(Aq) for
some constant D > 0. By (7.8), we have

P z0
(
|ZT − γT | >

c0
10

)
6

100
c20

( C

A2q + (1 + ε2)D lnA
Aq

)
e2‖v‖C1D lnA/q

6 CA2D‖v‖C1/q−1 lnA 6 C lnA
A1/2 ,

provided q is chosen so that 2‖v‖C1D/q − 1 < −1/2. we have

(7.9) P z0
(
|ZT − γT | <

c0
10

)
> 1− C lnA

A1/2 .

Since the trajectories of Z are continuous,

{ZT1 ∈ (1− 2c0, 1 + 2c0)× (c0, 1− c0)} ⊇
{
|ZT − γT | <

c0
10

}
,

from which (7.6) follows. �

Lemma 7.5. There exists constants D > 0, p2 ∈ (0, 1), independent of ε so that

(7.10) inf
z0∈Bh0

P z0
(
κ1 6

D|lnA|
A

)
> p2 .

Proof. Denote

�1
def= (1− 2c0, 1 + 2c0)× (c0, 1− c0) ,

�2
def= Bh0 ∩ {x2 ∈ (0, c0)} ,

�3
def= Bh0 ∩

(
(0, 2c0) ∪ (2− 2c0)

)
× (c0, 1− c0) ,
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�4
def= Bh0 ∩ {x2 ∈ (1− c0, 1)} .

First, if z0 ∈ Bh0 ∩�1, we are done, by Lemma 7.3.
Suppose now that z0 ∈ �2. Let T1 be as in Lemma 7.4. By Lemmas 7.3, 7.4 and

the strong Markov property we note

P z0
(
κ1 6

D

A
+ T1

)
> P z0

(
ZT1 ∈ �1

)
inf

z1∈�1
P z1

(
κ1 6

D

A

)
>
(

1− C lnA
A

)
p1 .(7.11)

Suppose now that z0 ∈ �3. Denote κ2
def= inf{t > 0 | Z1,t ∈ {2c0, 2− 2c0}}. By a

similar argument as in Lemma 7.4, there exists p ∈ (0, 1) such that

inf
z0∈�3

P z0
(
κ2 6

|lnA|
A

)
> p .

There are two possibilities:
(1) There exists a p′2, independent of ε such that

P z0
(
Zκ2 ∈ �2 ;κ2 6

|lnA|
A

)
> p′2 .

In this case, we can apply the same argument as in (7.11) to arrive at the
desired result.

(2) Otherwise, there exists a constant p′2, independent of ε such that

P z0
(
H(Zκ2) > h1 ;κ2 6

|lnA|
A

)
> p′2 ,

for some h1 independent of ε. We can then apply Lemma 7.3 to get the
desired result.

The same argument works when z0 ∈ �4, and this completes the proof of (7.10).
�

Lemma 7.6. There exists a constant p3 ∈ (0, 1) such that

(7.12) inf
z0∈{z|z2>1−2δ}

P z0
(
τε 6

ε

A

)
> p3 .

Proof. Denote T3(z) = inf{t > 0 | γ2,t 6 1− 4δ , γ0 = z}, and let

T4
def= inf
{z|z2>1−2δ}

T3(z) .

By definition of H we see that T4 > Cδ/A for some constant C. In time Cδ/A the
process Z diffuses a distance of O(ε

√
δ/A) = O(δ) vertically, and hence should hit

the top boundary with a probability that is bounded away from 0. That is, we
should have

(7.13) P z0
(
τε 6 T4

)
> p3 ,

which immediately implies (7.12). The inequality (7.13) can proved using a tube
lemma (Lemma A.3) and is the same as the proof of Lemma 5.9. �

Proof of Lemma 7.2. Given Lemmas 7.3, 7.5, 7.6, the proof of (7.3) is identical to
that of Lemma 5.1. �
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Appendix A. Tube Lemmas
In this appendix, we prove several “tube lemmas” and estimate the probability

a diffusion stays close to the underlying deterministic flow. Many such estimates
are standard and can be found in books (see for instance [FW12]). However, in our
situation, we require estimates where the diffusion coefficient is degenerate in one
direction and the amplitude of the drift is large. While the proofs follow standard
techniques, the estimates themselves aren’t readily available in the literature, and
we present them here.

Throughout this appendix we consider the SDE
(A.1) dZt = Av(Zt) dt+ σ dBt ,

where
(A.2) ‖v‖L∞ 6 1 , ‖Dv‖L∞ 6 1 ,

(A.3) σ = (σij) =
(

1 0
0 ε

)
.

For notational convenience we will often denote the diagonal entries with just one
subscript and write σi for σii (i.e. σ1 = 1 and σ2 = ε).

Lemma A.1. Fix λ, β > 0, and define T = Tβ,A and R = RA,λ by

(A.4) T
def= β

A
, R

def=
(

1− λ√
A
, 1 + λ√

A

)
× (1− ε, 1) .

Let z0 ∈ R, u ∈ C1(R2) and let γ̃ be the solution to the ODE
∂tγ̃t = Au(γ̃t) dt , with γ̃0 = z0 ,

and Γ̃ = {γ̃(t) | t ∈ [0, T ]} be the image of γ̃. Denote

LT = A2

2

∫ T

0

∑
i=1,2

( |ui(γ̃(t))− vi(γ̃(t))|
σi

+
2∑
j=1

σj‖∂jvi‖L∞(R+Γ̃)

σi
√
A

)2
dt .

Then for some α > 0 we have

P z0
(

sup
06t6T

|σ−1(Zt − γ̃t)|∞ 6
λ√
A

)
> P

(
sup
t6T
|Bt|∞ 6

λ√
A

)
exp
(
−α
√
LT −

1
2LT

)
for all sufficiently large A. Here the notation |z|∞ denotes maxi|zi|.

Remark A.2. A similar upper bound also holds, but is not needed for purposes of
this paper.

Proof. Define the process Z̃ by
dZ̃t = Au(γ̃t) dt+ σ dBt , with Z̃0 = z0 .

Define
h(t) def= A(u(γ̃t)− v(Z̃t)) ,

ĥ(t) def= σ−1h(t) ,

Mt
def= exp

(
−
∫ t

0
ĥ(s) dBs −

1
2

∫ t

0
ĥ(s)2 ds

)
(A.5)
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and a measure P̂ so that
dP̂ = MT dP .

By the Girsanov theorem (see, for example, Theorem 8.6.6 in [Øks03]), the process

B̂t
def=
∫ t

0
ĥ(s) ds+Bt

is a Brownian motion with respect to the measure P̂ up to time T . Since

dZ̃ = Av(Z̃) dt+ σ dB̂t ,

by weak uniqueness we have

Ez0f(Zt) = Êz0f(Z̃t) = Êz0f(γ̃t + σBt) = Ez0
(
f(γ̃t + σBt)Mt

)
,

for any test function f . Thus

P z0
(

sup
t6T
|σ−1(Zt − γ̃t)|∞ 6

λ√
A

)
= Ez0

(
1KMT

)
.

where
K

def=
{

sup
t6T
|Bt|∞ 6

λ√
A

}
.

Now let α = (2/P z0(K))1/2, and K̂ be the event

K̂
def=
{(∫ T

0
ĥ(t) dBt

)2
< α2

∫ T

0
ĥ(t)2 dt

}
.

By Chebychev’s inequality and the Itô isometry, we see

P z0(K̂c) 6 1
α2 = P z0(K)

2 ,

and hence
P z0(K ∩ K̂) > P z0(K)

2 .

Thus

Ez0(1KMT ) > Ez0
(

1K∩K̂ exp
(
−α
(∫ T

0
ĥ(t)2 dt

)1/2
− 1

2

∫ T

0
ĥ(t)2 dt

))
>

P z0(K)
2 inf

K
exp
(
−α
(∫ T

0
ĥ(t)2 dt

)1/2
− 1

2

∫ T

0
ĥ(t)2 dt

)
.(A.6)

To estimate the exponential, note that on the event K we have

|ĥi(t)| =
|hi(t)|
σi

= A

σi

∣∣∣vi(γ̃t + σBt)− vi(γ̃t) + vi(γ̃t)− ui(γ̃t)
∣∣∣

6
λ
√
A

σi

∑
j

σj‖∂jvi‖L∞(Γ̃+R) + A|ui(γ̃t)− vi(γ̃t)|
σi

,(A.7)

for every i = 1, 2. Combining (A.7) with (A.6) completes the proof. �

Lemma A.3. Using the same notation as in Lemma A.1, we now additionally
assume

max
i∈{1,2}

∑
j=1,2

σj‖∂jvi‖L∞(R+Γ̃)

σi
6 C0(A.8)
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∑
i=1,2

∫ T

0

A2|ui(γ̃t)− vi(γ̃t)|2

σ2
i

dt 6 C2
0 .(A.9)

Then there exists C1 = C1(C0, λ, β) > 0 such that

P z0
(

sup
06t6T

|σ−1(Zt − γ̃t)|∞ 6
λ√
A

)
> C1

Proof. Following the proof of Lemma A.1, and using (A.8)–(A.9) in (A.7) gives∫ T

0
|ĥ(t)|2 dt 6 2C2

0 (1 + λβd) .

Combined with (A.6) the lemma follows. �

Next, we show the following estimate for the side boundary layer.

Lemma A.4. Let z0 ∈ B̃n
def= Bn − [c0, 1− c0]× [0, 1] and n ∈ N; Zt be a stochastic

process satisfying (A.1)–(A.3) and γt be a deterministic process satisfying
∂tγt = Av(γt) with γ0 = z0 .

Let T,R be as in (A.4), and Γ = {γ(t) | t ∈ [0, T ]} be the image of γ, and assume
(A.10) ∂1v2 = 0 in Γ +R .

For M > 1, let R̃ε ⊆ [1 −M/
√
A, 1 + M/

√
A] be a Borel set, and T = m/A for

some m ∈ N. Then, there exists a constant C = Cm,M and ε0 > 0 such that for all
ε < ε0,

P z0
(

sup
06t6T

|Z1,t − γ1,t| 6
2M√
A
, sup
06t6T

|Z2,t − γ2,t| 6
ε√
A
,Z1,T − γ1,T ∈ R̃ε

)
> Cm,nP

(
|Bt| 6

2M√
A
,B1,T ∈ R̃ε

)
(A.11)

As before we write Z = (Z1, Z2), γ = (γ1, γ2), and the notation Zi,t and γi,t
denotes the values of the coordinate processes Zi and γi respectively at time t.

Proof. We follow the proof of Lemma A.1, and explicitly substitute σ1 = 1 and
σ2 = ε. Our conclusion (A.11) will follow provided we can show

(A.12)
∫ T

0
ĥ(t)2 dt 6 C ,

for some finite constant C, independent of ε. To bound this, we use the upper
bound (A.7), and observe that the second term on the right hand side is identically
0 since u = v. For the first term, the only term that may grow faster than

√
A is

when i = 2 and j = 1. In this case, the assumption (A.10) guarantees that this term
is identically 0. Now squaring and integrating from 0 to T = m/A proves (A.12) as
desired. �

Remark A.5. If the velocity field v does not satisfy (A.10), then Lemma A.4 still
holds provided A is chosen so that A > 1/ε2. To see this we note that (A.7) implies∫ T

0
ĥ(t)2 dt 6

Cm

Aε2 .

If A > 1/ε2 the right hand side of this is bounded independent of ε, and so the
remainder of the proof of Lemma A.4 remains unchanged.
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Finally, we prove Lemmas 7.3, and Lemma 7.3, which were used in the proofs of
Theorem 1.1 and Proposition 1.3. Both proofs follow along the lines of the above
tube lemmas.

Proof of Lemma 5.4. We only consider the case where z0 ∈ Q0/2. The other cases
are similar. First, recall that, by a direct calculation, we can check T 6 |ln δ|/A.
Therefore, for small enough ε, under the event {|Zi,t − γi,t| 6 σi(|ln δ|A)−1/2 , ∀t 6
T , i = 1, 2}, we must have Zt ∈ Q0 for t 6 T . Thus,
(A.13) v1(Zt) = Z1,t and v2(Zt) = −Z2,t .

Now define

dZ̃t = A

(
v1(γt)
v2(γt)

)
dt+ σ dBt

and write

(A.14) h(t) def= A

(
v1(γt)− v1(Z̃t)
v2(γt)− v2(Z̃t)

)
= A

(
γ1,t − Z̃1,t
−γ2,t + Z̃2,t

)
= A

(
−B1,t
εB2,t

)
.

As before, we define ĥ and a new measure P̂ by

ĥ(t) def= σ−1h(t) =
(

1 0
0 1/ε

)
h(t) = A

(
−B1,t
B2,t

)
,

dP̂ = MT dP ,

where
Mt

def= exp
(
−
∫ t

0
ĥ(s) dBs −

1
2

∫ t

0
ĥ(s)2 ds

)
,

for 0 6 t 6 T . By the Girsanov theorem, the process

B̂t
def=
∫ t

0
ĥ(s) ds+Bt

is a Brownian motion with respect to the measure P̂ . Therefore, by uniqueness of
weak solutions of SDEs, we have

E(f(Zt)) = Ê(f(Z̃t)) = Ê(f(γ1,t +B1,t, γ2,t + εB2,t))
= E(f(γ1,t +B1,t, γ2,t + εB2,t)Mt) .

Hence

P x
(
|Zi,t − γi,t| 6

σi√
|ln δ|A

, ∀t 6 T , i = 1, 2
)

= Ex
(

1{
|Bt|∞6(|ln δ|A)−1/2 , ∀t6T

}MT

)
.

Now, we have that, by Itô formula,∫ t

0
ĥ(s) dBs = −A

∫ t

0
B1,s dB1,s +A

∫ t

0
B2,s dB2,s

= A

2 (−B2
1,t +B2

2,t) .

Therefore,

Mt > exp
(
−A2 (B2

1,t +B2
2,t)−A2

∫ t

0
(B2

1,s +B2
2,s) ds

)
.
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Therefore, as T 6 |ln δ|/A, under the event

K
def=
{
|Bt|∞ 6

1√
|ln δ|A

, ∀t 6 T
}
,

we must have
MT > exp

(
− 1

2|ln δ| − 2
)
> C .

Since P (K) ≈ 1/|ln δ|2, this finishes the proof. �

Proof of Lemma 7.3. Let z0 ∈ Rh0 and T0 = inf{t > 0 | γ2,t > 1 − δ}, where γ is
the solution to (5.7) with γ0 = z0. A direct calculation shows that there exists C0
for which T0 6 C0/A. Furthermore, when x2 ∈ (0, 1− 2δ), we have that

v(x1, x2) =
(
∂2H(x)
∂1H

)
=
(
H1(x1)
±x2

)
.

Therefore, following the proof of the tube lemma (Lemma A.1), we find that the
function ĥ(t) there satisfies

|ĥ(t)| = A

(
|H1(γ1,t)−H1(γ1,t +B1,t)|

|B2,t|

)
.

Therefore, under the event
{

supt6T0 |Bt| 6
√
T0 ;B2,T0 > 0

}
, it is true that

(A.15)
∫ T0

0
|ĥ(t)|2 dt 6 C .

We have that

K1
def=
{

sup
t6T0

|Zt − γt| 6
√
T0 ;Z2,T0 > 1− 2δ

}
⊆
{
κ1 6

C0

A

}
.

Following the proof of Lemma A.1, by Girsanov’s theorem and (A.15), there
exists p1 ∈ (0, 1) such that

P z0(K1) > CP
(

sup
t6T0

|Bt| 6
√
T0 ;B2,T0 > 0

)
> p1 ,

from which (7.5) follows immediately. �
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